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A B S T R A C T

PyPWA is a toolkit designed to optimize parametric models describing data and generate simulated distri-
butions according to a model. Its software has been written within the python ecosystem with the goal of
performing Amplitude or Partial Wave Analysis (PWA) in nuclear and particle physics experiments. We briefly
describe the general features of amplitude analysis and we provide a description of the PyPWA software design
and usage. We also provide benchmarks of the scaling and an example of its application.

1. Introduction

1.1. A brief description of amplitude analysis

In particle and nuclear physics, one of the main experimental goals
is to determine the frequency with which a particular interaction oc-
curs. Experimental data are analyzed under the theoretical framework
of quantum field theories. The data can be presented as counting
histograms, in different bins of the particles’ kinematic variables. The
counting probability is represented by differential cross-sections that
can be written, using Fermi’s golden rule [1], by

d�

d�
∝

∑

ext. spins
∫ |M (�)|2dxn (1)

where M , the transition amplitude, describes the physics (dynamics)
of the particular interaction. The integral is done over all the out-going
particle’s four-momenta (phase-space) taking into account kinematics
constraints (represented by dxn). The transition amplitude is a complex
function that cannot be measured directly; it has to be inferred from the
cross-sections. In most cases, the amplitudes (therefore, cross-sections)
depend on several kinematic variables, represented here by � (e.g. beam
energy, the total mass of the final state set of particles, the angular
distribution of the final particles, etc.). The experimentally measured
kinematic variables are related to the intrinsic quantum numbers in-
volved in the reaction. The main goal of the analysis is to extract
those quantum numbers and, through them, gain information about the
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fundamental components of the reaction. Of special importance are the
angular momentum and spin quantum numbers, which are related to
the angular distributions of the decay products.

Different techniques are used to extract information about the prop-
erties of amplitudes by measuring cross-sections or quantities related to
cross-sections. Dalitz-Plot analysis [2] is used to study correlations be-
tween the kinematic variables involved in the reaction. These kinematic
distributions are fit with a theoretically motivated parametric represen-
tation of the amplitudes. In most amplitude studies, it is common to
consider only the transition amplitude (M ), and by binning the data in
one or more of the kinematic variables �′, a subset of � (to suppress the
dependence on the binned variable), such that an intensity, I , is defined
by

I(�′) =
∑

ext. spins

|M (�′)|2. (2)

The transition amplitudes M are defined by the model or theory.
When the intensity is only dependent on angular variables, we can
expand it in Harmonic Moments (Moments method) [3], or we can
write the spin components using the Spin Density Matrix, the intensity
is then parameterized by the matrix elements (SDME method) [4].
Alternatively, we can expand the intensity in Partial Waves defined by
the angular components (PWA method) [5,6]. These approaches are
mathematically related and have their advantages and disadvantages.
The PWA method directly obtains intensities classified by their angular
quantum numbers and is more general but also more complex.
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All of these methods, in practice, are reduced to the optimization
of amplitude model parameters to describe the data. Therefore, any
software infrastructure used for these types of analyses has to perform
the parameter optimization (from now on referred to as fitting) and the
generation of simulated data.

In the following we will describe how the PyPWA toolkit aims to
fill those necessities by providing the user with modular software that
will facilitate all tasks required for an amplitude analysis. One example
of PWA using PyPWA for the reaction 
p → pX → p�� is presented
in Appendix A. Further examples and tutorials are included with the
software and documentation on the PyPWA website [7].

2. Toolkit requirements

2.1. Simulation, fitting, and prediction

The toolkit’s main tasks are generating simulated events, optimizing
parametric models, and generating simulated data based on the opti-
mized model (from here on referred to as prediction). The generation
of simulated data by PyPWA is performed by two methods. In the
first method, data are simulated through rejection sampling from a
model with a priori parameters (resonances masses, widths, ...), and
since the model contains all the dynamics, it is performed on unbinned
data. A rejection mask is applied to the full set of previously generated
Lorentz phase space Monte Carlo. This simulation can be performed to
improve the understanding of the analysis or to design an experiment.
A second method is used to simulate or predict the properties of the
data according to the optimized (fitted) model parameters, allowing
the predicted kinematic properties to be compared to the data. This
method also uses rejection sampling but is applied to binned data, as
the calculated parameters are normally given as a function of binned
variables. Additionally, this last method can be folded with detector
acceptances incorporated through an independent detector simulation,
e.g. Geant4 [8].

One way to optimize the model, implemented in the software, is the
maximization of the extended likelihood that is defined as [5]

L =
(

N N

N!
e−N

) N∏

i

I(�′i ,
⃖⃖⃗V ) (3)

where N is the number of data events and ⃖⃖⃗V is the set of model
parameters. The total number of expected events, N , calculated using
events from a detector simulation, is defined as

N = �
1

Na

Na∑

j

I(�′j ,
⃖⃖⃗V ) (4)

where � is the detector acceptance and Na is the number of accepted
simulated events. For numerical reasons and because most available
optimizers minimize a loss function, it is more efficient to use the
negative logarithm of the likelihood. To obtain the optimal ⃖⃖⃗V values,
the following is minimized

−lnL = −

N∑

i=1

lnI(�′i ,
⃖⃖⃗V ) + N . (5)

Optimization can be done with a variety of packages available
within PyPWA. We provide an interface to iMinuit [9,10], and em-
cee [11] for cases where a Markov Chain Monte Carlo (MCMC) method
is preferred (see Section 3.6).

