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Abstract

Datasets encountered in scientific and engineering applications appear in complex formats (e.g.,

images, multivariate time series, molecules, video, text strings, networks). Graph theory provides

a unifying framework to model such datasets and enables the use of powerful tools that can help

analyze, visualize, and extract value from data. In this work, we present PlasmoData.jl, an open-

source, Julia framework that uses concepts of graph theory to facilitate the modeling and analysis

of complex datasets. The core of our framework is a general data modeling abstraction, which

we call a DataGraph. We show how the abstraction and software implementation can be used to

represent diverse data objects as graphs and to enable the use of tools from topology, graph theory,

and machine learning (e.g., graph neural networks) to conduct a variety of tasks. We illustrate

the versatility of the framework by using real datasets: i) an image classification problem using

topological data analysis to extract features from the graph model to train machine learning models;

ii) a disease outbreak problem where we model multivariate time series as graphs to detect abnormal

events; and iii) a technology pathway analysis problem where we highlight how we can use graphs

to navigate connectivity. Our discussion also highlights how PlasmoData.jl leverages native Julia

capabilities to enable compact syntax, scalable computations, and interfaces with diverse packages.

Overall, we show that the DataGraph abstraction and PlasmoData.jl Julia package are able to

model data within graphs and enable useful analysis.

Keywords: graph theory, network theory, modeling, data, open-source, scalability.

1 Introduction

Data appears in complex formats that require the use of advanced tools for its representation and

processing. In this context, it is important to highlight that any data object (e.g., image, video, audio

signal, a text string, time series) needs to be represented as a mathematical model (a mathematical

abstraction) to enable processing and analysis. Examples of mathematical models that are available
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to do this include those from linear algebra (e.g., data is modeled as vectors, matrices, higher-order

tensors), graph/network theory (e.g., data is modeled as graphs or hypergraphs), statistics (e.g., data

is modeled as random variables), and topology/geometry (e.g., data is modeled as graphs, manifolds,

and simplicial complexes). Understanding how to model data and to recognize alternative represen-

tations of data is key in facilitating its analysis and in extracting information/value [1, 2, 3]. For

example, an image can be represented as a matrix (each entry is a pixel), as a graph (each node is

a pixel and edges represent connectivity of neighboring pixels), or as a function/manifold (the addi-

tional dimension represents the light intensity). These various representations reveal different (and

often complementary) aspects/features of the data object; for instance, a matrix representation can

help reveal correlation structures, while a graph representation can reveal connected structures. Im-

portantly, how to represent a dataset is a modeling decision that can impact the information extracted

from the data (can influence the value of the dataset); as such, it is necessary to have proper tools

that can help experiment with different data models and associated analysis tools.

A modeling abstraction that has gained increased popularity in data science is graphs (networks).

Graphs provide a unifying framework to capture diverse data objects because they have intuitive in-

terpretation and they enable the use of powerful processing techniques. Simply stated, a graph is a

mathematical model that comprises a set of nodes that are connected via edges; the nodes and edges

are abstract objects that can encode data that may appear in different forms. In a typical graph, data

attached to nodes and edges are scalar values or vectors, but more advanced graph abstractions can

attach abstract objects such as algebraic models, text, or other graphs [4, 5]. Graph representations

have been used in a wide variety of applications such as chemical processes [6], biological systems [7],

brain networks [8, 9], hydrology [10, 11, 12], disease transmission [13, 14], and social networks [15]. An

application that has recently gained substantial attention is the representation of molecules as graphs

[16, 17, 18]; here, atoms are represented by nodes, bonds are represented by edges, and nodes/edges

can embed diverse attributes such as atom type and bond length (represented as vectors). These

representations have been used to predict diverse properties of molecules and to predict potential

reactions that can occur between them.

Recently, the field of topological data analysis (TDA) has opened interesting and new perspectives

on data modeling and processing For example, a matrix (e.g., a grayscale image) can be represented

as a node-weighted graph. Here, nodes are matrix entries, node weights are numerical values (data)

attached to the matrix entries, and edges capture adjacency of the matrix entries [19, 20]. This repre-

sentation can be applied to high-dimensional data (tensors), where entries of the higher dimensional

object are connected to adjacent entries. Symmetric matrices (e.g., correlation or covariance matrices)

can also be represented as edge-weighted graphs, where the nodes represent the variable associated

with a column/row and edge weights capture the degree of correlation/covariance. The graph repre-

sentation of correlation matrices is widely used in neuroscience to analyze brain connectivity [19, 8, 9]

and in disease transmission to identify extreme events [13]. This is done via the use of tools of graph

theory and topology, which enable the quantification of the graph structure or shape. For example,

the Euler Characteristic (EC) is a topological descriptor that quantifies the structure of an unweighted
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graph by computing the number of connected components and the number of cycles in the graph [19].

To quantify the structure of weighted graphs (graphs with attached values to nodes and edges) one

can use filtration/percolation operations; as the name suggests, these operations filter out nodes/edges

with weight values below a certain threshold values. Filtration operations keep track of how topo-

logical descriptors appear or disappear at different weight threshold values, and this information is

summarized in the form of topological summaries, such as the EC curve. Topological descriptors can

reveal aspects of the data that might not be accessed by tools from linear algebra or statistics. For

instance, eigenvalues and eigenvectors are linear algebra descriptors that extract information from

matrices in the form of energy/variance, not shape.

Graph representations of data enables access to a wide variety of software tools for analysis and

visualization. These tools range from broad to specific application scope. Some of the most general

graph modeling tools include NetworkX [21] (in Python), Graphs.jl [22] (in Julia), igraph [23] (in

Python and R), graph-tool [24] (in Python), and the graph and digraph functions of Matlab [25].

These packages are general and allow the user to define their own graph data structures. They also

include functions for analyzing graph connectivity and other metrics/descriptors. These tools also al-

low the user to define abstract properties or attributes on nodes and edges (in the case of Graphs.jl,

this ability is implemented in the package extension MetaGraphs.jl). These packages use different

methods for storing the data; depending on the amount or nature of the data, this can have significant

implications on scalability and application scope. These packages are limited in the methods that they

use for processing and analyzing data; for instance, these tools do not implement topological analysis

operations (e.g., filtration operations and computation of topological descriptors). Furthermore, these

packages do not provide capabilities to transform data models to graph models (e.g., obtain a graph

from a tensor).

In addition to general graph modeling packages, several other packages exist that have more specific

application scope. For instance, there are several graph tools specifically designed for studying brain

function, including Graphvar [26], brain-connectivity-toolbox [9], GRETNA [27], and BRAPH [28].

Because of this broad spectrum, a complete review of available tools is not practical here, but we will

discuss the most pertinent and prominent options. Some application-specific packages are targeted

towards creating models for machine learning, such as graph neural networks (GNNs). For instance,

MoleculeNet [18] is designed for representing molecules as graphs, which can then be used for GNNs to

enable predictions. The deep graph library [29], scikit-network [30], and GraphNeuralNetworks.jl

[31] all provide an interface for defining graphs with data that can then be used for training and

testing GNNs. These packages are effective at conducting machine learning tasks, but they are not

designed for performing transformations of data objects and topological analysis of the graph structure

(e.g., finding the EC or connected components). In summary, existing graph modeling tools are often

limited in their ability to represent and process wide spans of data.

The goal of this work is to provide a general framework for modeling data as graphs. Recently,

we have developed a framework for modeling optimization problems as graphs[4]; in this abstraction,
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nodes and edges can embed algebraic optimization problems. This abstraction has been shown to unify

a wide range of structures found in optimization (e.g., optimal control, stochastic optimization, and

network optimization) and this unification has enabled a number of advances in theory and algorithms.

Moreover, the abstraction has facilitated access to a broad range of graph analysis and software tools

that facilitate visualization and processing (e.g., graph partitioning and aggregation). Our work aims

to expand this graph abstraction to model general data and with this unify data objects found across

domains and leverage the use of tools from such domains. Our abstraction is implemented as an

open-source Julia package that we call PlasmoData.jl. This package has been designed to readily

represent diverse data objects as graphs (e.g., images, matrices, and tensors as node-weighted graphs

and symmetric matrices as edge-weighted graphs) and to store data within a user-defined graph struc-

ture. Our modeling framework interfaces to diverse software packages that enables processing of graph

data objects (e.g., via filtration, partition, and aggregation), facilitates the computation of descriptors

using tools from graph theory and topology, and enables the use of machine learning tools (e.g., graph

neural networks or GNNs). Our software design principle is analogous to those of algebraic modeling

languages (e.g., JuMP or Plasmo.jl), which provide provide interfaces to packages that process/solve

such models.

The goal behind the implementation of PlasmoData.jl is thus to change the way the user thinks

about data (as a modeling task rather than just an analysis task). We believe that the focus on modeling

can bring significant benefits in the way we explore alternative data representations that are suitable

for applications, in selecting suitable tools to enable data processing, and in interpreting analysis re-

sults. We demonstrate the versatility of PlasmoData.jl and of its unifying modeling abstraction by

using applications that appear in quite distinct application domains. A graphical representation of this

work is shown in Figure 1 and highlights how a variety of data can be modeled within PlasmoData.jl,

which in turn provides access to diverse analysis tools and techniques.

The paper is structured as follows. Section 2 provides an overview of the DataGraph abstraction

for modeling data as graphs, discusses how it is implemented in PlasmoData.jl, and illustrates how

some common data structures can be represented under the proposed abstraction. Section 3 provides

an overview of data analysis that can be performed for data modeled as graphs. Section 4 provides

applications that illustrate the versatility of the modeling framework. Section 5 provides concluding

remarks and future directions.

2 Graph Abstraction and Software Implementation

This section introduces the DataGraphmodeling abstraction along with its implementation in PlasmoData.jl,

available at https://github.com/zavalab/PlasmoData.jl. We introduce a mathematical formu-

lation for the DataGraph and discuss how it can be applied to a variety of common data struc-

tures. We also provide brief code snippets showing how these representations are implemented

in PlasmoData.jl. Versions of these code snippets are also available in the repository https:

//github.com/zavalab/JuliaBox/tree/master/PlasmoData_examples, along with the package and
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DG(N , E , A,dN ,dE ,dG,AN ,AE ,AG)

dN (ni) =
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s.t. c(x) = 0

x ≥ 0

Figure 1: Overview of the PlasmoData.jl modeling framework. Diverse data objects can

be modeled under the DataGraph abstraction; this provides access to a diverse analysis

tools and techniques for analyzing the data
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Julia versions used.

2.1 Mathematical Formulation

A graph is a mathematical model that contains a set of nodes N and a set of edges E (which connect

nodes). A node n ∈ N and an edge e ∈ E can encode diverse abstract objects (e.g., values, text,

equations). To indicate data embedded in the graph, we define the set of node (data) attributes as

AN , the set of edge (data) attributes as AE , and a set of (global) graph attributes as AG . To associate

data to specific nodes, edges, and to the graph we make the following definitions:

dNa (n) ∈ Da, n ∈ N , a ∈ AN (1)

dEa(e) ∈ Da, e ∈ E , a ∈ AE (2)

dGa ∈ Da, a ∈ AG (3)

Here, Da is the set of possible values for a data attribute a, dNa (n) is the data stored on the node

n for attribute a, dEa(e) is the data stored on the edge e for attribute a, and dGa is the data stored on

the graph for attribute a. Importantly, our definitions are abstract and we make no distinction on

the form that any of that data must take. The data could be scalars, vectors, matrices, graphs, an

optimization model, text strings, other graphs, or any other kind of information (see [32, 33, 4] for

application examples for data that can be embedded in graphs). We use the notation dN , dE , and

dG to define the set of all node, edge, and graph data corresponding to AN , AE , and AG , respec-

tively. We will use the notation dN (n) for the set of node data on node n for the attribute set AN
and dE(e) for the set of node data on edge e for the attribute set AE . Note that, under these def-

initions, the attribute sets are used for indicating subsets of data (and do not represent the data itself).

We use the previous definitions to define our modeling object, which we call a DataGraph. This

modeling abstraction has a graph structure and it stores data on the nodes, edges, and the graph

itself; the object has the following form:

DG
(
N , E , A,dN ,dE ,dG ,AN ,AE ,AG

)
. (4)

A DataGraph object is fully defined by its nodes, edges, adjacency matrix, (A which encodes the

graph connectivity), node data, edge data, graph data, node attributes, edge attributes, and graph

attributes. Importantly, the adjacency matrix also encodes the type of edges in the graph (directed

or undirected).

2.2 Software Implementation

The DataGraph abstraction is implemented in Julia in the package PlasmoData.jl (see Figure 2).

PlasmoData.jl allows for any data structure to be encoded on the nodes, edges, or on the graph itself.

