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Abstract

Datasets encountered in scientific and engineering applications appear in complex formats (e.g.,
images, multivariate time series, molecules, video, text strings, networks). Graph theory provides
a unifying framework to model such datasets and enables the use of powerful tools that can help
analyze, visualize, and extract value from data. In this work, we present PlasmoData. j1, an open-
source, Julia framework that uses concepts of graph theory to facilitate the modeling and analysis
of complex datasets. The core of our framework is a general data modeling abstraction, which
we call a DataGraph. We show how the abstraction and software implementation can be used to
represent diverse data objects as graphs and to enable the use of tools from topology, graph theory,
and machine learning (e.g., graph neural networks) to conduct a variety of tasks. We illustrate
the versatility of the framework by using real datasets: i) an image classification problem using
topological data analysis to extract features from the graph model to train machine learning models;
ii) a disease outbreak problem where we model multivariate time series as graphs to detect abnormal
events; and iii) a technology pathway analysis problem where we highlight how we can use graphs
to navigate connectivity. Our discussion also highlights how PlasmoData. j1 leverages native Julia
capabilities to enable compact syntax, scalable computations, and interfaces with diverse packages.
Overall, we show that the DataGraph abstraction and PlasmoData.jl Julia package are able to
model data within graphs and enable useful analysis.

Keywords: graph theory, network theory, modeling, data, open-source, scalability.

1 Introduction

Data appears in complex formats that require the use of advanced tools for its representation and
processing. In this context, it is important to highlight that any data object (e.g., image, video, audio
signal, a text string, time series) needs to be represented as a mathematical model (a mathematical

abstraction) to enable processing and analysis. Examples of mathematical models that are available
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to do this include those from linear algebra (e.g., data is modeled as vectors, matrices, higher-order
tensors), graph/network theory (e.g., data is modeled as graphs or hypergraphs), statistics (e.g., data
is modeled as random variables), and topology/geometry (e.g., data is modeled as graphs, manifolds,
and simplicial complexes). Understanding how to model data and to recognize alternative represen-
tations of data is key in facilitating its analysis and in extracting information/value [1, 2, 3]. For
example, an image can be represented as a matrix (each entry is a pixel), as a graph (each node is
a pixel and edges represent connectivity of neighboring pixels), or as a function/manifold (the addi-
tional dimension represents the light intensity). These various representations reveal different (and
often complementary) aspects/features of the data object; for instance, a matrix representation can
help reveal correlation structures, while a graph representation can reveal connected structures. Im-
portantly, how to represent a dataset is a modeling decision that can impact the information extracted
from the data (can influence the value of the dataset); as such, it is necessary to have proper tools

that can help experiment with different data models and associated analysis tools.

A modeling abstraction that has gained increased popularity in data science is graphs (networks).

Graphs provide a unifying framework to capture diverse data objects because they have intuitive in-
terpretation and they enable the use of powerful processing techniques. Simply stated, a graph is a
mathematical model that comprises a set of nodes that are connected via edges; the nodes and edges
are abstract objects that can encode data that may appear in different forms. In a typical graph, data
attached to nodes and edges are scalar values or vectors, but more advanced graph abstractions can
attach abstract objects such as algebraic models, text, or other graphs [4, 5]. Graph representations
have been used in a wide variety of applications such as chemical processes [6], biological systems [7],
brain networks [8, 9], hydrology [10, 11, 12], disease transmission [13, 14], and social networks [15]. An
application that has recently gained substantial attention is the representation of molecules as graphs
[16, 17, 18]; here, atoms are represented by nodes, bonds are represented by edges, and nodes/edges
can embed diverse attributes such as atom type and bond length (represented as vectors). These
representations have been used to predict diverse properties of molecules and to predict potential

reactions that can occur between them.

Recently, the field of topological data analysis (TDA) has opened interesting and new perspectives
on data modeling and processing For example, a matrix (e.g., a grayscale image) can be represented
as a node-weighted graph. Here, nodes are matrix entries, node weights are numerical values (data)
attached to the matrix entries, and edges capture adjacency of the matrix entries [19, 20]. This repre-
sentation can be applied to high-dimensional data (tensors), where entries of the higher dimensional
object are connected to adjacent entries. Symmetric matrices (e.g., correlation or covariance matrices)
can also be represented as edge-weighted graphs, where the nodes represent the variable associated
with a column/row and edge weights capture the degree of correlation/covariance. The graph repre-
sentation of correlation matrices is widely used in neuroscience to analyze brain connectivity [19, 8, 9]
and in disease transmission to identify extreme events [13]. This is done via the use of tools of graph
theory and topology, which enable the quantification of the graph structure or shape. For example,

the Euler Characteristic (EC) is a topological descriptor that quantifies the structure of an unweighted
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graph by computing the number of connected components and the number of cycles in the graph [19].
To quantify the structure of weighted graphs (graphs with attached values to nodes and edges) one
can use filtration/percolation operations; as the name suggests, these operations filter out nodes/edges
with weight values below a certain threshold values. Filtration operations keep track of how topo-
logical descriptors appear or disappear at different weight threshold values, and this information is
summarized in the form of topological summaries, such as the EC curve. Topological descriptors can
reveal aspects of the data that might not be accessed by tools from linear algebra or statistics. For
instance, eigenvalues and eigenvectors are linear algebra descriptors that extract information from

matrices in the form of energy/variance, not shape.

Graph representations of data enables access to a wide variety of software tools for analysis and
visualization. These tools range from broad to specific application scope. Some of the most general
graph modeling tools include NetworkX [21] (in Python), Graphs.jl [22] (in Julia), igraph [23] (in
Python and R), graph-tool [24] (in Python), and the graph and digraph functions of Matlab [25].
These packages are general and allow the user to define their own graph data structures. They also
include functions for analyzing graph connectivity and other metrics/descriptors. These tools also al-
low the user to define abstract properties or attributes on nodes and edges (in the case of Graphs. j1,
this ability is implemented in the package extension MetaGraphs.jl). These packages use different
methods for storing the data; depending on the amount or nature of the data, this can have significant
implications on scalability and application scope. These packages are limited in the methods that they
use for processing and analyzing data; for instance, these tools do not implement topological analysis
operations (e.g., filtration operations and computation of topological descriptors). Furthermore, these
packages do not provide capabilities to transform data models to graph models (e.g., obtain a graph

from a tensor).

In addition to general graph modeling packages, several other packages exist that have more specific
application scope. For instance, there are several graph tools specifically designed for studying brain
function, including Graphvar [26], brain-connectivity-toolbox [9], GRETNA [27], and BRAPH [28].
Because of this broad spectrum, a complete review of available tools is not practical here, but we will
discuss the most pertinent and prominent options. Some application-specific packages are targeted
towards creating models for machine learning, such as graph neural networks (GNNs). For instance,
MoleculeNet [18] is designed for representing molecules as graphs, which can then be used for GNNs to
enable predictions. The deep graph library [29], scikit-network [30], and GraphNeuralNetworks. jl
[31] all provide an interface for defining graphs with data that can then be used for training and
testing GNNs. These packages are effective at conducting machine learning tasks, but they are not
designed for performing transformations of data objects and topological analysis of the graph structure
(e.g., finding the EC or connected components). In summary, existing graph modeling tools are often

limited in their ability to represent and process wide spans of data.