2.2. Other packages

Prior to the development of PyPWA other photoproduction PWA
packages existed, such as PWA2000 [12]. These packages were predom-
inantly written in C/C++ and inspired PyPWA to develop in Python
and use a modular structure for improved user experience. Some other
examples that were developed both before and while PyPWA was

developed include ComPWA [13], AmpTools [14], GPUPWA [15], and
ROOTPWA [16]. The ComPWA project started with C++ and recently
developed into a Python-based toolkit that provides a modular and
flexible package for PWA. AmpTools is a C++ toolkit focusing on
automation and leverages CUDA [17] for GPU access.

3. Software design and implementation

PyPWA was designed to be a flexible set of tools within the Python
ecosystem to fit multi-dimensional models and generate simulations. It
uses an object-oriented design for data structures and components, that
are stored at runtime or support a plugin-like design.

PyPWA is a package built from individual and mostly independent
components, which yields the flexibility of a toolkit design, allowing for
use beyond its original scope. PyPWA has two categories for its compo-
nents: data processing and data analysis. For data processing, PyPWA
contains its own set of libraries for parsing, masking, and operating
directly on data from multiple different data types. For data analysis,
there are tools to aid in handling likelihoods, fitting, simulation, data
splitting, and data visualization.

3.1. Choice of language

Python was selected because it already had the necessary tools and
libraries in its ecosystem dedicated to numerical processing and analy-
sis, such as NumPy [18], SciPy [19], and Matplotlib [20]. In addition,
Python provides support for binding to other languages with tools such
as F2PY [21] for Fortran or Cython [22] for C/C++ which enable the
user to introduce a model in a different language. As an interpreted
language, Python allows for interactive development. Two tools support
interactive development: iPython [23] and Jupyter notebooks [24]. The
iPython interpreter is similar to ROOT’s CLING C/C++ interpreter [25]
and is executed from the command line. Jupyter notebooks are web
browser-based, have rearrangeable code cells that can be executed in
any order, and provide markdown blocks for inline documentation.
Matplotlib plots and standard output of the Python code are displayed
below the code cell in which they are written. One limitation of Python
is that it requires a Global Interpreter Lock (GIL), a mutex in the
CPython implementation of Python that synchronizes access to Python
objects, preventing multiple native threads from executing Python byte-
codes concurrently. To bypass the GIL in PyPWA, the Multiprocessing
module uses forks to parallel the execution of Python code. Multipro-
cessing is a key feature of PyPWA discussed in Section 3.5. Python can
take advantage of libraries compiled in lower-level languages, e.g., C
and Fortran, which are capable of low-level optimization, such as using
vector instructions. NumPy, PyTorch [26], Matplotlib, and iMinuit are
examples of the optimized libraries used. NumPy and SciPy allow for
the development of amplitudes that PyPWA can automatically scale to
all available hardware threads.

To increase the speed of the fits, there are three ways to boost per-
formance: Multithreading, vectorized instructions, and general-purpose
computing on GPUs (GPGPU). Modern CPUs have more than one
core, with eight cores being common, and this is the first place in
which performance can be increased by using all available cores with
multiprocessing. Some architectures, such as the x86 architecture, have
vector instructions as a part of the CPU instruction set, also known as
‘‘Single Instruction/Multiple Data’’ (SIMD), which allows the processor
to perform multiple floating point operations in a single clock cycle.
NumPy has built-in support for vector instructions, allowing users to
write vectorized code in Python seamlessly. The final way to increase
the performance of PyPWA is to offload the computations to GPGPU.
For GPGPU calculations, the PyTorch Tensor Library supports AMD and
NVIDIA GPGPUs and Apple’s Silicon, allowing for a broad range of
supported hardware. Without these libraries, users would be required
to write their code in C/C++ or Fortran to achieve similar performance
levels.
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Fig. 1. Process flow control diagram for PyPWA shows the steps from loading to
analyzing the data. The parallelized process module is described in Fig. 2.

3.2. Data preparation

Fig. 1 outlines the entire fitting process with PyPWA. After the user
perform the initial event selection, data can be loaded in the following
formats: GAMP [27], CSV, NumPy, or user-defined format representing
a 2-dimensional array or a tree of 4-vectors. The data module lever-
ages the plugin architecture for built-in and user-defined formats to
implement the data caching described below. The amplitudes do not
interact directly with the data module. The data module reads and
writes the data from a Numpy Structured Array or a Pandas DataFrame.
Those data structures are then passed from module to module, and the
Processing Module, Data Module, Binning Module, etc., are all written
to understand those data structures. When data is loaded with the data
module, it will return a Structured Array, unless the user requested
Pandas DataFrame. Then, when the data structure is sent to one of the
other tools in the toolkit, it will know how to interpret and manipulate
it. While the PyPWA data module is the preferred, most compatible way
to handle data, it is not the only way. The user has the flexibility of not
using the PyPWA data module and can swap it for Numpy, Pandas, or
some other data parsing module such as Uproot [28], as long as what
it returns is a Numpy Structured Array, DataFrame, or can be changed
into one of those two types.

The default loading and writing mechanisms have additional fea-
tures not found in the other tools, specifically plugins and caching. The
data module inside PyPWA supports plugins that can define readers and
writers, parsers, and dumpers. A reader and writer will read and write
a single event to and from a file, whereas a parser and dumper will read
the entire file into a structured array or write an entire array out to a
file. While most operations use a parser or a dumper, the reader and
writer can feed events through tools to be processed and immediately
written back out to a file without consuming significant resources. This
mechanism is used by the data masking tool built into the package. By
supporting plugins, we can allow other developers to define file formats
that best suit their needs and adapt PyPWA’s parser to their file format
while leveraging the rest of the toolkit. Lastly, any file written or read
with PyPWA’s data module is cached using Python’s pickle module.
Inside the cache is a SHA512 [29] sum of the original file, and if the
sum does not match the file’s current sum, the cache is invalidated,
parsing the source file again.