To differentiate references to the mathematical formulation from the computer implementation, we
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will refer to the software counterpart as PlasmoData.DataGraph.

The PlasmoData.DataGraph object implemented contains the following fundamental attributes

(defined in the software data structure):

• g: A Graphs.SimpleGraph (or a Graphs.SimpleDiGraph for directed graphs) object. The

Graphs.SimpleGraph object is defined within the Graphs.jl package, and it stores graph struc-

ture efficiently by storing only the number of edges and a vector of neighbors for each node.

PlasmoData.jl has Graphs.jl as a dependency and stores the SimpleGraph object to enable

access to a variety of graph algorithms and to provide a simpler interface with other tools.

• nodes: A vector of node names for each node in the graph. Within PlasmoData.jl, nodes can

be “named” or defined using any data type. This is different from some other graph modeling

tools. For example, Graphs.jl does not directly name any nodes, but instead only records an

adjacency list for each node, and thus implicitly names nodes only by an integer index. nodes,

corresponds to N in (4).

• edges: A vector of pairs (tuples) of integers corresponding to each edge of the graph. The

integer pairs correspond to the index of nodes in nodes (e.g., pair (1, 2) corresponds to an edge

between the first and second nodes defined in nodes). Restricting edges to only contain integer

pairs (rather than the node pairs themselves) is done to reduce the amount of memory required

to store the graph. edges, corresponds to E in (4).

• node map: A dictionary mapping the node names to their index in the nodes vector. This index

also corresponds to the adjacency list saved in the Graphs.jl g object.

• edge map: A dictionary mapping the edges (integer pairs) to their index in the edges vector.

• node data: A mutable structure that contains a matrix of all node data where each row of the

matrix corresponds to a node in the graph and each column corresponds to a node attribute.

The order of the rows is identical to the order in nodes. This data structure also contains a list

of all node attributes and their mapping to the data matrix. Node attributes are restricted to

be strings. node data corresponds to dN in (4).

• edge data: A mutable structure that contains a matrix of all edge data where each row of the

matrix corresponds to an edge in the graph and each column corresponds to an edge attribute.

The order of the rows is identical to the order in edges. This data structure also contains a list

of all edge attributes and their mapping to the data matrix. Edge attributes are restricted to be

strings. edge data corresponds to dE in (4).

• graph data: A mutable structure that contains a vector of graph data. This data structure also

contains a list of all graph attributes and their mapping to the data vector. Graph attributes

are restricted to be strings. graph data corresponds to dG in (4).
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While the mathematical abstraction encodes directionality (or lack thereof) via the adjacency ma-

trix, A, PlasmoData.jl includes PlasmoData.DataGraph and a PlasmoData.DataDiGraph modeling

objects for undirected and directed graphs, respectively. This terminology is consistent with other

graph modeling tools (e.g., Graphs.jl and NetworkX). For our software design, how we chose to

store node, edge, and graph data was an important consideration that deserves some explanation as

PlasmoData.jl stores this data differently than some alternative tools. A discussion of this decision,

as well as a comparison of memory allocation for storing data in PlasmoData.jl and other graph

modeling tools, is provided in the supporting information.

... ... ...

... ... ...

DG(N , E , A,dN ,dE ,dG,AN ,AE ,AG)

dN (ni) =
aN1 aN2 aN3 aN4 aN5

dN =

dE =

dE((ni, nj)) =

aE1a
E
2a

E
3a

E
4a

E
5a

E
6

dG =

aG1 a
G
2 a

G
3 a

G
4

Figure 2: Visualization of the DataGraph object. The PlasmoData.DataGraph (left)

contains fundamental attributes (g, nodes, edges, node map, edge map, node data,

edge data, graph data) which correspond to attributes of the mathematical DataGraph

object (right) containing nodes (N ), edges (E), directionality (A), node data (dN ), edge

data (dE), graph data (dG), and node, edge, and graph attributes (AN , AE , and AG ,

respectively). Each node and edge can embed data of a variety of forms, such as scalar

values, vectors, or other graphs

2.2.1 PlasmoData.jl Tutorial Example

PlasmoData.jl implements the DataGraph abstraction as shown above, and it provides a user-friendly

interface and suite of functions; basic funcationality for constructing the graph is illustrated in Code

Snippet 1. An empty PlasmoData.DataGraph is instantiated on Line 3. The data types within the

{} define the types of data that can be defined in the node, edge, and graph data (see Figure 2). In

this example, we use Any for the data type in the node, edge, and graph data which will be important
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when adding data to this graph. Alternatively, a user can call DataGraph() without the informa-

tion in {}, and the default data types in the node, edge, and graph data will be Float64. Once the

PlasmoData.DataGraph object is instantiated, nodes, edges, and data can be added to the graph.

Nodes can be added to the PlasmoData.DataGraph by calling the add node! function (Lines 6 - 10).

PlasmoData.jl allows for any Julia object to be defined as a node. For example, as shown in the

code snippet, the node names can be integers, strings, or symbols. This can be important, as will

be shown later when representing matrices as PlasmoData.DataGraphs. Edges can be added to the

PlasmoData.DataGraph by calling the add edge! function (Lines 14 - 18). This function takes pairs

of node names as arguments which represent the edge between those two nodes. These pairs of nodes

can be passed as separate arguments (Lines 14 - 16) or as a tuple of two node names (Lines 17 - 18).

This progressively builds the adjacency matrix of the graph object.

Code Snippet 1: Example showing the basic functionality for building a PlasmoData.DataGraph

in PlasmoData.jl, including adding nodes, edges, and data and basic plotting functionality

1 using PlasmoData, PlasmoDataPlots
2
3 dg = DataGraph{Int, Any, Any, Any, Matrix{Any}, Matrix{Any}}()
4
5 # add node!(datagraph, node)
6 add_node!(dg, 1)
7 add_node!(dg, 2)
8 add_node!(dg, 3)
9 add_node!(dg, "node4")

10 add_node!(dg, :node5)
11
12 # add edge!(datagraph, node1, node2)
13 # add edge!(datagraph, (node1, node2))
14 add_edge!(dg, 1, 2)
15 add_edge!(dg, 2, 3)
16 add_edge!(dg, "node4", 1)
17 add_edge!(dg, (:node5, 2))
18 add_edge!(dg, (3, "node4"))
19
20 # add node data!(datagraph, node, node data, data attribute)
21 add_node_data!(dg, 1, [6, 3, 4], "node_data1")
22 add_node_data!(dg, 2, 3.4, "node_data1")
23 add_node_data!(dg, 3, "this is on node 3", "node_data1")
24 add_node_data!(dg, "node4", [1 2; 3 4], "node_data1")
25 add_node_data!(dg, :node5, DataGraph(), "node_data1")
26
27 # add edge data!(datagraph, node1, node2, edge data, edge attribute)
28 # add edge data!(datagraph, (node1, node2), edge data, edge attribute)
29 add_edge_data!(dg, 1, 2, DataGraph(), "edge_data1")
30 add_edge_data!(dg, 2, 3, [1 2 ; 5 7], "edge_data1")
31 add_edge_data!(dg, "node4", 1, 1.0, "edge_data1")
32 add_edge_data!(dg, (:node5, 2), -0.00001, "edge_data1")
33 add_edge_data!(dg, (3, "node4"), Dict(), "edge_data1")
34
35 # add graph data!(dg, graph data, graph attribute)
36 add_graph_data!(dg, 1.0, "graph_data1")
37
38 PlasmoDataPlots.plot_graph(dg; xdim = 400, ydim = 400)

Data can also be embedded within the defined graph structure through API functions. Data is

added to nodes through the add node data! function (Lines 21 - 25). This function takes the fol-

lowing arguments: i) the PlasmoData.DataGraph, ii) the node name, iii) the node data, and iv) the

attribute name for the data (must be a string). The node data is restricted to be the type defined
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Figure 3: Visualization of the PlasmoData.DataGraph associated with Code Snippet 1

on the PlasmoData.DataGraph (in this case, the PlasmoData.DataGraph was instantiated with type

Any, so any data can be passed). As seen in the code snippet, data have different formats, including

floats, strings, vectors, matrices, or another PlasmoData.DataGraph. Data is added to edges through

the add edge data! function (Lines 29 - 33). This function behaves similarly to the add node data!

function, but in place of the node name argument, a pair of nodes (two separate arguments) or a tuple

of two node names (one argument) is supplied. Data is added to the graph by the add graph data!

function (Line 36). This function only takes the graph data and the graph attribute, as shown in the

snippet. Additional node, edge, or graph data can be defined on the DataGraph by passing the data

with a different attribute name. There is no limit to the number of attributes that can be added to

the nodes, edges, or graph.

One of the benefits of graph representations is that they facilitate visualization of structure. For

basic plotting capabilities, we have developed an accompanying package called PlasmoDataPlots.jl

(available at https://github.com/zavalab/PlasmoDataPlots.jl) that interfaces to PlasmoData.jl

and that enables visualizations of PlasmoData.DataGraph objects. This package provides basic

functionalities for plotting both PlasmoData.DataGraphs and PlasmoData.DataDiGraphs primarily

through the Julia packages Plots.jl and GraphMakie.jl. The visualization in Figure 3 is created by

calling the PlasmoDataPlots.jl function plot graph (Line 38).

The methods presented above for building PlasmoData.DataGraphs, adding nodes and edges, and

adding data also work for DataDiGraphs. The only difference is that the instantiation function is

called DataDiGraph and the edge order is maintained in the internal structure of the DataDiGraph.

2.3 Modeling Common Data Objects as DataGraphs

With the general mathematical formulation for the DataGraph defined, we next outline how specific

data objects (matrices, 3D tensors, symmetric matrices) can be represented using the graph abstraction

and how these can be implemented in PlasmoData.jl.Importantly, a benefit of representing matrices

and tensors as graphs is that graphs are modeling objects that do not live in a Euclidean space. As
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such, all that matters from a graph perspective is connectivity (not location of nodes and edges in

space). As such, a graph object is not affected by rotations (matrices are). This property is quite useful

when processing images/video and also when processing data objects from molecular simulations (in

which nodes move randomly in space) [34]. Thus the approaches in this section could be applied to a

variety of problems in different fields.

2.3.1 Matrices as a Node-Weighted Graphs

We can represent a matrix M ∈ Rp×q (where p and q are positive integers) as a node-weighted graph

with a mesh structure [19, 35], and we can express the resulting graph using the DataGraph abstraction.

We use the notation mi,j ∈ R for the matrix entry at row i and column j. For convenience, we define

the integer set Nk := {1, 2, ..., k}. To represent the matrix as a graph, we define a node, n∗, for every

matrix entry and place edges between all adjacent entries of the matrix. On each node, mi,j is stored

as the node data. As there is a single weight in each node, we define the attribute set as AN = {a}
(a singleton). Mathematically, this is represented with the DataGraph abstraction as:

DG(N , E , A,dN , ∅, ∅,AN , ∅, ∅)
where N = {ni,j : i ∈ Np, j ∈ Nq}

E = {(ni,j , ni+1,j) : i ∈ Np−1, j ∈ Nq} ∪ {(ni,j , ni,j+1) : i ∈ Np, j ∈ Nq−1}
AN = {a}
dNa (ni,j) = mi,j , i ∈ Np, j ∈ Nq

(5)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by E . An alter-

native structure can also be constructed by also adding edges between diagonal elements of the matrix

[36]. In this case, the set of edges becomes E = {(ni,j , ni+1,j) : i ∈ Np−1, j ∈ Nq} ∪ {(ni,j , ni,j+1) : i ∈
Np, j ∈ Nq−1} ∪ {(ni,j , ni+1,j+1) : i ∈ Np−1, j ∈ Nq−1} ∪ {(ni,j+1, ni+1,j) : i ∈ Np−1, j ∈ Nq−1}.

PlasmoData.jl facilitates the representation of matrices as graphs. Code Snippet 2 shows how

a PlasmoData.DataGraph object can be constructed automatically by calling the matrix to graph

function. Any matrix containing real numbers can be passed to this function. The boolean keyword

argument diagonal can be passed to identify whether the diagonal edges should be included in the

graph. The resulting graphs can also be visualized using PlasmoDataPlots.jl. In Line 11, nodes

are given a fixed position (stored in the node data of the PlasmoData.DataGraph) for visualization.

In Lines 14 - 21, the graph containing diagonals is plotted, where the weight data from the original

matrix is used for coloring the nodes (see Line 19). Figure 4 visualizes the alternative representations.

Because matrices themselves are a general abstraction for representing data, PlasmoData.DataGraph

can be applied to many application. For instance, multivariate time series and grayscale images can

be represented as matrices (and thus as graphs) [37, 38, 39].