The goal of this work is to provide a general framework for modeling data as graphs. Recently,

we have developed a framework for modeling optimization problems as graphs[4]; in this abstraction,
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nodes and edges can embed algebraic optimization problems. This abstraction has been shown to unify
a wide range of structures found in optimization (e.g., optimal control, stochastic optimization, and
network optimization) and this unification has enabled a number of advances in theory and algorithms.
Moreover, the abstraction has facilitated access to a broad range of graph analysis and software tools
that facilitate visualization and processing (e.g., graph partitioning and aggregation). Our work aims
to expand this graph abstraction to model general data and with this unify data objects found across
domains and leverage the use of tools from such domains. Our abstraction is implemented as an
open-source Julia package that we call PlasmoData. j1. This package has been designed to readily
represent diverse data objects as graphs (e.g., images, matrices, and tensors as node-weighted graphs
and symmetric matrices as edge-weighted graphs) and to store data within a user-defined graph struc-
ture. Our modeling framework interfaces to diverse software packages that enables processing of graph
data objects (e.g., via filtration, partition, and aggregation), facilitates the computation of descriptors
using tools from graph theory and topology, and enables the use of machine learning tools (e.g., graph
neural networks or GNNs). Our software design principle is analogous to those of algebraic modeling
languages (e.g., JuMP or Plasmo. j1), which provide provide interfaces to packages that process/solve

such models.

The goal behind the implementation of PlasmoData.jl s thus to change the way the user thinks
about data (as a modeling task rather than just an analysis task). We believe that the focus on modeling
can bring significant benefits in the way we explore alternative data representations that are suitable
for applications, in selecting suitable tools to enable data processing, and in interpreting analysis re-
sults. We demonstrate the versatility of PlasmoData.jl and of its unifying modeling abstraction by
using applications that appear in quite distinct application domains. A graphical representation of this
work is shown in Figure 1 and highlights how a variety of data can be modeled within PlasmoData. j1,

which in turn provides access to diverse analysis tools and techniques.

The paper is structured as follows. Section 2 provides an overview of the DataGraph abstraction
for modeling data as graphs, discusses how it is implemented in PlasmoData. jl, and illustrates how
some common data structures can be represented under the proposed abstraction. Section 3 provides
an overview of data analysis that can be performed for data modeled as graphs. Section 4 provides
applications that illustrate the versatility of the modeling framework. Section 5 provides concluding

remarks and future directions.

2 Graph Abstraction and Software Implementation

This section introduces the DataGraph modeling abstraction along with its implementation in PlasmoData. j1,
available at https://github.com/zavalab/PlasmoData.jl. We introduce a mathematical formu-
lation for the DataGraph and discuss how it can be applied to a variety of common data struc-
tures. We also provide brief code snippets showing how these representations are implemented
in PlasmoData.jl. Versions of these code snippets are also available in the repository https:

//github.com/zavalab/JuliaBox/tree/master/PlasmoData_examples, along with the package and
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Figure 1: Overview of the PlasmoData.j1 modeling framework. Diverse data objects can
be modeled under the DataGraph abstraction; this provides access to a diverse analysis

tools and techniques for analyzing the data
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Julia versions used.

2.1 Mathematical Formulation

A graph is a mathematical model that contains a set of nodes N and a set of edges £ (which connect
nodes). A node n € N and an edge e € £ can encode diverse abstract objects (e.g., values, text,
equations). To indicate data embedded in the graph, we define the set of node (data) attributes as
Ay, the set of edge (data) attributes as Ag, and a set of (global) graph attributes as Ag. To associate

data to specific nodes, edges, and to the graph we make the following definitions:

& (n) €D,, neN,ae Ay (1)
dé(e) €Dy, ec€ & ac Ag (2)
d9 €D, aecAg (3)

Here, D, is the set of possible values for a data attribute a, d{lv (n) is the data stored on the node
n for attribute a, d&(e) is the data stored on the edge e for attribute a, and dY is the data stored on
the graph for attribute a. Importantly, our definitions are abstract and we make no distinction on
the form that any of that data must take. The data could be scalars, vectors, matrices, graphs, an
optimization model, text strings, other graphs, or any other kind of information (see [32, 33, 4] for
application examples for data that can be embedded in graphs). We use the notation dV, df, and
dY to define the set of all node, edge, and graph data corresponding to Ay, Ag, and Ag, respec-
tively. We will use the notation dV (n) for the set of node data on node n for the attribute set A
and d¢(e) for the set of node data on edge e for the attribute set Ag. Note that, under these def-

initions, the attribute sets are used for indicating subsets of data (and do not represent the data itself).

We use the previous definitions to define our modeling object, which we call a DataGraph. This
modeling abstraction has a graph structure and it stores data on the nodes, edges, and the graph

itself; the object has the following form:
DG(N &, A, d,d®, d% Ay, A, Ag). (4)

A DataGraph object is fully defined by its nodes, edges, adjacency matrix, (A which encodes the
graph connectivity), node data, edge data, graph data, node attributes, edge attributes, and graph
attributes. Importantly, the adjacency matrix also encodes the type of edges in the graph (directed

or undirected).

2.2 Software Implementation

The DataGraph abstraction is implemented in Julia in the package PlasmoData.jl (see Figure 2).
PlasmoData. jl allows for any data structure to be encoded on the nodes, edges, or on the graph itself.

To differentiate references to the mathematical formulation from the computer implementation, we
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will refer to the software counterpart as PlasmoData.DataGraph.

The PlasmoData.DataGraph object implemented contains the following fundamental attributes

(defined in the software data structure):

g: A Graphs.SimpleGraph (or a Graphs.SimpleDiGraph for directed graphs) object. The
Graphs.SimpleGraph object is defined within the Graphs. j1 package, and it stores graph struc-
ture efficiently by storing only the number of edges and a vector of neighbors for each node.
PlasmoData. j1 has Graphs.jl as a dependency and stores the SimpleGraph object to enable

access to a variety of graph algorithms and to provide a simpler interface with other tools.

nodes: A vector of node names for each node in the graph. Within PlasmoData. j1, nodes can
be “named” or defined using any data type. This is different from some other graph modeling
tools. For example, Graphs. j1 does not directly name any nodes, but instead only records an
adjacency list for each node, and thus implicitly names nodes only by an integer index. nodes,

corresponds to NV in (4).

edges: A vector of pairs (tuples) of integers corresponding to each edge of the graph. The
integer pairs correspond to the index of nodes in nodes (e.g., pair (1,2) corresponds to an edge
between the first and second nodes defined in nodes). Restricting edges to only contain integer
pairs (rather than the node pairs themselves) is done to reduce the amount of memory required

to store the graph. edges, corresponds to £ in (4).

node map: A dictionary mapping the node names to their index in the nodes vector. This index

also corresponds to the adjacency list saved in the Graphs. j1 g object.
edge map: A dictionary mapping the edges (integer pairs) to their index in the edges vector.

node_data: A mutable structure that contains a matrix of all node data where each row of the
matrix corresponds to a node in the graph and each column corresponds to a node attribute.
The order of the rows is identical to the order in nodes. This data structure also contains a list
of all node attributes and their mapping to the data matrix. Node attributes are restricted to

be strings. node_data corresponds to dV in (4).

edge_data: A mutable structure that contains a matrix of all edge data where each row of the
matrix corresponds to an edge in the graph and each column corresponds to an edge attribute.
The order of the rows is identical to the order in edges. This data structure also contains a list
of all edge attributes and their mapping to the data matrix. Edge attributes are restricted to be
strings. edge_data corresponds to d€ in (4).

