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Abstract-ls successive interference cancellation (SIC) decod­
ing always the optimal choice in non-orthogonal multiple access 
(NOMA) systems? While the answer is positive based on Shannon 
theory, which is applicable to infinite-length codewords drawn 
from a Gaussian distribution, this may not universally hold for 
systems with finite-alphabet inputs. Specifically, in this paper, we 
demonstrate that for quadrature amplitude modulation (QAM)­
based NOMA, SIC decoding fails for certain values of power 
allocation coefficient a:, used to divide power among NOMA 
users. With this observation, we propose employing maximum 
likelihood (ML) detection to decode QAM-NOMA. While SIC 
decoding for QAM-NOMA requires allocating higher power to 
the user with a weaker channel to prevent symbol crossing 
in super-constellations, ML detection can successfully handle a 
broader range of power allocation coefficients. We then derive 
closed-form symbol error rates for quadrature phase shift keying­
based NOMA systems across any a: and validate them through 
simulations. The results demonstrate the effectiveness of ML 
detection, particularly in scenarios where SIC decoding fails. 

Index Terms-NOMA, successive interference cancellation 
(SIC), finite-alphabet input, maximum likelihood detection. 

I. INTRODUCTION 

Non-orthogonal multiple access (NOMA) holds the promise 
of expanding the number of users and improving spectral 
efficiency of wireness networks [1]-[4]. Key techniques for 
achieving the capacity region of the single-input and single­
output (SISO) NOMA, also referred to as power-domain 
NOMA [2]-[5], are superposition coding (SC) and successive 
interference cancellation (SIC). This SISO NOMA model is 
essentially analogous to the widely recognized broadcast chan­
nel (BC) [6]-[8]. Similar to other Shannon-theoretic capacity 
limits, in the context of the Gaussian BC achievability is 
established by employing Gaussian codewords with lengths 
approaching infinity. 

Inspired by the above, SC-SIC is applied to finite-length 
inputs built on finite alphabet constellations such as quadrature 
amplitude modulation (QAM) constellations [2], [3], [9]-[12]. 

Nonetheless, the practical application of such principles may 
not align with the same theoretical assertions [13], [14]. This 
discrepancy have contributed to misconceptions, such as the 
notion that users with smaller channel gains should be allo­
cated higher power [3], [9], [10]. While these misconceptions 
are refuted based on theoretically optimal inputs [15], this 
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paper delves into the discussion of such confusions specifically 
for finite-alphabet inputs, with a focus on QAM constellations. 

The two premises, namely, NOMA with theoretically opti­
mal inputs and finite-alphabet inputs, differ in several aspects. 
Consider a two-user SISO NOMA and let aP, (0 a 1), 
be a fraction of the transmitter power P allocated to the user 
with the weaker channel gain. Here are key observations: 

• In theory, for any arbitrary value of a, decoding can be 
completed successfully in both users [15]. However, with 
inputs drawn from QAM constellations, careful selection 
of a is essential to avoid constellation overlap and prevent 
erroneous decisions. 

• In theory, utilizing SIC at the user with the stronger chan­
nel is always optimal for achieving the capacity region 
with an arbitrarily small error probability. However, with 
finite-alphabet inputs, this approach is effective only for 
a subset of power allocation values. 

• While theory strictly mandates the order of performing 
SIC, with the weak user consistently treating interference 
as noise and the strong user executing SIC, with QAM­
based inputs, depending on the value of a, the order of 
SIC can be exchanged, allowing the weak user to perform 
SIC in certain cases. 

The main message of this paper is that SIC is not always the 
best decoding method when finite-alphabet inputs are used in 
NOMA. Some other work has avoided SIC by applying lattice 
[16] and index modulations [17], and other methods [18]. Our 
claim is different in that the alternative decoding method based 
on maximum-likelihood (ML) can support more values of a in 
QAM modulations. The contributions and conclusions of this 
paper can be summarized as follows: 

• We demonstrate that ML decoding has the potential to 
outperform SIC-based decoding for finite-alphabet inputs. 
Notably, ML works in some scenarios where SIC fails. 

• We reaffirm that NOMA itself, even with finite inputs, 
does not mandate the allocation of higher power to the 
weaker user. In fact, when finite-alphabet constellations 
are employed for NOMA users, less power can be allo­
cated to the weak user [13], [17]. There is no restriction 
on power allocation parameter a. 

• We derive a closed-form symbol error rate for a two­
user quadrature phase shift keying (QPSK)-based NOMA 
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system and validate it through simulations. An intriguing 
observation is that SIC can be employed for the weaker 
user when the power allocation coefficient is below a 
certain threshold. 