The data module will return all parsed data in NumPy structured
arrays or Panda’s DataFrames. DataFrames are similar to structured
arrays but have additional methods that allow direct data visualization
and syntax for filtering and searching. NumPy structured arrays focus
on numerical computing performance and, as such, have no tools for
data visualization. We provide utilities to swap between these two data
structures to allow users the best of both tools.

Finally, many users may need to split datasets into subsets, called
bins, in one or more variables, e.g., bins of energy or mass. PyPWA
supports multiple binning functions out of the box, allowing data to
be split by a given range or by a fixed number of events. For both
functions, the user provides a dataset to be binned, and the function
will return a list of bins. If binning by range, the bins returned will all
contain the same widths in the data, with the remaining data included
in the first and last bins, decided using a single specified variable from
that dataset. When binning by a fixed number of events, each bin
will have the same number of events, again with the remaining data
included in the first and last bins.

3.3. Software workflow

PyPWA provides a set of tools that help the user at each step of
the analysis. A collection of the most important PyPWA functions and
methods is shown in Table 1 (see Section 3.4 for more details). In this
section we will describe how a possible workflow will be constructed
for a so-called mass independent PWA (events are binned in mass to
suppress the dynamical dependence on the mass, and an independent
fit is performed for the events in each bin).

The user should prepare, in advance, the data and a simulation.
The type of simulation needed will depend on the type of analysis. For
example, in a full PWA using an extended likelihood, just a Lorentz
invariant restricted phase-space of the reaction is needed. It is not
required, but it is highly recommended to prepare the data and sim-
ulation information in a compressed version that contains only the
variables used by the amplitude. This will simplify and speed up the
reading of data using the PyPWA.read() method. PyPWA provides
several functions in the binning module to organize the data and
simulation in bins (in multi-dimensions). Examples of how to transform
the data into more efficient inputs to the amplitudes and binning are
provided in our tutorials. For example, the PyPWA.bin_by_range()
will bin the data in N bins for a given variable range.

The next step is to define the intensity based on the model the user
wants to use for the analysis. The user needs to define the setup
and calculate functions. The following is an example using a two-
dimensional Gaussian model of intensity:

class Gauss2dAmplitude(pwa.NestedFunction):

"""

This is an example with a simple 2D Gaussian intensity. It is written to use PyPWA's built-in

multiprocessing module. The user doesn't need to worry about thread or

process management, passing data between threads, or any other

hassles that come with multithreading.

Instead, the user defines the class while extending the NestedFunction,

and when it is passed to the fitter, it will clone the user's

class, split the user's data, and deploy to every processing thread the

user's hardware has.

"""

def __init__(self):

"""

The user can override the init function if they need to set parameters

before the amplitude is passed to the likelihood or simulation

functions. An example of this is included in the other tutorials.

However, if this is done, the user must always remember to call the `super` function.

"""

super(Gauss2dAmplitude, self).__init__()

def setup(self, array):

"""

This function is where the data is passed. Here, the user can also

load any C or Fortran external libraries that typically would not

support being packaged in Python's pickles (built-in serialization).

"""

self.__x = array["x"]

self.__y = array["y"]
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Table 1
Summary of the most important methods and functions in PyPWA grouped by their functionality (see
Section 3.4 for more details). PyPWA.NestedFunction() is the abstract base class used to define an amplitude
inside the PyPWA framework, for this reason, the base class is used for both simulation and fitting.

Data processing Simulation Fitting

PyPWA.read() PyPWA.monte_carlo_simulation() PyPWA.ChiSquared()
PyPWA.write() PyPWA.simulate.process_user_function() PyPWA.LogLikelihood()
PyPWA.panda_to_numpy() PyPWA.simulate.make_rejection_list() PyPWA.EmptyLikelihood()
PyPWA.to_contiguous() PyPWA.NestedFunction() PyPWA.minuit()
PyPWA.bin_by_range() PyPWA.mcmc()
PyPWA.bin_by_fixed_width() PyPWA.NestedFunction()

def calculate(self, params):

"""

This function receives the parameters from the optimizer and

returns the values from there. Only the intensity values should

be calculated here. The likelihood will be calculated elsewhere.

"""

scaling = 1 / (params["A2"] * params["A4"])

left = ((self.__x - params["A1"])**2)/(params["A2"]**2)

right = ((self.__y - params["A3"])**2)/(params["A4"]**2)

return scaling * np.exp(-(left + right))

After the intensity is defined, PyPWA provides methods to calculate
the loss function for the optimizer. An example is shown below:

"""
Initial parameters for the optimizer.
"""
fitting_settings = {

"A1": 1, "A2": 1,
"A3": 1, "A4": 1,

}
"""
Optimization by Maximum Likelihood.
"""
for one_bin in binned_data:

with pwa.LogLikelihood(
Gauss2dAmplitude(), one_bin

) as likelihood:
optimizer = pwa.minuit(fitting_settings, likelihood)

# Set the fitting boundaries for the optimizer
for param in ["A1", "A3"]:

optimizer.limits[param] = (.1, None)

for param in ["A2", "A4"]:
optimizer.limits[param] = (1, None)

# Record the final values from Minuit
cpu_final_values.append(optimizer.migrad())

In the example, PyPWA.LogLikelihood calculates the loss func-
tion (log-likelihood in this case), and PyPWA.minuit defines the
optimizer (Minuit in this case). Other methods exist in PyPWA to define
other loss functions and optimizers (as described in Section 3.4).

In addition, PyPWA also contains modules and methods for simula-
tion. PyPWA.simulate is normally used to produce a sample of data
according to a model.