graph_data: A mutable structure that contains a vector of graph data. This data structure also
contains a list of all graph attributes and their mapping to the data vector. Graph attributes

are restricted to be strings. graph_data corresponds to d¥ in (4).
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While the mathematical abstraction encodes directionality (or lack thereof) via the adjacency ma-
trix, A, PlasmoData. jl includes PlasmoData.DataGraph and a PlasmoData.DataDiGraph modeling
objects for undirected and directed graphs, respectively. This terminology is consistent with other
graph modeling tools (e.g., Graphs.jl and NetworkX). For our software design, how we chose to
store node, edge, and graph data was an important consideration that deserves some explanation as
PlasmoData. j1 stores this data differently than some alternative tools. A discussion of this decision,
as well as a comparison of memory allocation for storing data in PlasmoData.jl and other graph

modeling tools, is provided in the supporting information.
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mutable struct DataGraph{T, T1, T2, T3, M1, M2} /
<: AbstractDataGraph{T}

g: :Graphs.SimpleGraph{T}

nodes: : Vector{Any}

edges: :Vector{Tuple{T, T}}
node_map: :Dict{Any, T} \
edge_map: :Dict{Tuple{T, T}, T} !
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Figure 2: Visualization of the DataGraph object. The PlasmoData.DataGraph (left)
contains fundamental attributes (g, nodes, edges, node map, edge map, node_data,
edge data, graph data) which correspond to attributes of the mathematical DataGraph
object (right) containing nodes (N), edges (€), directionality (A), node data (d?V), edge
data (d®), graph data (d9), and node, edge, and graph attributes (Ay:, Ag, and Ag,
respectively). Each node and edge can embed data of a variety of forms, such as scalar

values, vectors, or other graphs

2.2.1 PlasmoData.jl Tutorial Example

PlasmoData. j1 implements the DataGraph abstraction as shown above, and it provides a user-friendly
interface and suite of functions; basic funcationality for constructing the graph is illustrated in Code
Snippet 1. An empty PlasmoData.DataGraph is instantiated on Line 3. The data types within the
{} define the types of data that can be defined in the node, edge, and graph data (see Figure 2). In
this example, we use Any for the data type in the node, edge, and graph data which will be important
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when adding data to this graph. Alternatively, a user can call DataGraph() without the informa-
tion in {}, and the default data types in the node, edge, and graph data will be Float64. Once the
PlasmoData.DataGraph object is instantiated, nodes, edges, and data can be added to the graph.
Nodes can be added to the PlasmoData.DataGraph by calling the add node! function (Lines 6 - 10).
PlasmoData. jl allows for any Julia object to be defined as a node. For example, as shown in the
code snippet, the node names can be integers, strings, or symbols. This can be important, as will
be shown later when representing matrices as PlasmoData.DataGraphs. Edges can be added to the
PlasmoData.DataGraph by calling the add_edge! function (Lines 14 - 18). This function takes pairs
of node names as arguments which represent the edge between those two nodes. These pairs of nodes
can be passed as separate arguments (Lines 14 - 16) or as a tuple of two node names (Lines 17 - 18).

This progressively builds the adjacency matrix of the graph object.

Code Snippet 1: Example showing the basic functionality for building a PlasmoData.DataGraph

in PlasmoData. jl, including adding nodes, edges, and data and basic plotting functionality

using PlasmoData, PlasmoDataPlots
dg = DataGraph{Int, Any, Any, Any, Matrix{Any}, Matrix{Any}}()

# add_node!(datagraph, node)
add_node! (dg, 1)

add_node! (dg, 2)

add_node! (dg, 3)

add_node! (dg, '"node4")
add_node! (dg, :nodeb)

# add_edge!(datagraph, nodel, node2)
# add_edge!(datagraph, (nodel, node2))
add_edge! (dg, 1, 2)

add_edge! (dg, 2, 3)

add_edge! (dg, "node4", 1)

add_edge! (dg, (:node5, 2))
add_edge! (dg, (3, "noded"))

# add_node_data!(datagraph, node, node_data, data_attribute)
add_node_data!(dg, 1, [6, 3, 4], "node_datal")
add_node_data! (dg, 2, 3.4, "node_datal")
add_node_data!(dg, 3, "this is on node 3", "node_datal")
add_node_data! (dg, "node4", [1 2; 3 4], "node_datal")
add_node_data! (dg, :nodeb, DataGraph(), "node_datal")

# add_edge_data!(datagraph, nodel, node2, edge_data, edge_attribute)
# add_edge_data!(datagraph, (nodel, node2), edge_data, edge_attribute)
add_edge_data!(dg, 1, 2, DataGraph(), "edge_datal")
add_edge_data!(dg, 2, 3, [1 2 ; 5 7], "edge_datal")
add_edge_data! (dg, "node4", 1, 1.0, "edge_datal")
add_edge_data! (dg, (:nodeb, 2), -0.00001, "edge_datal')
add_edge_data! (dg, (3, "node4"), Dict(), "edge_datal")

# add_graph_data!(dg, graph_data, graph_attribute)
add_graph_data!(dg, 1.0, "graph_datal")

PlasmoDataPlots.plot_graph(dg; xdim = 400, ydim = 400)

Data can also be embedded within the defined graph structure through API functions. Data is
added to nodes through the add node data! function (Lines 21 - 25). This function takes the fol-
lowing arguments: i) the PlasmoData.DataGraph, ii) the node name, iii) the node data, and iv) the

attribute name for the data (must be a string). The node data is restricted to be the type defined
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Figure 3: Visualization of the PlasmoData.DataGraph associated with Code Snippet 1

on the PlasmoData.DataGraph (in this case, the PlasmoData.DataGraph was instantiated with type
Any, so any data can be passed). As seen in the code snippet, data have different formats, including
floats, strings, vectors, matrices, or another PlasmoData.DataGraph. Data is added to edges through
the add_edge data! function (Lines 29 - 33). This function behaves similarly to the add node data!
function, but in place of the node name argument, a pair of nodes (two separate arguments) or a tuple
of two node names (one argument) is supplied. Data is added to the graph by the add_graph data!
function (Line 36). This function only takes the graph data and the graph attribute, as shown in the
snippet. Additional node, edge, or graph data can be defined on the DataGraph by passing the data
with a different attribute name. There is no limit to the number of attributes that can be added to

the nodes, edges, or graph.

One of the benefits of graph representations is that they facilitate visualization of structure. For
basic plotting capabilities, we have developed an accompanying package called PlasmoDataPlots. jl
(available at https://github.com/zavalab/PlasmoDataPlots.j1) that interfaces to PlasmoData.jl
and that enables visualizations of PlasmoData.DataGraph objects. This package provides basic
functionalities for plotting both PlasmoData.DataGraphs and PlasmoData.DataDiGraphs primarily
through the Julia packages Plots. jl and GraphMakie. j1. The visualization in Figure 3 is created by
calling the PlasmoDataPlots. j1 function plot_graph (Line 38).

The methods presented above for building PlasmoData.DataGraphs, adding nodes and edges, and
adding data also work for DataDiGraphs. The only difference is that the instantiation function is

called DataDiGraph and the edge order is maintained in the internal structure of the DataDiGraph.

2.3 Modeling Common Data Objects as DataGraphs

With the general mathematical formulation for the DataGraph defined, we next outline how specific
data objects (matrices, 3D tensors, symmetric matrices) can be represented using the graph abstraction
and how these can be implemented in PlasmoData. j1.Importantly, a benefit of representing matrices

and tensors as graphs is that graphs are modeling objects that do not live in a Euclidean space. As

10
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such, all that matters from a graph perspective is connectivity (not location of nodes and edges in
space). As such, a graph object is not affected by rotations (matrices are). This property is quite useful
when processing images/video and also when processing data objects from molecular simulations (in
which nodes move randomly in space) [34]. Thus the approaches in this section could be applied to a

variety of problems in different fields.

