
Journal of Systems Architecture 154 (2024) 103240

A
1

c
l
c
d
t
r
r
c
t
i

h
R

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Real-time intelligent on-device monitoring of heart rate variability with PPG
sensors
Jingye Xu ∗, Yuntong Zhang, Mimi Xie, Wei Wang, Dakai Zhu
Department of Computer Science, The University of Texas at San Antonio, One UTSA Circle, San Antonio, 78249, TX, United States

A R T I C L E I N F O

Keywords:
PPG
HRV
On-device monitoring
Neural network
Neural architecture search

A B S T R A C T

Heart rate variability (HRV) is a vital sign with the potential to predict stress and various diseases, including
heart attack and arrhythmia. Typically, hospitals utilize electrocardiogram (ECG) devices to capture the heart’s
bioelectrical signals, which are then used to calculate HRV values. However, this method is costly and
inconvenient due to the requirement for stable connections to the body. In recent years, photoplethysmography
(PPG) sensors, which collect reflective light signals, have gained attention as a cost-effective alternative for
measuring heart health. However, accurately estimating HRV using PPG signals remains a challenging task
due to the inherent sensitivity of PPG sensors. To address the challenges, this paper presents an on-device,
low-cost machine learning-based system that aims to achieve high-accuracy HRV estimation in real-time.
Firstly, we propose a novel unified performance and resource-aware neural network (UP-RaNN) search method
that leverages grid search techniques to identify a neural network model that can deliver both high HRV
accuracy and smooth operation on resource-limited devices. Secondly, we design a real-time HRV monitoring
system using a resource-limited, ultra-low-power microcontroller unit (MCU). This system utilizes the neural
network model obtained through the UP-RaNN to provide HRV readings from PPG data in real-time. Thirdly,
we evaluate the proposed UP-RaNN method and the real-time HRV monitoring system by comparing its
performance to state-of-the-art studies. Moreover, the system is enhanced with adaptive reconfiguration
capability, enabling it to improve energy efficiency and adapt to varying demands during runtime. The results
demonstrate that when deployed on an MSP430FR5994 development board running at 8 MHz, the trained
deep neural network model obtained through our proposed UP-RaNN achieves HRV estimation in just 0.3 s per
inference. Additionally, the model exhibits a better mean absolute percentage error (∼ 5.8%) than the state-of-
the-art HRV estimation methods using PPG, while significantly reducing model complexity and computational
time.
1. Introduction

Heart rate variability (HRV) is widely recognized as a crucial indi-
cator of an individual’s health, measuring the time interval between
consecutive heartbeats [1]. Its analysis has been proven valuable in
ardiology, with links observed between HRV and heart rate turbu-
ence, maximal oxygen uptake, inflammatory response, and exercise
apacity [2,3]. Traditionally, HRV assessment has relied on electrocar-
iogram (ECG) devices, which employ electrodes attached to the body
o record the heart’s bioelectrical signals [4]. ECG devices offer accu-
ate HRV monitoring, making them the preferred choice for patients
equiring intensive care in hospitals. However, these devices present
ertain limitations. Firstly, the requirement for electrode attachment
o the skin imposes constraints on the applicability of ECG devices
n various scenarios. Secondly, professional-grade ECG devices tend

∗ Corresponding author.
E-mail address: jingye.xu@my.utsa.edu (J. Xu).

to be expensive, rendering them inaccessible to social-economically
disadvantaged patients.

While ECG technology has been integrated into consumer electron-
ics like the Apple Watch for everyday HRV monitoring [5–7], it still
poses certain limitations due to specific operational requirements. For
example, users of the Apple Watch’s ECG module are instructed to rest
their arms on a table or their lap and keep their fingers touching the
Digital Crown (the button on the watch) to initiate HRV monitoring.
This approach is inconvenient and impractical for continuous long-term
monitoring [8]. In contrast, photoplethysmography (PPG) sensors have
emerged as a promising alternative for measuring heart health [9].
These sensors capture reflective light signals from blood vessels and
offer advantages such as low cost and convenience compared to ECG
devices [10]. While PPG sensors do not directly provide the R–R
vailable online 18 July 2024
383-7621/© 2024 Elsevier B.V. All rights are reserved, including those for text and

ttps://doi.org/10.1016/j.sysarc.2024.103240
eceived 8 March 2024; Received in revised form 21 June 2024; Accepted 14 July
data mining, AI training, and similar technologies.

2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:jingye.xu@my.utsa.edu
https://doi.org/10.1016/j.sysarc.2024.103240
https://doi.org/10.1016/j.sysarc.2024.103240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2024.103240&domain=pdf


Journal of Systems Architecture 154 (2024) 103240J. Xu et al.

h
a
s

d
p
e
d

e
i
d

e
l
p
s
f
(
a
T
l
T
t
r
M
m
e
w
p
o
P
i
b

p

t
i

R

interval values needed for calculating HRV, they can extract ‘‘peak-
to-peak’’ interval values that can be interpreted as the cardiac R–R
interval [11]. Each peak in the PPG signal represents the occurrence of
a heartbeat. However, estimating HRV from PPG sensor data remains
challenging due to various sources of noise, particularly those related
to motion artifacts. Accurately identifying the peak locations in the PPG
signals is crucial to successful HRV estimation.

Two main approaches have been utilized to address the challenge
of noise in data sensing and HRV estimation with PPG: signal process-
ing [12,13] and machine learning (ML) [14,15]. While both approaches
ave demonstrated effectiveness in noise reduction and achieving high
ccuracy in HRV estimation, they have several limitations which are
ummarized as follows:

• One notable limitation of existing studies is their exclusive focus
on improving HRV accuracy without considering the resource-
heavy or costly implementation. Consequently, these approaches
face challenges when it comes to being implemented in resource-
constrained devices. Given that HRV is typically calculated within
a time window ranging from half to five minutes [16], and
PPG signals are commonly sampled at rates exceeding 100 Hz, a
significant number of signals (3000∼30,000) need to be stored to
obtain a single HRV reading. This considerable memory require-
ment poses applicability issues for many devices constrained by
limited memory capacity. An illustrative example is the widely
recognized TROIKA framework [17], which has demonstrated
high accuracy in heart rate (HR) estimation and presented the
potential for accurate HRV estimation. However, the framework’s
reliance on a PPG sampling rate of 125 Hz implies that at least
3750 raw PPG signals are required to compute a single HRV read-
ing. This substantial memory burden poses significant challenges
for resource-constrained devices, making it difficult to implement
the TROIKA framework in such environments.

• Another noteworthy observation is that existing ML-based HRV
estimation methods often rely on specific platforms with ne-
glecting compatibility considerations for deploying the proposed
algorithms on various hardware, particularly embedded devices.
For instance, Zhang et al. [18] introduced a compound method
that combines signal processing and ML techniques to achieve
highly accurate HRV estimation within a fast inference time.
However, this method heavily depends on high-level tools like
Python, along with relevant ML packages (PyTorch1), which ne-
cessitates additional transformations to execute the algorithm
on different embedded devices. As a result, further analysis is
required to assess the performance of these methods in real-world
settings.

• Existing studies usually concentrate more on improving HRV es-
timation accuracy while less on considering the delay to generate
an HRV reading. Considering the time-sensitiveness of real-world
applications that need HRV monitoring such as driving fatigue
detection [19], it is necessary to obtain real-time HRV estimation.
Hence, it is imperative to evaluate the delay of the designed HRV
monitoring system.

Considering that the PPG sensor is normally equipped on mobile
evices that have restrained computing resources, limited memory, and
recious energy, the approach we use for noise cancellation and HRV
stimation should be practical and resource-aware of the device we
eploy on.
To address existing works’ limitations and make PPG-based HRV

stimation feasible, we need to start from practice and design an
ntelligent HRV monitoring framework that could fit most embedded
evices and provide a fast and high-accurate HRV estimation. In this

1 https://pytorch.org/
2

work, we focus on resource-aware deep-learning models for HRV
stimation with PPG sensing data and their deployment on ultra-
ow-power devices for real-time monitoring. Specifically, we first
ropose a unified performance and resource-aware neural network
earch method, named UP-RaNN that takes resource usage and per-
ormance into account. The search algorithm takes the deep learning
DL) model latency and model size into account to search for a fast
nd accurate HRV model that satisfies hardware memory constraints.
hen, we design a real-time HRV monitoring system considering the
imited resource of an ultra-low-power microcontroller unit (MCU).
his system collects raw data from the PPG sensor and conducts several
ransforms before feeding the data into the HRV model to achieve
eal-time resource-saving HRV monitoring. In the end, we take an
SP430FR5994 development board as a case study to evaluate the
onitoring system and the trained model’s performance and energy
fficiency. Moreover, the energy efficiency of the deep learning models
ith different operation modes on the device is also analyzed to sup-
ort online adaptation. The experimental results show that the overall
ptimal model within the size limit can achieve a low Mean Absolute
ercentage Error (MAPE) of 5.8% for HRV estimation, which has an
nference time as low as 0.303 s on the MSP430FR5994 development
oard to support real-time monitoring of HRV.
The contributions of this work are summarized as follows:

• The UP-RaNN method is proposed to derive DL models for HRV
estimation using PPG sensing data where the accuracy is compa-
rable to the results obtained by the state-of-the-art methods;

• A real-time HRV monitoring system is designed for embedded
devices considering their limited resources and their develop-
ment environment. The designed system implements the trained
low-resource occupation model obtained by our proposed UP-
RaNN method to provide a low-latency and high-accurate HRV
estimation;

• To accommodate various performance and energy efficiency de-
mands (e.g., battery capacity) during runtime, we further enhance
the system with adaptive reconfiguration capability based on
the evaluation and analysis of the energy efficiency of different
modules in the HRV monitoring system and the trained DL models
under different operating modes.

