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Abstract: A formalism for the experimental analysis of mesons produced by a beam of linearly

polarized photons is presented. This formalism introduces a more general use of the reflectivity

operator. The goal is to recognize resonances in cross-sections, their associated quantum numbers,

and production mechanisms by performing partial wave analysis of multiple-meson final states.
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1. Introduction

One of the standard experimental procedures to search for strongly interacting bounded
states (of gluons and quarks) is to identify resonances in the production cross-sections.
However, physics information related to the production and decay of those states is con-
tained in their complex amplitudes; therefore, resonances in the mass spectrum are only
intricately related to the model parameters. Quantum Chromodynamics (QCD) is the
current theory of strong interactions; however, we have not been able to analytically calcu-
late the cross-sections of bound states from fundamental QCD. Therefore, QCD-inspired
models are necessary to relate the observables of the bound states to the amplitudes and
study confinement in those bound states. These models are mainly based on the general
properties of the S-matrix [1] as relativity, causality, and the conservation of probability. In
recent years, numerical approximations to QCD (Lattice QCD) have been used to compute
resonance properties [2]. This paper describes a method to include parity conservation
in a phenomenological formalism. We specifically consider mesons produced by linearly
polarized photons, and parity is assumed to be conserved by all strong interactions. The
definition of a reflectivity operator integrates parity conservation into the analysis formal-
ism. We consider the information obtained by knowing the polarization of the incoming
photon beam and how it relates to the production mechanisms. The properties of the pho-
ton beam are described by a spin density matrix. We discuss a new use of the reflectivity
operator, where we also include information about beam polarization. As an example
of the application of this formalism, we describe, in a specific simple model, how this
formalism can be used in a mass-independent partial wave analysis (PWA) of multi-particle
final states.

2. Cross-Sections

We consider multiple-final-state mesons produced by linearly polarized photons
diffractively colliding off a proton target at rest. The outline of the reaction is shown in
Figure 1.

Let τ represent the complete set of variables needed to describe the decay of the
resonance. In the case of two final state mesons, only two angles will be needed. We
use the (θ, φ) angles of one meson in the Gottfried–Jackson (GJ) frame (see reference [3],
Appendix A, for frame definitions). In the case of more than two mesons in the final state,
at least two more angles for each extra meson will be required.
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Suppose that we prepare the polarization of the incoming photons or measure their
states of polarization. The average over photon polarization will be completely described by
this spin density matrix. In the case of a beam of linearly polarized photons, any polarized
state can be written as a linear combination of two pure polarization states. Therefore, the
general structure of this 2 × 2 matrix (for example, in the helicity basis defined by |λ〉 and
|λ′〉) will be

ρin = ρ
γ
λ,λ′ . (7)

I(τ) = ∑
ext. spins

∑
λ,λ′

〈out|Tλρ
γ
λλ′T

λ′∗|out〉. (8)

The “ext. spins” are now the target (λ1 = ±) and recoil (λ2 = ±) helicities. We will
assume, as is tradition in the study of meson production [3,5] and discussed in reference [6]
(Section 16.6) that the transition operator can be factorized into two parts: the production
(of X) and the decay operators (of X), such that

I(τ) = ∑
λ1λ2

∑
λ,λ′

〈out|Tdecay

[
T

λ,λ1,λ2
prod

]
ρ

γ
λ,λ′

[
T

λ′ ,λ1,λ2
prod

]∗
T∗

decay|out〉 (9)

Furthermore, we can take a completely orthogonal set of states, |X〉, such that

∑X |X〉〈X| = 1, and include them in the previous relation such that

I(τ) = ∑
λ1λ2

∑
λ,λ′

〈out|Td ∑
X

|X〉〈X|Tλ,λ1,λ2
p ρ

γ
λ,λ′

[
T

λ′ ,λ1,λ2
p

]∗

∑
X′

|X′〉〈X′|T∗
d |out〉 (10)

I(τ) = ∑
λ1λ2

∑
λ,λ′

∑
X,X′

〈out|Td|X〉〈X|Tλ,λ1,λ2
p ρ

γ
λ,λ′

[
T

λ′ ,λ1,λ2
p

]∗|X′〉〈X′|T∗
d |out〉. (11)

The set of states, |X〉, a full set of intermediate states, we will call the partial waves.
Each of these states can be described by a set of quantum numbers, for example, l,m,
isobars (mass, width). The total angular momentum by J = l ⊕ s (|l − s < J < |l + s|)
and the total spin s = s1 ⊕ s2, where l = 0, 1, 2... (S, P, D...) and m (−l < m < l) will
define the “waves” of the expansion. In practice, this expansion is truncated (to a very few
states). We will refer to these quantum numbers as (l,m,I), where the I include all other
parameters needed for a more extended model, for example, the isobar model parameters
(see Section 5.1.2).

