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Abstract—Is successive interference cancellation (SIC) decod-
ing always the optimal choice in non-orthogonal multiple access
(NOMA) systems? While the answer is positive based on Shannon
theory, which is applicable to infinite-length codewords drawn
from a Gaussian distribution, this may not universally hold for
systems with finite-alphabet inputs. Specifically, in this paper, we
demonstrate that for quadrature amplitude modulation (QAM)-
based NOMA, SIC decoding fails for certain values of power
allocation coefficient o, used to divide power among NOMA
users. With this observation, we propose employing maximum
likelihood (ML) detection to decode QAM-NOMA. While SIC
decoding for QAM-NOMA requires allocating higher power to
the user with a weaker channel to prevent symbol crossing
in super-constellations, ML detection can successfully handle a
broader range of power allocation coefficients. We then derive
closed-form symbol error rates for quadrature phase shift keying-
based NOMA systems across any o and validate them through
simulations. The results demonstrate the effectiveness of ML
detection, particularly in scenarios where SIC decoding fails.

Index Terms—NOMA, successive interference cancellation
(SIC), finite-alphabet input, maximum likelihood detection.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) holds the promise
of expanding the number of users and improving spectral
efficiency of wireness networks [1]-[4]. Key techniques for
achieving the capacity region of the single-input and single-
output (SISO) NOMA, also referred to as power-domain
NOMA [2]-[5], are superposition coding (SC) and successive
interference cancellation (SIC). This SISO NOMA model is
essentially analogous to the widely recognized broadcast chan-
nel (BC) [6]-[8]. Similar to other Shannon-theoretic capacity
limits, in the context of the Gaussian BC achievability is
established by employing Gaussian codewords with lengths
approaching infinity.

Inspired by the above, SC-SIC is applied to finite-length
inputs built on finite alphabet constellations such as quadrature
amplitude modulation (QAM) constellations [2], [3], [9]-[12].
Nonetheless, the practical application of such principles may
not align with the same theoretical assertions [13], [14]. This
discrepancy have contributed to misconceptions, such as the
notion that users with smaller channel gains should be allo-
cated higher power [3], [9], [10]. While these misconceptions
are refuted based on theoretically optimal inputs [15], this

This work was supported by the U. S. National Science Foundation under
Grant ECCS-2301778.

979-8-3503-6929-8/24/$31.00 ©2024 IEEE

paper delves into the discussion of such confusions specifically
for finite-alphabet inputs, with a focus on QAM constellations.
The two premises, namely, NOMA with theoretically opti-
mal inputs and finite-alphabet inputs, differ in several aspects.
Consider a two-user SISO NOMA and let aP, (0 < a < 1),
be a fraction of the transmitter power P allocated to the user
with the weaker channel gain. Here are key observations:

o In theory, for any arbitrary value of «, decoding can be
completed successfully in both users [15]. However, with
inputs drawn from QAM constellations, careful selection
of « is essential to avoid constellation overlap and prevent
erroneous decisions.

o In theory, utilizing SIC at the user with the stronger chan-
nel is always optimal for achieving the capacity region
with an arbitrarily small error probability. However, with
finite-alphabet inputs, this approach is effective only for
a subset of power allocation values.

o While theory strictly mandates the order of performing
SIC, with the weak user consistently treating interference
as noise and the strong user executing SIC, with QAM-
based inputs, depending on the value of «, the order of
SIC can be exchanged, allowing the weak user to perform
SIC in certain cases.

The main message of this paper is that SIC is not always the
best decoding method when finite-alphabet inputs are used in
NOMA. Some other work has avoided SIC by applying lattice
[16] and index modulations [17], and other methods [18]. Our
claim is different in that the alternative decoding method based
on maximum-likelihood (ML) can support more values of « in
QAM modulations. The contributions and conclusions of this
paper can be summarized as follows:

o We demonstrate that ML decoding has the potential to
outperform SIC-based decoding for finite-alphabet inputs.
Notably, ML works in some scenarios where SIC fails.

o We reaffirm that NOMA itself, even with finite inputs,
does not mandate the allocation of higher power to the
weaker user. In fact, when finite-alphabet constellations
are employed for NOMA users, less power can be allo-
cated to the weak user [13], [17]. There is no restriction
on power allocation parameter .

e« We derive a closed-form symbol error rate for a two-
user quadrature phase shift keying (QPSK)-based NOMA
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system and validate it through simulations. An intriguing
observation is that SIC can be employed for the weaker
user when the power allocation coefficient is below a
certain threshold.