The remainder of this paper is organized as follows. Section 2
resents some preliminary and background. Section 3 introduces our
proposed unified neural network search method and real-time on-
device HRV monitoring system. Section 4 discusses the experimental
results and Section 5 presents our conclusion and future works.

2. Background and closely related work

2.1. HRV with ECG

The ECG is a traditional medical device widely used for obtaining
accurate and real-time human vital signs. It provides real-time electrical
signals of the human body, which depict the propagation of a stimulus
through the ventricles [4]. Different methods of HRV quantification,
both in the time-domain and frequency-domain, are employed to an-
alyze human health based on the R–R intervals obtained from ECG
devices [20]. Among them, the Root Mean Square of Successive Dif-
ferences (RMSSD), a time-domain method, is one of the most widely
used [21]. Eq. (1) shows the definition of RMSSD, where 𝑅𝑅𝑖 denotes
he 𝑖th R–R interval, and 𝑁 denotes the total number of R–R intervals
n a given period.

MSSD =

√

∑𝑁−1
𝑖=1 (𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2

𝑁 − 1
(1)

While ECG devices can offer precise HRV readings, their application
is restricted due to stringent development requirements. Connecting
electrodes to the skin is necessary for an ECG device, which restricts the

https://pytorch.org/


Journal of Systems Architecture 154 (2024) 103240J. Xu et al.

t
a
n
i
a
d
r
‘
R
H
t
s
t
s
s

[
l
t
v
l
P
P

l
p
s
s
e

c
f
t
a
H
R
i
i
p
a
t
H
l
r
o
g
e

p
h
s
F
c
t

subject’s movements since any vigorous activity can result in unstable
and inaccurate HRV readings. Additionally, professional ECG devices
are often expensive, making them accessible only within a hospital
setting.

2.2. PPG and HRV estimation with learning models

In contrast to ECG devices that directly provide R–R intervals for
HRV calculation using Eq. (1), PPG sensing data only allows the deriva-
ion of ‘‘peak’’-‘‘peak’’ intervals between pulsations, which can be used
s an approximation of cardiac R–R intervals [11]. Therefore, an alter-
ative method to obtain HRV is by estimating these PPG ‘‘peak’’-‘‘peak’’
ntervals and subsequently deriving R–R intervals for HRV calculation,
s represented by the RMSSD formula in Eq. (1). Indeed, Eq. (1)
emonstrates that even slight variations in R–R interval values can
esult in significant differences in HRV. Consequently, minor noise in
‘peak’’-‘‘peak’’ intervals derived from PPG sensing can lead to varying
–R intervals and ultimately substantial discrepancies in calculated
RV [22,18]. For example, a small 1% MAPE in R–R interval estima-
ions amplifies to over 10% error for RMSSD based on our previous
tudy [18]. Furthermore, PPG ‘‘peak’’-‘‘peak’’ intervals are susceptible
o interference from motion artifacts, environmental lighting, and other
ources of noise [17]. Therefore, accurately estimating HRV using PPG
ensors remains a challenging task.
ML models have been utilized in existing studies to estimate HRV

23–27]. Wittenberg et al. [23] tried a few neural network models in
ocating peaks on TBME [28] and TROIKA [17] datasets and found
hat the 3-layer gated recurrent units (GRU) outperform 1-layer con-
olutional neural network (CNN). Alqaraawi et al. [24] used Bayesian
earning to mitigate the effects of human artifacts when detecting the
PG peaks. However, all these studies focused on peak detection from
PG signals.
Rather than peak detection, Xu et al. [29] applied a bidirectional

ong short-term memory (biLSTM) model on accurate PPG cardiac
eriod segmentation and pulse rate variability (PRV) estimation under
trenuous physical exercise where PPG waveforms are contaminated by
trong motion artifacts. Moreover, Hong-Yu et al. [15], Luke et al. [14]
mployed ML to reconstruct ECG-like signals through PPG signals.
The aforementioned PPG-based HRV estimation studies have fo-

used on predicting HRV indirectly. Previous studies have primarily
ocused on predicting R–R intervals from detected peaks or attempting
o construct ECG-like signals. Besides, the evaluation of their proposed
pproaches has not included performance metrics specifically related to
RV prediction, such as RMSSD. However, performance in predicting
–R intervals does not directly reflect the effectiveness of their methods
n predicting HRV. Therefore, it is crucial to directly predict HRV
nstead of solely focusing on R–R interval prediction. Zhang et al. [18]
roposed a comprehensive approach that combines signal processing
nd machine learning for direct HRV estimation. They proved that
he direct HRV estimation outperforms the indirect HRV estimation.
owever, their method was implemented using Python and scikit-
earn, which may not be directly deployable on devices with limited
esources and software packages, such as MSP430FR5994. In contrast,
ur method does not require the use of high-level programming lan-
uages or machine learning packages, offering a more accessible and
fficient approach.
Compared to existing works, our proposed HRV monitoring ap-

roach takes into full consideration the limitations of resources, and we
ave evaluated the UP-RaNN models and the real-time HRV monitoring
ystem after deploying the system on a resource-constrained device.
urthermore, our method directly predicts HRV values rather than
alculating the HRV with predicted HRs, which can avoid amplifying
he errors and is a notable advantage compared to other approaches.
3

2.3. Network architecture search for resource-limited devices

Network Architecture Search (NAS) is an advanced technique in
the field of machine learning and artificial intelligence that focuses on
automating the design of neural network architectures, which could
significantly reduce human efforts when the network design space
is tremendously large [30]. NAS aims to streamline this process by
leveraging algorithms that can systematically explore and evaluate a
vast space of potential architectures, identifying the most effective
configurations with minimal human intervention. Unlike early NAS
methods [31] that mainly focus on searching for a global optimal
architecture in terms of accuracy, NAS for resource-limited devices
requires additional attention on model size, model latency, and energy
cost.

Several researchers have studied NAS for resource-limited devices.
On-NAS [32] is proposed to provide a memory-efficient on-device
NAS, which can reduce the massive memory requirement of NAS on
the device. However, the On-NAS could deploy on a Jetson Nano
equipped with 2 GB memory, but cannot fit the embedded system.
LC-NAS [33] is proposed specifically for RISC-V devices to achieve a
training-free NAS method. To achieve this, LC-NAS utilizes a lookup
table and latency predictor to provide precise latency measurement.
Yang [34] employed adaptive dataflow patterns to achieve hardware-
aware search, and utilized the latency as a constraint directly, to reduce
the number of sampled useless networks and improve the searching
efficiency. FastStereoNet [35] is based on late acceptance hill-climbing,
followed by simulated annealing, and considers the estimated network
inference time along with accuracy as the search objectives to dis-
cover resource-efficient architectures. LightNAS [36] is proposed to
try to find the required architecture that satisfies various performance
constraints through a one-time search. However, there are still some
limits when employing those frameworks on embedded systems. Some
of the aforementioned frameworks are specifically for one platform,
making them infeasible for other platforms. For example, LC-NAS is
designed specifically for the RISC-V platform. Some of them seem to
reduce memory utilization, but the memory requirement is still so high
that cannot fit embedded systems. For example, the smallest memory
utilization of On-NAS is above 20 MB, while the embedded system may
only have tens of KB available. Moreover, although these frameworks
indeed considered the model latency, they did not consider the model
size, which is also an important factor that affects the deployment of the
model on an embedded system. Therefore, we want to design a general
algorithm that can work upon existing NAS methods, making the NAS
process more efficient. The basic idea here is that our proposed UP-
RaNN method is a multi-objective method that considers both model
size and model latency, which can help to reduce model candidates
significantly without training those useless models, making the NAS
process more efficient.