The production amplitudes describe the strong interaction production mechanism that
we are not able to calculate (without a phenomenological model). In a mass-independent
PWA fit, the production amplitudes, in a given bin, will be considered constant, indepen-
dent of the decay properties (for example, final particle angles). They function as weights on
each partial decay amplitude, and will be extracted (fitted) from the data. We will rewrite

〈Xl,m,I |Tλ,λ1,λ2
p ρ

γ
λλ′T

λ′ ,λ1,λ2
p |Xl′ ,m′ ,I′〉 = Tλ,λ1,λ2

l,m,I ρ
γ
λλ′

[
Tλ′ ,λ1,λ2

l′ ,m′ ,I′
]∗

(12)

and
〈out|Td|Xl,m,I〉 = Al,m,I(τ), (13)

Tλ,λ1,λ2
l,m,I being the production amplitudes and Al,m,I(τ) the decay amplitudes. Note that

the A’s and T’s are both complex numbers and that A depends of the resonance quantum
numbers and angles, while T depends on the resonance and beam (photon) quantum
numbers. The photon spin density matrix depends on the partial polarization P and the
polarization angle Φ (see reference [4] for definitions).
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Therefore, in the helicity basis [7], λ being the helicities of the incoming photon, and
λ1, λ2 the helicities of the target (outgoing) nucleons:

I(τ, P, Φ) = ∑
λ1λ2

∑
λ,λ′

∑
(l,m,I,l′ ,m′ ,I′)

Al,m,I(τ)
[
Tλ,λ1,λ2

l,m,I

]
ρ

γ
λ,λ′(P, Φ)

[
Tλ′ ,λ1,λ2

l′ ,m′ ,I′
]∗

A∗
l′ ,m′ ,I′(τ). (14)

For example, in a two-meson final state, we have 2(from λ1)· 2(from λ2)· 2(from

λ) · (2l + 1) unknown parameters (λTλ1λ2
l,m,I ) for each wave l = S, P, D, ... to be fitted to

the data.

3. Reflectivity

The effect of parity is defined as the inversion of the spatial coordinates with respect
to the origin of coordinates. Most reactions in High-Energy Physics (HEP) are unchanged
under this operation (as only weak interactions violate parity).

In our case, assuming vector meson dominance [8] for the photon and diffractive
scattering from the nucleon, and since the strong interaction conserves parity, the parity
operator commutes with the scattering matrix (or transition operator). Helicity states,
however, are not eigenstates of the parity operator and therefore, they are not directly
related to the parity exchanged in the reaction.

The parity operation is equivalent to a “mirror reflection” with respect to an arbitrary
plane, followed by a π rotation with respect to an axis orthogonal to that plane. Let us
call Π̂ the parity operator. Since the parity operation acting on rotations only changes
the direction (sign), in the canonical representation (and in the rest frame of the particle),
we have

Π̂|J, m〉 = P|J, m〉 (15)

where P = ±1 are its eigenvalues. Let us consider a particle moving with momentum −→pz in
the z direction. We can obtain this state by boosting (L is a Lorentz transformation) the state
at rest:

|−→pz J, m〉 = L(−→pz )|0; J, m〉. (16)

Applying the parity operator,

Π̂|−→pz J, m〉 = Π̂L(−→pz )|0; J, m〉 (17)

Π̂|−→pz J, m〉 = PL(−−→pz )|0; J, m〉. (18)

To get back from (−−→pz ) to (−→pz ), we need a rotation of modulo π around the y axis

L(−→pz ) = e−iπ Jy L(−−→pz )e
iπ Jy (19)

and we know that
e−iπ Jy |−→pz J, m〉 = (−1)J−m|−→pz J,−m〉 (20)

Therefore, we finally have

Π̂|−→pz J, m〉 = P(−1)J−meiπ Jy |−→pz J,−m〉. (21)

Since any other direction can be constructed by rotation, and the parity operator
commutes with rotations (in the x-z plane), we can express the former formula in the rest
frame of the resonance, with y perpendicular to the production plane (GJ/HEL frames),
with the spin quantization in the z-axis given by m

Π̂|J, m〉 = P(−1)J−meiπ Jy |J,−m〉. (22)
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It is useful to define the reflection operator [9]

R̂y = Π̂e−iπ Jy (23)

which involves parity and a π angular rotation around the y axis either in the GJ or HEL
frames. It represents a mirror reflection through the production plane (x,z). This operator
commutes with the transition operator. The y axis in the GJ/HEL frame is perpendicular
to the production plane; therefore, the transition matrix is independent of y, and only the
x, z coordinates participate in the parity transformation. Reflection commutes with the
Hamiltonian. The reflection operator acting on the resonance states produces

R̂y|J, m〉 = e−iπ Jy Π̂|J, m〉 = (24)

e−iπ Jy P(−1)J−meiπ Jy |J,−m〉 = P(−1)(J−m)|J,−m〉 (25)

where P are the parity eigenvalues (±). We can build the following eigenstates of R̂y

(since the reflection changes signs on the z-projection quantum numbers, m, we will create
eigenstates that are a linear combination of both (m) signs’ states with adequate coefficients):

|ǫ, J, m〉 =
[
|J, m〉 − ǫP(−1)(J−m)|J,−m〉

]
Θ(m) (26)

The sign between both terms in Equation (26) is arbitrary. We use the sign definition
in reference [3] and define