2.3.2 3D Tensors as Node-Weighted Graphs

Below we outline how a 3D tensor can be represented as a graph. While tensors are not restricted

to be 3D, when we refer to tensors in this work, we will be referring to 3D tensors unless otherwise
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Code Snippet 2: Example of representing a matrix as a PlasmoData.DataGraph

1 using PlasmoData, Random, PlasmoDataPlots
2
3 Random.seed!(15)
4 random_matrix = rand(12, 12)
5
6 # Convert matrix to node−weighted graph
7 matrix_graph_diags = matrix_to_graph(random_matrix; diagonal = true)
8 matrix_graph_no_diags = matrix_to_graph(random_matrix; diagonal = false)
9

10 # Fix the node positions
11 set_matrix_node_positions!(matrix_graph_diags, random_matrix)
12
13 # Plot the graph
14 plot_graph(
15 matrix_graph_diags,
16 nodesize = 12,
17 linewidth = 5,
18 nodecolor = :grays,
19 node_z = get_node_data(matrix_graph_diags, "weight"),
20 rev = true,
21 )

random_matrix

matrix_graph_no_diags

matrix_graph_diags

Figure 4: Visualization of graph representations of a matrix. The top graph corresponds

to the matrix graph no diags PlasmoData.DataGraph object from Code Snippet 2, and

the lower graph corresponds to the matrix graph diags PlasmoData.DataGraph object

from Code Snippet 2 and is the output of the code snippet. Matrix entries are represented

by nodes with the matrix entry values stored as data on each node
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noted. Any tensor T ∈ Rp×q×r (where p, q, and r are positive integers) can be represented as a node-

weighted graph. There are at least a couple of methods for how to represent T . The first approach

is to construct a node-weighted mesh following the description outlined in Section 2.3.1 based on the

first couple of dimensions of T (i.e., the mesh structure will be p × q). The third dimension is then

represented as a vector of weights attached to every element of the mesh (with r = |AN |). This can

be used, for instance, to represent color images (which have different color channels). In addition, we

use the notation ti,j,k for the tensor entry, where i, j, and k are the entries in the first, second, and

third dimensions, respectively. Under the DataGraph abstraction, this has the form:

DG(N , E , A,dN , ∅, ∅,AN , ∅, ∅)
where N = {ni,j : i ∈ Np, j ∈ Nq}

E = {(ni,j , ni+1,j) : i ∈ Np−1, j ∈ Nq} ∪ {(ni,j , ni,j+1) : i ∈ Np, j ∈ Nq−1}
AN = {a1, a2, ..., ar}
dNak(ni,j) = ti,j,k, i ∈ Np, j ∈ Nq, k ∈ Nr

(6)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by E . As with

the matrix form in Section 2.3.1, edges can also be placed between the entries that are diagonal to

one another in the mesh structure.

Alternatively, each tensor entry can be represented by a node with each node/entry connected to

the adjacent nodes/entries (similar to the mesh structure, but now across a third dimension). The

value of each tensor entry is then embedded in the corresponding node, so each node only contains

one node weight. Under the DataGraph abstraction, this has the form:

DG(N , E , A,dN , ∅, ∅,AN , ∅, ∅)
where N = {ni,j,k : i ∈ Np, j ∈ Nq, k ∈ Nr}

E = {(ni,j,k, ni+1,j,k) : i ∈ Np−1, j ∈ Nq, k ∈ Nr} ∪ {(ni,j,k, ni,j+1,k) :

i ∈ Np, j ∈ Nq−1, k ∈ Nr} ∪ {(ni,j,k, ni,j,k+1) : i ∈ Np, j ∈ Nq, k ∈ Nr−1}
AN = {a}
dNa (ni,j,k) = ti,j,k, i ∈ Np, j ∈ Nq, k ∈ Nr

(7)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by E . While (7)

is defined for 3D tensors, it could easily be extended to higher-order tensors.

PlasmoData.jl facilitates both of the representations discussed. In Code Snippet 3, the random

tensor can be formed into the mesh structure discussed in Section 2.3.1 by calling the matrix to graph

function (Line 7). This function recognizes that this is a 3D array and creates the mesh structure

based on the first two dimensions. The third dimension are the weights on each node. The default

name for these weights is the string "weight" with a number (e.g., "weight1", "weight2"), but a

user can define their own names for the attributes in AN . Alternatively, the user can call the function
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tensor to graph (Line 10) which performs the second method discussed above. These graphs can

be visualized using PlasmoDataPlots.jl as before (Lines 13 - 20). In this case, the node locations

are determined automatically within PlasmoDataPlots.jl through the NetworkLayout.jl package.

A visualization of the methods in the code snippet is presented in Figure 5. Note that at this time,

PlasmoData.jl only automates representing 3D tensors as graphs and not higher-order tensors.

Code Snippet 3: Example of representing a tensor as a PlasmoData.DataGraph using two differ-

ent approaches

1 using PlasmoData, Random, PlasmoDataPlots
2
3 Random.seed!(15)
4 random_tensor = rand(4, 5, 6)
5
6 # Convert the tensor to a node weighted graph with 4 x 5 nodes
7 tensor_graph_2d = matrix_to_graph(random_tensor; diagonal = true)
8
9 # Convert the tensor to a node weighted graph 4 x 5 x 6 nodes

10 tensor_graph_3d = tensor_to_graph(random_tensor)
11
12 # Plot the graph
13 plot_graph(
14 tensor_graph_3d,
15 nodesize = 8,
16 linewidth = 4,
17 nodecolor = :grays,
18 node_z = get_node_data(tensor_graph_3d, "weight"),
19 rev = true,
20 )

The above graph representations are flexible and can be applied to many types of datasets. For

example, videos or space-time data can be represented as a tensor (i.e., a 2D field that changes over

a third dimension of time) and data embedded in a 3D space (e.g., temperature in a room) can be

stored as a tensor. Color images (e.g., RGB or hyperspectral images) can also be represented as a

tensor, where the third dimension corresponds to the light intensity of different color channels.

2.3.3 Symmetric Matrices as Edge-Weighted Graphs

While any matrix can be represented as a node-weighted graph, a symmetric matrix S ∈ Rp×p (e.g., a

correlation matrix) can also be represented as an edge-weighted graph. We will use the notation si,j

for the entry of the ith row and jth column of S. In this case, si,j is the edge weight between node i

and node j. Under the DataGraph abstraction, this has the form:

DG(N , E , A, ∅,dE , ∅, ∅,AE , ∅)
where {ni : i ∈ Np}

E = {(ni, nj) : i ∈ Np−1, j ∈ Np \ Ni}
AE = {a}
dEa((ni, nj)) = si,j , i ∈ Np−1, j ∈ Np \ Ni

(8)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by E .
PlasmoData.jl also facilitates this symmetric matrix graph representation. The implementation

for this representation is shown in Code Snippet 4. The symmetric matrix is passed to the function
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tensor_graph_3d

tensor_graph_2d

random_tensor
x

y

z

z

y
x

x

y

z

Figure 5: Visualization of graph representations of a tensor. The upper graph corresponds

to the tensor graph 2d PlasmoData.DataGraph object from Code Snippet 3, and the

lower graph corresponds to the tensor graph 3d PlasmoData.DataGraph object from

Code Snippet 3
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symmetric matrix to graph (Line 10) which forms the edge weighted PlasmoData.DataGraph. The

visualization of this is shown in Figure 6. The PlasmoData.DataGraph can also be visualized us-

ing PlasmoDataPlots.jl, where we first set the node positions using set circle node positions!,

which provides the circular structure shown in Figure 6. The graph is visualized with the plot graph

function (Lines 16 - 23), where we color edges based on the edge weight through the line z argument

and the get edge data API from PlasmoData.jl (Line 22).

Code Snippet 4: Example of representing a symmetric matrix as a PlasmoData.DataGraph

1 using PlasmoData, Random, PlasmoDataPlots, LinearAlgebra
2
3 # Create symmetric matrix
4 Random.seed!(5)
5 random_matrix = rand(6, 6)
6 symmetric_matrix = (random_matrix .+ random_matrix’) / 2
7 symmetric_matrix[diagind(symmetric_matrix)] .= 1
8
9 # Convert symmetric matrix to edge weighted graph

10 symmetric_matrix_graph = symmetric_matrix_to_graph(symmetric_matrix)
11
12 # Set node positions
13 set_circle_node_positions!(symmetric_matrix_graph)
14
15 # Plot the graph
16 plot_graph(
17 symmetric_matrix_graph,
18 nodesize = 12,
19 nodecolor = "gray",
20 linewidth = 5,
21 linecolor = :binary,
22 line_z = get_edge_data(symmetric_matrix_graph, "weight"),
23 )

symmetric_matrix symmetric_matrix_graph

n1

n2

n3

n4

n5

n6

n1 n2 n3 n4 n5 n6

n1n2

n3

n4 n5

n6

Figure 6: Visualization of a graph representation of a symmetric matrix where the graph

corresponds to the symmetric matrix graph PlasmoData.DataGraph object from Code

Snippet 4. Values of matrix entries are stored as data on the edges of the graph

Data is also commonly found directly as symmetric matrices and the above approach has been
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used for different analyses in literature [8, 9, 13, 19]. For instance, symmetric matrices include cor-

relation/covariance matrices (e.g., from a time series), Hessian matrices, or a matrix of distances.

The representation of symmetric matrices as graphs can be useful in extracting connectivity informa-

tion from covariance/correlation matrices, which cannot be extracted using traditional tools such as

eigenvalue decompositions(e.g., principal component analysis-PCA).

3 Data Analysis using the DataGraph Abstraction

Modeling data as graphs enable the use of tools for processing, manipulating, and analyzing the data.

In this section, we highlight how the graph structure can be manipulated to reveal hidden aspects and

reduce dimensionality. In addition, we provide an introduction to tools of topological data analysis

(TDA) that can be used to extract information from the data model. Finally, we discuss some of the

limitations of graph representations.

3.1 Structure Manipulation

Graph structures can be manipulated by filtering out (eliminating) nodes/edges based on data encoded

on them or by aggregating sets of nodes. These processes can help reduce the data and can provide

valuable insight into the data.

3.1.1 Node and Edge Removal

Perhaps the simplest form of structure manipulation is removal of a single node or edge. To formalize

this process for the DataGraph model, we define the following operations:

Definition 3.1 (Node-Removal Function fN
rem). For a DataGraph, DG

(
N , E , A,dN ,dE ,dG ,AN ,AE ,AG

)
where G is the set of all possible DataGraphs and V is the set of all possible nodes, the node-removal

function fN : (G,V) → G is defined

fN
rem

(
DG, nrem

)
= DGr

(
Nr, Er, Ar,d

N
r ,dE

r ,d
G ,AN ,AE ,AG

)
where Nr = N \ {nrem}

Er = {(ni, nj) : ni ∈ Nr, nj ∈ Nr, (ni, nj) ∈ E}
dN
r (n) = dN (n), n ∈ Nr

dE
r (e) = dE(e), e ∈ Er

(9)

where nrem ∈ N is the node removed and Ar is the adjacency matrix for the new set of edges Er.

Definition 3.2 (Edge-Removal Function fE
rem). For a DataGraph, DG

(
N , E , A,dN ,dE ,dG ,AN ,AE ,AG

)
where E is the set of possible edges, the edge-removal function fE

rem : (G,E) → G is defined such that

fE
rem

(
DG, erem

)
= DGr

(
N , Er, Ar,d

N ,dE
r ,d

G ,AN ,AE ,AG
)

where Er = Er \ {erem}
dE
r (e) = dE(e), e ∈ Er

(10)

where erem ∈ E is the edge to be removed, and Ar is the adjacency matrix for the new set of edges Er.
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The node- and edge-removal functions are simple operations but form the basis of more complex

operations that manipulate the graph structure. They also provide a basis for different analysis, such

as analyzing the topology of a graph after the removal of a node or edge. The node- and edge-removal

functions are implemented in PlasmoData as functions remove node! and remove edge!.

3.1.2 Graph Filtration

Filtering out nodes or edges of a graph involves removing nodes or edges whose data does not meet

specified (logical) criteria. We formalize the filtration process for DataGraphs by defining the following:

Definition 3.3 (Node-Filtration Function fN ). For a DataGraph, DG
(
N , E , A,dN ,dE ,dG ,AN ,AE ,AG

)
,

containing a set of node attributes, AN , such that dN ̸= ∅, and where G is the set of all possible

DataGraphs and L is the set of all logic sets, the node-filtration function fN : (G,L) → G is defined

fN
(
DG,L

)
= DGf

(
Nf , Ef , Af ,d

N
f ,dE

f ,d
G ,AN ,AE ,AG

)
where Nf = {n : dN (n) ∈ L, n ∈ N}

Ef = {(ni, nj) : (ni, nj) ∈ E , ni ∈ Nf , nj ∈ Nf}
dN
f (n) = dN (n), n ∈ Nf

dE
f (e) = dE(e), e ∈ Ef

(11)

for the logic set L, where Af is the adjacency matrix for the edge set Ef .