The remainder of this paper is organized as follows: In the 
following section, we present the system model. Section III is 
dedicated to a detailed mathematical and graphical exploration 
of ML detection, including the analysis of symbol error rate 
and discussions on the SIC order. Numerical results are pro­
vided in Section IV, and we conclude the paper in Section V. 

II. SYSTEM MODEL 

Consider a downlink NOMA system with one transmitter 
(Tx) and two users, where all nodes are equipped with a single 
antenna. The channels between the Tx and users are assumed 
to experience quasi-static flat Rayleigh fading, i.e., channels 
are constant within each transmission. In each transmission, 
we always name the user equipment (UE) with the weaker 
channel gain UEl and the one with stronger channel gain as 
UE2. The data for UEl and UE2 are modulated using QAM 
modulations with orders M1 and M2, and the corresponding 
alphabets of these two constellations are denoted as A and B. 

The symbols for the users are denoted by x1 and x2, and 
are assumed to have unit (average) powers. Then, to transmit 
the two signals simultaneously, a fraction o: E [0, 1] of the 
total power Pis assigned to UEl , and a fraction a 1- o: of 
the power is allocated to UE2. The superposition of the scaled 
symbols is given by 

(1) 

Let the complex channel gains for UEl and UE2 be h1 and 
h2, and assume lh1 12 :::; lh212. The received signal at user k, 

k = 1, 2, is given as 

(2) 

Where nk represents a complex noise. The real and imaginary 
parts of the noise are independent and identically distributed 
(i.i.d.) Gaussian random variables for user k , thus R.{ nk} and 
I{ nk} ~ N(O , a-i). The received signal after equalizing the 
estimated channel (hk) can be written as 

Tk = ~k = ,J;;J5 x l + vii? x 2 + 'nk , (3) 
hk 

where nk 'f: is a scaled complex white Gaussian random 
k 2 

• "th d • ' 2 n01ses w1 zero mean an vanance o-k = llhkll 2 • 

The two NOMA users decode the received symbols differ­
ently. UEl directly decodes x1 by treating interference as noise 
(TIN) whereas UE2 employs SIC to retrieve its symbols. With 
QAM constellations, a widely accepted assumption for SIC is 
to allocate more power to the weaker user in order to avoid 
constellation overlapping [3], [9], [10], [19]. In the following 
section, we show an alternative decoding method in which 
more values of a in QAM modulations can be supported. 
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Fig. I : The construction of the superimposed symbols with different 
power allocation values. 

Ill. MAXIMUM-LIKELIHOOD DETECTION 

Using QAM modulations of orders M1 and M2 , respectively 
for UEl and UE2, we denote 

x1 EA~ {a1 , . .. , ai, • ··, aMJ , (4a) 

X2EB~{b1, ... ,bj, · · ·,b M2}, (4b) 

in which ai and bi are the ith and jth symbols in A and 
B, respectively. All symbols are assumed to have an equal 
probability. The superimposed constellation consists of at most 
M 1 • M2 symbols, generated by (1). Thus, the superimposed 
symbol can be written as 

(5) 

in which 0 is tensor product and symbol si ,j = v'a?a i + 
~bi. Once the power allocation coefficient o: is fixed, the 
superimposed alphabet set is generated. The two users can 
decode their messages by applying the ML detection, i.e., 
measuring the minimum squared Euclidean distance between 
the superimposed alphabet set and the received signals, which 
for user k is 

(i*,j * ) = argmin lh - si,ill 2. 
t, J 

(6) 

Then, the decisions are i:1 = ai • and i:2 = bi*, for UEl and 
UE2, respectively. That is, we find the indices of the symbols. 

A. Symbol Error Rate Analysis 

We analyze the symbol error rates (SERs) for both users for 
the special case of M1 = M2 = 4, i.e., QPSK constellations or 
4-QAM. Errors happen when the superimposed constellation 
points are overlapped. Let us define d1 and d2 as the distances 
of the symbols to the y-axis, as shown in Fig. 1. The distances 
are affected by the transmit power and o:. The literature has 
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assumed d1 > d2 to avoid the constellation overlapping. We 
define the cut-off threshold of overlapping as a0 . In the two­
QPSK NOMA system, there is one cut-off threshold ao = 0.5, 

which is obtained from d1 = J 2c~~l) = d2 = J 2(~~1) · 
Two constellation examples for a > a 0 and a :S ao are 
illustrated in Fig. l(a) and Fig. l(b), respectively. 

In [9], SERs for UEl and UE2 are provided only for a > 
a 0 , since SIC fails for a :S a 0 . As a result, it is concluded that 
NOMA can work only for a > a0 = 0.5. This is a common 
myth that can be found in many other NOMA papers. 