Θ(m) =
1√
2

, i f m > 0 ; Θ(m) =
1

2
, i f m = 0 (27)

and
Θ(m) = 0, i f m < 0 (28)

It can be shown (see ref. [3]) that the ǫ’s are the real (for mesons) eigenvalues of the
reflectivity operator. We define a resonance reflectivity = ǫR as

|ǫR, J, |m|〉 =
[
|J, m〉 − ǫRP(−1)(J−m)|J,−m〉

]
Θ(m) (29)

In our previous notation,

AǫR
J,|m|(τ) =

[
AJ,m(τ)− ǫRP(−1)(J−m)AJ,−m(τ)

]
Θ(m) (30)

Notice that since each state defined in the reflectivity basis includes a combination
of m and −m, the projections of the spin on the quantization axis, m, are replaced by |m|
(a kind of “absolute value”). We can think of the reflectivity ǫR “carrying” the sign of m.
When we sum over possible quantum numbers for each wave (l), we have (2l + 1) terms in
this sum; we have 2 · l for two reflectivities for each m > 0 plus one ǫR = −1 for m = 0 [3].

In pion beam experiments [5] (spinless beam) or past photo production experiments
(CLAS) [10], where no information on the beam polarization was available, the spin density
matrix is (or is considered) a constant (see [3]), and therefore, it can be factored out from
the intensity expression. The past CLAS formalism [3] includes the helicity of the photon
in the rank of the matrices (in the external sum of spins). Invoking parity conservation, we
still reduced the number of degrees of freedom from eight to four, and the reflectivity was
only defined for the resonance. Again, this was done for unpolarized photons or when no
information about the photon polarization was available.

In the case we are considering, having information about the photon polarization, it
will be proper to also define a reflectivity state for the photon. For a real photon P = −1,
J = 1 and λ = +1,−1; therefore, we define a photon reflectivity = ǫγ from
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|ǫγ, λ〉 =
[
|λ〉 − ǫγ(−1)λ| − λ〉

]
Θ(λ) (31)

then (the reflectivity eigenvalues for a photon are ǫγ = ±1),

|ǫγ = +1, λ = +1〉 = 1√
2
(|λ = +1〉+ |λ = −1〉)

|ǫγ = −1, λ = +1〉 = 1√
2
(|λ = +1〉 − |λ = −1〉)

. (32)

Equation (14), in this new (two) reflectivity basis, is then

I(τ, P, Φ) = ∑
λ1λ2

∑
ǫRǫ′R ,ǫγǫ′γ

∑
J,|m|,J′ ,|m′ |

AǫR
J,|m|(τ)T

ǫRǫγ ,λ1λ2

J,|m| ρ
γ

ǫγ ,ǫ′γ
(P, Φ)T

ǫ′Rǫ′γ ,λ1λ2∗
J′ ,|m′ | A

ǫ′R∗
J′ ,|m′ |(τ) (33)

The photon spin density matrix in the photon reflectivity basis has the following form
(see Appendix A or reference [4]):

ρǫγ ,ǫ′γ(P, Φ) = 1/2

(
1 − P cos 2Φ −iP sin 2Φ

iP sin 2Φ 1 + P cos 2Φ

)
(34)

We now write the expression for the intensity, where |m| are defined positive in the
reflectivity basis, and we include the “resonance” ǫR and “photon” ǫγ reflectivities.

There are only two degrees of freedom associated with λ1, λ2 target spins; we will call
them k = 1, 2 (spin-flop and no spin-flop).

I(τ, P, Φ) = ∑
k

∑
ǫγ ,ǫ′γ

∑
ǫR ,ǫ′R

∑
l|m|I,l′ |m′ |I′

AǫR
l,|m|,I(τ)T

ǫRǫγ ,k

l,|m|,I ρ
γ

ǫγ ,ǫ′γ
(P, Φ)

[
T

ǫ′Rǫ′γ ,k

l′ ,|m′ |,I′
]∗ [

A
ǫ′R
l′ ,|m′ |,I′(τ)

]∗
. (35)

We have organized the indices such that k are the external or non-interfering indices.
Expanding the sum over the photon reflectivities (using the photon spin density matrix),
we have (just for clarity, we drop the k, I indexes in the next expression)

I(τ, P, Φ) = ∑
ǫR ,ǫ′R

∑
l|m|,l′ |m′ |

[

(1 − P cos 2Φ)AǫR
l,|m|(τ)T

ǫR ,+
l,|m|

[
T

ǫ′R ,+

l′ ,|m′ |
]∗ [

A
ǫ′R
l′ ,|m′ |(τ)

]∗

+(−iP sin 2Φ)AǫR
l,|m|(τ)T

ǫR ,+
l,|m|

[
T

ǫ′R ,−
l′ ,|m′ |

]∗ [
A

ǫ′R
l′ ,|m′ |(τ)

]∗

+(iP sin 2Φ)AǫR
l,|m|(τ)T

ǫR ,−
l,|m|

[
T

ǫ′R ,+

l′ ,|m′ |
]∗

A
ǫ′R
l′ ,|m′ |(τ)