Definition 3.4 (Edge-Filtration Function fE). For a DataGraph, DG
(
N , E , A,dN ,dE ,dG ,AN ,AE ,AG

)
,

containing a set of edge attributes, AE , such that dE ̸= ∅, the edge-filtration function fE : (G,L) → G
is defined such that

fE(DG,L) = DGf

(
N , Ef , Afd

N ,dE
f ,d

G ,AN ,AE ,AG
)

where Ef = {e : dE(e) ∈ L, e ∈ E}
dE
f (e) = dE(e), e ∈ E

(12)

for the logic set L, where Af is the adjacency matrix for the edge set Ef .

Here, we refer to a “logic set”, L, as a set of data corresponding to the data and attributes on nodes

or edges of the graph. For a set of attributes {a1, a2, ..., ar}, we use the notation

L =



a1 : Z1

a2 : Z2

...
...

ar : Zr

where a1 : A1 indicates that the set Z1 ⊆ Da1 is used for comparing the data of attribute a1. As the

data on the nodes, edges, or graph can be of many forms, L can span multiple attributes and take

many different shapes. Filtration is often applied to scalar weights (e.g., filtering out all nodes whose

weight is less than some threshold value); however, filtration can be much more general than the scalar
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weight case. For example, the data attached to nodes could be text, matrices, or even an optimization

model; as such, the filtration can be performed by using logic defined to attributes of the data (e.g.,

filtering out any optimization problems that are “nonlinear” or “unconstrained”). In addition, we

note that edge-filtrations do not alter the nodes or the node data while the node-filtrations can result

in edges being removed when nodes are filtered out.

The above node- and edge-filtrations are implemented in PlasmoData.jl as shown in Code Snip-

pet 5 and visualized in Figure 7. The graph defined on Line 6 can be filtered by calling the func-

tion filter nodes (the software implementation of fN ). This function takes arguments of the

PlasmoData.DataGraph, a threshold value (often used in the filter function), the attribute name,

and an optional keyword argument fn, which is the filter function used for the filtration. Note that

all nodes where the filter function, fn, does not return true are filtered out. On Line 9, we filter out

all nodes whose “weight” attribute is less than 0.7 through the Base.isless function. On Lines 11 -

13, we define our own function for filtration called extreme vals, which we pass to filter nodes on

Line 16 and which filters out all values that are not less than 0.2 or greater than 0.8. This highlights

how user-defined functions can be used to filter out a graph. On Line 19, we add random weights to

all the edges in the graph (note that add edge dataset! has a similar function as add edge data,

but instead adds data of a single attribute to multiple edges, whereas the latter function only adds

data to a single edge). Once data is defined on the edges, we can likewise perform filtrations based on

the edge data, as shown on lines 22 and 25 where we now call filter edges (the software implemen-

tation of fE). This function behaves similarly to filter nodes, but now operates on the edge data

rather than the node data. All arguments are the same for these functions, except that filter edges

requires an attribute defined on the edges rather than on the nodes. While these functions are shown

for PlasmoData.DataGraphs, they also apply for PlasmoData.DataDiGraphs.

Code Snippet 5: Example of filtering a PlasmoData.DataGraph by node or edge data

1 using PlasmoData, Random
2
3 Random.seed!(15)
4 random_matrix = rand(12, 12)
5
6 matrix_graph = matrix_to_graph(random_matrix; diagonal = true)
7
8 # Filter out/remove nodes with weight >= 0.7
9 filter_nodes_graph1 = filter_nodes(matrix_graph, 0.7, "weight", fn = Base.isless)

10
11 function extreme_vals(a, b)
12 return ((a <= .2) || a >= .8)
13 end
14
15 # Filter out/remove nodes with weight >= 0.2 and <= 0.8
16 filter_nodes_graph2 = filter_nodes(matrix_graph, nothing, "weight", fn = extreme_vals)
17
18 n_edges = length(matrix_graph.edges)
19 add_edge_dataset!(matrix_graph, rand(n_edges), "weight")
20
21 # Filter out/remove edges with weight <= 0.8
22 filter_edges_graph1 = filter_edges(matrix_graph, 0.8, "weight", fn = Base.isgreater)
23
24 # Filter out/remove edges with weight >= 0.5
25 filter_edges_graph2 = filter_edges(matrix_graph, 0.5, "weight", fn = Base.isless)
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matrix_graph

matrix_graph

filter_nodes_graph1 filter_nodes_graph2

filter_edges_graph2filter_edges_graph1

Figure 7: Visualization of different examples of node or edge filtration associated with

Code Snippet 5, where different logic sets are used for removing nodes or edges of the

graph
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3.1.3 Graph Aggregation

Aggregation is a useful structural manipulation that can help reduce the dimensionality of the graph

and enable scalable analysis. Graph aggregation is also often referred to as coarsening. For a

DataGraph DG(N , E , A,dN ,dE ,dG ,AN ,AE ,AG), aggregation combines a subset of nodes N̄ ⊆ N
into a new node, nagg. This aggregation can also require aggregation of node and/or edge data. We

formalize the aggregation process for DataGraphs by defining the following:

Definition 3.5 (Aggregation Function f+). For an undirected DataGraph

DG
(
N , E , A,dN ,dE ,dG ,AN ,AE ,AG

)
and a subset of nodes to be aggregated, N̄ ∈ N , the aggregation

function collapses the node set into a single new node and aggregates node and edge data where

applicable. The aggregation function f+ : (G,V,F,F) → G (where V is the set of all possible nodes

and F is the set of all possible functions for aggregating sets of node or edge data) is defined as

f+(DG,N ′, fN
+ , fE

+) = DGagg

(
Nagg, Eagg, Aagg,d

N
agg,d

E
agg,d

G ,AN ,AE ,AG
)

where Nagg = {nagg} ∪ N \ N̄
Ēagg = {(ni, nagg) : ni ∈ N \ N̄ , nj ∈ N̄ , (ni, nj) ∈ E ∨ (nj , ni) ∈ E}
Eagg = {(ni, nj) : ni ̸∈ N̄ , nj ̸∈ N̄ , (ni, nj) ∈ E} ∪ Ēagg
dN
agg(n) = dN (n), n ∈ N \ N̄

dN
agg(nagg) = fN

+ (dN , N̄ )

dE
agg(e) = dE(e), e ∈ {(ni, nj) : (ni, nj) ∈ E , ni ̸∈ N̄ , nj ̸∈ N̄ }

dE
agg((ni, nagg)) = fE

+

(
dE , {(ni, nj) : nj ∈ N̄ , (ni, nj) ∈ E}∪

{(nj , ni) : nj ∈ N̄ , (nj , ni) ∈ E}
)

(ni, nagg),∈ Ēagg

(13)

where fN
+ is a function that aggregates node data in dN for nodes N̄ into node data for a single node

(nagg) and fE
+ is a function that aggregates edge data in dE for the set of edges being passed to the

function, and Aagg is the adjacency matrix for edge set Eagg.

In the above definition, we introduce two new functions, fN
+ and fE

+. These functions can take

many forms because of the variety of data that can be stored on the nodes and edges. In addition, the

function for aggregating edge data, fE
+, is only needed when there are multiple nodes in N̄ connected

to some node in N \ N̄ ; in this case, there are multiple edges that will be replaced by a single edge

for undirected graphs. We also note that the aggregation function for directed graphs is different

because the order of the edges will matter; consequently, rather than the function fE
+ acting on the

combined set of edges {(ni, nj) : nj ∈ N̄ , (ni, nj) ∈ E} and {(nj , ni) : nj ∈ N̄ , (nj , ni) ∈ E}, the func-

tion could need to be applied to multiple, independent sets. In addition, the set Ē would need to be

expanded to consider the edges where nagg could be the source node (not just the destination) for an

aggregated edge. For both directed and undirected graphs, fN
+ and fE

+ must be permutation invariant.

PlasmoData.jl implements aggregation for graph objects, as shown in Code Snippet 6 and Figure

8. Here, a node set is defined in Line 9, and the node set is aggregated in line 12 using the function

aggregate. The default for aggregating node data or edge data is to average the values of the data for
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each attribute, but one can also use, for instance, a max operator (as done in graph neural networks).

The user can use these different functions by passing the function to the key word arguments node fn

and edge fn.

Code Snippet 6: Example of aggregating a set of nodes in a PlasmoData.DataGraph

1 using PlasmoData, Random
2
3 Random.seed!(15)
4 random_matrix = rand(12, 12)
5
6 matrix_graph = matrix_to_graph(random_matrix; diagonal = true)
7
8 # Define nodes to be aggregated
9 nodes_for_aggregation = [(3, 7), (3, 8), (3, 9), (4, 7), (4, 8)]

10
11 # Aggregate nodes in the graph
12 aggregated_graph = aggregate(matrix_graph, nodes_for_aggregation, "agg_node")

matrix_graph aggregated_graph

Figure 8: Visualization associated with Code Snippet 6 where a subset of nodes is aggre-

gated into a single new node with the node weights on the aggregated node averaged to

get a new node weight for the new node

There is an extension of (13) that could be considered. Under (13), any data on the edges between

nodes in N̄ is lost, but such data could be important in different applications. We could extend

(13) by defining a function fE→N
+ that reduces dE(e), e ∈ {(ni, nj) : (ni, nj) ∈ E , ni ∈ N̄ , nj ∈ N̄}

into new data on nagg for an additional set of attributes, AE→N . Such attributes would not be

restricted to be in either AN or AE . This would result in a slightly different DataGraph such that

DGagg

(
Nagg, Eagg, Aagg,d

N
agg,d

E
agg,d

G ,AN ∪AE→N ,AE ,AG
)
, where dN

agg now contains additional data

for AE→N . PlasmoData.jl does not (yet) support this extension, so we have restricted (13) to follow

the implementation of PlasmoData.jl, but this could be an area of future work.

note that aggregation here refers to reducing the number of nodes in the graph and requires a

defined set of nodes to be aggregated. The definition for fN+ and fE+ must be permutation invariant;

in addition,
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3.2 Graph Structural Analysis

We now discuss different tools for analyzing and quantifying the structure of the DataGraph model,

such as Topological Data Analysis (TDA) and community detection. The implementation of these

procedures (or interfacing to software that conducts these procedures) is greatly facilitated by the

proposed graph abstraction. These procedures can also be combined with machine learning tools to

enable supervised and unsupervised learning tasks (e.g., for classifying and clustering graphs or for

predicting emerging properties from graphs). In addition, these graph analysis tools are often en-

hanced by the ability to manipulate the graph structure as discussed above.

Community detection and clustering in graphs focuses on how to identify organization within a

graph, typically by identifying communities/clusters of nodes that have several connections within

that grouping but relatively few connections to nodes outside of the grouping [40, 41]. Community

detection has been applied to a variety of problems including optimization programs represented as

graphs [42, 43], biological networks [44], and fraud detection [45]. Identifying communities can give

insight into the data. In addition, there are numerous algorithms for identifying communities [41],

and different algorithms will identify different communities. Some of these algorithms (such as clique

percolation [46], label propagation [47], or Newman’s modularity [48]) are already implemented within

the Graphs.jl package and are thus are easily accessible by PlasmoData.jl.

TDA is a growing field in data science that develops tools for analyzing and quantifying the

shape/structure of data objects [49, 50, 51, 52]. Graphs are topologically invariant objects that can

be approached through the lens of TDA. Many data objects may not have an inherent topology in

their mathematical definition (e.g., matrices); modeling these types of data as graphs enables TDA

applications that otherwise might not be possible. Many TDA tools can also be combined with the

structural manipulation based on data (e.g., graph filtration) to elucidate further insights into the

data. We now outline several TDA concepts and tools that can be used to analyze and quantify the

shape/structure of graphs.

3.2.1 Graph Connectivity

There are several general metrics/descriptors describing graph connectivity which could be considered

within TDA. These descriptors could be used to help describe a graph, or they could be used in

combination with the structure manipulation (e.g., analyzing these metrics after performing filtration).

A few of these descriptors include:

• Paths - In graphs, a walk is a way for moving from one node to another node (via edges), and a

path is a walk in which no node appears more than once [53]. There are existing algorithms for

finding the shortest path between a couple of nodes or for finding whether nodes are connected.