2.4. Challenges in real-time on-device monitoring

Existing works for estimating HRV provide good performances in
predicting R–R intervals, or ECG-like signals. However, these models
are generally too complex to be adopted in resource-constrained de-
vices. For instance, the model of BioTranslator [14] has more than
40,000 parameters, which is too large for wearable devices. In ad-
dition, several works use the Long Short-Term Memory (LSTM) ar-
chitecture that is energy and computation-hungry [23,29], which is
not suitable for wearable devices with limited battery energy as well.
Furthermore, existing works ignored the algorithm’s compatibility. The
TROIKA framework [17] and Zhang et al. [18] utilize specific platforms
with high-level packages, like Python and MATLAB that require addi-
tional conversion to adapt to resource variations on different embedded
devices.

Besides ignoring the resource-constrained hardware and algorithm
compatibility, these offline methods normally cannot provide real-

time monitoring of HRV. There are cases where it is necessary to



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.
Fig. 1. Overview of the PPG-based Real-time HRV Monitoring.
provide real-time HRV monitoring, for instance, to support self-health
monitoring or timely alerts in driving fatigue detection [19].

To overcome the challenges mentioned earlier, it is essential to
develop a universal method that can be easily deployed on various
devices without requiring additional effort. This method should offer
efficient and accurate real-time on-device HRV monitoring capabilities.
By developing such a method, we can ensure widespread accessibility,
convenience, and reliability in monitoring HRV across different devices.

3. Intelligent real-time on-device HRV monitoring

3.1. Overview

Fig. 1 illustrates the overview of the proposed work, which consists
of two main parts: the offline UP-RaNN method using a labeled dataset
and the online real-time on-device HRV monitoring system. In Fig. 1(a),
the UP-RaNN takes into account the constraints of the device, such as
hardware-specific limitations (specified as model size) and performance
requirements (specified as model latency). This method trains size-
limited deep neural network (DNN) models to estimate HRV based
on offline collected PPG sensing data, using HRV readings from ECG
as the ground truth. In Fig. 1(b), we developed a real-time HRV
monitoring system. The real-time HRV monitoring system works with
the model retrieved from our UP-RaNN method and can be deployed on
various devices. To maintain real-time monitoring, the system tries to
reduce computing workload by reducing data size without sacrificing
HRV model accuracy. In the end, we evaluate our UP-RaNN searched
model and real-time HRV monitoring system by analyzing the energy
consumption and latency on an MSP430FR5994 development board.
Besides, we propose multiple working modes that allow for runtime
system reconfiguration to adapt to various demands, like changing
system frequency to reduce power consumption when the battery level
is low. These modes ensure optimal performance while considering
specific requirements and constraints.

3.2. Unified performance and resource-aware neural network search (UP-
RaNN)

As mentioned above, we propose a unified neural network search
method that guarantees the trained neural network model not only fits
the various hardware but also provides a fast and high-accurate HRV
estimation. To achieve this, the NAS process will be guided by two
4

constraints: model size and model latency.
3.2.1. Data preprocessing
In our study, we utilized an ECG device to acquire accurate HR/HRV

measurements, which served as the ground truth for providing label
information during model training and testing phases. To capture the
PPG signals, a PPG sensor was attached to the finger and the light
signals will be obtained synchronously along with the ECG R–R interval
values. Instead of feeding the light signals into our model directly, we
use a signal processing algorithm [37] to estimate peaks in four seconds
to predict an HR every second with a sliding window of one-second
step. This strategy brings two distinct advantages. Firstly, we enhance
computational efficiency by significantly reducing the input data size.
Secondly, our approach enables adaptation to various sampling rates
of data, making it versatile and applicable across different scenarios
and datasets. Then the signal-processed HR (calculated HR) will be the
input of the HR calibration model. The HR model’s labels are calculated
through Eq. (2), where 𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 denotes the average interval between
that period in milliseconds obtained from ECG. Therefore, it estimates
how many beats there are in one minute (60,000 ms) when the interval
time between every two beats is 𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒. The HR model is utilized
to mitigate the bias between HR and ECG-based HR. In this work, we
mainly focus on the HRV estimation model and thus the HR model can
be treated as a preprocessing phase for ‘‘calibrating’’ the HRV model’s
features (historical HR values).

𝐻𝑅 = 60, 000∕𝑅𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (2)

After that, the Root Mean Square of Successive Differences in HR
(RMSSDHR) is extracted through Eq. (3), where 𝐻𝑅𝑖 denotes the 𝑖th
HR, and𝑁 denotes the total number of HR in a given period. The period
can be 30–300 s for different demands. Eq. (3) is inspired by combining
Eq. (1) and (2). Although PPG sensors cannot directly retrieve R–R
intervals, using Eq. (3) allows the HRV model to learn the relations
between HRV and the variations in HR directly. The label, which is
ECG-based HRV, is calculated with Eq. (1).

𝑅𝑀𝑆𝑆𝐷𝐻𝑅 =

√

∑𝑁−1
𝑖=1 (60, 000∕𝐻𝑅𝑖+1 − 60, 000∕𝐻𝑅𝑖)2

𝑁 − 1
(3)

3.2.2. Constraints definition for UP-RaNN
Model size and model latency are two main constraints to guide

the neural network search. Among them, the model size is constrained
by the hardware’s storage capacity and can be estimated by Eq. (4),
where 𝑆 denotes the model size,𝑁 denotes the number of trainable
𝑚 𝑝𝑎𝑟𝑎



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.
parameters of the neural network, and 𝑈 denotes the occupied size of
one parameter (e.g., four bytes). When conducting the neural network
search, we pass a specific model size for reference so that every to-
be-trained model that exceeds the model size will be rejected to save
time and guarantee the model’s deployability. The model latency can
be estimated by Eq. (5), where 𝑇 denotes the model latency, 𝑇𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠
denotes the central processing unit (CPU) cycles used to calculate the
𝑅𝑀𝑆𝑆𝐷𝐻𝑅, 𝑇𝑛 denotes the model forward propagation CPU cycles in
layer 𝑛, and 𝐹𝑅𝐸𝑄 denotes the CPU frequency. For a model having two
hidden layers, the 𝑁 equals three (𝑇1 denotes input → hidden layer1,
𝑇2 denotes hidden layer1 → hidden layer2, 𝑇3 denotes hidden layer2
→ output). When we set a computation latency as a threshold, Eq. (5)
estimates whether the model could fulfill the latency requirement. With
these two constraints, we can make sure that the trained models can be
deployed on the MCU and provide real-time HRV monitoring.

𝑆𝑚 = 𝑁𝑝𝑎𝑟𝑎 × 𝑈 (4)

𝑇 = (𝑇𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 +
𝑁
∑

𝑛=1
𝑇𝑛)∕𝐹𝑅𝐸𝑄 (5)

To obtain the 𝑇𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and 𝑇𝑛, which are highly related to specific
system settings of the target device, experiments are required to be
conducted on the target device. The basic concept entails deploying
multiple random models on the target device and measuring the CPU
cycles consumed during different phases, specifically preprocessing
and forward propagation. By analyzing the statistics of these CPU
cycle measurements, we can predict the CPU cycles required for both
preprocessing and forward propagation tasks. This approach allows us
to estimate the computational resources needed for these phases and
optimize the deployment of models on the target device.

Fig. 2 shows the CPU cycles of the neural network model running on
an MSP430FR5994 development board as an example. Fig. 2(a) depicts
the CPU cycles elapsed for calculating the 𝑅𝑀𝑆𝑆𝐷𝐻𝑅, and Fig. 2(b)
and (c) show the CPU cycles when inference conducted through a
fully connected layer and a convolutional layer. It can be found that
both preprocessing and MAC operations have an approximately linear
relation with the CPU cycles and therefore we can estimate the pre-
processing time through the number of historical HRs and estimate the
forward propagation inference time through the number of multiply–
accumulate (MAC) operations. Consequently, the total computational
time can be obtained through Eq. (5). Here we do not need to conduct
a complete accurate CPU cycle estimation as an approximate value is
sufficient. Please note that, in our case, a linear function is sufficient
to predict the CPU cycles, but it may not be suitable for more complex
model structures. Therefore, utilizing a multilayer perceptron (MLP) to
predict the model latency appears to be more practical when model
structures are more complicated [36].

3.2.3. Search space for UP-RaNN
Grid search and random search are two common neural network

search strategies for neural network exploration [38]. In this work, we
choose grid search as the basic search strategy. Although a traditional
grid search is time costly compared to a random search as it permutes
all the possible combinations of a given search space, it benefits from
finding the globally optimized neural network model. Therefore, to find
the globally optimized neural network model while not spending much
time, we can try to shrink the search space by setting thresholds, as
mentioned in Section 3.2.2, thus making the grid search feasible and
efficient in our work. When generating search space, the maximum
possible hidden layers and the maximum possible neurons of each layer
are set to determine the search space. The input size is determined by
the application scenarios and can be any time in the set (30 s, 60 s,
. . . , 300 s) plus one calculated 𝑅𝑀𝑆𝑆𝐷𝐻𝑅. During the fine-tuning
process of the neural network model, we can consider different batch
sizes, learning rates, and maximum epochs to optimize the model’s
performance. This flexibility allows for customization and fine-tuning
5

Fig. 2. CPU cycles estimation with historical HRs and MAC operations.

of the model based on specific requirements and datasets in different
scenarios. Therefore, our UP-RaNN method could apply to other re-
search fields besides HRV estimation. By incorporating model size and
model latency constraints into the process, we can effectively narrow
down the range of possible neural network configurations. This allows
us to focus on a subset of neural network settings that meet the desired
criteria for model size and model latency. By reducing the search space,
we can streamline the neural network search process and improve the



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.

