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Abstract

Planning for cost-effective conservation requires reliable estimates of land costs, spatially-
differentiated at high resolution. Nolte (2020) provides a county-by-county, parcel-level esti-
mation approach that dramatically improves estimates of fair market value for undeveloped
land across the contiguous Unites States. Much undeveloped land of conservation interest
is under threat of conversion to agricultural use or is already agricultural. This paper demon-
strates the value of accounting for additional variables that affect agricultural productivity
and demand for undeveloped land, as well as the benefit of modeling at scales correspond-
ing to regional agricultural markets. We find that countywide median home value, climatic
variables, and several parcel-level soil type variables contribute substantially to predictive
power. Enlarging the set of predictors and the geographical scale of modeling improves
accuracy by approximately 15 percent and, relative to a more restricted modeling bench-
mark adapted from Nolte (2020), extends coverage into 376 counties occupying 1.35 million
km?. To assess the practical benefits of our modeling approach, we simulate the protection
of 30 percent of US lands via government purchasing, modeled after the Biden administra-
tion’s “30x30” initiative. Using our proposed modeling strategy, the purchasing agency
saves approximately $15 million per year, or 4 percent of the USDA’s annual land easement
budget.

Introduction

Agencies and private organizations designing conservation efforts must contend with the fun-
damental scarcity of available resources, while simultaneously confronting a vast array of
potential conservation strategies. Accurately predicting costs of competing strategies, then, is
crucial to achieving the cost-effective use of scarce conservation dollars. Where conservation
by fee simple acquisitions and land easement contracts is the dominant approach, the market
value of land is a primary determinant of such costs. Yet, academics and planners have not
often had access to reliable estimates of fair market land value, which constitute a high-priority
resource for global change science and policy in general [1]. Some studies of conservation cost
have relied on state or county-wide average land value estimates (e.g., [2, 3]), which obscure
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important heterogeneity of land values across those geographically large political units. Recent
work suggests that conservation strategies based on such low-resolution cost estimates can
substantially underestimate the cost of selected plans due to the unobserved heterogeneity in
land values [4].

Several studies have attempted more accurate, higher-resolution land value estimates with
national coverage. Larson (2015) uses a patchwork of USDA county-level agricultural land
value estimates and existing hedonic estimates of urban land value [5] to interpolate values to
a mix of parcels, census tracts, and counties across the contiguous U.S. [6]. Utilizing mortgage
appraisal data, Davis et al. (2021) estimate residential land values nationwide at sub-county
resolution (zip codes and census tracts) [7]. Albouy et al. (2018) estimate urban land values for
every Metropolitan Statistical Area (MSA) in the U.S. [8]. For each MSA, they leverage sales
data from the CoStar COMPS database to estimate land value per acre as a continuous func-
tion of distance from the city center. The majority of conservation interest, of course, lies out-
side of urban areas. Wentland et al. (2020) use microdata from the real estate marketplace firm
Zillow, land attributes, and hedonic price modeling to produce bottom-up national land value
accounts at the regional level [9]. With a primary focus on undeveloped land, Nolte (2020)
integrates a nationwide database of parcel-specific information, including location, built envi-
ronment, local demographics, and physical landscape features, with Zillow’s ZTRAX database
of millions of sales records for use in a machine-learning algorithm to estimate land values at
much higher spatial resolution [4]. These estimates explain a much greater portion of observed
variation in sales value than county-wide averages. The Nolte approach constitutes a leap for-
ward for estimating the value of undeveloped land value for conservation planning. As we
show here, it can be further improved.

There is reason to believe that expanding both the set of agriculturally and economically rel-
evant predictors as well as the geographic scale of analysis could improve the coverage and
quality of land value estimates. The market value of undeveloped land is in many cases driven
by the value of its actual or potential use in agriculture. It can also be driven by demand in
related, residential land markets. Climate and soil variables, absent from the set of predictors
in Nolte [4], are well known to be important determinants of agricultural productivity and
land value. Irrigation can also be an important determinant of productivity for particular
crops and geographies, though it requires costly investment. The irrigation status of land can
indicate unobserved investments in machinery, infrastructure or physical changes to land that
enhance its market value.