To overcome this deficiency, in the following, we use ML 
detection in both users and analyze the two error probabilities. 
To this end, we use Ek to represent the SER for UEk. lP'(:h = 
x k I¢) denotes the probability of successfully decoding UEk 
under the condition that event ¢ happens. Also, the Q(x) is 

the Gaussian Q-function defined as Q(x) = ,A;.- Jx'°° c "22 du. 

Proposition 1. For the two-user NOMA with QPSK is used 
for both users, the SER at UEJ and UE2 for a :S ao can be 
expressed as 

E1 = 1 -1P'2(i:1 = x1la :S 0.5), 

E2 = 1 - 1P'2(i:2 = x2la :S 0.5) , 

(7a) 

(7b) 

in which lP'(i:1 = x1la :S 0.5) and lP'(i:2 = x2la :S 0.5) are 
given in (8) and (9) on top of next page. 

Proof The QAM can be considered as two independent 
components on real and imaginary axes and have identical 
probability [9]. Thus, a QAM-based NOMA symbol can 
be decomposed into two pulse amplitude modulation (PAM) 
symbols. The derivation is based on the superimposition of two 
independent PAMs. A simple way is to apply the symmetric 
property of the two 4-QAMs. Then, we can obtain the SERs 
by swapping M1 and M2, a-? in [9, Proposition 3, 4], which 
is derived only for a > ao. 

Remark 1. When a :S 0.5, SERs for UEl and UE2 in two 
4-QAM-based NOMA systems are c1 and c2 in (7). When 
a > 0.5, the SERs are given in [9, Proposition 3, 4]. 

To demonstrate that UEl , whose channel gain smaller 
than UE2's channel gain, can operate effectively without 
necessitating a higher power allocation in the above scenario, 
we compute the derivative of (8) as illustrated in (10). This 
facilitates an analysis of the characteristics of (10) within the 
range a :S 0.5. Particularly, we can show that 

dlP'1 dlP'1 
( da • ( da la=D.5) < 0, 

indicating that (8) is non-monotonous and has an extremum. 

Remark 2. Proposition 1 and Remark 1 are for 4-QAM. For 
higher-order modulations, there may exist more than one cut­
off threshold. The proposition still holds for some thresholds. 
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Fig. 2: Superimposed constellation for different values of a observed 
at a) UEl, and b) UE2. 

B. Illustration of the ML Detection 

The ML method works by finding the nearest symbol of the 
superimposed constellation to the received signal. It can be ap­
plied for more values of a than the SIC decoding. We elaborate 
on this by considering a case for a QPSK-based NOMA system 
without noise. The superimposed constellations for UEl and 
UE2 with continuous different as are denoted in Fig 2(a), 
and three different values of a (the slices of the Fig 2(a) at 
a = 0.33, 0.54, 0.84) are depicted in Fig 2. The cut-off thresh­
olds are the cross-points in Fig. 2(a). The colors show the 
decision. For example, the blue circles in Fig. 2(b) for UEl are 
{ s1,1, s1,2, s1,3, s1,4}. If we receive any symbol that is close to 
this blue circle set, the symbols result in i:1 = a1. Similarly, 
the yellow triangles are {s3,1, s3,2, s3,3,s3,4} and thus give 
i:1 = a3 . On the other hand, the red circles in Fig. 2(c) are 
{s1,1,s2,1, s3,1, s4,i} which all result in i:2 = b1. When a 
approaches 0.5, the 16-QAM-like super-constellation reduces 
to 9-QAM, because of symbols overlapping. In this case, there 
is no method to distinguish all symbols successfully. 

C. SJC Order 

Based on the theory of the BC, UEl (which has a weaker 
channel) should employ TIN and UE2 should perform SIC. 
However, if this is followed for a :S a 0 , both users fail to 
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decode their symbols. This is because the theory is based 
on Gaussian codewords whose lengths go to infinity. This 
assumption is not valid when finite constellations like QAM 

are used. Interestingly, with QAM inputs, for a :::: a 0 if the 
order of SIC is exchanged, i.e., SIC is applied in the user with 
a weaker channel, both users' signals can be decoded. 

IV. SIMULATIONS 

In the following simulations, we assume that the noise 
power is identical at the two receivers, aJ = a~ = ~. The 
input signal has 105 samples. 