The PyPWA.monte_carlo_simulation() method is used to
generate a boolean mask of accepted events (using the rejection sam-
pling method) from an input Lorentz-phase space simulation. To check
the quality of the fit, the user can use the PyPWA.simulate module
also for prediction, based on a detector simulation, using the fitted
parameters. The prediction step is normally performed on binned data,
as the fitted amplitude values are normally calculated on a bin basis.
We refer to the tutorial on our website [7] for code examples.

3.4. Functions, methods, and classes

PyPWA follows a Python ecosystem structure, providing modules
that are imported by the default initialization. These modules contain
classes (blueprints for creating objects), methods (functions associated
with and called from an object), and functions (standalone blocks of
code that perform a specific task). This subsection identifies the most

important methods, functions, and classes that PyPWA provides. Full
documentation is provided online (see Section 3.7). Furthermore, if
the user runs PyPWA interactively, e.g., using Jupyter Lab notebook
or PyCharm, there is access to the documentation by just typing pwa?
or the function/method’s name followed by a question mark.

The data handling is done mainly by two functions:
PyPWA.read(...) that reads the entire file and returns either
DataFrame (Pandas), ParticlePool (PyPWA’s own 4-momenta format),
or standard Numpy array. The data can be cached to speed up future
use.

PyPWA.write(...) writes the entire file and returns either
DataFrame (Pandas), ParticlePool, or standard Numpy array. For both
read and write, the user can opt out of the default caching mechanism
or forcefully invalidate and remove the cache.

Several loss functions to be used by the optimizers can be defined.
They need to be defined by extending an abstract class. These loss
functions automatically distribute the fitting function across available
resources. Intensities can be defined using either an object-oriented
(OOP) approach (class) or a functional programming approach (func-
tion).

If using pure functions for the intensity, users wrap the calculation
function and optional setup methods in
PyPWA.FunctionalAmplitude(...), if using the OOP approach,
they extend the PyPWA.NestedFunction class when defining the
intensity. It is assumed by both, the fitting and simulation, that the
calculate function/method of either approach will return a PyTorch
Tensor, a Pandas Series, or a Numpy Array. They are expected to
be initialized when sent to the likelihood or simulation objects and
will be deep-copied for each process. The setup will be called first
to initialize data and additional libraries, and then the calculate
function/method will be called for each call to the likelihood. There
are several switches that the user can set to obtain more efficient use
of the hardware (described in the online documentation).

PyPWA supports two distinct likelihood types for use with the op-
timizer (see Section 3.6): The class PyPWA.LogLikelihood(...)
defines the likelihood and works with either the standard or the ex-
tended log-likelihood, PyPWA.sweightedLogLikelihood(...)
provides a log-likelihood that functions much like the above likelihood
but supports weighted data (i.e. using sPlot [30]).

The class PyPWA.ChiSquared(...) computes the Chi-Squared
loss function for a given amplitude. This loss function supports two
types of the Chi-squared, one with binned and one with unbinned
values. The class PyPWA.EmptyLikelihood(...) does no post
operation on the final values except sum the array and return the final
sum. This allows for defining unique loss functions that have not been
defined by default, fitting functions that do not require a likelihood,
or using the built-in multi-processing without the weight of a standard
likelihood.

Optimizers are described in more detail in Section 3.6. They can be
accessed through the following two functions:
PyPWA.minuit(settings, likelihood) optimization using
iminuit and PyPWA.mcmc(...) optimization using emcee.

Simulation of data is performed through the following functions:
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PyPWA.simulate.process_user_function(...)
produces an array of values from a given function,
PyPWA.simulate.make_rejection_list(intensities,
max_value) produces the rejection list from pre-calculated function
values (using the rejection method).

To organize and change data formats the function
PyPWA.pandas_to_numpy(...) takes a Pandas Series or
DataFrame and converts it to Numpy. Pandas have a built-in
‘‘to_records’’ function. However, records are slower than Structured
Arrays, while containing much of the same functionality.
PyPWA.to_contiguous(data, names) takes a dataset and a list
of column names and converts those columns into contiguous arrays.
The reason to use contiguous arrays over DataFrames or Structured
arrays is that the memory is better aligned to improve computation
speed. However, this doubles the memory requirements of the dataset
since this copies all the events to the new array.

In many cases, the data analysis requires grouping the data into
small sub-sets (‘‘binning’’). Binning of data can be done using the
function PyPWA.bin_with_fixed_widths (DataFrame, ...)
that bins data by fixed bin widths using a series in memory. The user
specifies a width for all bins. Before use, all data that the user wants to
be binned needs to be put into a DataFrame or Structured Array. Each
resulting bin can be further binned if desired. If the fixed_size does
not evenly divide into the length of bin_series, the first and last bin
will contain overflows. The function
PyPWA.bin_by_range(dataframe, ...) bins data by range,
specifying the number of bins in that range, using a series in memory.
Before use, all data that is about to be binned must be put into the
DataFrame or Structured Array. Each resulting bin can be further
binned if desired. PyPWA.bin_by_list(data, bin_series,
bin_list) bins data using a list of bin widths (each bin can have a
different width).

3.5. Parallel processing module

The Global Interpreter Lock (GIL) mechanism hinders Python’s par-
allel processing ability by restricting the parallel execution of Python
on one interpreter. As a way to bypass the GIL, multiprocessing is
used to enable multiple interpreters to run concurrently. However,
multiprocessing, which uses forks, presents technical challenges since
each process operates independently without shared memory, requiring
inter-process communication through system pipes. Specifically, two
pipes per process are necessary to enable bi-directional communication.