]∗

+(1 + P cos 2Φ)AǫR
l,|m|(τ)T

ǫR ,−
l,|m|

[
T

ǫ′R ,−
l′ ,|m′ |

]∗ [
A

ǫ′R∗
l′ ,|m′ |(τ)

]∗
]

(36)

We define the resonance spin density matrices as

ǫRǫ′R ρl,l′
|m|,|m′ | = ∑

k
∑

ǫγǫ′γ

T
ǫγǫR ,k

l,m ρ
γ

ǫγ ,ǫ′γ

[
T

ǫ′γǫ′R ,k

l′ ,m′
]∗

(37)

Then
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I(φ, θ, P, Φ) = ∑
ǫRǫ′

R

∑
l,|m|,l′ ,|m′ |

ǫRǫ′R ρll′
|m||m′ |

ǫRY
|m|
l (φ, θ) ǫ′RY

|m′ |∗
l′ (φ, θ). (38)

We can write (see reference [4])

ρ
γ

ǫγ ,ǫ′γ
=

1

2

(
1 + ∑j=1,2,3 P

j
γσj

)
(39)

where σj are the Pauli matrices and P
j
γ the photon polarization vector. Therefore,

ǫRǫ′R ρl,l′
|m|,|m′ | =

1

2

[
∑
k

∑
ǫγǫ′γ

T
ǫγǫR ,k

l,|m|
[
T

ǫ′γǫ′R ,k

l′ ,|m′ |
]∗

+ ∑
j=1,2,3

P
j
γ ∑

k
∑

ǫγǫ′γ

T
ǫγǫR ,k

l,|m| σj

[
T

ǫ′γǫ′R ,k

l′ ,|m′ |
]∗]

(40)

which can be written as

ǫRǫ′R ρl,l′
|m|,|m′ | =

ǫRǫ′R ρ
(0),l,l′

|m|,|m′ | + ∑
j=1,2,3

P
j
γ

[
ǫRǫ′R ρ

(j),l,l′

|m|,|m′ |
]

(41)

with ǫRǫ′R ρl,l′
|m|,|m′ | being the polarized SDME (Spin Density Matrix Elements).

ǫRǫ′R ρ
(0),l,l′

|m|,|m′ | = ∑
k

∑
ǫγ

T
ǫγǫR ,k

l,|m|
[
T

ǫγǫ′R ,k

l′ ,|m′ |
]∗

(42)

ǫRǫ′R ρ
(1),l,l′

|m|,|m′ | = ∑
k

∑
ǫγ

T
−ǫγǫR ,k

l,|m|
[
T

ǫγǫ′R ,k

l′ ,|m′ |
]∗

(43)

ǫRǫ′R ρ
(2),l,l′

|m|,|m′ | = i · ∑
k

∑
ǫγ

ǫγ · T
−ǫγǫR ,k

l,|m|
[
T

ǫγǫ′R ,k

l′ ,|m′ |
]∗

(44)

ǫRǫ′R ρ
(3),l,l′

|m|,|m′ | = ∑
k

∑
ǫγ

ǫγ · T
ǫγǫR ,k

l,|m|
[
T

ǫγǫ′R ,k

l′ ,|m′ |
]∗

(45)

4. Naturality and Reflectivity

A state is said to have natural parity if P = (−1)J , while is said to have unnatural
parity if P = −(−1)J . We can recast this definition by introducing the naturality of the
particle, N , as

N = P × (−1)J . (46)

Naturality is N = +1 (natural) for JP = 0+, 1−, 2+, · · · (i.e., ρ, ω · · · ) and N = −1
(unnatural) for JP = 0−, 1+, 2−, · · · (i.e., π, η · · · ). Determining (or constraining) the
naturality of the production (exchange particle) will give us extra information on the
produced resonances.

The reflectivities are defined for the resonance decay and for the incoming photon.
Reflection is a conserved quantum number since both rotation and parity are conserved.
Therefore, at least at higher energies (see Appendix C of reference [11]), the product of the
initial photon reflectivity and the exchange particle reflectivity must equal the reflectivity
of the resonance:

ǫγ × ǫex = ǫR. (47)

or
ǫγ × ǫR = ǫexchange. (48)

And since ǫexchange = P(−1)J , then

ǫγ × ǫR = N . (49)
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The photon spin density matrix, in the photon reflectivity basis, represents a mix of
photon states, as seen in Equation (34). We can also see that the resonance spin density
matrix (Equation (37)) will not be diagonal in this formalism. Only for full polarization
P = 1 might there be defined reflectivity configurations that contribute to the reaction.
These are when Φ = 0 only (ǫγ = −1) contribute and when Φ = π

2 only (ǫγ = +1)
contribute. Using linearly polarized photons at those explicit configurations, we could
then constrain the naturality of the exchange and particles produced. For example, in the
case of pion exchange (or other Regge unnatural trajectory particles), the reflectivity of the
resonance (ǫR) will be opposite to that of the photon (ǫγ). In the case of ρ exchange (or
other Regge natural trajectory particles), the reflectivity of the resonance and the photon
will be the same. For unpolarized beams, the reflectivity is only defined for the resonance
and the spin density matrix of the reaction becomes diagonal. For polarized beams, we
can still use similar methods if we include the beam polarization in the rank of the sum
(added to the external spin). The JPAC collaboration [11] defined a reflectivity for the case
of two pseudo-scalar final states, taking into account combined photon resonance parity
conservation. In that case, there is only one reflectivity, and the spin density matrix becomes
diagonal. In the JPAC definition,

ǫ = P(−1)J (50)

or
ǫ = N (51)

and the reflectivity coincides directly (by construction) with the naturality of the resonance.
It has been shown [12] that the JPAC definition and the two reflectivity scenarios defined in
this paper are equivalent for the case of two final state pseudo-scalars.