While many of the land quality attributes that determine economic value are fixed, or
change only very slowly over time, many drivers of supply and demand—income, preferences,
technology, and the availability of substitutes—vary over time. Failing to account for time-
varying predictors can lead to an erosion of predictive power. When sales prices exhibit trends
over time, not only will overall estimation accuracy suffer, but models might systematically
over- or under-predict sales values for observations before or after the median sales year if they
do not adequately control for such trends. To address these issues, we add median home price
indices to our set of predictors. Home price indices capture changing dynamics in residential
land markets that can exert pressure on (or otherwise correlate with) the price of undeveloped
land. Accounting for variation in local home prices might thus improve the predictive power
of models aimed at estimating the value of agricultural or other undeveloped land.

Beyond incorporating additional predictors, we consider the possibility that modeling at
scales larger than the county can ease local observation constraints, improving both the cover-
age and accuracy of resulting estimates. Many counties have few sales records in the ZTRAX
database. Nolte (2020) implements a 1000-observation minimum for modeling parcel land val-
ues within a county, supplementing a focal county’s observations with those drawn from
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neighboring counties where possible. In replicating this supplementation procedure with
vacant, undeveloped, and agricultural parcels, we find that 27 percent of counties in the study
sample fail to meet the threshold, and prediction accuracies for counties with sufficient-but-
low observation densities are notably poorer than those for other counties.

Indeed, national performance aggregations mask substantial heterogeneity across county
characteristics. In particular, a county’s observation density is strongly correlated with both
performance measures. Fig 1 shows the relationship between model performance and the total
number of observations in the county where the model was trained and tested. The monoto-
nicity of the decrease (increase) in mean squared error (r-squared) as county-level models
increase in size affirms the intuitive benefits of greater sample sizes. In pursuit of larger data-
sets, however, analysts will encounter a fundamental challenge: expanding the sample size nec-
essarily broadens the geographic range from which observations will be drawn. This may
debilitate the model’s predictive power if the broader geographic scope mixes land markets
with disparate characteristics, economic dynamics, and time trends. Yet failing to expand the
geographic scope has its own costs. In states such as Wyoming and Idaho, any given county
has too few observations to model land value, forcing the analyst to discard potentially useful
data.

We attempt to resolve this trade-off between model size and observation homogeneity by
specifying models at the scale of USDA farm resource regions (Fig 2). Farm resource regions
(FRR) are delineated in consideration of county-level, often cross-state similarities in geogra-
phy and agricultural production [10].

Overall, our modeling approach, which both expands the set of predictors and models at a
regional scale, reduces prediction error (MSE) by 15 percent. Decomposing this effect, we see

Mean Squared Error R-Squared
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Fig 1. Model performance and sample size. Performance of county-level models using the baseline (“Restricted”) predictor set, plotted against the number
of county-level observations. Each county in the analysis is represented by a gray circle. Green curves depict trend lines estimated using the non-parametric

LOESS smoother in R.

https://doi.org/10.1371/journal.pone.0291182.g001
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Fig 2. USDA farm resource regions. USDA assigns each county, in its entirety, to one of the nine farm resource regions shown here. County
borders are demarcated with white lines.

https://doi.org/10.1371/journal.pone.0291182.9002

that adding variables alone (without modeling at a regional scale) reduces prediction error by
approximately 9 percent, while modeling at a regional scale further reduces prediction error by
5 percent (based on common parcels modeled at both scales, using the full set of predictors).
By modeling at the farm resource region level, we extend coverage in areas that were dropped
in county modeling due to insufficient density by 376 counties while preserving comparable
predictive accuracy to county-level approaches.

In addition, we assess the practical benefits of our modeling approach by simulating the
protection of 30 percent of US lands via government purchasing, modeled after the Biden
administration’s “30x30” initiative. Using our proposed modeling strategy saves the purchas-
ing agency approximately $15 million per year, or 4 percent of the USDA’s annual budget for
land easements (a conservation strategy related to but distinct from direct land acquisition
wherein property does not change hands but does become subject to certain land use restric-
tions and stewardship mandates). The provision of more accurate ex ante land value predic-
tions can improve conservation outcomes by helping agencies achieve better targeted, more
cost-effective contracting.