PyPWA implements multiprocessing by inheriting from the Process
class in the Multiprocessing module. The features that are added in-
clude duplex/simplex communication and kernels. In PyPWA, a kernel
refers to a unit of execution that contains user-defined amplitude and
its assigned data subset. The processing module is a process factory
that takes a kernel and dataset and then scales those across several pro-
cesses, defaulting to the total number of hardware threads on the host
system. These kernels should not be confused with the user amplitude
(NestedFunction). When fed to either a likelihood or to the simulation,
the amplitude is then placed in a kernel defined by that module,
which is then handed to the process factory. For example, suppose the
LogLikelihood is selected for fitting. In that case, the amplitude will be
placed inside the LogLikelihoodKernel, which will call the amplitude
and use its result to compute the likelihood before returning it to the
main thread. The processing factory will duplicate the provided kernel
for each number, N, of selected hardware threads, split the dataset into
N sub-datasets, and then attach each sub-dataset into one duplicated
kernel as shown in Fig. 2. The kernels are assigned to a child process
or thread with their data payloads. After the processes are forked, the
processing factory returns a communication object that behaves like a
function that passes values to all processes using pipes and processes
the resulting values. The user primarily interacts with the processing
module in the form of the likelihood module and simulation module.

Multiprocessing with forks works for many computational work-
loads; however, some libraries, such as PyTorch and CUDA, are incom-
patible. To provide multi-GPU support, threads are leveraged instead of
multiprocessing forks. Even though a single GIL binds the threads and
cannot execute more than one at a time, with GPU-heavy workloads,
the majority of the threads’ time is spent waiting on the GPUs to return
a result, and due to this scales similarly as seen with CPUs, as discussed
in Section 4.

The processing module combined with the instruction-level vec-
torization in NumPy and PyTorch allows for high scalability across
hardware resources. This scalability is built directly into PyPWA and
requires no additional developmental effort from the user.

3.6. Optimizer implementation

As introduced in Section 2 a loss function, such as a negative log-
likelihood function, is minimized to extract model parameters that best
fit the data. PyPWA requires the user to provide the intensity function
I(�′, ⃖⃖⃗V ) (c.f. Eq. (2)) which is used when fitting the data. This should
be done in the form of a Python class that extends the NestedFunction
and defines at least two methods: setup and calculate. The first
will handle the data input and initialization, while the second will
perform the actual calculation and return the intensity as a function
of the parameters. PyPWA will use this Python class in the likelihood
object it passes to an optimizer.

In general, an optimizer is required to be able to accept the loss
function provided by PyPWA as input together with the set of param-
eters. It should then be able to return the final set of parameters that
optimize the loss function together with their associated uncertainties.
Ideally, one would like to be able to also constrain the range of
individual parameters in the optimization. It should be possible to use
any optimizer that has this capability within PyPWA.

PyPWA provides two built-in optimizers which are described in the
following. Due to its modular nature, it is possible to add additional
optimizers.

3.6.1. iMinuit
A common tool to perform fits to data in high-energy physics is

MINUIT2 (based on [10]). PyPWA utilizes the Python implementation
iMinuit [9].

MINUIT2 itself is not a minimizer but provides a range of algorithms
that perform the minimization. The most common choice is MIGRAD,
which uses the first and second derivatives of the function to be
minimized in order to find the best set of parameters and approximate
uncertainties. In a follow-up step, the user can use the HESSE or MINOS
algorithms to improve the estimation of parameter uncertainties. For
more information on the exact working and best use cases for each
algorithm, consult Ref. [10] or the MINUIT2 User’s Guide [31].

PyPWA provides an interface that takes the user-defined intensity
function, i.e. the Python class, and input data and automatically turns
it into a loss function which is passed to iMinuit. See Section 3.3 for an
example on how to use the interface.

iMinuit provides some useful utility methods to inspect the final
results. It is recommended that the user should carefully inspect the
set of best parameters and uncertainties provided by iMinuit. It should
be noted that HESSE and MINOS packages provide a better uncertainty
estimation than MIGRAD and careful study of the uncertainties may be
required.

3.6.2. emcee — Markov Chain Monte Carlo
Instead of using a minimizer, PyPWA offers the user the option to

perform parameter estimation via Markov Chain Monte Carlo (MCMC).
For this, the Python package emcee [11] is used.

In contrast to a minimization of a loss function, MCMC explores the
possible parameter space. A range of different algorithms to do this
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Fig. 2. The parallel processing module in PyPWA leverages multiprocessing to perform CPU-bound tasks concurrently, enabling scaling across all available hardware threads while
bypassing the limitations of the GIL. Multi-GPU fitting uses multithreading instead of multiprocessing; one core in this diagram would correspond to one GPU. To the left, the
default process uses forks and CPUs with a GIL per process; to the right, the threaded-based processing for GPUs bound to a single GIL.

is provided by emcee. In general, they can be split into the following
stages:

1. Choose a set of starting parameters a⃗0
2. propose a new set of parameters a⃗n+1 (step)

3. calculate likelihood
4. accept or reject the proposed step based on likelihood
if accepted: add a⃗n+1 to output chain
if rejected: add a⃗n to output chain

5. go back to 2.

Repeat this for a certain number of steps n.

The proposal of a new set of parameters a⃗n+1 is often done at
random based on the previous step a⃗n. One possibility is to choose
a⃗n+1 = a⃗n + (0, �⃗), where each parameter gets modified by a random
number drawn from a normal distribution . The set of widths �⃗ which
determine how much each parameter is changed at every step is called
step size. Whether a new step is accepted depends on the likelihood of
the current (n) and new step (n+1). It is not advisable to always accept
steps that increase the likelihood as this might cause the algorithm to
get stuck in local maxima. In order to avoid local maxima, steps that
decrease the likelihood should be accepted with a certain probability.