5. Search for Resonances

5.1. Decay Amplitudes

To obtain the decay amplitudes, we will consider two cases: first, the resonance de-
caying into two particles, and second, the resonance decaying into three or more particles.
In this latter case, we will use the isobar model [3,5]. The isobar model assumes a series
of sequential two-body decays. We consider the resonance decaying into an intermedi-
ate unstable particle (isobar) plus a stable particle (bachelor), and all bachelors will be
among the final states. The isobar will decay subsequently into other particles (children),
which may also be isobars, and continue the process. We assume that there are no in-
teractions after the particles are produced through this sequential process and that all
final (observed) particles are spinless. We calculate amplitudes in the spin formalism of
Jacob and Wick [7,13].

5.1.1. Two-Body Decays

Let us consider the case of a resonance X decaying into two particles labeled as 1 and
2 (see Figure 2 for notation).

We describe the decay of X in its rest frame, that is, p1 + p2 = 0, with the z in the
direction of the beam; this is the Gottfried–Jackson (GJ) frame. We can thus describe the
kinematics with just one momentum q(φ, θ) = p1 = −p2. In this case, what we called τ

to describe the final particles will be given by just two angles. We use the helicity basis to
represent amplitudes.

τ =
{

φGJ , θGJ

}
(52)

where φGJ , θGJ are the angles of one of the decay products in the Gottfried–Jackson frame.
For a given mass M and transfer momentum t, the decay amplitudes will depend only on
τ (angles).

It can be shown that the decay amplitude is (see references [3,13])

Al,m(τ) =

√
2l + 1

4π
Fl(p) · ∑

λ1λ2

D J∗
mλ(ΩGJ)(l0sλ|Jλ)(s1λ1s2 − λ2|sλ)als. (53)
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X

J,m
l,s

s1, λ1

s2, λ2

Figure 2. Two-body decay. A resonance, X, of quantum numbers (J, m) is decaying into two particles

of spin and helicity (s1, λ1) and (s2, λ2), with a combined angular momentum and spin of (l, s).

The expressions in parenthesis represent Clebsch–Gordan coefficients. We introduced
the factor Fl(p), the Blatt–Weisskopf centrifugal barrier factor (see reference [3]). This factor
takes into account the centrifugal barrier effects caused by the angular factors on the potential.
The factor is close to one and in many cases can be ignored. The sum on λ1 and λ2 is over
all possible helicities of the daughters’ particles.

The “unknown” factor als will be included in the fitting parameters of our model
(“T’s”) and will not be carried over to our subsequent formulas.

Consider the decay of a resonance into two spinless final particles. Experimentally,
we normally detect spinless particles; therefore, this is a very common case (kaons, etas, or
pions). In this case, λ = λ1 = λ2 = 0, s = s1 = s2 = 0, and J = l. We will take Fl(p) ∼ 1.
The angular dependencies, τ, will be given by the (φ, θ) angles of one of the decay particles
in the GJ frame. Therefore, (l0s0|J0) = 1 and (s10s20|s0) = 1.

Then

Alm(τ) =

√
2l + 1

4π
Dl ∗

m0(φ, θ, 0) (54)

and

Dl ∗
m0(φ, θ, 0) = eimφ

√
(l − m)!

(l + m)!
Pm

l (cosθ) (55)

where Pm
l (cosθ) are the Associated Legendre functions [14]. Therefore,

Alm(φ, θ) =

√
(2l + 1)(l − m)!

4π(l + m)!
Pm

l (cosθ)eimφ = Ym
l (φ, θ) (56)

where Ym
l (φ, θ) are the spherical harmonic functions.

The amplitudes in the reflectivity basis are then

ǫR Y
|m|
l (φ, θ) = Ym

l (φ, θ)− ǫRP(−1)(l−m)Y−m
l (φ, θ) (57)

Since P = P1P2(−1)l = (−1)l ,

ǫRY
|m|
l (φ, θ) = Ym

l (φ, θ)− ǫR(−1)mY−m
l (φ, θ) (58)

and
I(φ, θ, P, Φ) =

∑
k

∑
ǫγ ,ǫ′γ

∑
ǫR ,ǫ′R

∑
l|m|,l′ |m′ |

ǫR Y
|m|
l (φ, θ)T

ǫRǫγ ,k

l,|m| ρ
γ

ǫγ ,ǫ′γ
(P, Φ)T

ǫ′Rǫ′γ ,k∗
l′ ,|m′ |

ǫ′RY
|m′ |∗
l′ (φ, θ). (59)
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The same formalism can be used for the decay of the resonance into a vector (s1 = 1)
and a spinless (s1 = 0) particle. In this case, λ = λ1 = ±1, and λ2 = 0, s = s1 = 1 and
s2 = 0 and J = l ⊕ s.