1
1
1
1
1

t
n
t
t
t
a
a
c
w
i
s
i
i
I
O
i
e
t
p

Table 1
Search space attributes.
Attributes Descriptions Search Space 1 Search Space 2

maxConv Maximum possible convolution layers 0 3
maxChannel Maximum possible channels

for each convolution layer
NA 5

kernelSize Kernel size options, two dimensions NA [(1,2)]
strideSize Stride size options, two dimensions NA [(1,2)]
padSize Padding size options, two dimensions NA [(0,1)]
pooling Pooling options NA [‘‘max’’]
poolKernel Pooling kernel size options, two dimensions NA [(1,2)]
poolStride Pooling stride size options, two dimensions NA [(1,2)]
poolPad Pooling padding size options, two dimensions NA [(0,1)]
maxLinear Maximum possible fully connected

layers
8 3

neurons Neuron options for each fully
connected layer

2𝑛 , 𝑛 = 1..7

activation Activation function options relu
3

v
m
m
t
t
h
t
𝑛
p
c
t
t
E
a

S

3

i
d
s
o
i
r
c
c
t

3

o
p
d
t
(
a
e
u
i
T
f
3
w
s
3

efficiency of finding the optimal model configuration within the given
constraints.

3.2.4. UP-RaNN search
Algorithm 1 UP-RaNN search
1: function UPRaNN(searchSpace, maxEpoch, sizeT, timeT)
2: modelCandidates←modelGeneration(searchSpace)
3: for model in modelCandidates do
4: if size(model) > sizeT then
5: continue
6: else if latency(model) > timeT then
7: continue
8: end if
9: TRAIN(model, maxEpoch)
0: end for
1: end function
2: function train(model, maxEpoch)
3: epoch ← 1
4: while epoch ≤ maxEpoch do
15: modelTraining(model)
16: modelSave(model)
17: if loss goes up and exceeds a threshold then
18: break
19: end if
20: epoch += 1
21: end while
22: end function

Algorithm 1 shows the pseudocode of the grid search phase. In
he initial phase of our approach, several input parameters are given,
amely the search space, maximum epoch, size threshold, and time
hreshold, which are represented as searchSpace, maxEpoch, sizeT, and
imeT in the algorithm, respectively. Please note that unlike the other
hree parameters, the search space is a multi-dimensional parameter,
nd its attributes and descriptions are detailed in Table 1. The attributes
re expandable so that the modelGeneration function in our algorithm
an take care of more network structures in the future. In this paper,
e only focus on the convolution and fully connected layers. We then
terate through all possible neural network models based on the given
earch space and for each generated neural network model, we assess
ts compatibility with the hardware and its ability to provide fast
nference by comparing it against the provided size and time thresholds.
f the model does not exceed all thresholds, we proceed with training.
n the other hand, if the model exceeds either threshold, we discard
t and move on to the next model configuration. Additionally, an
arly exit strategy is implemented during training. If the loss starts
o increase and surpasses a predefined epoch threshold, the training
6

rocess is terminated early.
.2.5. Model selection
Our ultimate objective is to realize on-device real-time heart rate

ariability monitoring using models selected through our UP-RaNN
odel search method. The deployment of the model into the real-time
onitoring system necessitates the selection of suitable models from
he search outcomes. Model accuracy and model latency represent the
wo objectives of our research and how to calculate a unified score to
elp select the optimal model is shown in Eq. (6). Here, 𝑆𝑐𝑜𝑟𝑒 denotes
he overall score of a model, 𝑙𝑜𝑠𝑠𝑛 denotes the test loss of the model
, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑛 denotes the latency of the model 𝑛, 𝑓1 and 𝑓2 are two
ositive factors associated with model loss and model latency. They
an help to normalize the model loss and model latency to make sure
he two metrics are comparable. namely, the factors are used to adjust
he weights of the two matrics. In addition, 𝑏1 and 𝑏2 are two biases.
q. (6) illustrates that a lower loss corresponds to a higher score, while
shorter latency leads to a higher score as well.

core = (𝑏1 − 𝑙𝑜𝑠𝑠𝑛∕𝑓1) + (𝑏2 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑛∕𝑓2), 𝑛 ∈ {𝑚𝑜𝑑𝑒𝑙𝑠} (6)

.3. Real-time on-device HRV monitoring system

In this section, we will present the real-time on-device HRV mon-
toring system that we have developed. As previously mentioned, the
esign of this system incorporates the constraints of embedded systems,
uch as low CPU frequency and limited memory size. Our primary
bjective is to provide real-time HRV monitoring without compromis-
ng the accuracy of HRV estimation. Additionally, the system only
equires common components, such as a float arithmetic logic unit, I2C
ommunication unit, and non-volatile storage, to make it versatile and
ompatible with various devices. To fulfill the requirements, we design
he HRV monitoring system as shown in Fig. 1(b).

.3.1. Raw data transform
Initially, the light signals of the PPG sensor will be stored in a buffer

n the MCU so that the signal data array can be used to estimate
eaks by the signal processing function. The size of the buffer is
etermined by the sampling rate times four seconds. For example, when
he sampling rate of the sensor is set to 25 Hz, the buffer size is 100
25 × 4) with each value being a four-byte floating-point number. To
chieve greater data size compression, data quantization is typically
mployed. However, in the context of HRV prediction, we refrain from
sing data quantization. Since HRV prediction is a regression problem,
nappropriate data quantization could substantially amplify the error.
he signal processing phase can effectively reduce the number of input
eatures and thus reduce model sizes. Given original light signals in
00 s and 25 Hz sampling rate, then the input size becomes 7500,
hich is too huge for a resource-constrained device. With the help of
ignal processing, the number of inputs can be reduced from 7500 to
00. Moreover, this could also enable our method to adapt to various



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.
sampling rates of data. Once we get the estimated peaks from signal
processing, the calculated HR can be obtained by Eq. (7). The basic idea
here is that once we estimate how many peaks there are in four seconds
(the time is determined by buffer size divided by sampling frequency),
we can calculate HR by estimating how many peaks there are in 60 s.
We only store light signals in the RAM to ensure enough memory space
for HR signal processing, model inference, and preprocessing in HRV
estimation.

𝐻𝑅 = 𝑝𝑒𝑎𝑘𝑠 ∗ 60∕4 (7)

3.3.2. HR ‘‘calibration’’
According to Eq. (1), the RMSSD can change significantly by a minor

change in the R–R interval, that is, any minor changes happening on
HR values would lead to totally different RMSSD readings. Therefore,
in our designed HRV monitoring system, the calculated HR will be
passed through an HR ‘‘calibration’’ model, which is trained by taking
ECG as the ground truth, to filter out the noise and minimize the bias
between the PPG sensor and the ECG device. The HR ‘‘calibration’’
model has four hidden layers, each having 16, 32, 16, and 8 neurons,
respectively. The effectiveness of combining signal process and machine
learning in increasing HR estimation has already been proven by our
previous work [18], thus we integrate the theory and implement it in
our real-time monitoring system.

3.3.3. Historical HR/HRV storage
Given that the monitoring system is intended to operate on a

resource-constrained embedded device with limited battery capacity,
we have incorporated the use of non-volatile storage. This allows
us to store the predicted HR and HRV data, ensuring that historical
information is preserved even in the event of a power outage.

3.3.4. Real-time monitoring
When monitoring HRV in real-time, a 𝑁-second sliding window is

determined and we will retrieve all historical HRs during that window
to estimate an HRV. In our paper, since we focus on predicting RMSSD
as it is the most used HRV indicator, the HR array will be sent to a
preprocessing function to calculate the RMSSDHR based on Eq. (3).
After that, we use the calculated RMSSDHR and the HR array as the
input features to predict the HRV, which is RMSSD in our paper. Both
the predicted HR and predicted HRV will be sent to a UART client
to provide real-time monitoring. Moreover, to fulfill various needs, we
could specify different step lengths for the sliding window.

3.4. Adaptive runtime reconfiguration

The performance of the model, battery life, and model latency are
intuitively influenced by factors such as model size, CPU frequency,
and sensor sampling rate. The memory capacity of the MCU limits the
PPG sensor’s sampling rate and model inference intermediate memory
usage, while the model size determines the size of the model that can
be deployed. Generally, larger model sizes require more computational
time and result in shorter battery life as the CPU remains occupied.