2.3.1 DMatrices as a Node-Weighted Graphs

We can represent a matrix M € RP*Y (where p and ¢ are positive integers) as a node-weighted graph
with a mesh structure [19, 35], and we can express the resulting graph using the DataGraph abstraction.
We use the notation m; ; € R for the matrix entry at row ¢ and column j. For convenience, we define
the integer set Ny := {1,2,...,k}. To represent the matrix as a graph, we define a node, n., for every
matrix entry and place edges between all adjacent entries of the matrix. On each node, m; ; is stored
as the node data. As there is a single weight in each node, we define the attribute set as Ay = {a}

(a singleton). Mathematically, this is represented with the DataGraph abstraction as:

DG(N,E, A, dV,0,0, Ax,0,0)
where N = {n; ; :i € N,,j € Ny}

E={(nij,niy1;) i€ Np_1,7 € Ng} U{(nij,nij+1):1€Np,jeNg_1} (5)

Ay = {a}

dY (nij) =mij,i € Npj €N,
where A is a symmetric matrix (DG is undirected) matching the connectivity defined by £. An alter-
native structure can also be constructed by also adding edges between diagonal elements of the matrix
[36]. In this case, the set of edges becomes & = {(n; j,nit+1;) ¢ € Np_1,5 € No} U {(nij,nijt1) 11 €
Np,j € Ng1} U{(nij, i 1) 0 € Npo1,5 € Ngoa } U{(ni g1, i) 10 € Npo1,j € Nga

PlasmoData. jl facilitates the representation of matrices as graphs. Code Snippet 2 shows how
a PlasmoData.DataGraph object can be constructed automatically by calling the matrix_to_graph
function. Any matrix containing real numbers can be passed to this function. The boolean keyword
argument diagonal can be passed to identify whether the diagonal edges should be included in the
graph. The resulting graphs can also be visualized using PlasmoDataPlots.jl. In Line 11, nodes
are given a fixed position (stored in the node data of the PlasmoData.DataGraph) for visualization.
In Lines 14 - 21, the graph containing diagonals is plotted, where the weight data from the original
matrix is used for coloring the nodes (see Line 19). Figure 4 visualizes the alternative representations.
Because matrices themselves are a general abstraction for representing data, PlasmoData.DataGraph
can be applied to many application. For instance, multivariate time series and grayscale images can

be represented as matrices (and thus as graphs) [37, 38, 39].

2.3.2 3D Tensors as Node-Weighted Graphs

Below we outline how a 3D tensor can be represented as a graph. While tensors are not restricted

to be 3D, when we refer to tensors in this work, we will be referring to 3D tensors unless otherwise

11
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Code Snippet 2: Example of representing a matrix as a PlasmoData.DataGraph

using PlasmoData, Random, PlasmoDataPlots

Random.seed! (15)
random_matrix = rand(12, 12)

# Convert matrix to node—weighted graph
matrix_graph_diags = matrix_to_graph(random_matrix; diagonal = true)
matrix_graph_no_diags = matrix_to_graph(random_matrix; diagonal = false)

# Fix the node positions
set_matrix_node_positions! (matrix_graph_diags, random_matrix)

# Plot the graph
plot_graph(
matrix_graph_diags,

e e
OPWNFRPOOONOUIPWN -

16 nodesize = 12,

17 linewidth = 5,

18 nodecolor = :grays,

19 node_z = get_node_data(matrix_graph_diags, "weight"),
20 rev = true,

21

matrix_graph_no_diags

nw&quﬂﬁkw«ﬂ%ﬂf

PZOZOZOTOTOTZITOTTTS
nnnnnnnngq@
XXX IXIX XXX XTI XX
wnnqunwapﬂ
Nﬂﬂnuqupﬁﬁ
LI IXIXIXIXTXIX
v'«»'«»'«»'ﬂ'«»!«,»!ﬂ!ﬂ!ﬂ!ﬂ!«
LIXIXIXIXIX X IXIXIX]
IR IR

)4)4)4)4)4)4)'4)4)4)4)4
oS0 es SeSoses Zesoses

random_matrix

4

matrix_graph_diags
Figure 4: Visualization of graph representations of a matrix. The top graph corresponds
to the matrix_graph no_diags PlasmoData.DataGraph object from Code Snippet 2, and
the lower graph corresponds to the matrix_graph diags PlasmoData.DataGraph object
from Code Snippet 2 and is the output of the code snippet. Matrix entries are represented

by nodes with the matrix entry values stored as data on each node
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noted. Any tensor 7' € RP*?*" (where p, ¢, and r are positive integers) can be represented as a node-
weighted graph. There are at least a couple of methods for how to represent 7. The first approach
is to construct a node-weighted mesh following the description outlined in Section 2.3.1 based on the
first couple of dimensions of T" (i.e., the mesh structure will be p x ¢). The third dimension is then
represented as a vector of weights attached to every element of the mesh (with r = |Aar|). This can
be used, for instance, to represent color images (which have different color channels). In addition, we
use the notation ¢; ; for the tensor entry, where i, j, and k are the entries in the first, second, and

third dimensions, respectively. Under the DataGraph abstraction, this has the form:

DG(N,E, A, dN 0,0, Ax,0,0)
where N = {n; ; :i € N, j € Ny}
€ =A{(nijnit15) 11 € Np1,j € Ng} U{(ni,miji1) 10 € Ny, j € Nga} (6)
Ay ={ai,a2,...,a,}
A (nij) =t jr,i € Npj € Nk €N,
where A is a symmetric matrix (DG is undirected) matching the connectivity defined by £. As with

the matrix form in Section 2.3.1, edges can also be placed between the entries that are diagonal to

one another in the mesh structure.

Alternatively, each tensor entry can be represented by a node with each node/entry connected to
the adjacent nodes/entries (similar to the mesh structure, but now across a third dimension). The
value of each tensor entry is then embedded in the corresponding node, so each node only contains

one node weight. Under the DataGraph abstraction, this has the form:

DGN,E,A,dV 0,0, An,0,0)
where N = {n; ;1 : i € Np,j € Ny, k € N,.}
& ={(nijp niv1,5k) 11 € Np1,5 € N,k € No F U{(n4,5,6, ms 1 ,8) -
i €Np,j €Ng_1,k € N JU{(nij i, nijkr1) 11 €Ny j € Ny k€ N}
Ay = {a}
AN (nijx) = tijri €Npj N,k EN,

(7)

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by £. While (7)

is defined for 3D tensors, it could easily be extended to higher-order tensors.

PlasmoData. jl facilitates both of the representations discussed. In Code Snippet 3, the random
tensor can be formed into the mesh structure discussed in Section 2.3.1 by calling the matrix_to_graph
function (Line 7). This function recognizes that this is a 3D array and creates the mesh structure
based on the first two dimensions. The third dimension are the weights on each node. The default
name for these weights is the string "weight" with a number (e.g., "weight1", "weight2"), but a

user can define their own names for the attributes in Axs. Alternatively, the user can call the function
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tensor_to_graph (Line 10) which performs the second method discussed above. These graphs can
be visualized using PlasmoDataPlots.jl as before (Lines 13 - 20). In this case, the node locations
are determined automatically within PlasmoDataPlots. j1 through the NetworkLayout.jl package.
A visualization of the methods in the code snippet is presented in Figure 5. Note that at this time,

PlasmoData. j1 only automates representing 3D tensors as graphs and not higher-order tensors.