Therefore, (l0sλ|Jλ) = (l01λ1|Jλ1) and (s1λ1s2 − λ2|sλ) = (1λ100|1λ1) = 1.
Then

Al,m(φ, θ) =

√
2l + 1

4π ∑
λ1=±1

D J∗
mλ1

(φ, θ, 0)(l01λ1|Jλ1) (60)

and in the reflectivity basis,

AǫR
l,|m|(φ, θ) =

√
2l + 1

4π ∑
λ1=±1

[
D J∗

mλ1
(l01λ1|Jλ1)− ǫRP(−1)(l−m)D J∗

−mλ1
(l01λ1|Jλ1)

]
(61)

5.1.2. Three+-Body Decays - Isobar Model Formalism

Let us consider now the case where the final particles are three or more. In the isobar
formalism, we will treat the decay amplitude of the resonance as the product of successive
isobar plus bachelor decay amplitudes [15].

Alm(τ) = Al′m′(τ′)Al′′m′′(τ′′)Al′′′m′′′(τ′′′)... (62)

For example, let us consider a resonance decaying into a “di-particle” (isobar →
two daughters) and a particle “bachelor”. The isobar will decay into two children (to
consider more particles, the process is repeated).

The degrees of freedom (uncorrelated variables describing the kinematics) will include
the mass of the isobar, w, and the angles of its decay products:

τ =
{

ΩGJ , Ωh, w
}

(63)

where ΩGJ = (φGJ , θGJ) and Ωh = (φh, θh) are the angular descriptions in the Gottfried–
Jackson and helicity frames (see reference [3], Appendix A, for definitions) of the isobar
and its decay products, respectively. Let l be the angular momentum between the bachelor
and isobar and s the spin of the isobar (we will consider a spinless bachelor). Therefore,
J = l ⊕ s. The amplitude is then written [16] as

Al,m,s(τ) = EJls∗
m (ΩGJ , Ωh)Qls(w). (64)

We factorize the amplitude with a factor that depends only on the angles, and a factor
that only depends on mass. The mass factor comes from the propagator of the isobar. The
angular factor can be written, in the isobar model, as

EJls∗
m (Ω, Ωh) = 〈Ωh; 0|T̂ I

decay|sλ〉 〈ΩGJ ; sλ|T̂R
decay|Jm〉 (65)

where R → IB describes the decay of the resonance (R) into the isobar (I) and the bachelor (B),
and I → D1D2 is the decay of the isobar. Using our previous result, Equation (60), for each
two-body decay, we have

√
2l + 1

4π ∑
λ1λ2

D J∗
mλ(ΩGJ)(l0sλ|Jλ)(s1λ1s2 − λ2|sλ). (66)

For the bachelor, λ2 = 0, and for the isobar, λ1 = λ; therefore,

(s1λ100|sλ) = 1 (67)

then

〈ΩGJ ; sλ|T̂R
decay|Jm〉 =

√
2l + 1

4π
D J ∗

mλ(φGJ , θGJ , 0)(l0sλ|Jλ). (68)
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And for the isobar,

〈Ωh; 0|T̂ I
decay|sλ〉 =

√
2s + 1

4π
Ds ∗

λ0 (φh, θh, 0) (69)

Therefore,
EJls∗

m (ΩGJ , Ωh) = (70)

√
(2l + 1)

√
2s + 1 ∑

λ

D J∗
mλ(φGJ , θGJ , 0)Ds∗

λ0(φh, θh, 0)〈l0sλ|Jλ〉. (71)

Since
Ds∗

λ0(φh, θh, 0) = eiλφh ds
λ0(θh) (72)

and
D J∗

mλ(φGJ , θGJ ,−φh) = D J∗
mλ(φGJ , θGJ , 0)e−iλφh (73)

the angular amplitude can then be written as

EJls∗
m (ΩGJ , Ωh) =

√
(2l + 1)

√
2s + 1∑

λ

D J∗
mλ(φGJ , θGJ , φh)d

s
λ0(θh)〈l0sλ|Jλ〉. (74)

The mass term depends on the isobar mass and is given by

Qls(w) = Fl(p)Fs(q)Ψ(w) (75)

where the Ψ-function is the standard relativistic Breit–Wigner form for the isobar mass
distribution, p is the momentum of the isobar in the GJ frame, and q id the momentum of
the leading isobar’s decay particle in the helicity frame:

Ψ(w) =
w0Γ0

w2
0 − w2 − iw0Γ(w)

(76)

with

Γ(w) = Γ0
w0qF2

s (q)

wq0F2
s (q0)

(77)

w0 and Γ0 are the mass and width of the isobar, and q0 is found such that Γ(w0) = Γ0

and then |Ψ(w0)| = 1. The Fl(p) and Fs(q) functions are the Blatt–Weisskopf centrifugal
barrier factors (discussed before). Adding all these components into our final form for the
amplitude for three (spinless) particles in the final state, we obtain [15]

AJ,l,m,s(ΩGJ , Ωh, w) =
√
(2l + 1)

√
2s + 1 (78)

Fl(p)Fs(q)
w0Γ0

w2
0 − w2 − iw0Γ(w)

× ∑
λ

D J∗
mλ(φGJ , θGJ , φh)d

s
λ0(θh)〈l0sλ|Jλ〉.