Different models exhibit varying sizes and performance levels.
Moreover, a higher sampling rate negatively impacts battery life and
computational time, as it necessitates larger input sizes for signal
processing. On the other hand, a higher CPU frequency accelerates
computational time but consumes more power.

Consequently, various system configurations offer distinct perfor-
mances and can adapt to different requirements. For instance, if users
prioritize faster computational time and are willing to compromise on
battery life, they would configure the MCU at a higher frequency. If
energy conservation is of greater importance while accepting longer
inference times, a lower frequency and lower sampling rate configura-
tion can be chosen. Therefore, runtime reconfiguration enables users
to switch between different operation modes without the need for
reprogramming the device.
7

To empower the system with adaptive reconfiguration capability at
runtime to improve energy efficiency and adapt to different demands,
we prepare different system settings on the MCU. When a reconfig-
uration is needed, the system will stop the data pipeline in Fig. 1,
switch the configuration, and restart the pipeline to apply the new
configuration, where the first HRV estimation would be available only
after a certain time interval (e.g., 300 s) from the reconfiguration
time point. In other words, our developed real-time HRV monitoring
system is fully capable of supporting runtime reconfiguration without
compromising its functionality, albeit resulting in only a brief service
interruption.

4. Results evaluation

4.1. Experiments setup

For evaluating our proposed UP-RaNN method and the real-time
HRV monitoring system, we select the MSP430FR5994 development
board as our experimental platform. The MSP430FR5994 offers a com-
prehensive development platform for ultra-low-power MCU. It includes
an on-device probe for programming and debugging, supports a vari-
ety of communication protocols, and contains all necessary hardware
components, making it ideal for verification experiments. We selected
the MSP430FR5994 primarily because it is the platform we currently
have available and it has the most limited resources. Besides, this board
is a typical embedded device which can represent a large number of
embedded systems that has two layer on-chip memory and limited CPU
frequency. Our method can be easily transferred to other platforms as
long as the platform supports the necessary hardware components our
method requires. Following the UP-RaNN method, we obtained suitable
HRV models and integrated them into our real-time HRV monitoring
system. Therefore, the evaluation contains two parts: evaluate the
effectiveness and efficiency of the UP-RaNN method and evaluate the
performance of online real-time HRV monitoring.

To prepare the dataset for the proof of concept, a MAXREFDES117
PPG sensor is selected and connected to a Raspberry Pi 4 to collect
the PPG data, and a 3-lead TLC5007 dynamic ECG device is utilized
to provide the data ground truth. The PPG sensor and ECG device
are carefully synchronized in time to guarantee simultaneous data
recording. To ensure comprehensive data collection and prevent under-
fitting, the subject is instructed to provide three sets of data, each
corresponding to different activities: sitting, sleeping, and daily life.
Each activity is recorded for two hours to capture sufficient data for
analysis. During the training phase, the collected data is split into
training and testing sets with a ratio of eight to two.

When applying our proposed UP-RaNN method, we set two con-
straints based on the hardware. The selected MSP430FR5994 supports
an MCU frequency of up to 16 MHz and is equipped with 256 KB
FRAM and 8 KB SRAM. To make sure the explored model can fit
the MSP430FR5994, the two constraints are set as follows: the model
should not exceed 4000 parameters and the model latency should not
exceed two seconds. When estimating the model latency, we set the
CPU frequency to 8 MHz, that is the maximum number of allowed CPU
cycles in computation is 16,000,000 (8 MHz × 2 s = 16, 000, 000). We
devised two search spaces to assess our UP-RaNN method thoroughly:
one includes solely linear layers, while the other incorporates both
convolutional layers and linear layers. In our case, we focus on the
global optimal network model composed of both linear and convolu-
tional layers. Therefore, the two search spaces are sufficient as they
can cover most combinations of these layers. A search space with only
convolutional layers is impractical because we typically need to append
several linear layers at the end of a CNN model to solve regression
problems. The details can be seen in Table 1. We find that most of
the models do not have more than three fully connected layers, such as
ResNet [39], GoogLeNet [40], and VGG [41], thus we set the maximum
hidden layer to be less than three linear layers in our Search Space 2.



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.

e
U
c

Fig. 3. Connections of the real-time on-device HRV monitoring.
Table 2
Search results of UP-RaNN method.

Search Spaces and methods Search Space 1
(pure Linear)

Search Space 2
(Linear + Conv)

Grid Search UP-RaNN Grid Search UP-RaNN

Settings 6,725,600 612,130 61,845 45,047
MAE of top 1 percent 3.2 ± 1.0 3.3 ± 1.1 1.8 ± 0.4 1.8 ± 0.4
Average MAE of top 1 percent 3.3 3.7 2.0 2.1
Best MAE 2.2 2.2 1.4 1.5
MAPE of top 1 percent 10.0 ± 3.1% 10.3 ± 3.3% 5.5 ± 1.2% 5.7 ± 1.1%
Average MAPE of top 1 percent 10.1% 11.4% 6.4% 6.5%
Best MAPE 6.9% 7.0% 4.4% 4.6%
For our Search Space 1, since we do not have any convolutional layers
there, we slightly increased the maximum number of possible linear
layers to eight. Moreover, we only provide one option for kernel size,
stride size, padding size, and activation function for proof of concept,
although we can add more possibilities. The reason is our data is time
series one-dimensional data, padding in two dimensions seems not
necessary. When training, the learning rate is set to 0.005, and the
batch size is set to 32. We choose the mean squared error (MSE) as
the loss function.

When evaluating the designed real-time on-device HRV monitoring
system, the MSP430FR5994 development kit receives light signals from
a PPG sensor, conducts HRV estimation, and then sends the results to
a UART client for real-time monitoring. The UART client can decode
the messages and show the monitoring results on a display with a
resolution of 320 × 240. In our experiment, for the convenience of
valuating the power consumption, there is a multi-meter between the
ART client and the MSP430FR5994 so that we can easily measure
urrent in real-time. The schematic connection is shown in Fig. 3.

4.2. Effectiveness and efficiency of UP-RaNN method on HRV estimation

As mentioned above, we set the maximum number of allowed
trainable parameters to 4000 and the estimated total CPU cycles to
be no larger than 16,000,000 to reduce the search intensity and make
the searched neural network compatible with the given development
board. The search results of our UP-RaNN are shown in Table 2. In
the table, Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) are provided to demonstrate the benefits of our UP-
RaNN search method on two different search spaces. Our UP-RaNN
method achieves notable acceleration compared to the grid search,
attributed to our hardware-aware strategy. Moreover, the UP-RaNN
method applied to the pure Linear search space experiences a speed-up
of up to ten times due to its expansive search scope. This underscores
8

that a larger search space correlates with greater speed-up, demonstrat-
ing the efficiency of our UP-RaNN method. Although the exhaustive
grid search yields better results than our method, the difference is
minimal. The grid search shows only a 0.1–0.2% improvement in best
MAPE and at most a 0.1 improvement in best MAE compared to our
method. This slight advantage does not justify spending ten times more
training time, especially considering that the resulting models cannot
be deployed on the chosen platform. Furthermore, the search results
indicate that Search Space 2 surpasses Search Space 1 in both MAE
and MAPE, demonstrating that the CNN network outperforms the pure
linear network.

Table 3 shows the top three models from Search Space 1 and 2 when
the sort keys are MAPE, MAE, and Total CPU cycles, respectively. To
represent the model network, we add ‘‘l’’ for a linear layer followed by
the number of neurons of that layer and add ‘‘c’’ for a convolutional
layer followed by the number of channels of that layer. There are 301
features as the input (300 historical HR plus one RMSSDHR) and one
neuron as the output which will predict an HRV value. We do not
include input and output in the network representation to simplify the
representation. As depicted in Table 3, models c1-l2 and l2-l2-l2 fail to
converge during training, attributed to poor parameter initialization.
Models c1-c1-l2 and c1-l2-l2 both demonstrate minimal total CPU
cycles, indicating they demand limited computational resources for
deployment. However, their performance in terms of MAE and MAPE is
suboptimal due to the limited number of trainable parameters utilized.
Additionally, an intriguing observation is that within the provided
search spaces, networks comprising purely linear layers exhibit worse
MAE and MAPE compared to those incorporating convolutional layers,
while consuming only half of the CPU cycles. That is, convolutional
layers help to increase accuracy in estimating HRV but require more
computational resources. Furthermore, model c1-c3-c2-l32-l2-l2 as one
optimal solution is appended to the table. It can be observed that model



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.