The paths in a graph could yield information about the graph and its data. For example, paths

are frequently used for analyzing biological systems [54, 55, 56]. As a further example, in a

supply chain problem, we may be interested in finding paths (or the number of paths) between
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raw materials and products (see for example [57, 58]), as well as how those paths change if nodes

or edges are filtered out. In addition, we may generally be interested in how the length of the

shortest path between two nodes changes as the graph topology changes (e.g., via filtration).

PlasmoData.jl provides functions for analyzing paths by extending functions within Graphs.jl,

such as the has path or get path functions.

• Cycles - A cycle is a walk which starts and ends at the same node using entirely distinct edges.

Cycles are used in many graph analyses, including construction [59] and electrical networks

[60, 61, 62]. The number of cycles or length of cycles could be used in analyzing data represented

as graphs. The function cycle basis is extended from Graphs.jl for PlasmoData.DataGraphs.

• Connected Components - Connected components are sets of nodes that are all connected

via paths. The number of connected components can describe how “connected” a graph may

be, and this metric could give insight into how connected or separated the data may be. The

function connected components is extended from Graphs.jl for PlasmoData.DataGraphs.

• Node Degree - The node degree is the number of nodes a node is connected to (i.e., the number

of neighbors of a given node). The average node degree can also be computed for an entire graph.

This metric has been used in node ranking [63] and sensor analysis [64, 65].

• Diameter - The diameter of a graph is the length of the shortest path connecting the most

distanced nodes (i.e., the maximum shortest path length for any two nodes in a graph). This

metric also provides an idea of the “connectedness” of the data, and it has been used in analyzing

the degree of separation for different entities [66]. The function diameter is extended from

Graphs.jl for PlasmoData.DataGraphs.

The above metrics can yield important insights into data. These metrics may also change after

filtration/aggregation of nodes and edges, which could likewise elucidate information about the dataset

(e.g., aggregating a graph can help uncover features that are not apparent when dealing with the

full-resolution graph). The DataGraph abstraction therefore provides a framework for obtaining to

topological descriptors.

3.2.2 Euler Characteristic

The EC is a valuable descriptor for topological objects, including graphs. The EC is a scalar integer

value that summarizes the shape of a topological space [19, 67]. For a graph, this can be defined as

[19]:

X = # Connected Components−# Holes = |N | − |E| = β0 − β1 (14)

where βi are the ith betti numbers of the graph, the ”holes” are equivalent to cycles in the graph,

and | · | is the cardinality of the set. We will use the notation EC(DG) for the EC of a DataGraph

DG(N , E , A,dN ,dE ,dG ,AN ,AE ,AG).

The EC has also been combined with filtration of node- or edge-weighted graphs to create an EC

curve [19, 68]. The EC curve is formed by filtering out nodes and/or edges at different threshold values
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(e.g., removing all nodes with a weight value less than some threshold value) and computing the EC

for the filtered graph. The shape of the EC curve can give insight into how the shape of the data

changes with the filtration (e.g., where connected components dominate or where holes dominate). For

instance, the EC curve has been used for analysis of liquid crystal sensors and MD data [19, 68, 69].

In Section 4.1, we will show how the EC curve can be used in a classification model with real data.

For a DataGraph, we can generalize the EC curve for a filtration process for node filtration

as follows (edge filtration has a similar definition but for fE instead of fN ). For a DataGraph,

DG(N , E , A,dN ,dE ,dG ,AN ,AE ,AG), with AN ̸= ∅ and dN ̸= ∅, there exist a sequence of logic sets

L1,L2, ...,Lr such that the filtration forms a sequence of nested subgraphs given in (15) associated

with the logic sets, where DGLi = fN (DG,Li). For a graph to be considered a “nested subgraph” of

another graph, the nodes and edges of the “nested subgraph” must be subsets of the nodes and edges,

respectively, of the other graph.

DGL1 ⊆ DGL2 ⊆ ... ⊆ DGLr (15)

The EC curve can then be given by the vector (EC(DGL1), EC(DGL2), ..., EC(DGLr)). This ap-

proach for generating an EC curve is more general than the idea of using threshold values because

the DataGraph could include a variety of data types. In the case of single scalar node or edge

weights where all weights are in [0, 1], the logic sets could, for example, be a series of ranges such

as [0, 0.1], [0, 0.2], ..., [0, 1] (thus effectively filtering out all nodes with weights greater than a single

value). However, an EC curve of sorts could be generated for more complex data, such as consid-

ering data with multiple weights. For PlasmoData.DataGraphs with scalar data for each attribute,

computing the EC curve can be done with the functions run EC on nodes and run EC on edges.

4 Case Studies

We now provide case studies that highlight different applications and benefits of the DataGraph

abstraction. All scripts and data necessary to replicate the results in this section are available at

https://github.com/zavalab/JuliaBox/tree/master/PlasmoData_examples. These examples in-

clude image analysis (representing matrices and tensors as graphs), multivariate time series analysis

(representing symmetric matrices as graphs), and connectivity analysis (analyzing pathways within

graphs).

4.1 Image Analysis

We consider a case study arising in image classification and show how the DataGraph abstraction and

PlasmoData.jl help integrate with machine learning tools and facilitate feature extraction. We will

show how these images of surfaces can be analyzed by representing these images as 3D tensors the

representing these tensors using the DataGraph abstraction. We will show how we use PlasmoData.jl

for extracting features from this data and use those features to train a machine learning model. We

will also highlight how PlasmoData’s data structure can be employed for GNNs.

The images we consider are of chemoresponsive liquid crystals (LCs) which have garnered increased

interest because of their potential as sensors for gas contaminants [70, 71, 72]. LCs have been shown
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to elicit different, visible chemical responses to varying chemical environments as the LCs change their

orientation ordering [73, 74]. One of the challenges that naturally arises from these sensors is identify-

ing the chemical environment surrounding a LC based on the appearance of the LC’s surface. We are

therefore interested in being able to classify images of LCs based on the chemical environment into

which the LC has been placed. The dataset we consider are images of LCs exposed to four different

concentrations of sulfur dioxide (SO2): 0.5, 1.0, 2.0, and 5.0 ppm (i.e., four classes of images corre-

sponding to each concentration). Each image is 134×134 pixels, and there are 72 images in each class

(288 total). Examples of images from each class can be seen in Figure 9 [69, 73].

0.5 ppm SO2 1.0 ppm SO2 2.0 ppm SO2 5.0 ppm SO2

Figure 9: Images of LCs exposed to gaseous environments with different concentrations of

SO2 [69, 73]

4.1.1 Classification using TDA and SVMs

To classify these images, we will represent these images as tensors and then each tensor as a graph. Each

of the 288 images can be treated as a tensor, T ∈ [0, 1]134×134×3. Under the DataGraph abstraction, we

can represent the ith tensor as a graph with (16) using the first method shown in Section 2.3.2, where

the third dimension of the tensor represents the red, green, and blue channels of the pixel intensity

and where tj,k,l is the j, k, l entry of T .
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DGi(N , E , A,dN , ∅, ∅,AN , ∅, ∅)
where N = {nj,k : j ∈ N134, k ∈ N134}

E = {(nj,k, nj+1,k) : j ∈ N133, k ∈ N134} ∪ {(nj,k, nj,k+1) : j ∈ N134, k ∈ N133}∪
{(nj,k, nj+1,k+1) : j ∈ N133, k ∈ N133} ∪ {(nj,k+1, nj+1,k) : j ∈ N133, k ∈ N133}

AN = {ared, agreen, ablue}
dNared(nj,k) = tj,k,1, j ∈ N134, k ∈ N134

dNagreen(nj,k) = tj,k,2, j ∈ N134, k ∈ N134

dNablue(nj,k) = tj,k,3, j ∈ N134, k ∈ N134

(16)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by E .
With the DataGraph, DGi, defined for each image, we can generate an EC curve (or a set of EC

curves) for the graph. We will generate an EC curve for the data for each attribute in AN . Because

we have scalar weights, we will filter the nodes by removing nodes that are greater than a threshold

value, and we will do this for a series of threshold values. Under the formulation given in Section 3.2.2,

we can define a sequence of logic sets for the data corresponding to each attribute in AN such that

Lj,ared =


ared : [0, (j − 1)× 0.005]

agreen : [0, 1]

ablue : [0, 1]

, j ∈ N201

Lj,agreen =


ared : [0, 1]

agreen : [0, (j − 1)× 0.005]

ablue : [0, 1]

, j ∈ N201

Lj,ablue =


ared : [0, 1]

agreen : [0, 1]

ablue : [0, (j − 1)× 0.005]

, j ∈ N201

One approach to classify these images is to feed a topological descriptor of the weighted graph

(e.g., the EC curve) to a machine learning model. We generate an EC curve for the ith image and for

each color channel, and we denote these curves for attribute (color channel) a as

X i,a = (EC(fN (DGi,L1,a)), EC(fN (DGi,L2,a)), ..., EC(fN (DGi,L201,a))).

To perform the classification for the ith image, we concatenate the EC curves X i,ared ,X i,agreen , and

X i,ablue into a vector X i and train a linear support vector machine (SVM) on sets of X i for i ∈ N288.

The code for performing the tasks of generating the graph representations, building the EC curves,

and training an SVM can be seen in Code Snippet 7. The data is in the format of a 4D array of size

(288, 134, 134, 3). The graph is formed by treating each pixel of the image (dimensions 2 and 3 of the
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array) as a node using PlasmoData.jl’s matrix to graph function (Line 17). The intensity values

for each RGB channel (dimension 4 of the array) are saved as weights on each node of the graph.

After each graph is formed, we then find the EC curve for each weight (channel) on the graph and

store this in the array so2 ECs (Lines 19 - 23). The three EC curves (one for each channel) are then

concatenated into a vector and used to train a linear SVM using 5-fold cross validation (CV) (Lines

29 - 49).

Code Snippet 7: Classifying images from the EC using SVMs

1 using PlasmoData, JLD, MLUtils, LIBSVM
2
3 ### Construct matrices as graphs and get EC curves ###
4
5 # Load in the SO2 data; so2 data is size (288, 134, 134, 3)
6 so2_data = load("so2_data.jld")["data"]
7 so2_classes = load("so2_classes.jld")["classes"]
8
9 # Define threshold range for each EC curve

10 thresh = 0:.005:1
11
12 # Define a matrix for the EC curves; EC curves will be concatenated
13 so2_ECs = Array{Float64, 2}(undef, (length(thresh)*3, 288))
14
15 for i in 1:288
16 # Build a graph from a 3−D array (134 x 134 x 3)
17 mat_graph = matrix_to_graph(so2_data[i, :, :, :])
18
19 for j in 1:3
20 # Iterate through each channel and concatenate the EC curve
21 range_bounds = (1 + (j - 1) * length(thresh)):(j * length(thresh))
22 so2_ECs[range_bounds, i] = run_EC_on_nodes(mat_graph, thresh, "weight$j", false)
23 end
24 end
25
26 ### Perform 5 fold CV with SVMs on EC data ###
27
28 # shuffle data
29 Xs, ys = shuffleobs((so2_ECs, so2_classes))
30
31 # define a function for calculating accuracy
32 function get_accuracy(yhat, ytest)
33 num_errors = 0
34 for i in 1:length(yhat)
35 if yhat[i] != ytest[i]
36 num_errors += 1
37 end
38 end
39 return 1 - num_errors/length(yhat)
40 end
41
42 # Perform 5−fold CV
43 accuracy_values = []
44 for (train_data, val_data) in kfolds((Xs, ys); k = 5)
45 model = svmtrain(train_data[1], train_data[2], kernel = Kernel.Linear)
46 yhat, decision_values = svmpredict(model, val_data[1]
47 accuracy = get_accuracy(yhat, val_data[2])
48 push!(accuracy_values, accuracy)
49 end

The method can effectively classify these images in a reasonable time. The classification accuracy,

based on 5-fold CV, was 94.8% with a standard deviation of 2.1%. Running this script on an Intel(R)

Core i9-10885H (2.40GHz) processor on a single thread with Julia 1.7.3 resulted in a data processing

time (Lines 10 - 24) of 36.2 s and a 5-fold CV (Lines 29 - 49) time of 0.09 s. This is comparable to what
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Jiang and co-workers [69] found, where they had 87.5% accuracy from other topological methods that

took less time to process and train (∼ 14 s). For comparison, Jiang and co-workers [69] also trained

a convolutional neural network (CNN) for classifying these images, and the CNN was able to classify

with 95.1% accuracy while taking 154 seconds to train. Here, we do not aim to show superiority of

one method over another or provide a rigorous comparison in processing time but rather to provide a

general validation as to whether our methods yield reasonable results. In particular, our results sug-

gest that it is possible to obtain high accuracy while performing these operations in a competitive time.