5.2. Mass-Independent Fit

The probability of observing an event i with properties τi in the ∆E∆M∆t bin is

pi =
I(τi)η(τi)

N
=

I(τi)η(τi)∫
I(τ)η(τ)dτ

. (79)

where η(τ) is the detector acceptance. The value of N, the average number of events
expected to be observed in the total phase-space defined by ∆E∆M∆t, is calculated numeri-
cally through a Monte Carlo (MC) full simulation of the detector and a (flat) phase-space
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generator of the reaction. In many cases, due to limited statistics, the binning is performed
only in M; therefore, a model for the t cross-section dependence is introduced in the MC.
The numerical (MC) value of N is then

N =
1

Ng

Ng

∑
i

I(τi)η(τi) (80)

Ng is the total number of events generated in the MC. The function η(τ) represents the
acceptance (resolution is taken to be perfect, and only acceptance is considered here—no
inter-bin crosstalk). A Monte Carlo simulation of the detector will provide the values of
this function, which are η(τ) = 1 if the event is accepted and η(τ) = 0 if the event is not
accepted. Then

N =
1

Ng

Na

∑
i

I(τi) (81)

where Na is the total number of accepted events. Introducing ηx = Na
Ng

as the total fraction

of events accepted, or total acceptance, then

N = ηx
1

Na

Na

∑
i

I(τi) (82)

Therefore,

N = ηx
1

Na

Na

∑
i

[
∑
k

∑
ǫγǫR ,ǫ′γǫ′R

∑
lm,l′m′

AǫR
l,m(τi) T

ǫγǫR ,k

l,m ρ
γ

ǫγ ,ǫ′γ
T

ǫ′γǫ′R ,k∗
l′ ,m′ A

ǫ′R ,∗
l′ ,m′(τi)

]
. (83)

The extended likelihood is defined as including the probability of observing N
events by

L = Prob(N)
N

∏
i=1

p(−→x i,
−→a ). (84)

Assuming a Poisson distribution for the probability of observing N events, with an
expected value of N

Prob(N) =
NN

N!
e−N (85)

the extended likelihood is then

L =
[

NN

N! e−N
] N

∏
i=1

p(−→x i,
−→a ) (86)

and taking the log results in

lnL = −ln
[
N!

]
− N +

N

∑
i=1

ln
[
I(−→x i,

−→a )
]
. (87)

Therefore,

lnL ∝
N

∑
i=1

ln
[
I(−→x i,

−→a )
]
− N (88)

Including the expression for the intensity into the likelihood function, we have

−lnL ∝ −
N

∑
i=1

ln
[
∑k ∑α,α′ Aα(τi)T

k
α ρ

γ

ǫγ ,ǫ′γ
Tk∗

α′ A∗
α′(τi)

]
+ N (89)
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where we included all quantum numbers in α and the external target spins in k. This is the
function to be minimized to obtain the Tk

α values [3]. To find the true number of events in
the ∆E∆M∆t bin, which we will call Ntrue, we take

Ntrue =
1

Ng

Ng

∑
i

I(τi) (90)

where we will use the fitted Tk
α values. Then

Ntrue =
1

Ng

Ng

∑
i

[
∑
k

∑
α,α′

Aα(τi) Tk
α ρ

γ

ǫγ ,ǫ′γ
Tk∗

α′ A∗
α′(τi)

]
(91)

and the yield for each partial wave (α, for a given k) is

Nα,true =
1

Ng

Ng

∑
i

ρ
γ
ǫγ ,ǫγ

∣∣Tα Aα(τi)
∣∣2. (92)

After we obtain the Tk
α values, we are able to generate MC events through our partial

wave model and many predicted distributions of data properties (i.e., angular distributions,
t-distributions, etc.) to compare directly with the data and check our model accuracy.
We can also use the phase of the production amplitudes to obtain information about the
resonant behavior of a particular wave. A single wave phase is arbitrary but the difference
of phases between two waves contains physical information. We use the phase difference
between the wave under study and a well-established resonant wave (see reference [3]
for details).