Code Snippet 3: Example of representing a tensor as a PlasmoData.DataGraph using two differ-
ent approaches

using PlasmoData, Random, PlasmoDataPlots

Random.seed! (15)
random_tensor = rand(4, 5, 6)

# Convert the tensor to a node weighted graph with 4 x 5 nodes
tensor_graph_2d = matrix_to_graph(random_tensor; diagonal = true)

# Convert the tensor to a node weighted graph 4 x 5 x 6 nodes
tensor_graph_3d = tensor_to_graph(random_tensor)

# Plot the graph
plot_graph(
tensor_graph_3d,
nodesize = 8,
linewidth = 4,
nodecolor = :grays,
node_z = get_node_data(tensor_graph_3d, "weight"),
rev = true,

The above graph representations are flexible and can be applied to many types of datasets. For
example, videos or space-time data can be represented as a tensor (i.e., a 2D field that changes over
a third dimension of time) and data embedded in a 3D space (e.g., temperature in a room) can be
stored as a tensor. Color images (e.g., RGB or hyperspectral images) can also be represented as a

tensor, where the third dimension corresponds to the light intensity of different color channels.

2.3.3 Symmetric Matrices as Edge-Weighted Graphs

While any matrix can be represented as a node-weighted graph, a symmetric matrix S € RP*P (e.g., a
correlation matrix) can also be represented as an edge-weighted graph. We will use the notation s; ;
for the entry of the ith row and jth column of S. In this case, s;; is the edge weight between node ¢

and node j. Under the DataGraph abstraction, this has the form:
Dg(N7 87 Aa ®a d57 @7 07 Aga (B)
where {n; : i € N, }
E={(ni,nj) i € Np_1,7 € Ny \ N;} (8)
Ag = {a}
dg ((ni,ny)) = 815, € Np—1,j € Ny \ N
where A is a symmetric matrix (DG is undirected) matching the connectivity defined by &.

PlasmoData.jl also facilitates this symmetric matrix graph representation. The implementation

for this representation is shown in Code Snippet 4. The symmetric matrix is passed to the function
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7

v random_tensor

tensor_graph_3d

Figure 5: Visualization of graph representations of a tensor. The upper graph corresponds
to the tensor_graph 2d PlasmoData.DataGraph object from Code Snippet 3, and the
lower graph corresponds to the tensor_graph 3d PlasmoData.DataGraph object from
Code Snippet 3
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symmetric matrix_to_graph (Line 10) which forms the edge weighted PlasmoData.DataGraph. The
visualization of this is shown in Figure 6. The PlasmoData.DataGraph can also be visualized us-
ing PlasmoDataPlots. j1, where we first set the node positions using set_circle node_positions!,
which provides the circular structure shown in Figure 6. The graph is visualized with the plot_graph
function (Lines 16 - 23), where we color edges based on the edge weight through the 1line_z argument
and the get_edge_data API from PlasmoData. jl (Line 22).

Code Snippet 4: Example of representing a symmetric matrix as a PlasmoData.DataGraph

using PlasmoData, Random, PlasmoDataPlots, LinearAlgebra

# Create symmetric matrix

Random.seed! (5)

random_matrix = rand(6, 6)

symmetric_matrix = (random_matrix .+ random_matrix’) / 2
symmetric_matrix[diagind(symmetric_matrix)] .= 1

# Convert symmetric matrix to edge weighted graph
symmetric_matrix_graph = symmetric_matrix_to_graph(symmetric_matrix)

# Set node positions
set_circle_node_positions! (symmetric_matrix_graph)

# Plot the graph

plot_graph(
symmetric_matrix_graph,
nodesize = 12,

nodecolor = '"gray",
linewidth = 5,
linecolor = :binary,

line_z = get_edge_data(symmetric_matrix_graph, "weight"),

no ni

ny N9 M3 Ng N5 Ng

— n30/ ng

Ny ns
symmetric_matrix symmetric_matrix_graph

Figure 6: Visualization of a graph representation of a symmetric matrix where the graph
corresponds to the symmetric matrix_graph PlasmoData.DataGraph object from Code

Snippet 4. Values of matrix entries are stored as data on the edges of the graph

Data is also commonly found directly as symmetric matrices and the above approach has been
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used for different analyses in literature [8, 9, 13, 19]. For instance, symmetric matrices include cor-
relation/covariance matrices (e.g., from a time series), Hessian matrices, or a matrix of distances.
The representation of symmetric matrices as graphs can be useful in extracting connectivity informa-
tion from covariance/correlation matrices, which cannot be extracted using traditional tools such as

eigenvalue decompositions(e.g., principal component analysis-PCA).

3 Data Analysis using the DataGraph Abstraction

Modeling data as graphs enable the use of tools for processing, manipulating, and analyzing the data.
In this section, we highlight how the graph structure can be manipulated to reveal hidden aspects and
reduce dimensionality. In addition, we provide an introduction to tools of topological data analysis
(TDA) that can be used to extract information from the data model. Finally, we discuss some of the

limitations of graph representations.

3.1 Structure Manipulation

Graph structures can be manipulated by filtering out (eliminating) nodes/edges based on data encoded
on them or by aggregating sets of nodes. These processes can help reduce the data and can provide

valuable insight into the data.

3.1.1 Node and Edge Removal

Perhaps the simplest form of structure manipulation is removal of a single node or edge. To formalize

this process for the DataGraph model, we define the following operations:

rem

Definition 3.1 (Node-Removal Function ™ ). For a DataGraph, DG (N,E, A, dVN . df, dg,AN,Ag,.Ag)
where G is the set of all possible DataGraphs and V is the set of all possible nodes, the node-removal
function fur: (G,V) — G is defined
I (DG, 1rem) = DGy (N, Evy Ar, @Y dE,d9, Awr, As, Ag)
where N, = N\ {nrem }
E = {(ni,nj) :n; € Npoynj € Ny, (ni,nj) € £} 9)
d¥(n)=dV(n), newn,
dé(e) =df(e), ecé,
where n,.¢;, € N is the node removed and A, is the adjacency matrix for the new set of edges &,.

Definition 3.2 (Edge-Removal Function f£, ). For a DataGraph, DG (N, E,A, N, d,d9, Ay, As, Ag)

rem

where E is the set of possible edges, the edge-removal function f€  :(G,E) — G is defined such that

fém(pgv eTem) = DgT(Na 87“7147“7 dN7 dfa dgaANa Af,‘, Ag)
where & = &\ {€rem} (10)
di(e) =df(e), ecé&,

where €, € £ is the edge to be removed, and A, is the adjacency matrix for the new set of edges &,.

17


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

The node- and edge-removal functions are simple operations but form the basis of more complex
operations that manipulate the graph structure. They also provide a basis for different analysis, such
as analyzing the topology of a graph after the removal of a node or edge. The node- and edge-removal

functions are implemented in PlasmoData as functions remove node! and remove_edge!.