The remainder of this paper is organized as follows: In the
following section, we present the system model. Section III is
dedicated to a detailed mathematical and graphical exploration
of ML detection, including the analysis of symbol error rate
and discussions on the SIC order. Numerical results are pro-
vided in Section IV, and we conclude the paper in Section V.

II. SYSTEM MODEL

Consider a downlink NOMA system with one transmitter
(Tx) and two users, where all nodes are equipped with a single
antenna. The channels between the Tx and users are assumed
to experience quasi-static flat Rayleigh fading, i.e., channels
are constant within each transmission. In each transmission,
we always name the user equipment (UE) with the weaker
channel gain UEI and the one with stronger channel gain as
UE2. The data for UE1 and UE2 are modulated using QAM
modulations with orders M; and Mj, and the corresponding
alphabets of these two constellations are denoted as A and 5.

The symbols for the users are denoted by x; and x-, and
are assumed to have unit (average) powers. Then, to transmit
the two signals simultaneously, a fraction o € [0, 1] of the
total power P is assigned to UEI1, and a fraction & 2 1—qof
the power is allocated to UE2. The superposition of the scaled
symbols is given by

r=VaPx1 +VvVaPxs. (D)

Let the complex channel gains for UE1 and UE2 be h; and
ha, and assume |h;|? < |ho|?. The received signal at user k,
k=1,2, is given as

Yr = hpx + ng th(vaPm—i—\/@ing)—l-nk. 2)

Where nj, represents a complex noise. The real and imaginary
parts of the noise are independent and identically distributed
(i.i.d.) Gaussian random variables for user k, thus R{ns} and
I{ny} ~ N(0,03). The received signal after equalizing the
estimated channel (h,) can be written as

Yk - .
ey = > = VaPry + VaPxy + ny, 3)
hy
~ A . e . .
where ny = ;:—’” is a scaled complex white Gaussian random
ke
. . . ~92 20’5
noises with zero mean and variance 6 = el
k

The two NOMA users decode the received symbols differ-
ently. UEI directly decodes x; by treating interference as noise
(TIN) whereas UE2 employs SIC to retrieve its symbols. With
QAM constellations, a widely accepted assumption for SIC is
to allocate more power to the weaker user in order to avoid
constellation overlapping [3], [9], [10], [19]. In the following
section, we show an alternative decoding method in which
more values of o in QAM modulations can be supported.
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Fig. 1: The construction of the superimposed symbols with different
power allocation values.

III. MAXIMUM-LIKELIHOOD DETECTION
Using QAM modulations of orders M7 and My, respectively
for UE1 and UE2, we denote
(4a)
(4b)

xlEAé{al,...,ai,...,aMl},
[L'QEBé{bl,...,bj7...,bM2}7

in which a; and b; are the ith and jth symbols in A and
B, respectively. All symbols are assumed to have an equal
probability. The superimposed constellation consists of at most
M - My symbols, generated by (1). Thus, the superimposed
symbol can be written as

CEEA@Bé{81,1,...,Si,j,...,sM17M2} (5)

in which ® is tensor product and symbol s; ; = VaPa; +
\/ﬁbj, Once the power allocation coefficient « is fixed, the
superimposed alphabet set is generated. The two users can
decode their messages by applying the ML detection, i.e.,
measuring the minimum squared Euclidean distance between
the superimposed alphabet set and the received signals, which
for user k is

(i*,%) = axgmin|Ire = si ©

Then, the decisions are 1 = a;+ and I = b+, for UE1 and
UE2, respectively. That is, we find the indices of the symbols.

A. Symbol Error Rate Analysis

We analyze the symbol error rates (SERs) for both users for
the special case of My = My = 4, i.e., QPSK constellations or
4-QAM. Errors happen when the superimposed constellation
points are overlapped. Let us define d; and ds as the distances
of the symbols to the y-axis, as shown in Fig. 1. The distances
are affected by the transmit power and «. The literature has
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assumed d; > dg to avoid the constellation overlapping. We
define the cut-off threshold of overlapping as «g. In the two-
QPSK NOMA system, there is one cut-off threshold oy = 0.5,
which is obtained from d; = 4/ % =dy = 1/%.
Two constellation examples for @ > oy and @ < g are
illustrated in Fig. 1(a) and Fig. 1(b), respectively.