6. Phenomenological Models

After performing mass-independent fits in each bin of M (or M and t) for a given ∆E,
we obtained the predicted mass distribution of Ntrue(M) for each partial wave included
in the fit. Nevertheless, merely identifying peaks in the mass spectrum falls short of
substantiating the existence of a resonance. In the past, the mass dependence of those partial
waves has been described by a coherent sum of Breit–Wigner amplitudes and, if needed, a
phenomenological model of the background or other effects (i.e., Deck mechanisms) [3,5].
Such a procedure can produce a good fit to the data; however (especially using the isobar
approximation), it violates fundamental principles such as probability conservation and
causality. Therefore, in order to obtain more physically grounded amplitudes, models
that fulfill the principles of unitarity and analyticity (which originate from probability
conservation and causality) are to be used. Unitarity is especially important when we deal
with resonances since it controls resonance widths and pole positions in the complex energy
plane. One will first look for regions of enhancement (peaks or valleys) in the distributions
and fit a theoretically based distribution to obtain the resonance properties (mass and
width). However, interference and overlapping can greatly disturb the appearance of
the spectrum. The properties (and positions) of the resonances should be obtained from
the poles on the complex amplitudes of the S-Matrix expansion [17]. These poles (and
thresholds) had been studied using the Regge treatment of the S-matrix [8]. Resonances are
poles in the complex plane (Riemann surfaces) and only their projected real axis values can
then be evaluated experimentally. In the case of multiple poles with the same quantum
numbers and/or poles far from the real axis, the axis projections can deviate considerably
from the BW distribution. The shape of these distributions is also influenced by the QCD
dynamics. Effective field theories, i.e., Chiral Perturbation Theory, has been combined with
the dispersion relations to obtain better parameterization of the mass distributions [18].
Recent studies (i.e., reference [19,20]) have used those approaches to obtain mass and width
values for several resonances. A comprehensive description of recent efforts by the Joint
Physics Analysis Center (JPAC) in this direction can be found in reference [21].
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7. Summary

We described a formalism that introduces parity conservation into the transition
amplitudes for the description of photo production of mesons. Two reflectivities are defined
by applying, independently, the reflectivity operator to the resonance decay amplitude and
to the incoming photon (beam) state. These are two (reflectivity) quantum numbers, the
product of which, at least at higher energies, coincides with the naturality of the exchange
particle in the t-production channel. Notice that the definition of two reflectivities is suited
for any number and spins of particles into which the resonance can finally decay in the
final state. This two-reflectivity formalism might also be used in more refined models of the
S-matrix phenomenology, i.e., Regge-inspired models respecting unitarity and analyticity.
As a simple example, in this paper, we showed the formalism for a mass-independent
analysis, and in the case of more than three particles in the final state, we used the isobar
model approximation.
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Appendix A

Appendix A.1. Reflectivity Photon Spin Density Matrix

For a general discussion on the photon spin density matrix, see reference [4]. The spin
density matrix of the photon in the helicity basis is (see reference [22])

ρλλ′(P, Φ) = 1/2

(
1 −Pe−2iΦ

−Pe2iΦ 1

)
(A1)

This corresponds to

ρ+,−(P, Φ) =

( 〈+|+〉 〈+|−〉
〈−|+〉 〈−|−〉

)
. (A2)

On the reflectivity basis, we will have

ρǫ,ǫ′(P, Φ) =

( 〈ǫ = +|ǫ = +〉 〈ǫ = +|ǫ = −〉
〈ǫ = −|ǫ = +〉 〈ǫ = −|ǫ = −〉

)
. (A3)

To calculate the spin density matrix in the reflectivity basis, we turn to the relations of
the reflectivity basis with the helicity basis [9].

We have
|ǫaλ〉 =

[
|aλ〉 − ǫP(−1)j−λ|a − λ〉

]
Θ(λ) (A4)

where P is the parity of particle “a”, and

Θ(λ) =
1√
2

for λ > 0 (A5)

Θ(λ) =
1

2
for λ = 0 (A6)

Θ(λ) = 0 for λ < 0 (A7)

the eigenvalue of reflectivity for λ=0 is P(−1)J .
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For a real photon P = −1, J = 1 and λ = +1,−1; therefore,

|ǫ〉 = 1√
2

[
|λ〉 − ǫ(−1)λ| − λ〉

]
(A8)

then (the reflectivity eigenvalues for a photon are ǫ = ± )

|ǫ = +〉 = 1√
2
(|λ = +〉+ |λ = −〉)

|ǫ = −〉 = 1√
2
(|λ = +〉 − |λ = −〉)

. (A9)

Therefore, we find that

〈ǫ = −|ǫ = −〉 = 〈+|+〉 − 〈−|+〉 − 〈+|−〉+ 〈−|−〉 = 1/2(1 + P cos 2Φ) (A10)

〈ǫ = +|ǫ = +〉 = 〈+|+〉+ 〈−|+〉+ 〈+|−〉+ 〈−|−〉 = 1/2(1 − P cos 2Φ) (A11)

〈ǫ = +|ǫ = −〉 = 〈+|+〉 − 〈−|+〉+ 〈+|−〉 − 〈−|−〉 = −1/2i(P sin 2Φ) (A12)

〈ǫ = −|ǫ = +〉 = 〈+|+〉+ 〈−|+〉 − 〈+|−〉 − 〈−|−〉 = 1/2i(P sin 2Φ) (A13)

We obtain the spin density matrix of the photon on the reflectivity basis, as follows:

ρǫǫ′(P, Φ) = 1/2

(
1 − P cos 2Φ −iP sin 2Φ

iP sin 2Φ 1 + P cos 2Φ

)
. (A14)
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