3.1.2 Graph Filtration

Filtering out nodes or edges of a graph involves removing nodes or edges whose data does not meet

specified (logical) criteria. We formalize the filtration process for DataGraphs by defining the following:

Definition 3.3 (Node-Filtration Function fxr). For a DataGraph, DG (N, E,A, AN dE.d9, Ay, Ag, .Ag),
containing a set of node attributes, Axs, such that aN # (), and where G is the set of all possible
DataGraphs and L is the set of all logic sets, the node-filtration function fur: (G,L) — G is defined

InN(DG, L) = DGy (Ny, &, Ay, dY . d5,d9, Ay, Ag, Ag)
where Ny = {n:d¥(n)eL,neN}
Er = {(ns,nj) : (ni,nj) € E,n; € Ny,nj € Ny} (11)
dY (n) =dV(n), neAN;
di(e) =df(e), ec&

for the logic set £, where Ay is the adjacency matrix for the edge set &£y.

Definition 3.4 (Edge-Filtration Function f¢). For a DataGraph, DG (N, €, A, dV ., df,d% Ay, As, Ag),
containing a set of edge attributes, Ag, such that d€ # (), the edge-filtration function f¢ : (G,L) — G
is defined such that
fe(DG, L) = DG (N &5, AdV, df, d%, Av., A, Ag)
Wheregf:{e:dg(e) eLec&} (12)
d‘fc(e) =d°(e), ec€

for the logic set £, where Ay is the adjacency matrix for the edge set &£.

Here, we refer to a “logic set”, L, as a set of data corresponding to the data and attributes on nodes

or edges of the graph. For a set of attributes {a1, as, ..., a, }, we use the notation

ay Zl

as ZQ
L=

ar 2

where a; : A; indicates that the set Z; C D,, is used for comparing the data of attribute a;. As the
data on the nodes, edges, or graph can be of many forms, £ can span multiple attributes and take
many different shapes. Filtration is often applied to scalar weights (e.g., filtering out all nodes whose

weight is less than some threshold value); however, filtration can be much more general than the scalar
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weight case. For example, the data attached to nodes could be text, matrices, or even an optimization
model; as such, the filtration can be performed by using logic defined to attributes of the data (e.g.,
filtering out any optimization problems that are “nonlinear” or “unconstrained”). In addition, we
note that edge-filtrations do not alter the nodes or the node data while the node-filtrations can result

in edges being removed when nodes are filtered out.

The above node- and edge-filtrations are implemented in PlasmoData. j1 as shown in Code Snip-
pet 5 and visualized in Figure 7. The graph defined on Line 6 can be filtered by calling the func-
tion filter nodes (the software implementation of fpr). This function takes arguments of the
PlasmoData.DataGraph, a threshold value (often used in the filter function), the attribute name,
and an optional keyword argument fn, which is the filter function used for the filtration. Note that
all nodes where the filter function, fn, does not return true are filtered out. On Line 9, we filter out
all nodes whose “weight” attribute is less than 0.7 through the Base.isless function. On Lines 11 -
13, we define our own function for filtration called extreme_vals, which we pass to filter_nodes on
Line 16 and which filters out all values that are not less than 0.2 or greater than 0.8. This highlights
how user-defined functions can be used to filter out a graph. On Line 19, we add random weights to
all the edges in the graph (note that add_edge dataset! has a similar function as add_edge_data,
but instead adds data of a single attribute to multiple edges, whereas the latter function only adds
data to a single edge). Once data is defined on the edges, we can likewise perform filtrations based on
the edge data, as shown on lines 22 and 25 where we now call filter_edges (the software implemen-
tation of fg). This function behaves similarly to filter nodes, but now operates on the edge data
rather than the node data. All arguments are the same for these functions, except that filter_edges
requires an attribute defined on the edges rather than on the nodes. While these functions are shown

for PlasmoData.DataGraphs, they also apply for PlasmoData.DataDiGraphs.

Code Snippet 5: Example of filtering a PlasmoData.DataGraph by node or edge data

using PlasmoData, Random

Random.seed! (15)
random_matrix = rand(12, 12)

matrix_graph = matrix_to_graph(random_matrix; diagonal = true)

# Filter out/remove nodes with weight >= 0.7
filter_nodes_graphl = filter_nodes(matrix_graph, 0.7, "weight", fn = Base.isless)

function extreme_vals(a, b)
return ((a <= .2) || a >= .8)
end

# Filter out/remove nodes with weight >= 0.2 and <= 0.8
filter_nodes_graph2 = filter_nodes(matrix_graph, nothing, "weight", fn = extreme_vals)

n_edges = length(matrix_graph.edges)
add_edge_dataset! (matrix_graph, rand(n_edges), "weight")

# Filter out/remove edges with weight <= 0.8
filter_edges_graphl = filter_edges(matrix_graph, 0.8, "weight", fn = Base.isgreater)

# Filter out/remove edges with weight >= 0.5
filter_edges_graph2 = filter_edges(matrix_graph, 0.5, "weight", fn = Base.isless)
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Figure 7: Visualization of different examples of node or edge filtration associated with

Code Snippet 5, where different logic sets are used for removing nodes or edges of the

graph
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3.1.3 Graph Aggregation

Aggregation is a useful structural manipulation that can help reduce the dimensionality of the graph
and enable scalable analysis. Graph aggregation is also often referred to as coarsening. For a
DataGraph DQ(N,E,A,dN, dé,d9% Ay, As, Ag), aggregation combines a subset of nodes N' C A
into a new node, nqgq. This aggregation can also require aggregation of node and/or edge data. We

formalize the aggregation process for DataGraphs by defining the following:

Definition 3.5 (Aggregation Function fi). For an undirected DataGraph

DG (N, E,A, AV, dE.d9, Ay, Ag, .Ag) and a subset of nodes to be aggregated, N' € N, the aggregation
function collapses the node set into a single new node and aggregates node and edge data where
applicable. The aggregation function fi : (G,V,F,F) — G (where V is the set of all possible nodes

and F is the set of all possible functions for aggregating sets of node or edge data) is defined as

F+(DGN' 1Y 15) = Dgagg(Nagg’gaggaAaggvdé\g/;gvdiggadg>ANa-ASaAg)
where Nygg = {nagg} UN \ N
Cag9 = {(NiyNagg) 1 ni € N\N,nj € N, (ni,n;) € EV (nj,n;) € E}
Eagg = {(ni,n;) :ni @ Nynj € N, (ni,nj) € E} U Eagg

d¥ (n)=d¥(n), neN\N (13)

dé\gg(nagg) = fﬁ/(dN,N)
d‘ggg(e) = dg(e), e € {(ni,nj) : (ni,nj) € E,ni € Nynj € N'}
digg((nivnagg)) = ff(d‘g, {(niﬂnj) RS N? (nivnj) € S}U

{(nj,ni) :ny € Ny (nj,m) € E}) (113, nagg), € Eagg
where fﬁ/ is a function that aggregates node data in dV for nodes N into node data for a single node
(Nagg) and ff is a function that aggregates edge data in d¢ for the set of edges being passed to the

function, and A4 is the adjacency matrix for edge set Eyq4-

In the above definition, we introduce two new functions, ff and fji These functions can take
many forms because of the variety of data that can be stored on the nodes and edges. In addition, the
function for aggregating edge data, f_‘E, is only needed when there are multiple nodes in A connected
to some node in N\ AV; in this case, there are multiple edges that will be replaced by a single edge
for undirected graphs. We also note that the aggregation function for directed graphs is different
because the order of the edges will matter; consequently, rather than the function f_f acting on the
combined set of edges {(n;,n;) : n; € N, (n;,n;) € €} and {(nj,n;) : n; € N, (nj,n;) € £}, the func-
tion could need to be applied to multiple, independent sets. In addition, the set £ would need to be
expanded to consider the edges where 1444 could be the source node (not just the destination) for an

aggregated edge. For both directed and undirected graphs, ff and fji must be permutation invariant.