w
F
m
c
a
t
o
c
t
o
a
R

R

Table 3
HRV estimation models results.
Model Trainable Parameters Total CPU cycles MAE MAPE FRAM Model RAM

c1-l2 160 1,719,519 4.389 13.444% 35,094B 9,388B 4,670B
l2-l2-l2 619 1,609,636 4.442 13.770% 33,350B 10,348B 4,670B
c1-c1-l2 51 1,723,239 3.160 9.564% 35,210B 9,188B 4,670B
c1-l2-l2 166 1,723,983 2.931 9.178% 35,140B 9,428B 4,670B
c2-c4-c4-l64-l16 2,719 4,791,401 1.459 4.631% 35,384B 22,372B 4,670B
c3-c5-c3-l128-l4-l128 3,794 6,327,713 1.507 4.826% 35,446B 29,188B 4,670B
c3-c5-c3-l64-l4-l128 2,322 5,232,579 1.568 4.959% 35,446B 22,788B 4,670B
l4-l64-l4-l32-l4-l32-l4-l128 3,141 2,861,951 2.224 6.956% 33,604B 22,564B 4,670B
l4-l16-l64-l8-l16-l4-l4-l64 3,513 3,119,519 2.224 6.964% 33,604B 23,316B 4,670B
l4-l4-l64-l4-l64-l8-l2-l64 2,923 2,773,134 2.228 6.975% 33,598B 21,228B 4,670B
l4-l32-l32-l8-l32-l8-l2-l64 3,515 3,119,519 2.225 6.978% 33,604B 23,340B 4,670B
c1-c3-c2-l32-l2-l2 517 2,343,716 1.860 5.792% 35,430B 11,932B 4,670B
c1-c3-c2-l32-l2-l2 sacrifices 25% accuracy but reduces the CPU cycles
by about 50%, compared to model c2-c4-c4-l64-l16.

Additionally, Table 3 provides the actual memory consumption
hen models are deployed on our tested platform. In the table, the
RAM size primarily indicates how much memory our Real-time HRV
onitoring system occupies when integrating various models. Thus, we
an observe that the program size changes minimally when switching to
similar model. The Model size reflects how much memory is utilized
o store the model itself, and it increases according to the number
f trainable parameters in a model. However, the RAM size remains
onsistent across all models. This is because the RAM size represents
he size of global and static variables and the software system stack in
ur monitoring system. Since the stack size is pre-set and the global
nd static variables do not change when different models are used, the
AM size remains the same.
To conduct a more in-depth analysis and comparison of our UP-

aNN method results across two search spaces, Fig. 4 displays the
performance distributions of MAE and MAPE, respectively. Box plots
have been utilized in the figures to illustrate the positions of the
first quartile (Q1), third quartile (Q3), and the mean of the results,
while circles denote outlier points. Significantly, the search space in-
corporating both linear and convolutional layers demonstrates superior
performance compared to the search space containing pure linear
layers, as evidenced by both MAE and MAPE metrics. Furthermore,
both search spaces exhibit loss reduction as the number of trainable
parameters increases. However, it is important to note that enhancing
performance is not indefinite with the continual increase of trainable
parameters, as excessive parameter inflation can result in overfitting
issues.

When selecting the optimal models, Eq. (6) is converted to Eq. (8).
Here we chose MAPE to represent the model loss and CPU cycles to
represent the model latency, respectively. As MAPE typically ranges
from 0 to 100, we set 𝑓1 to 100 to scale the range between 0 and
1. Considering that CPU cycles are related to hardware constraints,
we set 𝑓2 to 16,000,000 to normalize the range between 0 and 1.
Both 𝑏1 and 𝑏2 are assigned values of 1. Then, we can calculate the
score to select the optimal models. To be noticed that the unified score
could help us to find the model that has the highest score, while could
not provide the alternatives unless two optimal models have the same
score. To better explain the model selection phase, the Pareto front
results are shown in Fig. 5. The Pareto front, also referred to as the
Pareto frontier or Pareto curve, represents the set of all Pareto-efficient
solutions. In the accompanying figure, each dot corresponds to a neural
network model within the Pareto front. The bottom-left point signifies
the ideal point as our objective is to attain the lowest MAPE while
minimizing time expenditure. The figure illustrates that the search
space incorporating both linear and convolutional layers outperforms
the search space containing only linear layers. Furthermore, the optimal
model, identified as model c1-c3-c2-l32-l2-l2, is readily discernible in
the figure. Alternatively, the model c2-c4-c4-l64-l16, which exhibits
the lowest MAPE, can be selected when aiming for the highest model
accuracy.

Score = (1 −𝑀𝐴𝑃𝐸 ∕100) + (1 − 𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒 ∕16, 000, 000) (8)
9

𝑛 𝑛
Fig. 4. Performance distribution of UP-RaNN search method on two search spaces.

4.3. Comparison with existing studies in HR/HRV prediction

Table 4 shows the performance of our UP-RaNN method compared
with that of existing frameworks. TROIKA [17] and BioTranslator [14]
both use ISPC dataset [17]. We implement our method on the ISPC
dataset first for a direct comparison, and then we introduce our method
with our dataset. In the comparison, model c2-c4-c4-l64-l16 is selected.
The results show that the TROIKA framework has the best accuracy
in HR estimation. However, it relies on singular spectrum analysis
that is very complicated [42] and takes almost more than 1.9 s to
estimate one HR when we simulate this framework using MatLab on
Windows 10 powered by i7-9700k PC (eight cores, 3.6GHz, and 32 GB



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.
Fig. 5. Pareto frontiers of UP-RaNN search method on two search spaces.

Table 4
Comparison with Existing Framework.

Framework HR HRV (RMSSD)

MAPE Latency/Platform MAPE MACs Para.

TROIKA [17] 1.8% 1.9s/PC na na na
BioTranslator [14] 7.2% na 52.59% 158M 42,657
UP-RaNN Model
(ISPC dataset) 8.2% 0.0002s/PC na na na
UP-RaNN Model
(Own dataset) 4.6% 0.056s/MCU 5.79% 1,449 517

RAM). Therefore, it is impractical to deploy this framework on an MCU.
Moreover, both BioTranslator and our UP-RaNN search method have a
MAPE of around 8% for HR estimation, whereas our HR model only
takes 0.0002s to obtain one HR estimation on the PC and 0.056 s on
the MCU at 8 MHz. In addition, when training the HR model on our
dataset, the HR estimation can reach a much lower MAPE.

Our method demonstrates superior performance over BioTranslator
in terms of MAPE, MACs, and Trainable Parameters for HRV estima-
tion. A significant difference can be observed when comparing our
method to BioTranslator. BioTranslator has over 100,000 times more
MACs and 80 times more parameters, making it impractical to deploy
on a memory-constrained MCU. It is worth noting that BioTranslator
exhibits a considerably high MAPE for HRV estimation. There are
two main reasons for the high MAPE observed in HRV estimation
using BioTranslator. Firstly, the ISPC dataset utilized in the evaluation
contains numerous motion artifacts that can affect the accuracy of HRV
estimation. Secondly, the ISPC dataset only provides 300 s of data for
each subject, which is insufficient for directly predicting an HRV value
over such a short period. As an alternative approach, BioTranslator
chooses to first predict the R–R interval and then calculate the corre-
sponding HRV values based on that information. This method is proved
inaccurate as we mentioned in Section 2.2: Even minor variations in
R–R interval values would lead to a major difference in HRV. As a
comparison, our proposed solution has a pretty low MAPE of 5.79%
with model c2-c4-c4-l64-l16. In summary, our method offers significant
advantages for deployment on a MCU due to its optimized resource
usage. Despite being designed for MCU constraints, our method main-
tains comparable performance in terms of latency and accuracy when
compared to the state-of-the-art methods for HRV estimation. This com-
bination of efficient deployment and competitive performance makes
our method highly favorable for practical implementation.

4.4. Energy consumption of the HRV monitoring system

In addition to the neural network search method and the real-
time on-device HRV monitoring system, three key configurations have
10

impacts on the power consumption of the entire system: the Digitally
Controlled Oscillator (DCO), the sub-main system clock (SMCLK), and
the sampling rate (SR). The DCO determines the main clock frequency
of the chip, which in turn affects the speed at which the code can
execute. By adjusting the DCO configuration, we can control the overall
performance and power consumption of the system. The SMCLK relies
on the DCO as its source and drives the I2C and UART protocols. By
modifying the SMCLK configuration, we can influence the data transfer
rate and power consumption of these communication interfaces. The
sampling rate has implications for memory usage, computational time,
and battery life. The choice of sampling rate determines the amount of
sensor data that needs to be processed and stored. Different sampling
rates may require adjustments to the configurations of I2C, UART, and
buffer size used for storing the sensor data. These variations directly
impact the overall power consumption of the system. Therefore, careful
consideration and optimization of the DCO, SMCLK, and sampling
rate configurations allow us to fine-tune power consumption while
balancing the system’s memory usage, model latency, and battery life.