In short, our approach enhances the quality and quantity of parcel-level estimates of fair
market value.

Materials and methods

We base our analysis on the approach first published by Nolte (2020) [4], which trains a tree-
based, ensemble learning algorithm on a comprehensive high-resolution dataset of parcel
characteristics and sales across the contiguous United States (140.9 million properties across
3,055 counties) to estimate the logged, inflation-adjusted, per-hectare value of parcels lacking
recent sales data. The present study uses extremely randomized trees, a decision tree-based
bagging algorithm, with 500 base learners (trees), £ random features tried at each split, where p
is the total set of predictive features, and a required minimum leaf size of 3. Nolte (2020) esti-
mates models for the group of all parcels greater than 1 acre in size as well as separate models
for the subset of stringently defined “vacant” (undeveloped) parcels. Parcels of interest in the
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Observed
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Fig 3. Spatial distribution of sales observations. A heat map of ZTRAX sales observations (total N = 5.04 million) in our filtered dataset for the
sample period 2000-2019. Cells represent 10 km? tessellation of the conterminous US.

https://doi.org/10.1371/journal.pone.0291182.9003

present study include all “vacant” parcels plus any additional parcels coded as agricultural,
even if they contain a building footprint. Our filter (fully described in S1 Appendix) results in
5.04 million unique sales observations nationwide for the period 2000-2019, split into testing
(n = 1.26 million) and training (n = 3.78 million) sets balanced on the outcome variable (Fig 3).
In county models, this 0.75:0.25 split occurs within the county; in farm resource region mod-
els, training and testing observations are distributed farm resource region-wide. For county-
level models, counties with fewer than 1000 observations are augmented with randomly sam-
pled sales from adjacent counties until the focal county reaches 1000 observations. If the
county and its neighbors combined fail to achieve 1000 complete observations, no model is
specified.

Our approach to dealing with insufficient county-level observations differs in two ways
from that of Nolte (2020). First, Nolte (2020) accepts donations from all counties, beginning
with those nearest the focal county and extending the search outward until 1000 observations
are achieved. We suspend the search if the directly adjacent neighbors of the focal county can-
not achieve 1000 observations. Second, we supply the focal county with exactly the difference
between its native sample size and 1000, whereas Nolte (2020) donates the entirety of the sam-
ple from the neighboring county, regardless of the neighboring county’s sample size. Further,
because we restrict the generation of predictions to within each modeled county, our “base”
model (i.e., Restricted predictor set, county level) does not produce predictions for all counties
in CONUS, unlike Nolte (2020), which estimates land values for all parcels, even if that
requires the utilization of a model specified in a distant county. Our county-level modeling
approach allows for the specification of 1571 county models. In speaking of the extension in
prediction geography our region-scale modeling offers, this approach is the benchmark to
which we compare the results of our farm resource region models.

We restrict the benchmark modeling approach to each focal county and its immediately
adjacent neighbors to better preserve the value of specifying models at the county level: the
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ability to capture locally specific dynamics. If county modeling did, in fact, perform better
than modeling at the regional-scale, then this restricted approach would better evince such
performance by not eroding the improvements from locally specific relationships by importing
observations from great distances. Further, in counties with no sales observations, model vali-
dation is infeasible (Fig 1), hindering like-for-like model comparisons across geographic
scales.

Among the set of predictors in Nolte (2020) [4] are variables on building presence, develop-
ment, accessibility, local demographics, local nature preservation, terrain, water, land cover
type, location, and date of sale. To these base data, we add variables for climate, irrigation sta-
tus, soil quality, and local real estate prices. (Our predictor set omits two flood risk variables
used in Nolte (2020).) Our climate variables are 30-year, climate normals of monthly mini-
mum, mean, and maximum temperature, as well as dew temperature and precipitation from
the PRISM Climate Group [11]. We aggregate these to the meteorological season. Parcel irriga-
tion status is based on annual 1997-2017 estimates at a resolution of 30 sq. meters, produced
by the Landsat-based Irrigation Dataset, or LANID-US [12]. We create two binary irrigation
variables to record 1) whether the parcel had ever been irrigated prior to sale, and 2) whether it
was irrigated at any point in the 3 years immediately preceding the sale.