PlasmoData.jl implements aggregation for graph objects, as shown in Code Snippet 6 and Figure
8. Here, a node set is defined in Line 9, and the node set is aggregated in line 12 using the function

aggregate. The default for aggregating node data or edge data is to average the values of the data for
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each attribute, but one can also use, for instance, a max operator (as done in graph neural networks).
The user can use these different functions by passing the function to the key word arguments node_fn

and edge_fn.

Code Snippet 6: Example of aggregating a set of nodes in a PlasmoData.DataGraph

using PlasmoData, Random

Random.seed! (15)
random_matrix = rand(12, 12)

matrix_graph = matrix_to_graph(random_matrix; diagonal = true)

# Define nodes to be aggregated
nodes_for_aggregation = [(3, 7), (3, 8), (3, 9, (4, 7), (4, 8)]

e
NFEROOONOOIPWN -

# Aggregate nodes in the graph
aggregated_graph = aggregate(matrix_graph, nodes_for_aggregation, "agg_node")

IR IXI XA XX I IXIXD

LIXTXIXIXIXIXIXIXT [XIX N\
JXIXIXIXTXIXIXIXIX IXIXT XX K|
[KIXIXIXIXIXIXIXIX XX [IXIXIXIXIXIXT
XLIXIXIXIXIXIXIXIXIXT IXIXTIXIXIXIXIX)
LXIXIXIXTXIXIXIXTXIX IIXIXIXIXTXIX
LIXIXIXIXIXIXIXIXIX DXIXIXIXTXIXIX]
LXIXTXIXIXIXIXTXT XX L (XX
LXIXIXIXIXIXIXIXIXIXT XX (XIX
X IXIXIXIXIXIXIXIXIXIX XL XX

matrix_graph aggregated_graph

Figure 8: Visualization associated with Code Snippet 6 where a subset of nodes is aggre-
gated into a single new node with the node weights on the aggregated node averaged to
get a new node weight for the new node

There is an extension of (13) that could be considered. Under (13), any data on the edges between
nodes in A is lost, but such data could be important in different applications. We could extend
(13) by defining a function f&7 that reduces d(e),e € {(ni,n;) : (ni,n;) € En € Nyn; € N}
into new data on ng.gy for an additional set of attributes, Ag_,nr. Such attributes would not be
restricted to be in either Ay or Ag. This would result in a slightly different DataGraph such that
DGagg (./\/agg, Eaggr Aagg) dﬁgg, d‘;gg, d9, An U Ag_n, Ag, .Ag), where d{l\gg now contains additional data
for A¢_,ar. PlasmoData.j1l does not (yet) support this extension, so we have restricted (13) to follow

the implementation of PlasmoData. j1, but this could be an area of future work.

note that aggregation here refers to reducing the number of nodes in the graph and requires a
defined set of nodes to be aggregated. The definition for N+ and fE+ must be permutation invariant;
in addition,
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3.2 Graph Structural Analysis

We now discuss different tools for analyzing and quantifying the structure of the DataGraph model,
such as Topological Data Analysis (TDA) and community detection. The implementation of these
procedures (or interfacing to software that conducts these procedures) is greatly facilitated by the
proposed graph abstraction. These procedures can also be combined with machine learning tools to
enable supervised and unsupervised learning tasks (e.g., for classifying and clustering graphs or for
predicting emerging properties from graphs). In addition, these graph analysis tools are often en-

hanced by the ability to manipulate the graph structure as discussed above.

Community detection and clustering in graphs focuses on how to identify organization within a
graph, typically by identifying communities/clusters of nodes that have several connections within
that grouping but relatively few connections to nodes outside of the grouping [40, 41]. Community
detection has been applied to a variety of problems including optimization programs represented as
graphs [42, 43|, biological networks [44], and fraud detection [45]. Identifying communities can give
insight into the data. In addition, there are numerous algorithms for identifying communities [41],
and different algorithms will identify different communities. Some of these algorithms (such as clique
percolation [46], label propagation [47], or Newman’s modularity [48]) are already implemented within

the Graphs. j1 package and are thus are easily accessible by PlasmoData. jl.

TDA is a growing field in data science that develops tools for analyzing and quantifying the
shape/structure of data objects [49, 50, 51, 52]. Graphs are topologically invariant objects that can
be approached through the lens of TDA. Many data objects may not have an inherent topology in
their mathematical definition (e.g., matrices); modeling these types of data as graphs enables TDA
applications that otherwise might not be possible. Many TDA tools can also be combined with the
structural manipulation based on data (e.g., graph filtration) to elucidate further insights into the
data. We now outline several TDA concepts and tools that can be used to analyze and quantify the

shape/structure of graphs.

3.2.1 Graph Connectivity

There are several general metrics/descriptors describing graph connectivity which could be considered
within TDA. These descriptors could be used to help describe a graph, or they could be used in
combination with the structure manipulation (e.g., analyzing these metrics after performing filtration).

A few of these descriptors include:

e Paths - In graphs, a walk is a way for moving from one node to another node (via edges), and a
path is a walk in which no node appears more than once [53]. There are existing algorithms for
finding the shortest path between a couple of nodes or for finding whether nodes are connected.
The paths in a graph could yield information about the graph and its data. For example, paths
are frequently used for analyzing biological systems [54, 55, 56]. As a further example, in a

supply chain problem, we may be interested in finding paths (or the number of paths) between
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raw materials and products (see for example [57, 58]), as well as how those paths change if nodes
or edges are filtered out. In addition, we may generally be interested in how the length of the
shortest path between two nodes changes as the graph topology changes (e.g., via filtration).
PlasmoData. j1 provides functions for analyzing paths by extending functions within Graphs. j1,

such as the has_path or get_path functions.

e Cycles - A cycle is a walk which starts and ends at the same node using entirely distinct edges.
Cycles are used in many graph analyses, including construction [59] and electrical networks
[60, 61, 62]. The number of cycles or length of cycles could be used in analyzing data represented

as graphs. The function cycle_basis is extended from Graphs. j1 for PlasmoData.DataGraphs.

e Connected Components - Connected components are sets of nodes that are all connected
via paths. The number of connected components can describe how “connected” a graph may
be, and this metric could give insight into how connected or separated the data may be. The

function connected_components is extended from Graphs. jl for PlasmoData.DataGraphs.

e Node Degree - The node degree is the number of nodes a node is connected to (i.e., the number
of neighbors of a given node). The average node degree can also be computed for an entire graph.

This metric has been used in node ranking [63] and sensor analysis [64, 65].

e Diameter - The diameter of a graph is the length of the shortest path connecting the most
distanced nodes (i.e., the maximum shortest path length for any two nodes in a graph). This
metric also provides an idea of the “connectedness” of the data, and it has been used in analyzing
the degree of separation for different entities [66]. The function diameter is extended from

Graphs. j1 for PlasmoData.DataGraphs.

The above metrics can yield important insights into data. These metrics may also change after
filtration/aggregation of nodes and edges, which could likewise elucidate information about the dataset
(e.g., aggregating a graph can help uncover features that are not apparent when dealing with the
full-resolution graph). The DataGraph abstraction therefore provides a framework for obtaining to

topological descriptors.