PyPWA provides the interface to access emcee’s MCMC sampler via
the mcmc module. Several different algorithms (moves) which propose
and accept steps are included. The main strength of emcee is in so-
called ensemble sampling in which multiple chains are run in parallel.
For the full documentation of all moves, Ref. [11] should be consulted.
PyPWA returns the EnsembleSampler object which can be used to
retrieve all the available information from emcee. Most importantly, it
can be used to get the resulting Markov chain, the complete history
of all steps. This chain can be examined to study correlations between
parameters and to extract a set of parameters that best describe the
data together with their uncertainties. A useful tool to investigate the
resulting chain is the so-called corner plot which can be created using
the corner package [32]. An example for such a corner plot is shown in
Fig. 3. It shows a sub-sample of the parameters used in the example
in Appendix A. The parameter values for all individual steps in the
chain are plotted against each other and reveal correlations. The corner
plot also produces the one-dimensional projections which are often
useful.

When using MCMC to perform parameter estimation it is important
to study the generated chains carefully. It is necessary to ensure that
the chains run long enough to converge. Although a step only depends
on its immediate predecessor, there will be some auto-correlation
within the chains, because steps are usually small enough to keep
the acceptance rate reasonably high. This auto-correlation needs to
be accounted for when information is to be extracted from the chain
based on statistically independent samples. A common way to achieve

this is to thin out the chain. That means that, depending on the auto-
correlation length, e.g., only one in every 10, 20, or 50 steps of the
chain is used for parameter estimation.

3.7. Documentation

In PyPWA, the documentation is contained within the source code
allowing Python’s docstrings to grow and mature with the code lever-
aging PEP 256 [33] and PEP 287 [34], which define Python’s included
support for literate programming. The docstring format used in PyPWA
was initially defined for NumPy and blends an easily parsed markdown
format for documentation generators while remaining syntactically
simple to aid reading prior to rendering.

Python’s built-in help function lets users view the docstrings at-
tached to modules, classes, and functions directly from an IDE, iPython
or Jupyter, which provides an interactive, built-in manual to PyPWA.
For users and developers there is another tool inside Python’s ecosys-
tem, Sphinx, that can parse the docstrings and render the documen-
tation into a static website, which Read the Docs currently hosts for
PyPWA.

Documentation can be found on the PyPWA Read the Docs [35]
and the website [7]. The full source code can be found on the GitHub
page [36].

4. Benchmarks

The benchmarks presented in this work evaluate the scaling of
PyPWA fits on multi-core CPUs and multiple GPUs. The benchmarks
were performed on a dual-socket Intel Cascade Lake system with three
NVIDIA V100 GPUs. A detailed overview of the system specifications
can be found in Appendix B. The benchmark only considers the calcu-
lation of the loss function as it is typically the most computationally
expensive part of the fit. The data loading and visualization tasks are
one-time tasks that typically have a negligible effect on the runtime.
The optimizer can have a variable number of function calls to the loss
function, which necessitates the exclusion of these tasks to provide
uniform benchmark conditions.

The benchmark procedure involves recording the execution time for
a loss function call based on Appendix A, which is intended to mimic
a fit, that uses a predetermined sequence of simulated fit parameters
that are cached for the selected benchmark amplitude. This synthetic
benchmark has 11 million events for both simulated experimental data
and accepted data in the loss function and the number of loss function
calls was set to 2636 calls, which had previously been observed in a fit
performed with the default optimizer. This approach ensures that the
benchmark has uniform conditions for all runs. The only parameter that
varies is the number of threads utilized for the loss function calculation.
Nonetheless, there exist uncontrolled factors in the benchmark testing
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Fig. 3. Corner plot for a sub-sample of the parameters used in the example shown in Appendix A. The axes show the real (r) and imaginary (i) part of the production amplitudes
abbreviated by their quantum numbers �, L, and m in arbitrary units. The plot nicely visualizes correlations between the parameters. It was produced using the corner package [32].

Table 2
Results for the benchmarks as described in the text. The execution time is specified for
80 threads (or three GPUs in the case of the V100). Also listed are the speedups S as
defined in the text and ratio p as defined in Eq. (7).

Math library Execution time S p

(in s)

NumPy 1447.25 ± 2.48 15.51 ± 0.03 94.74%
NumExpr 1268.83 ± 2.14 12.40 ± 0.02 93.10%
NumExpr ST 1180.56 ± 2.02 18.19 ± 0.03 95.70%
PyTorch: 3 V100s 80.70 ± 2.16 2.92 ± 0.08 98.61%

process due to the variability in the server environment and variable
CPU clock frequency which is known as Intel Turbo Boost for Intel
processors that implement this feature.

The benchmark system had two Intel CPUs with forty threads each
and three NVIDIA V100 GPUs and is described in Table B.5. In order to
measure the scaling there was one benchmark configuration for each
thread available on the system as well as one configuration for each
GPU. Each configuration was tested four times and the mean and stan-
dard deviation of the benchmark execution times were recorded. Fig. 4
displays the execution time for each CPU benchmark configuration and
a single NVIDIA V100 for comparison.

Table 3
Comparison of execution times for a single thread and 80 threads using various math
libraries described in the text. In the case of the V100 only one CPU thread was
used.