We also note—as Jiang and co-workers [69] did in their study—that there are benefits to topo-

logical methods such as those we followed above. First, the linear SVM above had relatively few

parameters—each EC curve contained 201 points before concatenation, so there were only 603 param-

eters in the SVM. In contrast, CNNs can use high numbers of parameters (thousands to millions).

They also can be sensitive to rotation, whereas graphs are rotationally invariant (e.g., the EC curve

does not depend on the orientation of the graph). In addition, Jiang and co-workers [69] note that the

CNN in their study was trained on a GPU, whereas our above methods (and Jiang and co-workers

[69] TDA methods) functioned efficiently on a CPU.

A further benefit of TDA is that the results can be interpretable and potentially provide insight

into the data. For example, the EC curve can reveal how the topology of a graph is changing through-

out a filtration. For example, we show in Figure 10 an example of what the filtration looks like for

an example image from each class. In addition, the EC curves for the three different channels are

shown in Figure 11. In Figure 10, different topologies are evident at different filtration thresholds. For

example, the red channel of the 0.5 ppm SO2 class has several small, scattered holes throughout, and

its corresponding EC curve (Figure 11) is less steep than the 2.0 ppm SO2 class which exhibits larger

and fewer holes in the topology. The channels also exhibit slightly different topologies at different

filtration levels and can thus provide different information in differentiating the images. For example,

the average EC curves for the 0.5 and 5.0 ppm SO2 classes (Figure 11) are almost on top of each other

for most of the blue channel, whereas the two curves are more offset within the red channel.

The EC curve for each graph (and each channel) could provide insight into the image. Because the

EC of a graph is only the number of nodes minus the number of edges, the EC curve begins at the ori-

gin but can end far from the origin. In the case of images, the full graph (i.e., when nothing is filtered

out) has a large negative EC since the number of edges is much more than the number of nodes. Thus,

the EC curve of a graph tends to show when and how quickly edges and cycles begin to appear. For

example, in the case of images, if the filtration results mostly in nodes that are far apart, there are few

if any edges between them and the EC is more positive. In contrast, if the filtration results in groups

of clustered nodes, there are more edges connecting nodes and the EC is more negative. This helps

explain why the EC curves for the 0.5 ppm SO2 class tend to be more positive at a given threshold

value than the other classes (Figure 11) since, as can be seen in Figure 10, the filtration results in more

spread out, small clusters at the lower threshold values for the 0.5 ppm SO2 class than the other classes.
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Figure 10: Examples by class of graph filtrations at different threshold values. Each image

has a value corresponding to the RGB channels, and these channels result in different

topologies at the filtration thresholds. The EC curve captures these different topologies

across channels and across classes. Data comes from the work of Bao and co-workers [73]

and Jiang and co-workers [69]

The EC curves also reveal some minor differences across color channels, and this helps highlight

how the multiple node weights within a graph can be used for more effectively analyzing the data. If

only gray-scale images are used, the classification accuracy of these images is at least 10% lower (see

the Supporting Information). We can thus analyze our graph structure using different weights to gain

different information. One area that could particularly benefit from this approach is hyperspectral

imaging [75, 76]. In hyperspectral images, rather than recording only 3 channels of colors, each image

can contain several (10s - 100s) weights at each pixel corresponding to different wavelengths of light.

Thus, it is possible for each node of the graph to contain dozens or hundreds of weights that could be

analyzed. PlasmoData.jl is able to readily handle this type of data.

In this example, we have described how PlasmoData.jl can be used to combine TDA with machine

learning. There are more details that could be valuable on these topics which we include in the

supporting information, including i) a comparison of memory allocation between PlasmoData.jl,

Networkx, MetaGraphs.jl, and Matlab’s graph function for the image application; and ii) a brief

discussion of how the graph structure and data impact classification results. In the above example, if

gray-scale data is used instead of colored data (i.e., one weight instead of three weights are stored on

each node), the classification accuracy decreases.
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Figure 11: EC Curves for the RGB channels of four classes of images for LC data from

Bao and co-workers [73] and Jiang and co-workers [69]
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4.1.2 Classification using Graph Neural Networks

An alternative method to TDA+SVM for graph classification are convolutional GNNs. PlasmoData.jl

facilitates the implementation of this method and enables systematic comparisons with other ap-

proaches. Since the data for nodes and edges is stored as a matrix within the PlasmoData.DataGraph

(or DataDiGraph) structure, we can easily query this data to create the needed structure for GNNs.

In Code Snippet 8, we show how our data for the image classification can be easily transformed

into a format used by a GNN. In this example, we use the packages GraphNeuralNetworks.jl

[31] and Flux.jl [77]. After the data is loaded, we build the PlasmoData.DataGraph as before

from the image data (Line 12). The PlasmoData.DataGraph can then be passed to the GNNGraph

function from GraphNeuralNetworks.jl (Lines 13 - 16). This function takes as an argument a

Graphs.SimpleGraph (or Graphs.SimpleDiGraph) to provide the adjacency lists, and a matrix of

node and/or edge data. Since the PlasmoData.DataGraph stores a Graphs.SimpleGraph, this is read-

ily provided to the GNNGraph function. In addition, the node or edge data is provided by calling the

API function get node data (Line 15). The classes are also passed to Flux.onehotbatch (Line 21)

to provide a one hot encoded array that can be used by the GNN.

Code Snippet 8: Interfacing PlasmoData.jl with GNNs

1 using PlasmoData, JLD, Flux, GraphNeuralNetworks
2
3 function getdataset()
4 # Load in data
5 so2_data = load("so2_data.jld")["data"]
6 so2_classes = load("so2_classes.jld")["classes"]
7
8 GNN_graphs = []
9

10 # Create GNNGraph from DataGraph
11 for i in 1:288
12 mat_graph = matrix_to_graph(data[i, :, :, :])
13 gnn_graph = GraphNeuralNetworks.GNNGraph(
14 mat_graph.g,
15 ndata = get_node_data(mat_graph)’
16 )
17 push!(GNN_graphs, gnn_graph)
18 end
19
20 # One hot encode classes
21 y = Flux.onehotbatch(so2_classes, 1:4)
22
23 return GNN_graphs, y
24 end

With the data formatted as GNNGraphs, we can build a full GNN through GraphNeuralNetworks.jl.

We ran our script on an AMD EPYC 7302 16-core processor with access to a NVIDIA Quadro RTX

6000 GPU (used for training the GNN). Using the same 288 images as before, we were able to classify

the images with 89.2% accuracy with a standard deviation of 5.1% based on 5-fold CV. While the

time for data processing was short (3.8 s), the GNN did take a long time to train and perform CV

(947 s).

The ability to use PlasmoData.DataGraphs for GNNs is a powerful capability. This framework
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for building GNNs from PlasmoData.DataGraphs could be applied much more broadly than just to

images (e.g., molecular property prediction). The user has significant flexibility in constructing their

own graph data and using GNNs with that data, enabling application of PlasmoData.jl to a variety

of fields or use cases. For further details on constructing a GNNGraph from data using PlasmoData.jl,

see the Supporting Information.

4.2 Multivariate Time Series Analysis

In this example, we illustrate how multivariate time series can be represented as graphs, and we

highlight how the topology of this graph representation can provide interesting insights. Recently, de

Souza and co-workers [13] explored the use of TDA (and in particular the EC) as a potential tool for

data-driven surveillance of epidemic outbreaks. Specifically, they were interested in finding indicators

or fingerprints of when an outbreak is occurring (or likely to occur), and they based their efforts on

locally reported disease data and on simulated data. In their work, they constructed correlation matri-

ces as graphs, filtered these graphs, and looked at the resulting topology. They identified that there is

a strong correlation between the EC curve and epidemic outbreaks, and they suggest that TDA could

be used as a tool in disease surveillance. In this section, we will recreate some of their results using the

DataGraph abstraction and using PlasmoData.jl, and we will suggest some other topological metrics

that could be useful in analyzing datasets like these. In doing this, we emphasize that our purpose in

this example is to highlight how data can be modeled with graphs and how PlasmoData.jl facilitates

much of this analysis.

First, we highlight the general data and methodology of de Souza and co-workers [13], but point

the reader to their original paper to find an in depth explanation [13]. For this analysis, we will use

their data from Recife, Brazil of new daily dengue cases from 93 individual districts from 2014 - 2021

(Figure 12). For each seven-day moving window of data, they computed the Pearson correlation for

the 93 time series (one for each district) and then constructed the edge-weighted graph as outlined

earlier (see for example Figure 6). They then computed a characteristic threshold value (what they

call a critical percolation value) for this edge-weighted graph. This characteristic threshold value is

the maximum possible threshold value that does not change the number of connected components

from the number in the original graph when all edges with weights less than that threshold value are

removed. A visualization of a this process can be seen in Figure 13, where ℓ is the threshold value

used for filtration.

Note that, in computing the EC of the filtered graph, de Souza and co-workers use methods dif-

ferent from that discussed in this present work. Where we have only discussed computing the EC

for a graph (a 2D object), de Souza and co-workers [13] treat the filtered graph as a CW-complex.

CW-complexes are different than graphs, and involve the union of all d-cells in a graph (equivalently,

the union of all d-node or -vertex cliques; see [13, 78]). A d-cell or d-vertex clique is a subset of nodes

in a graph such that every node is connected by an edge to every other node in the subset (i.e., every

two nodes in the subset are adjacent). A detailed discussion of CW-complexes is outside the scope of

this paper; however, we mention this to highlight that the EC computed by de Souza and co-workers
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Figure 12: New dengue cases by week for 93 districts in Recife, Brazil based on data from

de Souza and co-workers [13]

7-Day Moving Window

Correlation Matrix Edge-Weighted Graph7-Day Time Series

... ...

DG(N , E , A, ∅,dE , ∅, ∅,AE , ∅)

|DG| = 21
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Figure 13: General procedure used by de Souza and co-workers [13]. For a 7-day moving

time window, they formed a (Pearson) correlation matrix and then constructed an edge

weighted graph. They then filtered out all edges and progressively added edges back

into the graph by changing the filtration threshold, ℓ, until the number of connected

components was equal to that of the original graph
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for CW-complexes is different than the EC we will show computed for a graph. Instead, their methods

for computing the EC involve finding all d-cells up to some dmax value. We will discuss later in this

subsection some of the implications of this difference.

We can represent the Pearson correlation matrix at each time point within the DataGraph abstrac-

tion, and we then can perform a similar analysis as de Souza and co-workers [13] on the DataGraph

within PlasmoData.jl. For the time series of data X ∈ Z2922×93
+ and X = [X1, X2, ..., X2922], we first

construct the Pearson correlation matrix Rt = corr([Xt−6, Xt−5, ..., Xt]) for each time t between 7 and

2922. Since Rt is a symmetric matrix, we can construct a DataGraph following the method outlined

in Section 2.3.3. The DataGraph for Rt is given in (17), where ri,j is the i, j entry of Rt.

DGt(N , E , A, ∅,dE , ∅, ∅,AE , ∅)
where {ni : i ∈ N93}

E = {(ni, nj) : i ∈ N92, j ∈ N93 \ Ni}
AE = {a}
dEa((ni, nj)) = ri,j , i ∈ N92, j ∈ N93 \ Ni

(17)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by E .

With the DataGraph defined, we can perform the analysis shown in Figure 13. The graph edges

are filtered using the logic set

Lt,ℓ =
{
a : [ℓ,max ({r : r ∈ Rt})]

for attribute a. We define the characteristic threshold value for time t to be

ϵt = sup{ϵ : |fN (DGt,Lt,ϵ)| = |DGt|}.

The value of ϵt can be found by setting ℓ in Lt,ℓ to be the largest edge weights and then progressively

choosing the next largest edge weights until |fN (DGt,Lt,ℓ)| = |DGt|. This process is repeated for

each time value. For each graph filtered by the characteristic threshold value, we can consider various

topological metrics like the EC or the number of communities.

We performed the above analysis in PlasmoData.jl, and we will show how the DataGraph ab-

straction can enable topological analysis of the dengue data. PlasmoData.jl readily facilitates the

process of building the graph, filtering the edges, and performing TDA. Code Snippet 9 shows how

these tasks can be implemented. First, the data for Recife, Brazil from de Souza and co-workers [13]

is loaded on line 4. This data are daily reported new cases of dengue outbreaks in each of 93 city

districts. We then define the function find smallest filtered graph on Lines 7 - 25 that will add

edges to the graph until the graph has only one connected componentent. The symmetric matrix for

building the graph is formed by computing the Pearson correlation matrix on Line 34. Because we

use a limited time window (7 days), some values in the matrix were not defined (i.e., NaN values). We

removed all rows/columns of the symmetric matrix that were NaN values (Lines 37 - 38), and used
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the resulting symmetric matrix to construct the edge weighted graph, DG (line 46) (this results in a

symmetric matrix with fewer than 93 nodes). We next define a sequence of values ℓ1, ℓ2, ..., ℓk which

are equal to the edge weights of the graph (dE
a) in descending order (see Line 10; non-unique values

are removed in the code). Once DGt is defined, we then iterate through the sequnce of edges weights

until |fN (DGt,Lt,ℓi)| = 1, where ℓi is the ith value in the sequence, and where ℓi = ϵt. Note that we

use |fN (DGt,Lt,ℓi)| = 1 rather than |fN (DGt,Lt,ℓi)| = |DGt| because we have removed the rows and

columns of the matrix which are not defined; this results in the edge-weighted PlasmoData.DataGraph

formed in line 15 having only one connected component.