Soil classifications, indicating a map unit’s suitability for agricultural use, were compiled
from the Natural Resources Conservation Service (NRCS)’s high-resolution SSURGO soil sur-
vey database [13]. The NRCS soil survey provides map unit polygons that describe soil compo-
nents (e.g., “loamy fine sand, 0 to 2 percent slopes”) and characteristics, including water
capacity, flooding frequency, farmland classification, and features limiting development,
among others. Soil farmland classifications, indicating a map unit’s suitability for agriculture,
fall under five general classes, defined by the USDA:

1. Prime. Optimal site composition and availability for producing agricultural product;
2. Unique. Soil producing high-value crops (e.g., vineyards in California);
3. Statewide Importance. State-defined agricultural land that fails to meet prime criteria;

4. Local importance. Locally defined agricultural land that fails to meet prime or statewide
criteria

5. Conditional classes. Land that would be considered prime, of statewide importance, or of
local importance conditional on a specified improvement (e.g., “Prime if drained and pro-
tected from flooding™)

We operationalize farmland classifications as the percent of each parcel containing a given
classification (e.g., “Prime Farmland” or “Farmland of Statewide Importance”). Aggregation is
applied to overlapping classifications containing multiple conditions. For instance, “Prime if
drained or protected from flooding” gets assigned to “Prime if drained” and “Prime if pro-
tected from flooding.” For sales records covering multiple parcels, our soil aggregation strategy
is described in the S2 Appendix.

To incorporate information on local real estate markets, we add yearly all-transaction
house price index values at the county level [14]. At the farm resource region level, to allow for
comparability between counties, we source open access home value data from Realtor.com
[15], which provides monthly county-level reports of median listing price from July 2016 to
present. We select 2017 as the base year due to it having the lowest proportion of data quality
flags (an automatically triggered indicator of prices being outside their normal range) of any
sample year. Median listing prices are summarized at the year-county level and then multiplied
by corresponding HPI values (with base year 2017) to estimate dollar values across the entire
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2000-2020 sample period. In counties missing HPI values, median home value is estimated as
the inverse squared distance weighted mean of estimated median home values in every county
within 150 km of the focal county.

Altogether, we estimate fair market value in four primary model runs, corresponding to dif-
ferent combinations of predictor set (our “Full” set of predictors or the “Restricted” set includ-
ing only variables from Nolte (2020)) and geographic scale of analysis (county-level or farm
resource region-level). R code for all of the methods described above is available at https://
github.com/binders1/fmv.

Results
Predicted fair market land value

To assess our model’s comparability to the results of Nolte (2020), we predict the year-2020
fair market land value of all 31.35 million parcels in our base dataset, including those for which
we do not have sales records (Fig 4). The predictions are generated using a model built at the
farm resource region-level, using the full predictor set. We exclude parcels with a building
footprint from the training dataset, so that model predictions may be interpreted as unim-
proved land value.

Our results largely replicate geographic patterns in Nolte (2020)’s CONUS-wide prediction
map. Per-hectare values greatly increase in metropolitan areas, with the urban centers of
Washington D.C., Boston, and Los Angeles reaching predicted prices of well over $1 million.
Because the model predicts land value alone, not including built improvements, we observe a

gentler gradient between rural and urban regions than is shown in Nolte (2020)’s Fig 1. This
gradient is further smoothed visually by our mapping method, which averages predicted values
over 10 km” hexagonal tessellation cells.

Fig 4. Estimated land values. Fair market land values (in 2020 USD per hectare), shown at 10 km? resolution, based on predictions
for 31.35 million parcels generated by the building-free model estimated at the scale of farm resource regions. Gray portions of the
map indicate areas for which we lack adequate parcel data.

https://doi.org/10.1371/journal.pone.0291182.g004
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While the geographic pattern and general order of magnitude of our fair market value esti-
mates roughly match the Nolte (2020) results, our added predictors and regional modeling
strategy deliver important improvements in accuracy and coverage.