Math library Execution time Execution time
one process 80 processes
(in s) (in s)

NumPy 22 440.85 ± 13.13 1447.25 ± 2.48

NumExpr 15 731.39 ± 115.31 1268.83 ± 2.14

NumExpr ST 21 473.77 ± 46.79 1180.56 ± 2.02

PyTorch: 1 V100 235.53 ± 5.81 –
PyTorch: 3 V100s 80.70 ± 2.16 –

We determine the theoretical speedup of the processing module
using some of the most common mathematical libraries in Python:
NumExpr, NumPy, and PyTorch for GPU processing. NumExpr has
its own internal scaling mechanism which provides an analog to the
PyPWA processing module; for this reason, NumExpr is included twice.
NumExpr is included with its own multithreading enabled or disabled
(NumExpr ST), both using the Parallel Processing Module. NumExpr ST
and multiprocessing with PyPWA provide the best performance overall
on CPUs as NumExpr is able to evaluate expressions without returning
intermediate results and PyPWA supports data caching. However, using
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Fig. 4. The total execution time, using different libraries, is shown as a function of the number of processes. For additional comparison, a single V100 GPU data point is shown
as a horizontal black dashed line. The benchmark fit was based on Appendix A.

a single V100 GPU performs much better than the fastest 80-thread CPU
execution. The Speedup for n threads, S(n), is obtained from:

S(n) =
execution time (n = 1)

execution time (n)
(6)

The benchmark data are then fitted with the functional form of Am-
dahl’s Law (Eq. (7) [37] to obtain the percentage of the algorithm that
is run in parallel (p). The theoretical speedup is given by

S(n) =
1

(1 − p) + (
p

n
)

(7)

The closer p is to 1, the better the algorithm scales. Table 2 displays the
resulting values for speedup (S) and the percentage of the algorithm
that is parallel (p) for each math library for 80 threads on the two
CPUs or the three GPUs. Table 3 shows a direct comparison between
single-thread execution and execution on the whole CPU using all 80
available threads. With an almost 96% parallel algorithm on CPUs and
almost 99% on GPUs, these results show that PyPWA scales well on the
benchmark system.

5. Summary

PyPWA provides a flexible set of tools within the Python ecosystem
for amplitude analysis of multi-particle final states. The package is
built from individual and mostly independent components that the
user can arrange in a variety of ways. PyPWA primarily functions as a
toolkit and can solve a broad collection of optimization problems. Users
provide a function (model), data, and simulation in their preferred data
formats. PyPWA provides tools for data processing and analysis. It also
provides various ways of speeding up the calculations through parallel
processing and user-friendly GPU support with PyTorch.

The flexibility of PyPWA and the use of many standard Python
packages make it an ideal tool to perform fits of models to data.
The packages are user-friendly to install on Linux and MacOS using
Anaconda. The examples provided with the code allow for a quick start
and the Python ecosystem comes with a large user base with lots of
support. The Python ecosystem is at the root of the PyPWA coding and
parallelism is inherent in its design.
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Appendix A. Example: �� photoproduction

To demonstrate the use of PyPWA, we present a partial wave anal-
ysis on simulated data of the reaction ⃖⃗
p → �� p, the photoproduction
of two pseudo-scalar mesons. The goal is to find intermediary meson
states (X) that decay via X → ��. We assume that the reaction ⃖⃗
p → Xp

occurs by diffractive scattering of a linearly polarized photon beam off
a proton target which remains intact. All code necessary to run this
example is available on our GitHub page [36].

We perform a so-called mass-independent partial wave analysis [5],
where we include the four-momentum transfer dependency of the pro-
duction amplitudes in our kinematic simulation. We divide the data and
simulation in bins of X meson mass and consider fixed beam energy.
Therefore, the two pseudo-scalar intensities, in each mass bin, will have
only angular dependencies. We factorize the total transition amplitudes
into a production amplitude V (interaction, X production) and a decay
amplitude A (decay of X into the final state particles). Production
amplitudes are generally unknown at these energies, they are fully
(mass-independent) or partially (mass-dependent) fitted to the data.
The production amplitudes contain information about the hadronic
QCD-based interaction. Those interactions are more difficult to model;
therefore, for a mass-independent analysis, the production amplitudes
will be considered a weight on each decay amplitude. These weights are
the parameters to be fitted to the data to obtain the observed overall
intensity. Classic partial wave decomposition, truncated to low angular
momenta contributions, represents a good first attempt to obtain a
set of amplitudes, the model. It can then be checked that the data are
reasonably described by this model. It can be shown [5], that for two
pseudo-scalars, the decay amplitudes are given by spherical harmonics.

We use amplitudes derived by the JPAC [38] collaboration to simu-
late and consecutively fit the intensities of the given set of resonances
and waves. We use a beam with a fixed energy of 8 GeV and 40% linear
polarization fraction and an exponential t-Mandelstam distribution ∝

exp (−bt) with b = 6GeV−2. The JPAC two pseudo-scalar amplitudes are
defined by the following parameters: P is the polarization fraction, �
is the polarization angle, and �, L, m are the three quantum numbers of
the waves (reflectivity, angular momentum and positive z-component
of angular momentum). The two angles �, � are describing the decay
particles in the Helicity frame [38], the total intensity is given by
Eq. (A.1) (Eq. (B4) of Ref. [38]).

I(�, �,P , �) = I (0)(�, �) − PI (1)(�, �) cos 2�

−PI (2)(�, �) sin 2� (A.1)

The intensities, I (0), I (1), I (2) are calculated from expressions (D12)
of Appendix D of Ref. [38].

An example of code used to calculate the JPAC intensities (using
PyTorch) is shown below (see full code on GitHub [36]):

# Calculate Total Intensity
import numpy as np
import pandas as pd
import scipy.special
import torch as tc
from PyPWA import NestedFunction

# Calculate Decays directly from Spherical Harmonics
def produce_specific_decay(theta, phi, m_waves, l_waves):

theta[theta < 0] = theta[theta < 0] + 2 * np.pi

Table A.4
Resonances/Waves definition for simulation, See text for details.