Code Snippet 9: Code for converting time series data to an edge-weighted graph. The code follows the

general procedure of de Souza and co-workers [13] in filtering the graph

1 using PlasmoData, Graphs, DelimitedFiles
2
3 # Read in data
4 data = readdlm("Recife_data.csv", ’,’, Int)
5
6 # Define function for performing filtration
7 function find_smallest_filtered_graph(graph)
8
9 # Define values for iteration; this ensures that we only add one edge at a time

10 iter_values = sort(get_edge_data(graph)[:], rev = true)
11
12 for i in iter_values
13 # Filter out all edges below a given threshold
14 # Only keeps edges where Base.isgreater(edge weight, i) is true
15 filtered_graph = filter_edges(graph, i; fn = Base.isgreater)
16
17 # If the number of connected components is 1, return the TDA metrics
18 if length(connected_components(filtered_graph)) == 1
19 EC = get_EC(filtered_graph)
20 num_max_cliques = length(maximal_cliques(filtered_graph))
21 num_communities = length(clique_percolation(filtered_graph, k = 25))
22 return EC, num_max_cliques, num_communities
23 end
24 end
25 end
26
27 # Create array for storing solutions
28 ECs = zeros(size(data, 1) - 6)
29 num_max_cliques = zeros(size(data, 1) - 6)
30 num_communities = zeros(size(data, 1) - 6)
31
32 for i in 1:length(sols)
33 # Form a correlation matrix based on 7 days of data
34 cor_mat = cor(data[i:(i + 6), :], dims = 1)
35
36 # Remove the matrix entries that are NaNs
37 bit_vec = (!).(isnan.(cor_mat[:, 1]))
38 sym_mat = cor_mat[bit_vec, bit_vec]
39
40 # If there are not more than 2 nodes in the graph, skip this iteration
41 node_count = size(sym_mat, 1)
42 if node_count <= 2
43 continue
44 end
45
46 sym_graph = symmetric_matrix_to_graph(sym_mat)
47
48 ECs[i], num_max_cliques[i], num_communities[i] = find_smallest_filtered_graph(sym_graph)
49 end

With the filtered DataGraph defined, we can consider several topological metrics for analyzing our

data. The goal of de Souza and co-workers [13] was to identify ways of “fingerprinting” when disease
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outbreaks were occurring. They chose the EC as their primary indicator, and they showed how the

EC was able to help indicate when outbreaks were occurring, especially for larger dmax values. This

may be because the higher dmax values indicate when there are several nodes (districts) are closely

correlated. Consequently, we consider the EC of the graphs being formed, and then we also consider

the size of cliques in the graph and the number of communities in the graph. In graph theory, a

k-clique is a set of k nodes which are connected to all other nodes in the clique. We hypothesize that a

possible fingerprint for outbreaks may be when several nodes (districts) are closely correlated. Thus,

we compute the EC for comparison with de Souza and co-workers [13], we compute the total number

of maximal cliques in the graph (i.e, the total number of kmax-cliques in the graph, where kmax is the

largest integer value for which there is a nonempty set of nodes forming a kmax-clique in the graph)

and we compute the number of communities in the graph (found by clique percolation [46], with k =

25; see Lines 18 - 23). The results of these computations, as well as the average daily new cases during

each 7 day moving window, are shown in Figure 14.
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Figure 14: Results for TDA of dengue data for 93 districts in Recife, Brazil [13]. For each

7-day moving time window, an edge-weighted DataGraph was formed. Results presented

include the average number of new cases per day for the moving time window (a), the

EC for the DataGraph (b), the number of maximal cliques in the DataGraph (c), and the

number of communities in the DataGraph using clique percolation (k = 25) [46]

The results shown in Figure 14 are consistent with the results of de Souza and co-workers [13].
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As mentioned above, the EC we compute in the above code is for a graph, while de Souza and co-

workers [13] computed the EC for CW-complexes, where their computed EC was a function of dmax.

They used various dmax values up to 7, and found that the noise of the EC decreased with increasing

dmax. In this case, the EC in Figure 14 does contain significant noise (visually similar to that seen

for dmax = 2 and dmax = 3 of de Souza and co-workers’ [13] work). However, the trends are similar,

and we note that it is computationally much easier to compute the EC for a graph (i.e., number of

nodes minus number of edges) than to compute the EC for a CW-complex with larger dmax (where

each dmax-cell may have to be determined). In addition, the number of maximal cliques (Figure 14c)

and the number of communities (Figure 14d) also correlate to the average number of new cases per

day, and they appear slightly less noisy than the EC. A detailed analysis of these additional indicators

as fingerprints for disease outbreaks is outside the scope of this work; instead, our purpose in showing

these results is to highlight how the DataGraph abstraction and how PlasmoData.jl facilitates different

TDA approaches.

4.3 Connectivity Analysis

In this subsection, we present a technology pathway analysis example to illustrate how the DataGraph

abstraction and PlasmoData.jl can be used to navigate connectivity and provide insights into the

technology pathway. The technology pathway we consider has five raw materials (petroleum naph-

tha, natural gas, corn stover, sugar beets, and sugarcane) that can be used in technologies to pro-

duce seven different polymers (low density polyethylene (LDPE), high density polyethylene (HDPE),

polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET),

and Nylon66). There are 15 different intermediate chemicals produced and 27 different technologies

that can be used to produce different chemicals. Each of these raw materials, products, intermediates,

and technologies are represented by nodes. The interconnectivity of materials and technologies is

complex and difficult to navigate [79]. This type of connectivity also arises in complex, multi-product

supply chains [80].

Within the above technology pathway, different types of nodes have specific data attached to

them. For example, nodes can contain supply limitations, demands, costs, and carbon emissions,

and these will be saved as node data. This problem also contains connections between raw materials

and technologies, technologies and intermediates, intermediates and technologies, and technologies

and products which can all be represented by directed edges, forming a directed graph, with 57 total

edges. In addition, we also have flows that are represented as edge data. These flows are dependent

on the connections in the graph and on the data stored in the nodes (e.g., it depends on the cost of

technologies or the maximum available supply of the products).

The DataGraph for this technology pathway is a heterogenous graph and contains multiple at-

tributes for node and edge data. The DataGraph contains the set of 54 nodes and 57 directed edges

discussed above, which we notate here as N and E . There are four subsets of nodes, Nraw,Nprod,Nint,

and Ntech for the sets of raw materials, products, intermediates, and technologies, respectively, such
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that N = Nraw ∪ Nprod ∪ Nint ∪ Ntech. Each node stores data under different attributes indicating

whether the node is a raw material (araw), product (aprod), intermediate (aint), or technology (atech)

and data under different attributes for the raw material cost (acost), the CO2 emissions per weight

of material (aCO2), maximum raw material supply (asup), and maximum production demand (adem).

Each edge has data for the optimal flow of material along the edge under attribute aflow.

The DataGraph, DG, can be represented mathematically as:

DG(N , E , A,dN ,dE , ∅,AN ,AE , ∅)
where N = Nraw ∪Nprod ∪Nint ∪Ntech

AN = {araw, aprod, atech, acost, aCO2 , asup, adem}
AE = {aflow}
dNaraw(n) = 1, n ∈ Nraw, dNaraw = 0, n ∈ N \ Nraw

dNaprod(n) = 1, n ∈ Nprod, dNaprod = 0, n ∈ N \ Nprod

dNaint
(n) = 1, n ∈ Nint, dNaint

= 0, n ∈ N \ Nint

dNatech(n) = 1, n ∈ Ntech, dNatech = 0, n ∈ N \ Ntech

dNacost(n) = αcost(n), n ∈ Nraw ∪Ntech, dNacost = 0, n ∈ Nprod ∪Nint

dNaCO2
(n) = αCO2(n), n ∈ Nraw ∪Ntech, dNaCO2

(n) = 0, n ∈ Nprod ∪Nint

dNasup(n) = αsup(n), n ∈ Nraw, dNasup = 0, n ∈ N \ Nraw

dNadem(n) = αdem(n), n ∈ Nprod, dNadem = 0, n ∈ N \ Nprod

dEaflow(e) = αflow(e), e ∈ E

(18)

where A is an asymmetric matrix (DG is directed) matching the connectivity defined by E . Here,

αcost(n) is the raw material cost for node n, αCO2(n) is the CO2 emissions per weight of material for

node n, αsup(n) is the maximum raw material supply for node n, αdem(n) is the maximum production

demand for node n, and αflow(e) is the optimal flow on edge e (this value is computed separately by

solving an optimization problem that uses the above data).

The code for creating DG in PlasmoData.jl is given in Code Snippet 10. In this code, each type of

node (Raw Material, Product, Intermediate, and Technology) is loaded as a separate CSV file, where

the CSV contains the name of the node and data corresponding to that node. Each node is added

using the add node! function, and data is added using the add node data! function. In addition,

we add an attribute to each node (Lines 16, 24, 30, and 35) where a value of 1 indicates the type of

node. The edges and edge data are then added to the graph using the add edge! and add edge data!

functions (Lines 41 - 45).
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Code Snippet 10: Code for constructing a directed graph for a technology pathway problem

1 using PlasmoData, Graphs, DelimitedFiles, PlasmoDataPlots
2
3 # Read in data
4 raw_data = readdlm("rawmaterial_data_array.csv", ’,’)
5 prod_data = readdlm("product_data_array.csv", ’,’)
6 int_data = readdlm("intermediates_data_array.csv", ’,’)
7 tech_data = readdlm("technology_data_array.csv", ’,’)
8 edge_data = readdlm("edge_data.csv", ’,’)
9

10 # Define DataDiGraph
11 dg = DataDiGraph()
12
13 # Add nodes and node data
14 for i in 1:size(raw_data, 1)
15 add_node!(dg, raw_data[i, 1])
16 add_node_data!(dg, raw_data[i, 1], 1, "Raw Material")
17 add_node_data!(dg, raw_data[i, 1], raw_data[i, 2], "Cost")
18 add_node_data!(dg, raw_data[i, 1], raw_data[i, 3], "CO2 Cost")
19 add_node_data!(dg, raw_data[i, 1], raw_data[i, 4], "Max Supply")
20 end
21
22 for i in 1:size(prod_data, 1)
23 add_node!(dg, prod_data[i, 1])
24 add_node_data!(dg, prod_data[i, 1], 1, "Product")
25 add_node_data!(dg, prod_data[i, 1], prod_data[i, 2], "Demand Limit")
26 end
27
28 for i in 1:size(int_data, 1)
29 add_node!(dg, int_data[i, 1])
30 add_node_data!(dg, int_data[i, 1], 1, "Intermediate")
31 end
32
33 for i in 1:size(tech_data, 1)
34 add_node!(dg, tech_data[i, 1])
35 add_node_data!(dg, tech_data[i, 1], 1, "Technology")
36 add_node_data!(dg, tech_data[i, 1], tech_data[i, 2], "Cost")
37 add_node_data!(dg, tech_data[i, 1], tech_data[i, 3], "CO2 Cost")
38 end
39
40 # Add edges and edge data
41 for i in 1:size(edge_data, 1)
42 edge = (edge_data[i, 1], edge_data[i, 2])
43 PlasmoData.add_edge!(dg, edge)
44 PlasmoData.add_edge_data!(dg, edge, edge_data[i, 3], "Optimal Flow")
45 end
46
47 plot_graph(dg, dag_positions = true, nlabels = dg.nodes)
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4.3.1 Visualization

One of the potential benefits of these graph representations is the ability to visualize the structure of

the problem. In this example, DG is a directed acyclic graph (DAG), which is a common structure

in pathway and supply chain problems. Because it is a DAG, the graph can be presented in different

layers, and different algorithms have been proposed for identifying these layers and the positions of

nodes within the visualization [81, 82]. The above technology problem is shown in Figure 15 using the

algorithm of Zarate and co-workers [82] to determine node positions (as implemented within the Julia

package LayeredLayouts.jl [83]). This visualization is automated through PlasmoDataPlots.jl. In

this case, Figure 15 (without node coloring) can be easily constructed with just Line 47 of Code Snip-

pet 10 (abbreviation meanings are available in the supporting information).