In [9], SERs for UE1 and UE2 are provided only for o >
o, since SIC fails for a < ag. As a result, it is concluded that
NOMA can work only for o« > g = 0.5. This is a common
myth that can be found in many other NOMA papers.

To overcome this deficiency, in the following, we use ML
detection in both users and analyze the two error probabilities.
To this end, we use ¢, to represent the SER for UEk. P(Zy =
Zk|¢p) denotes the probability of successfully decoding UEk
under the condition that event ¢ happens. Also, the Q(z) is

the Gaussian Q-function defined as Q(z) = \/% e e~ du.

Proposition 1. For the two-user NOMA with QPSK is used
for both users, the SER at UEI and UE2 for a < o can be
expressed as

€1 =1—P%*(&; = z1]a < 0.5),
€ =1 —P?(39 = 25| < 0.5),

(7a)
(7b)

in which P(%; = z1|a < 0.5) and P(&2 = x2|la < 0.5) are
given in (8) and (9) on top of next page.

Proof. The QAM can be considered as two independent
components on real and imaginary axes and have identical
probability [9]. Thus, a QAM-based NOMA symbol can
be decomposed into two pulse amplitude modulation (PAM)
symbols. The derivation is based on the superimposition of two
independent PAMs. A simple way is to apply the symmetric
property of the two 4-QAMs. Then, we can obtain the SERs
by swapping M7 and Mo, &% in [9, Proposition 3, 4], which
is derived only for o > ay. O

Remark 1. When o < 0.5, SERs for UE1 and UE2 in two
4-QAM-based NOMA systems are €¢; and ez in (7). When
a > 0.5, the SERs are given in [9, Proposition 3, 4].

To demonstrate that UE1, whose channel gain smaller
than UE2’s channel gain, can operate effectively without
necessitating a higher power allocation in the above scenario,
we compute the derivative of (8) as illustrated in (10). This
facilitates an analysis of the characteristics of (10) within the
range o < 0.5. Particularly, we can show that

dP, dP,

(%|a—>0) : (%|a=0.5) <0,

indicating that (8) is non-monotonous and has an extremum.
Remark 2. Proposition 1 and Remark 1 are for 4-QAM. For

higher-order modulations, there may exist more than one cut-
off threshold. The proposition still holds for some thresholds.
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(a) The super-constellations versus o of UE1 (left) and UE2 (right).
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Fig. 2: Superimposed constellation for different values of o observed
at a) UEIL, and b) UE2.

B. Illustration of the ML Detection

The ML method works by finding the nearest symbol of the
superimposed constellation to the received signal. It can be ap-
plied for more values of « than the SIC decoding. We elaborate
on this by considering a case for a QPSK-based NOMA system
without noise. The superimposed constellations for UE1 and
UE2 with continuous different as are denoted in Fig 2(a),
and three different values of « (the slices of the Fig 2(a) at
o = 0.33,0.54, 0.84) are depicted in Fig 2. The cut-off thresh-
olds are the cross-points in Fig. 2(a). The colors show the
decision. For example, the blue circles in Fig. 2(b) for UE1 are
{81,1, 51,2, 51,3, 51,4} If we receive any symbol that is close to
this blue circle set, the symbols result in £; = a;. Similarly,
the yellow triangles are {s31,532,533,53.4} and thus give
Z1 = ag. On the other hand, the red circles in Fig. 2(c) are
{81’1,82y1,8371,84,1} which all result in £ = b;. When «
approaches 0.5, the 16-QAM-like super-constellation reduces
to 9-QAM, because of symbols overlapping. In this case, there
is no method to distinguish all symbols successfully.

C. SIC Order

Based on the theory of the BC, UE1 (which has a weaker
channel) should employ TIN and UE2 should perform SIC.
However, if this is followed for a < «g, both users fail to
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decode their symbols. This is because the theory is based
on Gaussian codewords whose lengths go to infinity. This
assumption is not valid when finite constellations like QAM
are used. Interestingly, with QAM inputs, for o < g if the
order of SIC is exchanged, i.e., SIC is applied in the user with
a weaker channel, both users’ signals can be decoded.

IV. SIMULATIONS

In the following simulations, we assume that the noise
power is identical at the two receivers, 07 = 03 = 4. The
input signal has 10° samples.