Fig. 6 shows the MCU battery life results under different system
configurations. The battery life is calculated by measuring energy
consumption using EnergyTrace [43], a built-in tool for MSP430 devel-
oping software, and assumes the MCU is powered by a CR2032 battery.
Increasing the sampling rate has a significant impact on reducing
battery life. For instance, when the DCO is set to 1 MHz, the battery
life decreases by 2.5 times when the sampling rate is increased from
12.5 Hz to 100 Hz. Although the DCO does affect energy consumption,
it does not have a notable impact on the sampling rate itself. However,
reducing the DCO will result in longer inference times for HR and HRV
estimation. Therefore, if the objective is to conserve energy, reducing
the sampling rate is a more effective approach than decreasing the DCO.
The effect of the SMCLK on energy consumption is less straightforward.
The SMCLK primarily influences the configurations of the I2C and
UART protocols, affecting the execution speed of the MSP430 chip.
Therefore, when designing the HR/HRV monitoring system, we can
adjust the SMCLK based on the DCO and other specific requirements.
However, it is not expected that reducing the SMCLK will provide
significant improvements in power savings. In conclusion, to optimize
power consumption in the HR/HRV monitoring system design, it is
recommended to reduce the sampling rate rather than the DCO. The
impact of the SMCLK on energy consumption is indirect, primarily
affecting protocol configurations, and any power-saving enhancements
from reducing the SMCLK are minimal.

4.5. Evaluation of runtime reconfigurations

Based on the aforementioned analysis, we propose designing mul-
tiple configurations that can adapt to different demands or scenarios
during runtime. The core concept is to pre-define various configurations
on the MCU and utilize different signals to trigger reconfiguration
when necessary. These triggering signals can include a button press,
a timer reaching a specific interval, or reaching a certain battery level
threshold.

Table 5 presents the analysis results for different HRV monitoring
modes. From the analysis, it can be determined that the regular mode is
the recommended choice for regular users who prioritize quick compu-
tational time. In this mode, each computation takes only 0.302 s, while
still providing relatively high accuracy in HRV estimation. Additionally,
the Energy (saving) mode is available for users who need to conserve
energy, particularly when the battery has low energy levels. This mode
reduces the DCO frequency and sampling rate and employs the same
model with regular mode to optimize energy efficiency while still
providing acceptable accuracy in HRV estimation. Furthermore, the
Accuracy mode is designed to maximize accuracy in HRV estimation
by utilizing a larger model, c2-c4-c4-l64-l16. However, it may require
more energy consumption due to the increased computational require-
ments. These preset modes allow users to switch between them at

runtime based on their specific needs.



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.

5
i
c
r
r
t
w
t
i

5

c
n
o
d
d
p
p
D

Fig. 6. Battery life results.
Table 5
Current under various system modes.
Mode Model MAPE/% DCO/MHz SR/Hz Latency/s Current/mA

Regular c1-c3-c2-l32-l2-l2 5.79 8 25 0.302 8.7
Energy c1-c3-c2-l32-l2-l2 5.79 1 12.5 2.456 8.2
Accuracy c2-c4-c4-l64-l16 4.63 8 100 0.556 12.2
Fig. 7. Power consumption comparison in different work schedules. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 7 displays the results of a current comparison on the MSP430FR
994 development board using different schedules. Power consumption
s measured in milliamps (mA). In the figure, the blue line represents
ontinuous monitoring of the HRV for 10 min, while the green line
epresents a periodic schedule of ‘‘work 1 min - rest 1 minute’’. The pe-
iodic monitoring reduces the current by approximately 22% compared
o continuous monitoring. This feature enables effective power-saving
hen required, especially when combined with an accelerator to in-
elligently and efficiently monitor an individual’s heart health during
ntense activities.

. Conclusion and future works

In this study, we introduce a novel approach that addresses the
hallenges by proposing a unified performance and resource-aware
eural network search method: UP-RaNN. This method aims to find the
ptimal neural network model for HRV estimation using PPG sensing
ata while considering specific resource limitations. Following that, we
evelop a real-time on-device HRV monitoring system for ultra-low-
ower devices using the trained models. Additionally, we analyze the
erformance and energy efficiency of different operation modes with
NN models to support runtime configurations.
11
To evaluate the proposed UP-RaNN method and the real-time HRV
monitoring system associated with the adaptive runtime configuration
switch mechanism, we choose an MSP430FR5994 development board
as the test platform. The results show that our proposed UP-RaNN
method can effectively and efficiently conduct the network architecture
search and explore suitable models for a given platform compared to
the traditional grid search method. In addition, the explored mod-
els show comparable performance to state-of-the-art HRV estimation
methods using PPG. Moreover, our real-time HRV monitoring system
outperforms state-of-the-art HRV methods in computational time and
the runtime configuration switch mechanism provides the possibility
of changing operation mode for various demands.

However, there are still some limitations that need to be addressed
in our future works. First of all, the current real-time HRV monitoring
system does not take advantage of hardware accelerator and low power
modes. We plan to explore how utilizing these hardware accelerators
and enabling low power mode can enhance the monitoring system,
improve power consumption, and speed up the system. Second, we aim
to analyze the integration of other sensors to increase HRV estimation
accuracy by further eliminating motion artifacts. Third, the accuracy
of the HRV model varies for different individuals, thus creating the
need for personalized models. Lastly, quantized neural networks have
not been explored in this paper. Given that quantized neural networks
can save storage and speed up inference time, their implementation is
worth investigating.

CRediT authorship contribution statement

Jingye Xu: Writing – review & editing, Writing – original draft,
Validation, Software, Methodology. Yuntong Zhang: Writing – review
& editing, Writing – original draft, Validation. Mimi Xie: Writing –
review & editing, Writing – original draft, Supervision, Methodology.
Wei Wang: Writing – review & editing, Writing – original draft, Super-
vision, Methodology. Dakai Zhu: Writing – review & editing, Writing
– original draft, Supervision, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Journal of Systems Architecture 154 (2024) 103240J. Xu et al.
Data availability

The authors do not have permission to share data.

Acknowledgements

This work is funded by the National Science Foundation (Award
Number: NSF 2306596).

References

[1] A.J. Camm, M. Malik, J.T. Bigger, G. Breithardt, S. Cerutti, R.J. Cohen, P.
Coumel, E.L. Fallen, H.L. Kennedy, R.E. Kleiger, et al., Heart rate variability:
Standards of measurement, physiological interpretation and clinical use. Task
force of the European Society of Cardiology and the North American Society of
Pacing and Electrophysiology, Circulation 93 (5) (1996) 1043–1065.

[2] G.E. Billman, H.V. Huikuri, J. Sacha, K. Trimmel, An introduction to heart
rate variability: Methodological considerations and clinical applications, Front.
Physiol. 6 (2015) 55.

[3] J. Achten, A.E. Jeukendrup, Heart rate monitoring: Applications and limitations,
Sports Med. 33 (2003) 517–538.

[4] D.B. Geselowitz, On the theory of the electrocardiogram, Proc. IEEE 77 (6)
(1989) 857–876.

[5] A.N. Ganesan, D.P. Chew, T. Hartshorne, J.B. Selvanayagam, P.E. Aylward,
P. Sanders, A.D. McGavigan, The impact of atrial fibrillation type on the
risk of thromboembolism, mortality, and bleeding: A systematic review and
meta-analysis, Eur. Heart J. 37 (20) (2016) 1591–1602.

[6] N. Isakadze, S.S. Martin, How useful is the smartwatch ECG? Trends
Cardiovascul. Med. 30 (7) (2020) 442–448.

[7] C. Wang, L. Xie, W. Wang, Y. Chen, Y. Bu, S. Lu, RF-ECG: Heart rate variability
assessment based on COTS RFID tag array, Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2 (2) (2018) http://dx.doi.org/10.1145/3214288.

[8] A. Inc, Take an ECG with the ECG app on Apple Watch, 2022.
[9] S.S.S. Das, S.K. Shanto, M. Rahman, M.S. Islam, A.H. Rahman, M.M. Masud, M.E.

Ali, BayesBeat: Reliable atrial fibrillation detection from noisy photoplethysmog-
raphy data, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6 (1) (2022)
http://dx.doi.org/10.1145/3517247.

[10] J. Allen, Photoplethysmography and its application in clinical physiological
measurement, Physiol. Meas. 28 (3) (2007) R1.

[11] C.G. Scully, J. Lee, J. Meyer, A.M. Gorbach, D. Granquist-Fraser, Y. Mendelson,
K.H. Chon, Physiological parameter monitoring from optical recordings with a
mobile phone, IEEE Trans. Biomed. Eng. 59 (2) (2011) 303–306.

[12] B. Coffen, P. Scott, M.S. Mahmud, Real-time wireless health monitoring: An ultra-
low power biosensor ring for heart disease monitoring, in: 2020 International
Conference on Computing, Networking and Communications, ICNC, IEEE, 2020,
pp. 626–630.