Example 1: We first consider the case with M1 = M2 = 4, 
where h1 = 2+3j, h2 = 3+4j, and %0 = 5dB. The estimated 
symbols of the ML method for both users can be found in 
Fig. 3 for a = 0.21, 0.33, 0.84. Similar to the analysis in 
Section ill-B, the received signal with noise is decided by the 
ML detection, and the colors represent the decoded symbols. 
Given different values of a, the QAM symbols of each user in 
the superimposed constellations are distinguishable using ML 
method. The SERs of UEl and UE2 are plotted in Fig. 4 
where theoretical derivation, ML, and SIC (UEl employs 
TIN and UE2 performs SIC) are compared. It is seen that 

(9) 

3P + (2n-1) 

8(M1 - l)a ../fiD2 
3P ) 

8(M2 - l)a 

(2n-1) 3P )] 
../fiD2 8(M2 - l)a • 

(10) 

the analytical SERs of both users match the simulated SERs 
of the ML method. This validates the SER expressions of 
Propositions 1 and Remark 1. For a > 0.5, ML and SIC curves 
are matched. For a :::: 0.5, TIN at UEl and SIC at UE2 fail 
to decode. Specifically, the SERs of ML method are [E1 , E2] = 
[0.627, 0.005]% for a = 0.21, [Ei, E2] = [5. 766, 1.456]% for 
a = 0.33, and [E1 , E2] = [0.052, 0.037]% for a = 0.84. The 
SERs of SIC for a = 0.21 and 0.33 are [75.012, 50.961]% 
and [72.063, 74.196]%, respectively. 

The effect of the order of SIC is shown in Fig. 5. Assume 
the required maximum SER is 10- 2 . First, UEl performs TIN 
and UE2 employs SIC (this is the normal order of SIC). This 
works for 0. 75 :::: a :::: 0.92 (marked by vertical black dash 
lines in Fig. 5). However, if we change the order of SIC, i.e., 
perform SIC at UEl and TIN at UE2. Decoding can still work 
for 0.17:::: a :::: 0.24, which implies that the weaker user can 
perform SIC. Finally, ML works for a higher range of a. 

Example 2: We use the same settings as [9] in which M1 = 
16, M2 = 4, h1 = 0.5+0.6j, h2 = 0.7+0.8j, and %0 = 23dB. 
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Fig. 3: The super-constellation at UEI and UE2 for three different 
values of o: and h1 = 2 + 3j, h2 = 3 + 4j, and J0 = 5dB. 

The SERs of ML and SIC are plotted in Fig. 6. There are three 
cut-off thresholds which are a 0 = 0.83, 0.56, 0.36. First, we 
obtain the same results of TIN at UEl and SIC at UE2 as [9, 
Fig. 8] for a > 0.83 (i.e., d1 > d2). The ML and SC-SIC can 
achieve the same performance in this range. On the other hand, 
exchanging the order of SIC, i.e., using SIC at UEl and TIN 
at UE2, can achieve the same results as the ML method for 
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Fig. 4: SER comparison of the theoretical, ML, and SIC for M1 = 
M2 =4. 

a: 
UJ 
(/) 

I 
I 
I 
I 

* 

- MLUE1 
- MLUE2 
... + ... TIN UE1 

_.,._· SIC UE2 

-• ·SIC UE1 
-~- -TIN UE2 

I 
• 

10-6 
0 0.2 0.4 0.6 0.8 

a 

Fig. 5: SER comparison of the ML and SIC for M1 = M2 = 4. 

a < 0.36 (i.e., d1 < ½d2). SIC fails for 0.36 ::; a ::; 0.83 (i.e., 
½d2 S d1 ::; d2) while ML can work better to achieve local 
optimums. The SER curves of both users are quasi-convex and 
the minimum values of the curves are at Ctm in = 0.95 for UE2 
when a 0.5, and Ctm in = 0.21 for UEl when a < 0.5 by 
an exhaustive search. The local-minimums are 0.44 and 0.69 

for ½d2 S d1 S d2 and ½d2 < d1 S ½d2, respectively. 

Next, we demonstrate the influence of f:0 on SERs for two 
power allocation coefficients, a = 0.95 and a = 0.21, The 
results are shown in Fig. 7. The analytical SERs of both users 
match the simulation results, which validates Proposition 1 for 
a = 0.21 and [9, Proposition 3, 4] for a = 0.95. The results 
also verify that ML supports more values of a, only a= 0.95 
was considered as an option [9] and small value of power 
allocation such as a = 0.21 was never qualified as a solution. 
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V. CONCLUSIONS 

In this study, we have revealed new insights into NOMA de­
coding with finite-alphabet inputs. We have demonstrates that 
employing maximum likelihood detection for SISO NOMA 
with finite-alphabet constellations can address certain limi­
tations of successive interference cancellation decoding. We 
have also shown that decoding error is highly sensitive to 
the power allocation coefficient when successive interference 
cancellation is used for decoding; it also works well for a 
limited range of coefficients whereas the maximum likelihood 
decoding decoding is effective for more extensive of coeffi­
cients. Furthermore, contrary to what Shannon theory suggests 
where successive interference cancellation is only applicable 
to stronger users, in finite-alphabet NOMA, successive inter­
ference cancellation can be also applied to weaker user when 

the power allocation coefficient a is smaller than a certain 
threshold. However, such a rate is typically far from Shannon 
capacity. 
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