The effect of added predictors

Individually and collectively, the additional predictors in our “Full” set offer modest and
meaningful improvements to model performance relative to the “Restricted” set. Figs 5 and 6
show the relative predictive contributions of each feature in the Full predictor set for models
estimated at the county and farm resource region level, respectively. The most influential addi-
tions of this paper are the climatic variables (precipitation, dew temperature, and temperature)
and real estate indicators (house price index at the county level and median home value at the
farm resource region level), followed by prime soil and soil of statewide importance, which is
one quality tier below prime and does not appear in the top 20 features depicted in Figs 5 and
6. Irrigation status, both ever-irrigated and irrigated in the three years preceding the parcel’s
sale, contribute little predictive power, although both exhibit significant heterogeneity across
counties. Conditionally prime soil types (prime if warm enough, if protected, if irrigated, etc.)
and soil types important only at local scales offer little prediction importance to the model. See
S2 Fig for the importance of all features used as model predictors.

Accounting for changes in related real estate markets plays an especially important role in
better predicting fair market value. Fig 7 shows the effect of adding housing price index (HPI)
data to the otherwise restricted set of predictors in the county-level model. While over-time

0.5 1.0 1.5 2.0 25
Feature Importance

Fig 5. Permutation feature importance, county. Box plots of permutation feature importance for the top 20 predictors, across all county-level models
estimated using the full predictor set. Predictors added by this paper are denoted in bold, and climatic variables have been grouped for clarity. Gray circles
represent outlier county values for each predictor.

https://doi.org/10.1371/journal.pone.0291182.g005
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Fig 6. Permutation feature importance, farm resource region. Dot plots of permutation feature importance for the top 20 predictors, across all farm
resource region-level models using the full predictor set. Predictors added by this paper are denoted in bold, and climatic variables have been grouped for
clarity. Each dot represents a farm resource region model.

https://doi.org/10.1371/journal.pone.0291182.9006
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Fig 7. The addition of HPI attenuates model error trend. Mean annual prediction error in Restricted county model, compared to county level models
estimated with Restricted predictor set plus the annual, county-level housing price index.

https://doi.org/10.1371/journal.pone.0291182.g007
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Fig 8. Full vs. Restricted predictor county-level model performance. A box plot comparison of model performance (MSE and R?) with the restricted
(green) and full (blue) predictor sets at the county level. Outliers removed from visualization for clarity.

https://doi.org/10.1371/journal.pone.0291182.9008

heteroskedasticity remains even after the addition of HP], its inclusion reduces the magnitude
of the error, particularly the over-prediction in the early years of the sample and the under-
prediction in its later years.

Altogether, our Full model offers modest but consistent improvements in model perfor-
mance at the county level. Fig 8 shows the average county-level mean squared error and r-
squared of the Full and Restricted models. Nationally, the Full model outperforms the
Restricted model, with an average mean squared error (in logged 2020 USD per hectare) of
0.93 and an average R-squared of 0.65 compared to 1.02 and 0.61 respectively, in the Restricted
model.

The effect of regional scale modeling

Specifying models at the scale of the farm resource region enhances accuracy and enables
FMV predictions for parcels in counties that, even after drawing on observations from neigh-
bors, do not meet the minimum observation threshold for county-level modeling. In Fig 9, we
see that many states which are wholly absent from the county models receive predicted land
values in the farm resource region model, including Montana, Maine, Idaho, Wyoming, Mis-
sissippi, and Kansas. Several other states see their coverage greatly extended. In Missouri, for
instance, the county models are only able to generate land value estimates in the urban and
exurban regions surrounding St. Louis. The farm resource region models, by contrast, expand
into the rural hinterland of Missouri. Overall, farm resource region modeling extends coverage
by 376 counties, constituting an additional area of 1.35 million km? (the added properties
make up 818.7 km?). Across these added counties, model performance remains well within the
previously observed range, with a median mean squared error of 0.92 and a mean of 1.53.
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Full County Full FRR