[13] Q. Wang, Z. Wang, X. Dai, S. Song, T. Xing, S-HRVM: Smart watch-based heart
rate variability monitoring system, in: Ewsn, 2019, pp. 178–183.

[14] L. Everson, D. Biswas, B.-E. Verhoef, C.H. Kim, C. Van Hoof, M. Konijnenburg, N.
Van Helleputte, BioTranslator: Inferring R-peaks from ambulatory wrist-worn ppg
signal, in: 2019 41st Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBC, IEEE, 2019, pp. 4241–4245.

[15] H.-Y. Chiu, H.-H. Shuai, P.C.-P. Chao, Reconstructing QRS complex from PPG
by transformed attentional neural networks, IEEE Sens. J. 20 (20) (2020)
12374–12383.

[16] U.R. Acharya, K.P. Joseph, N. Kannathal, C.M. Lim, J.S. Suri, Heart rate
variability: A review, Med. Biol. Eng. Comput. 44 (12) (2006) 1031–1051.

[17] Z. Zhang, Z. Pi, B. Liu, TROIKA: A general framework for heart rate moni-
toring using wrist-type photoplethysmographic signals during intensive physical
exercise, IEEE Trans. Biomed. Eng. 62 (2) (2015) 522–531.

[18] Y. Zhang, J. Xu, M. Xie, D. Zhu, H. Song, W. Wang, Efficient and direct inference
of heart rate variability using both signal processing and machine learning,
in: The IEEE/ACM International Conference on Connected Health: Applications,
Systems and Engineering Technologies, CHASE, 2023.

[19] K. Lu, A.S. Dahlman, J. Karlsson, S. Candefjord, Detecting driver fatigue using
heart rate variability: A systematic review, Accid. Anal. Prev. 178 (2022) 106830.

[20] R.J. Oweis, B.O. Al-Tabbaa, QRS detection and heart rate variability analysis: A
survey, Biomed. Sci. Eng. 2 (1) (2014) 13–34.
12
[21] R.E. Kleiger, P.K. Stein, J.T. Bigger Jr., Heart rate variability: Measurement and
clinical utility, Ann. Noninvasive Electrocardiol. 10 (1) (2005) 88–101.

[22] Y. Zhang, J. Xu, M. Xie, W. Wang, K. Ye, J. Wang, D. Zhu, PPG-based heart
rate estimation with efficient sensor sampling and learning models, in: 2022
IEEE 24th Int Conf on High Performance Computing & Communications; 8th
Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int
Conf on Dependability in Sensor, Cloud & Big Data Systems & Application,
HPCC/DSS/SmartCity/DependSys, IEEE, 2022, pp. 1971–1978.

[23] T. Wittenberg, R. Koch, N. Pfeiffer, N. Lang, M. Struck, O. Amft, B. Eskofier,
Evaluation of HRV estimation algorithms from PPG data using neural networks,
Curr. Dir. Biomed. Eng. 6 (3) (2020) 505–509.

[24] A. Alqaraawi, A. Alwosheel, A. Alasaad, Heart rate variability estimation in pho-
toplethysmography signals using Bayesian learning approach, Healthc. Technol.
Lett. 3 (2) (2016) 136–142.

[25] E.K. Naeini, F. Sarhaddi, I. Azimi, P. Liljeberg, N. Dutt, A.M. Rahmani, A deep
learning–based PPG quality assessment approach for heart rate and heart rate
variability, ACM Trans. Comput. Healthc. 4 (4) (2023) 1–22.

[26] P. Jain, C. Ding, C. Rudin, X. Hu, A self-supervised algorithm for denoising
photoplethysmography signals for heart rate estimation from wearables, 2023,
arXiv preprint arXiv:2307.05339.

[27] F. Esgalhado, A. Batista, V. Vassilenko, M. Ortigueira, Real-time PPG-based HRV
implementation using deep learning and Simulink, in: Doctoral Conference on
Computing, Electrical and Industrial Systems, Springer, 2022, pp. 103–111.

[28] W. Karlen, S. Raman, J.M. Ansermino, G.A. Dumont, Multiparameter respiratory
rate estimation from the photoplethysmogram, IEEE Trans. Biomed. Eng. 60 (7)
(2013) 1946–1953.

[29] K. Xu, X. Jiang, H. Ren, X. Liu, W. Chen, Deep recurrent neural network for
extracting pulse rate variability from photoplethysmography during strenuous
physical exercise, in: 2019 IEEE Biomedical Circuits and Systems Conference,
BioCAS, 2019, pp. 1–4.

[30] T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: A survey, J. Mach.
Learn. Res. 20 (55) (2019) 1–21.

[31] H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable architecture search, 2018,
arXiv preprint arXiv:1806.09055.

[32] B. Kim, S. Lee, On-NAS: On-device neural architecture search on memory-
constrained intelligent embedded systems, 2023.

[33] M. Xiang, R. Ding, H. Liu, X. Zhou, Latency-constrained neural architecture
search method for efficient model deployment on RISC-V devices, Electronics
13 (4) (2024) 692.

[34] Z. Yang, Q. Sun, Toward efficient neural architecture search with dynamic
mapping-adaptive sampling for resource-limited edge device, Neural Comput.
Appl. 35 (7) (2023) 5553–5573.

[35] M. Loni, A. Zoljodi, A. Majd, B.H. Ahn, M. Daneshtalab, M. Sjödin, H. Es-
maeilzadeh, Faststereonet: A fast neural architecture search for improving the
inference of disparity estimation on resource-limited platforms, IEEE Trans. Syst.
Man Cybern. A 52 (8) (2021) 5222–5234.

[36] X. Luo, D. Liu, H. Kong, S. Huai, H. Chen, W. Liu, You only search once: On
lightweight differentiable architecture search for resource-constrained embedded
platforms, in: Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 475–480.

[37] G. Palshikar, et al., Simple algorithms for peak detection in time-series, in: Proc.
1st Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence, vol.
122, 2009.

[38] P. Liashchynskyi, P. Liashchynskyi, Grid search, random search, genetic
algorithm: A big comparison for NAS, 2019, arXiv preprint arXiv:1912.06059.

[39] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1–9.

[41] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[42] G.H. Golub, C.F. Van Loan, The singular value decomposition and unitary
matrices, Matrix Comput. (1996) 70–71.

[43] B. Finch, W. Goh, MSP430 advanced power optimizations: ULP advisor software
and energy trace technology, Appl. Rep. Texas Instrum. (2014).

http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb1
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb2
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb2
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb2
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb2
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb2
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb3
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb3
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb3
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb4
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb4
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb4
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb5
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb6
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb6
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb6
http://dx.doi.org/10.1145/3214288
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb8
http://dx.doi.org/10.1145/3517247
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb10
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb10
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb10
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb12
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb13
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb13
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb13
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb14
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb15
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb15
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb15
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb15
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb15
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb16
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb16
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb16
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb17
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb17
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb17
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb17
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb17
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb18
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb20
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb20
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb20
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb21
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb21
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb21
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb23
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb23
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb23
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb23
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb23
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb24
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb24
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb24
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb24
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb24
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb25
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb25
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb25
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb25
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb25
http://arxiv.org/abs/2307.05339
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb27
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb27
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb27
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb27
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb27
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb28
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb28
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb28
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb28
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb28
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb29
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb30
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb30
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb30
http://arxiv.org/abs/1806.09055
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb32
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb32
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb32
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb33
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb33
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb33
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb33
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb33
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb34
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb34
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb34
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb34
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb34
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb35
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb36
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb37
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb37
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb37
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb37
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb37
http://arxiv.org/abs/1912.06059
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb39
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb39
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb39
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb39
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb39
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb40
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb42
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb42
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb42
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb43
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb43
http://refhub.elsevier.com/S1383-7621(24)00177-2/sb43

	Real-time intelligent on-device monitoring of heart rate variability with PPG sensors
	Introduction
	Background and Closely Related Work
	HRV with ECG
	PPG and HRV Estimation With Learning Models
	Network Architecture Search For Resource-limited Devices
	Challenges In Real-time On-device Monitoring

	Intelligent Real-time On-device HRV Monitoring
	Overview
	Unified Performance and Resource-aware Neural Network Search (UP-RaNN)
	Data preprocessing
	Constraints definition for UP-RaNN
	Search space for UP-RaNN
	UP-RaNN search
	Model selection

	Real-time On-device HRV Monitoring System
	Raw data transform
	HR ``calibration''
	Historical HR/HRV storage
	Real-time Monitoring

	Adaptive Runtime Reconfiguration

	Results Evaluation
	Experiments setup
	Effectiveness and Efficiency Of UP-RaNN method on HRV Estimation
	Comparison with Existing Studies in HR/HRV Prediction
	Energy Consumption of the HRV Monitoring System
	Evaluation Of Runtime Reconfigurations

	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