Raw Materials

Products

Intermediates

Technologies

Figure 15: Directed graph of a layered technology pathway example; created using

PlasmoDataPlots.jl

The ability to visualize these structures can be a significant resource in evaluating the data. For

example, it can make clear what some of the paths are or what some of the most essential nodes are.

For instance, from Figure 15, it is clear that the node ”Ethylene” has more connections than any other

node and is directly connected to several products. In addition, PlasmoDataPlots.jl provides the

ability to highlight paths within a graph. For example, by calling the function plot graph path with

the source (”Corn Stover”) and destination (”Nylon”) nodes of the path, Figure 16 can be generated.

Visualizations for DAGs or for layered graphs are often not implemented directly in graph plotting

tools, and other tools for visualization (e.g., yFiles [84]) can require subscriptions, so this ability for

visualization is a powerful capability of PlasmoData.jl.
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Raw Materials

Products

Intermediates

Technologies

Figure 16: Directed graph with a pathway between ”Corn Stover” and ”Nylon” high-

lighted, created using PlasmoDataPlots.jl

In addition to plotting the layered structure, incorporating the data of the graph could also be

useful. One way of doing this would be to create a Sankey diagram. Often, Sankey diagrams are not

thought of as graphs, but they are effectively just directed graphs with edge weights. Thus, to go from

the directed graph defined in Code Snippet 10 to a Sankey diagram, we essentially need only five lines

of code (see Code Snippet 11). The resulting diagram can be seen in Figure 17. Thus, constructing

data within a graph structure can provide unique and useful visualization capabilities.

Code Snippet 11: Code for constructing a Sankey diagram from a PlasmoData.DataDiGraph

1 using SankeyPlots
2
3 # Define src and dst for edges
4 src = [i for (i, j) in dg.edges]
5 dst = [j for (i, j) in dg.edges]
6 weights = get_edge_data(dg, "Optimal Flow")
7
8 # Plot sankey diagram
9 sankey(src, dst, weights;

10 size = (1400, 800),
11 node_labels = dg.nodes,
12 edge_color = :black,
13 label_size = 9
14 )
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Figure 17: Sankey diagram of a technology pathway example

4.3.2 Connectivity Measures

An important challenge in working with graph models of data is how to navigate connections to get

information out of the data. For example, in the above technology pathway, how nodes are connected

can reveal information about each node. Different metrics can give insight into how “important” or

connected a node may be. Thus, we can consider metrics such as the number of upstream or down-

stream nodes or the number of products to which a node is connected. PlasmoData.jl facilitates

these kinds of metrics by providing functions for identifying paths between nodes and identifying sets

of upstream or downstream nodes (in part through accessing functions in Graphs.jl). In addition,

one might also be interested in how manipulating the graph structure can impact these paths (e.g., If

a node is removed, what happens to the structure?). We will show here how some of these analyses

can be performed.

We consider how connectivity metrics can assist in understanding the data. Algorithms have been

proposed in literature for identifying paths and connections between nodes in a graph [85, 86, 87, 88].

For example, we can consider to how many products each raw material can contribute, or we can

consider how many raw materials contribute to each product. Analyses like these can give insight into

the raw materials or products; for example this could help identify which raw materials or products are

most susceptible to disruption (i.e., if a product only has one raw material connected to it, it may be

more easily disrupted if anything happens to the supply of that material). For each raw material and
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product, we can also count the total number of upstream and downstream nodes to provide an idea

of how ”connected” each raw material and product is to the rest of the graph. All of the above met-

rics are easily performed in PlasmoData as shown in Code Snippet 12, using functions like has path

(Line 20), downstream nodes (Line 4), and upstream nodes (Line 17). The above metrics can also

be added to the graph as new data by defining a new attribute for each metric (see Lines 5, 18, and 24).

Code Snippet 12: Code for determining the connectivity metrics of the technology graph given in Code

Snippet 10

1 # Compute metrics for raw materials
2 for r in raw_data[:, 1]
3 count = 0
4 num_downstream = length(downstream_nodes(dg, r))
5 add_node_data!(dg, r, num_downstream, "Number Downstream")
6 for p in prod_data[:, 1]
7 if PlasmoData.has_path(dg, r, p)
8 count += 1
9 end

10 end
11 add_node_data!(dg, r, count, "Connected Products")
12 end
13
14 # Compute metrics for products
15 for p in prod_data[:, 1]
16 count = 0
17 num_upstream = length(upstream_nodes(dg, p))
18 add_node_data!(dg, p, num_upstream, "Number Upstream")
19 for r in raw_data[:, 1]
20 if PlasmoData.has_path(dg, r, p)
21 count += 1
22 end
23 end
24 add_node_data!(dg, p, count, "Connected Raw")
25 end

In addition to computing measures on the original graph, we can also consider how these metrics

change as the graph structure is altered such as through node- or edge-removal, node- or edge-filtration,

or aggregation. For example, we can look at what happens if we remove different intermediates or

technologies from the graph. Doing so can be thought of as considering the impact if an intermediate

material or technology were no longer available or taken off-line unexpectedly. Using PlasmoData.jl,

we remove the intermediates Ethylene, Terephthalic Acid, and Cyclohexane separately from the graph

and see what impact each has on the metrics (i.e., we call remove node! and reevaluate Code Snippet

12). The original metrics for each graph and the resulting changes can be seen in Tables 1 and 2.

Of those three intermediates, the only intermediate that is completely essential is Ethylene (when

ethylene is removed, LDPE, HDPE, and PVC have no connection to any raw materials). It is also

clear from the metrics that removing Ethylene from the graph could impact the production of PS

and PET since these are no longer connected to as many raw materials. This type of analysis can be

valuable in analyzing the resilience of a system in the face of failure of certain elements.

The above tools can also be coupled with the visualization tools to provide an easier interface

to understand these changes. For example, Figure 18 shows the technology graph where nodes are

sized by their number of downstream connections (i.e., sizing by node data). This shows visually

which raw materials are connected to the most downstream nodes, but it also gives insight into which
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Table 1: Metrics on a technology graph with the number of connected products (Prod)

to each raw material and the number of downstream nodes (Down) for each raw material.

The nodes Ethylene, Ter Acid, and C.-hexane were each individually removed from the

original graph and metrics recomputed

Original Graph w/o Ethylene w/o Ter. Acid w/o C.-hexane

Raw Material Prod Down Prod Down Prod Down Prod Down

Sugar Beets 6 29 1 10 6 29 6 29

Sugarcane 1 5 1 5 1 5 1 5

Corn Stover 3 23 3 23 2 20 2 16

Natural Gas 1 7 1 7 1 7 1 7

Pet Naphtha 7 39 4 28 7 38 6 32

Table 2: Metrics on the technology graph with the number of connected raw materials

(Raw) to each product and the number of upstream nodes (Up) for each product. The

nodes Ethylene, Ter Acid, and C.-hexane were each individually removed from the original

graph and metrics recomputed

Original Graph w/o Ethylene w/o Ter. Acid w/o C.-hexane

Product Raw Up Raw Up Raw Up Raw Up

LDPE 2 9 0 2 2 9 2 9

HDPE 2 9 0 2 2 9 2 9

PP 2 7 2 7 2 7 2 7

PVC 2 11 0 4 2 11 2 11

PS 3 17 2 11 3 17 3 17

PET 4 17 2 11 2 11 3 17

Nylon 4 22 4 22 4 22 2 15

intermediate and technology nodes contain the most downstream connections.

The DataGraph abstraction and PlasmoData.jl provide a framework for examining the connec-

tions within data structures to gain insight into the data or system. In the above example, we have

highlighted just a couple ways that this could be done, but several other methods (enabled within

PlasmoData.jl) could likewise be used. For example, the structure of the graph could be filtered

based on node weights (e.g., cost or carbon emissions) or edge weights (e.g., flows) which would alter

the structure and connections of the graph. Further, other structure manipulations (such as adding

edges) could be important in studying these graphs. For example, you could consider where edges

could be placed to increase the number of connections between raw materials and products (hypo-

thetically increasing the ”resilience” of the structure). These are just a couple examples of other ways

PlasmoData.jl could be used to elucidate more information about a graph.
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Raw Materials

Products

Intermediates

Technologies

Figure 18: Directed graph of a layered technology pathway example with nodes sized by

the number of downstream nodes, created using PlasmoDataPlots.jl

5 Conclusions and Future Work

We presented a graph-theoretic abstraction for modeling data; we call this abstractionDataGraph and

provide a software implementation in the Julia package that we call PlasmoData.jl. We show that

common data structures (e.g., matrices, tensors, images) can be represented under the DataGraph

abstraction, and there are a variety of mathematical tools available for analyzing the data modeled

as a graph (e.g., filtration, aggregation, topological analysis). We presented case studies to show this

abstraction can be used for a variety of tasks including determining features for machine learning, an-

alyzing time series, and performing path analysis. In doing this, we have highlighted how representing

data can be a modeling’ task and having the correct abstraction for the data can strongly influence

the value of the data.

There are a couple of areas that we would like to focus on in future work. First, there are more

applications we would like to explore. Using graphs to represent molecules has garnered significant in-

terest and has been applied in many studies and we would like to streamline molecular representations

within PlasmoData.jl, such as enabling construction of the graph from a SMILES (Simplified Molec-

ular Input Line Entry System) string, and explore how PlasmoData.jl can enhance this analysis. We

are also interested in other applications of the pathway analysis performed above. Additionally, we

would like to expand the capabilities of PlasmoData.jl. There are other TDA metrics and path func-

tions that could be implemented, and there are topological descriptors that could be approximated

with graphs. For example, in the work by Jiang and co-workers [69], they use a marching-square
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algorithm to approximate the Minkowski functionals of a filtered image. A marching-square algorithm

could be implemented for an image represented by a graph by iterating through the nodes and ana-

lyzing the connections to the adjacent nodes. This could lead to more in-depth image analysis. Also,

we would like to expand the integration of PlasmoData.jl with GNN packages; this could include

improving the interface with GNN packages and enabling different graph manipulation functions with

GNN algorithms, such as using aggregation for pooling operations or message-aggregator operators.

In addition, while graphs can be powerful tools for modeling data, they do have some limitations.

Nodes and edges do not have any notion of placement in space. Oftentimes, the systems being

represented by graphs have a fixed location (e.g., supply chains may have a fixed production location)

which can significantly influence the system. Furthermore, graphs only capture connectivity between

nodes; in many instances, it may be more accurate to include a link between more than two nodes.

In these cases, hypergraphs (or other representations) may be more appropriate. Finally, graphs

are restricted to edges between no more than two nodes; in future work, we would like to explore

generalizations of hypergraphs and simplicial complexes (which may capture more complex and higher-

order relations) and how to capture more complex attributes for these objects, such as spatial locations.
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Karpinski. JuliaGraphs/Graphs.jl: an optimized graphs package for the julia programming lan-

guage, 2021. https://github.com/JuliaGraphs/Graphs.jl/. accessed 17 March 2023.

[23] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.

InterJournal, Complex Systems:1695, 2006.

[24] Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

[25] MathWorks. Graph and network algorithms. https://www.mathworks.com/help/matlab/graph-

and-network-algorithms.html?s tid=CRUX lftnav. Accessed on February 25, 2023.

[26] JD Kruschwitz, D List, L Waller, M Rubinov, and HWalter. Graphvar: a user-friendly toolbox for

comprehensive graph analyses of functional brain connectivity. Journal of neuroscience methods,

245:107–115, 2015.

[27] Jinhui Wang, Xindi Wang, Mingrui Xia, Xuhong Liao, Alan Evans, and Yong He. Gretna: a graph

theoretical network analysis toolbox for imaging connectomics. Frontiers in human neuroscience,

9:386, 2015.

[28] Mite Mijalkov, Ehsan Kakaei, Joana B Pereira, Eric Westman, Giovanni Volpe, and Alzheimer’s

Disease Neuroimaging Initiative. Braph: a graph theory software for the analysis of brain con-

nectivity. PloS one, 12(8):e0178798, 2017.

[29] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.

Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv

preprint arXiv:1909.01315, 2019.

[30] Thomas Bonald, Nathan de Lara, Quentin Lutz, and Bertrand Charpentier. Scikit-network:

Graph analysis in python. Journal of Machine Learning Research, 21(185):1–6, 2020.

[31] Carlo Lucibello and other contributors. GraphNeuralNetworks.jl: a ge-

ometric deep learning library for the julia programming language, 2021.

https://github.com/CarloLucibello/GraphNeuralNetworks.jl. Accessed 14 March 2023.

49

http://zavalab.engr.wisc.edu


http://zavalab.engr.wisc.edu
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