1.5

Fig 9. Spatial comparison of coverage and accuracy of county and FRR models. Maps display the mean squared error of parcel-level predictions, by
county, for county-level models (left) and farm resource region models (right) using the Full predictor set. To preserve meaningful color variation, the top
of the color gradient corresponds to the 90th percentile of MSE values, and counties with outlier values have been visually censored to that value. Blacked-
out counties indicate instances wherein a county model was specified but the farm resource region model did not include testing observations in that
county.

https://doi.org/10.1371/journal.pone.0291182.9009

Elsewhere, we see improvements to predictive accuracy. In counties with fewer than 1000
sales observations (before drawing on observations from neighbors), the farm resource
region model outperforms the county model (MSE = 1.02 versus MSE = 1.07 using the Full
predictor set). The benefits of modeling at the FRR scale remain even at higher observation
densities. In counties with greater than 1,000 observations, the FRR model with the Full pre-
dictor set produces an average mean squared of error of 0.75, compared to 0.77 from the
county model.

The benefits of the Full predictor set remain in regional-scale modeling. Across both
county-observation size categories, the Full model outperforms the Restricted model (Fig
10). Considering the set of parcels for which data allow modeling under both the Restricted
and Full predictor sets, modeling at the FRR scale using the Full set delivers a median mean
squared error of 0.76 compared to 0.87 for the Restricted set. This improvement is compara-
ble to that observed for county-scale models, where using the Full set results in a median
mean squared error of 0.93, compared to the Restricted model’s 1.02 median mean squared
error.

Features added in the Full model contribute to predictive power in similar patterns to fea-
ture importance across county models. Fig 6 shows the distribution of feature importance by
farm resource region. Median home value is the fourth most important predictor, after parcel
size and several building characteristics. Climatic variables continue to offer substantial impor-
tance, with dew temperature, temperature, and precipitation falling in the upper half of all pre-
dictors. As in the county models, prime soil and soil of statewide importance remain
considerably higher ranked than all conditional soil types, which consistently offer near-zero
feature importance across all nine regions. Though it is not among the top 20 features dis-
played in Fig 6, irrigation status exhibits modest feature importance across both ever-irrigated
and irrigated in the last three years (S1 and S2 Figs).

Taken together, the added predictors and regional scale modeling improve overall accuracy
by approximately 15 percent. When compared across common parcels, the farm resource
region model with the full predictor set produces predictions with an average mean squared
error of 0.96, compared to the county model using the restricted set of predictors, which pro-
duces a mean squared error of 1.11, on average.

PLOS ONE | https://doi.org/10.1371/journal.pone.0291182 September 8, 2023 11/17


https://doi.org/10.1371/journal.pone.0291182.g009
https://doi.org/10.1371/journal.pone.0291182

PLOS ONE

Expanding the coverage and accuracy of parcel-level land value estimates

Restricted,

Restricted,

Full,

Full,

n> 1,000

n< 1,000

n> 1,000

n < 1,000

0.5 1.0 1.5 2.0 2.5

Mean Squared Error

Fig 10. MSE by size of sample and predictor set. Box plots of average county-level MSE from farm resource region models. Box plots for models estimated
with the Full predictor set are in blue, while those estimated with the Restricted set are in green. Box plots for the group of counties with less than 1,000
observations have lighter shading than plots for the group counties with greater than 1,000 observations. Outliers removed from visualization for clarity.
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Discussion
Accuracy improvement mechanisms

Both at the county and farm resource region levels, the Full set of predictors improve model
performance. The mechanism through which this improvement acts is likely straightforward.
The predictors added by this study contribute valuable information to the tree-based ensemble
model, allowing it to more accurately “bin” observations. That climate and soil characteristics
should help predict land value is consistent with the theoretical foundations and empirical
results of the Ricardian land attribute capitalization literature. In contrast, our real estate mar-
ket indicators, house price index (county models) and median home value (farm resource
region models), capture broader market dynamics rather than capitalized attribute values. The
consistent feature importance exhibited by both real estate predictors suggests that having
access to high quality indicators of spatiotemporal variation in local and regional residential
real estate markets may greatly improve conservation planners’ ability to estimate the cost of
non-residential properties, including the vacant, undeveloped, and agricultural parcels of
interest to the present study.