Example 1: We first consider the case with M, = My = 4,
where hqy = 2437, hg = 344}, and P) = bdB. The estimated
symbols of the ML method for both users can be found in
Fig. 3 for a = 0.21,0.33,0.84. Similar to the analysis in
Section III-B, the received signal with noise is decided by the
ML detection, and the colors represent the decoded symbols.
Given different values of «, the QAM symbols of each user in
the superimposed constellations are distinguishable using ML
method. The SERs of UEl and UE2 are plotted in Fig. 4
where theoretical derivation, ML, and SIC (UEl employs
TIN and UE2 performs SIC) are compared. It is seen that

the analytical SERs of both users match the simulated SERs
of the ML method. This validates the SER expressions of
Propositions 1 and Remark 1. For o > 0.5, ML and SIC curves
are matched. For o < 0.5, TIN at UE1 and SIC at UE2 fail
to decode. Specifically, the SERs of ML method are [eg, 2] =
[0.627,0.005]% for a = 0.21, [e1, €2] = [5.766,1.456]% for
a = 0.33, and [e1, 2] = [0.052,0.037]% for o = 0.84. The
SERs of SIC for @ = 0.21 and 0.33 are [75.012,50.961]%
and [72.063, 74.196]%, respectively.

The effect of the order of SIC is shown in Fig. 5. Assume
the required maximum SER is 10~2. First, UE1 performs TIN
and UE2 employs SIC (this is the normal order of SIC). This
works for 0.75 < a < 0.92 (marked by vertical black dash
lines in Fig. 5). However, if we change the order of SIC, i.e.,
perform SIC at UE1 and TIN at UE2. Decoding can still work
for 0.17 < a < 0.24, which implies that the weaker user can
perform SIC. Finally, ML works for a higher range of «.

Example 2: We use the same settings as [9] in which My =
16, M = 4, h1 = 0.5+0.67, ho = 0.7+0.87, and N% = 23dB.
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Fig. 3: The super-constellation at UE1 and UE2 for three different
values of o and by = 2 + 3j, he = 3 + 4j, and 3~ = 5dB.

The SERs of ML and SIC are plotted in Fig. 6. There are three
cut-off thresholds which are oy = 0.83,0.56,0.36. First, we
obtain the same results of TIN at UE1 and SIC at UE2 as [9,
Fig. 8] for a > 0.83 (i.e., d; > d3). The ML and SC-SIC can
achieve the same performance in this range. On the other hand,
exchanging the order of SIC, i.e., using SIC at UE1 and TIN
at UE2, can achieve the same results as the ML method for
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Fig. 4: SER comparison of the theoretical, ML, and SIC for M; =
My = 4.
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Fig. 5: SER comparison of the ML and SIC for M; = M; = 4.

o < 0.36 (i.e., di < 3da). SIC fails for 0.36 < o < 0.83 (i.e.,
—d2 < d; < dj) wh11e ML can work better to achieve local
optimums. The SER curves of both users are quasi-convex and
the minimum values of the curves are at au,;, = 0.95 for UE2
when a > 0.5, and auin = 0.21 for UE1 when a < 0.5 by
an exhaustive search. The local-minimums are 0.44 and 0.69
for 3dy < di < dp and 3dy < di < 1da, respectively.

Next, we demonstrate the influence of IIVD on SERs for two
power allocation coefficients, « = 0.95 and o = 0. 21, The
results are shown in Fig. 7. The analytical SERs of both users
match the simulation results, which validates Proposition 1 for
« = 0.21 and [9, Proposition 3, 4] for o = 0.95. The results
also verify that ML supports more values of o, only oo = 0.95
was considered as an option [9] and small value of power
allocation such as oo = 0.21 was never qualified as a solution.
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V. CONCLUSIONS

In this study, we have revealed new insights into NOMA de-
coding with finite-alphabet inputs. We have demonstrates that
employing maximum likelihood detection for SISO NOMA
with finite-alphabet constellations can address certain limi-
tations of successive interference cancellation decoding. We
have also shown that decoding error is highly sensitive to
the power allocation coefficient when successive interference
cancellation is used for decoding; it also works well for a
limited range of coefficients whereas the maximum likelihood
decoding decoding is effective for more extensive of coeffi-
cients. Furthermore, contrary to what Shannon theory suggests
where successive interference cancellation is only applicable
to stronger users, in finite-alphabet NOMA, successive inter-
ference cancellation can be also applied to weaker user when

the power allocation coefficient o is smaller than a certain
threshold. However, such a rate is typically far from Shannon
capacity.
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