Mass (GeV/c2) Weight (�, L,M)

0.980 0.5 (1, 0, 0)
1.306 0.3 (1, 2, 1)
1.722 0.2 (1, 1, 1)

decay = np.empty((len(m_waves), len(theta)), "c16")
for index, (m, l) in enumerate(zip(m_waves, l_waves)):

decay[index] = scipy.special.sph_harm(m, l, theta, phi)

return decay

class FitWithGPU(NestedFunction):

USE_TORCH = True
USE_MP = False

def __init__(self, initial_params):
super(FitWithGPU, self).__init__()
self.device = tc.device('cpu')
self.__alpha = tc.Tensor([])
self.__pol = tc.Tensor([])
self.__phi = np.array([])
self.__theta = np.array([])
self.__decay = tc.Tensor([])

elm = make_elm(initial_params)
self.__e = tc.from_numpy(elm['e'])
self.__l = elm['l']
self.__m = elm['m']

def setup(self, data):
# Handle Torch Devices based on USE_MP status
if not self.USE_MP:

self.device = tc.device("cuda:0")
self.__alpha = tc.from_numpy(data['alpha']).to(self.device)
self.__pol = tc.from_numpy(data['pol']).to(self.device)
self.__e = self.__e.to(self.device)

self.__decay = tc.from_numpy(produce_specific_decay(
data['phi'], data['theta'], self.__m, self.__l

)).to(self.device)
return self

def calculate(self, params):
vs = params[::2] + 1j * params[1::2]
vs = tc.from_numpy(vs).to(self.device)

v = vs * self.__decay.T
v_conj = vs * tc.conj(self.__decay).T

u10 = v.T[self.__e == 1].sum(0)
u20 = v_conj.T[self.__e == 1].sum(0)
u11 = v.T[self.__e == -1].sum(0)
u21 = v_conj.T[self.__e == -1].sum(0)

return self.__compute_intensity(u10, u20, u11, u21)

def __compute_intensity(
self, u10: tc.Tensor, u20: tc.Tensor,
u11: tc.Tensor, u21: tc.Tensor) -> tc.Tensor:

i0 = (
u10 * tc.conj(u10) + u20 * tc.conj(u20)
+ u11 * tc.conj(u11) + u21 * tc.conj(u21)

).real

i1 = 2 * (-1 * (u10 * tc.conj(u20)).real
+ (u11 * tc.conj(u21)).real)

i2 = 2 * (-1 * (u10 * tc.conj(u20)).imag
+ (u11 * tc.conj(u21)).imag)

intensity = i0 - self.__pol * i1 * tc.cos(2 * self.__alpha)
intensity -= self.__pol * i2 * tc.sin(2 * self.__alpha)

return intensity.real

We perform the analysis on a simulated sample and assume a
detector with full acceptance and 100% efficiency. Using our simulation
package, we simulated three resonances decaying to ��, each in a differ-
ent pure wave, defined by the reflectivity (�), total angular momentum
(L) and z-component of the angular momentum (m). The input values
are listed in Table A.4.

The simulated X mass distribution, the cosine of the polar helicity
angle of the � particle (�) versus X mass, and the polarization angle
versus the azimuthal helicity angle (�) of the � particle are shown in
Fig. A.5 . In this example, our analysis goal is to extract the resonances
from the simulated data by fitting the �� angular distributions using
the same JPAC amplitudes.

We define the set of waves we will use in the fit and initial values for
the production amplitudes. The optimization will be done via an event-
by-event extended log-likelihood fit using iMinuit. In this example, we
used only positive reflectivity (� = 1), L < 3 and M = 0, 1 or 2, a
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Fig. A.5. Generated mass distribution showing the three input resonances. Also shown are the cos(�) vs. mass and polarization angle vs. � for the same generated data. Angles
(�, �) are defined in the Helicity frame.

Fig. A.6. The figure shows the fitted total intensity (squares) versus mass. The simulated data points are also plotted (circles). The fitted values and data are in very good
agreement.
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Fig. A.7. The figure shows the fitted intensity versus mass for different waves in the fit set. The fit reproduces the wave composition of the simulated data. Added waves, not
present in the simulated data, do not contribute to the intensity.

Table B.5
Specifications of the Dual Cascade Lake Server.

CPU

Model Intel Xeon Gold 6230
Architecture Cascade Lake-SP
Socket Dual Socket LGA-3647
Cores/Threads 20/40 per CPU
Base frequency 2.1 GHz
Max Turbo frequency 3.9 GHz
Cache 27.5 MB

Memory

Type DDR4-2933 ECC
Capacity 512 GB (16 × 32GB)

GPU

Model NVIDIA Tesla V100 PCIe
Architecture Volta
Number of GPUs 3
CUDA cores 5120
Memory 32 GB HBM2

S, P, and D wave set. We also need to use simulated (accepted and
generated) samples to obtain the expected and true number of entries
in a bin to calculate the extended log-likelihood. The software package
provides tools for the user to define the bins, the variable to be binned,
the bin ranges, and the extended log-likelihood.

Fitting with iMinuit, we obtain the optimal production amplitudes
that minimize the negative extended log-likelihood (c.f. Eq. (5)).

Calculating the expected number of events in a mass bin, we can
compare with the simulated data as shown in Fig. A.6. The fitted values
and data are in very good agreement. Fig. A.7 shows the intensities
versus mass separated in each of the fitted waves, the goal of our
analysis. As shown in Fig. A.7, the results of the fit match the input
resonances and waves of the simulated data well, i.e, we were able to
extract resonances and associated quantum numbers (waves) from the
simulated input data.

Appendix B. Benchmark system specifications

Table B.5 shows the specifications of the Dual Cascade Lake Server
used for benchmarking the scaling of PyPWA.
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