Regardless of predictor set, we observe that the farm resource region models improve
model performance, relative to county modeling. Enlarging the geographic scale of modeling
allows for the incorporation of more data points. The improvement in performance is likely
due to the greater number of observations on which the models draw, consistent with sample
size-performance relationships observed in county-level modeling in Fig 1. In the FRR models,
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we observe disproportionate accuracy improvements for sales value predictions of parcels in
counties with under 1000 observations (Fig 10), where MSE improves by 6% compared to 2%
in counties with greater than 1000 observations. Sales observations in low-density North
Dakota, for example, that would otherwise have been siloed off with only a handful of other
observations in their respective counties (or discarded altogether) are now modeled alongside
observations in segments of Wyoming, Montana, and Minnesota, among other states in the
Northern Great Plains region.

However, having more observations does not guarantee better performance. The predictive
benefit of more observations will not always outweigh the predictive cost of pooling parcels
across areas that could exhibit fundamentally different relationships among variables. That
tension could explain the relatively similar performance of our models across regions of very
different sizes (S3 Fig). Take for example the Fruitful Rim and Great Plains regions. The first
has vastly more observations, but is spread across areas with very different land markets. Con-
versely, in the example of low-density North Dakota above, the contiguous nature of its farm
resource region allows observations to be modeled alongside observations that share agricul-
tural and climatic characteristics, as well as commonalities among other determinants of land
value, such as local non-agricultural land markets. The trade-off between the number of obser-
vations and their commensurability highlights the importance of the choice of spatial model
boundaries and the value of farm resource regions as a modeling domain.

Coverage benefits

The broader coverage afforded by our farm resource region modeling allows for conservation
planning in areas that would otherwise need to rely on cruder estimates. For instance, across
the entire state of Montana, our sample contains only 507 observations, all of which are dis-
carded under the county-level modeling paradigm. Farm resource region models allow for
such observations to be grouped and modeled alongside observations in either the Basin and
Range or Northern Great Plains which bear a resemblance to those otherwise discarded Mon-
tana observations. In the absence of the farm resource region approach, policy analysts and
conservation planners would be forced to use lower-resolution estimates, which have been
shown to lead to substantial mischaracterization of cost-effective conservation strategies
(Nolte 2020). The expansion of model predictions into rural areas afforded by the farm
resource region models (see, for example, the expanded coverage in Missouri in Fig 9) brings
high-resolution land value estimates to areas that might offer important opportunities for
high-impact conservation easements and fee simple purchasing.

Model improvements in practice

To assess the practical benefits of our modeling approach, one might ask whether it facilitates
more cost-effective achievement of fixed conservation goals. Agencies require accurate esti-
mates of the minimum cost necessary to achieve a set conservation target. For instance, the
Biden administration has established the ambitious target of conserving 30 percent of US
lands by 2030 [16]. At least a portion will be secured via financial contracting with private
landowners. How much spending the project requires is largely unknown prior to contracting,
motivating the use of predictive modeling to inform implementation. As a demonstrative exer-
cise, we imagine a single agency is tasked with purchasing 30 percent of the land in our uni-
verse of observed sales, equipped with a set of land value predictions alternatively generated
by: a) the true underlying sales value; b) the full-predictor farm resource region model; or c)
the restricted-predictor county model. Using each of these approaches, we rank the entire
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Fig 11. 30x30 average cost per hectare. A bar chart of costs calculated on the basis of the inflation-adjusted, observed sale values of parcels
hypothetically purchased to conserve 30 percent of the land area represented in our sales data. Purchase ordering is determined by the predicted sales
prices generated by each model. Costs for purchase orderings based on actual sales data are in gray; costs based on FRR-level predictions in blue; and
costs based on county-level models in green. Asterisks (and bars with lighter shading) denote purchase simulations in which the set of candidate parcels
has been restricted to match the set for which county-level models have sufficient data to generate predictions.

https://doi.org/10.1371/journal.pone.0291182.g011

universe of sales records by ascending predicted price, designating parcels for purchase until
30 percent of the total land area (8.4 million hectares) has been conserved.

The farm resource region model offers the potential for greater cost-effectiveness through
two channels: improved accuracy or inclusion of lower-cost parcels by virtue of expanded cov-
erage. If the total conservation target increased proportionally with the size of the candidate
parcel set, expanded coverage would only offer an advantage if the distribution of prices in the
newly included areas were systematically cheaper. In this case, we hold the target constant,
meaning expansion offers an advantage even where the underlying price distribution remains
the same. To disentangle the mechanisms by which expansion improves cost-effectiveness, we
also create candidate parcel sets for the true information and full resource region model that
only include parcels for which the restricted county model can generate predictions.

Our simulation results suggest a meaningful economic benefit from improvements in
model coverage. Fig 11 compares average expenditures per hectare across models. Where the
candidate sets are identical (denoted by an asterisk in Fig 11), the full resource region model
and the restricted county model produce nearly identical average costs, suggesting the savings
arise from the expanded set of predictions from which the agency can select candidates for
purchase. Working with the unrestricted candidate set, if the agency had access to the true
underlying sale values, the endeavor would cost $822 per hectare. Using the restricted-predic-
tor county model to target purchasing would nearly double the cost, to $1,558 per hectare. Rel-
ative to this, the full-predictor resource region model could save the agency $60 per hectare,
about 3.85 percent.

Using the average per-hectare costs, we estimate costs in a more realistic “30x30” conserva-
tion scenario. After excluding already protected land, an agency would still need to conserve
approximately 172 million hectares to protect 30 percent of US land area [17]. Scaling our
average per-hectare costs by the target land area, we find that, employing the full-predictor
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resource region model to target contracting, the agency would expend $258 billion dollars, $10
billion less than would be spent if the restricted-predictor county model were utilized. The
annual “rental” value of that savings, calculated at 1.5 percent interest (approximately the
long-term real rate on the U.S. Treasury’s inflation protected securities), is $15 million. For
context, the USDA annually spends just under $500 million on land easements (e.g., Agricul-
tural Conservation Easement Program) and between $2 and $2.5 billion on land retirement
(e.g., Conservation Reserve Program) [18].

Conclusion

To protect critical habitats and ecosystems, conservation advocates, policymakers, and manag-
ers rely on land cost estimates to weigh competing strategies in the face of scarce resources.
Hindered by limitations of data and computing power, past efforts to produce land value esti-
mates have suffered from low spatial resolution. Nolte (2020), approaching the general prob-
lem of land value estimation, established a methodology and database that greatly improves
value estimates of undeveloped land, employing parcel-level sales data and a large set of predic-
tors. As developers and agricultural producers look to undeveloped or partially agricultural
land for conversion to lucrative but environmentally damaging use, conservation planners
require a thorough and reliable picture of property valuation in order to cost-effectively build
conservation agendas.

In this paper, we improve the accuracy and coverage of previous estimation models for
undeveloped land value, leveraging an added set of economically-relevant, high resolution cli-
matic and ecological predictors, as well as incorporating time series data on county-specific
residential housing markets. Modeling at larger scales that correspond to regional agricultural
markets expands spatial coverage and accuracy, offering a new standard for applications and
further improvements.

We test our modeling approach using one such exemplary application: the ambitious target
of protecting 30 percent of US lands by 2030. Using the improved modeling methods intro-
duced here, we find that an implementing agency could save approximately $15 million annu-
ally-around 4 percent of the Agricultural Conservation Easement Program’s annual budget-
from more cost-effective targeting of land purchases.

Supporting information

S1 Fig. Permutation feature importance from full county model, all features. Climatic vari-
ables grouped for clarity. Features added by this paper denoted in bold. Each dot represents a
single county.

(TIF)

$2 Fig. Permutation feature importance by farm resource region, all features. Climatic vari-
ables grouped for clarity. Features added by this paper denoted in bold.
(TIF)

S3 Fig. Prediction accuracy and sample size by farm resource region. Prediction accuracy
varies little across farm resource regions and shows no apparent correlation with the number
of observations in a region.

(TIF)

S1 Appendix. Parcel filter.
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