3.2.2 Euler Characteristic

The EC is a valuable descriptor for topological objects, including graphs. The EC is a scalar integer
value that summarizes the shape of a topological space [19, 67]. For a graph, this can be defined as
[19]:

X = # Connected Components — # Holes = |N| — |E] = By — (1 (14)

where (3; are the ith betti numbers of the graph, the ”"holes” are equivalent to cycles in the graph,
and | - | is the cardinality of the set. We will use the notation EC(DG) for the EC of a DataGraph
DG(N,E, A, dN df,d9, Ay, Ag, Ag).

The EC has also been combined with filtration of node- or edge-weighted graphs to create an EC
curve [19, 68]. The EC curve is formed by filtering out nodes and/or edges at different threshold values
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(e.g., removing all nodes with a weight value less than some threshold value) and computing the EC
for the filtered graph. The shape of the EC curve can give insight into how the shape of the data
changes with the filtration (e.g., where connected components dominate or where holes dominate). For
instance, the EC curve has been used for analysis of liquid crystal sensors and MD data [19, 68, 69].
In Section 4.1, we will show how the EC curve can be used in a classification model with real data.
For a DataGraph, we can generalize the EC curve for a filtration process for node filtration
as follows (edge filtration has a similar definition but for f¢ instead of far). For a DataGraph,
DGN,E, A, dN,df,d9, Ay, Ae, Ag), with Ay # 0 and dV # 0, there exist a sequence of logic sets
L1, Ly, ..., L such that the filtration forms a sequence of nested subgraphs given in (15) associated
with the logic sets, where DGz, = far(DG, L;). For a graph to be considered a “nested subgraph” of
another graph, the nodes and edges of the “nested subgraph” must be subsets of the nodes and edges,
respectively, of the other graph.
DGr, €DGr, € ... € DG, (15)

The EC curve can then be given by the vector (EC(DG.,), EC(DGr,), ..., EC(DGr,)). This ap-
proach for generating an EC curve is more general than the idea of using threshold values because
the DataGraph could include a variety of data types. In the case of single scalar node or edge
weights where all weights are in [0, 1], the logic sets could, for example, be a series of ranges such
as [0,0.1],10,0.2], ...,[0,1] (thus effectively filtering out all nodes with weights greater than a single
value). However, an EC curve of sorts could be generated for more complex data, such as consid-
ering data with multiple weights. For PlasmoData.DataGraphs with scalar data for each attribute,

computing the EC curve can be done with the functions run_EC_on nodes and run_EC_on_edges.

4 Case Studies

We now provide case studies that highlight different applications and benefits of the DataGraph
abstraction. All scripts and data necessary to replicate the results in this section are available at
https://github.com/zavalab/JuliaBox/tree/master/PlasmoData_examples. These examples in-
clude image analysis (representing matrices and tensors as graphs), multivariate time series analysis
(representing symmetric matrices as graphs), and connectivity analysis (analyzing pathways within

graphs).

4.1 Image Analysis

We consider a case study arising in image classification and show how the DataGraph abstraction and
PlasmoData. j1l help integrate with machine learning tools and facilitate feature extraction. We will
show how these images of surfaces can be analyzed by representing these images as 3D tensors the
representing these tensors using the DataGraph abstraction. We will show how we use PlasmoData. j1
for extracting features from this data and use those features to train a machine learning model. We
will also highlight how PlasmoData’s data structure can be employed for GNNs.

The images we consider are of chemoresponsive liquid crystals (LCs) which have garnered increased

interest because of their potential as sensors for gas contaminants [70, 71, 72]. LCs have been shown
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to elicit different, visible chemical responses to varying chemical environments as the L.Cs change their
orientation ordering [73, 74]. One of the challenges that naturally arises from these sensors is identify-
ing the chemical environment surrounding a LLC based on the appearance of the LC’s surface. We are
therefore interested in being able to classify images of LCs based on the chemical environment into
which the LC has been placed. The dataset we consider are images of LCs exposed to four different
concentrations of sulfur dioxide (SO2): 0.5, 1.0, 2.0, and 5.0 ppm (i.e., four classes of images corre-
sponding to each concentration). Each image is 134 x 134 pixels, and there are 72 images in each class

(288 total). Examples of images from each class can be seen in Figure 9 [69, 73].

1.0 ppm SO, 2.0 ppm SO, 5.0 ppm SO,

Figure 9: Images of LCs exposed to gaseous environments with different concentrations of
SO, [69, 73]

4.1.1 Classification using TDA and SVMs

To classify these images, we will represent these images as tensors and then each tensor as a graph. Each
of the 288 images can be treated as a tensor, T € [0, 1]134*134X3 Under the DataGraph abstraction, we
can represent the ith tensor as a graph with (16) using the first method shown in Section 2.3.2, where
the third dimension of the tensor represents the red, green, and blue channels of the pixel intensity

and where t; ;. ; is the j,k, [ entry of T
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Dgl(Na 55 A7 dNa (ba (Da AN, (2)7 @)

where N = {’I’Lij : 7 € Nyay, ke N134}
E={(njr,njr1,k) : J € Nizz, k € Niza} U{(njx,njk41) 0 J € Niza, k € Nyzz}u

{(j ki1 641) 2 7 € Nugs, kb € Nigz} U{(njet1,n41%) 1 7 € Nisg, k € Nigz} (16)
AN = {ared7 Qgreen ablue}
d-(/z\{ed (njk) = tjr1,J € Niga, k € Nigg
dé\green (njﬂi‘) = t‘,k‘,Qaj € N1347 ke N134
dé\;“e (njk) =tjk3,7 € Niza, k € Nigy
where A is a symmetric matrix (DG is undirected) matching the connectivity defined by &.

With the DataGraph, DG;, defined for each image, we can generate an EC curve (or a set of EC
curves) for the graph. We will generate an EC curve for the data for each attribute in Ax. Because
we have scalar weights, we will filter the nodes by removing nodes that are greater than a threshold
value, and we will do this for a series of threshold values. Under the formulation given in Section 3.2.2,

we can define a sequence of logic sets for the data corresponding to each attribute in Axs such that

area  :[0,(j —1) x 0.005]

Ej:“red = \ Qgreen - [07 1] 5 J € Nogp
Aplue : [0, 1]
Qred : [0, 1]

ﬁjﬂgreen = \ Qgreen : [O, (] — 1) X 0.005] ) 7 € Nogy
Aplye : [O, 1]
QAred : [O, 1]

Ej,flblue = \ Qgreen - [07 1] y ] S NQOl

Aplue : [0, (] — 1) X 0005}
One approach to classify these images is to feed a topological descriptor of the weighted graph

(e.g., the EC curve) to a machine learning model. We generate an EC curve for the ith image and for

each color channel, and we denote these curves for attribute (color channel) a as

Xia=(EC(fN(DGi, L1,4)), EC(fAn(DGi, L2,4))s -, EC(fn(DGi, L201,4)))-

X

into a vector X; and train a linear support vector machine (SVM) on sets of X; for ¢ € Nogg.

To perform the classification for the ith image, we concatenate the EC curves X and

X

1,Qred ) 1,agreen?

,ablue

The code for performing the tasks of generating the graph representations, building the EC curves,
and training an SVM can be seen in Code Snippet 7. The data is in the format of a 4D array of size
(288,134,134, 3). The graph is formed by treating each pixel of the image (dimensions 2 and 3 of the

27


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

array) as a node using PlasmoData.jl’s matrix_to_graph function (Line 17). The intensity values
for each RGB channel (dimension 4 of the array) are saved as weights on each node of the graph.
After each graph is formed, we then find the EC curve for each weight (channel) on the graph and
store this in the array so2_ECs (Lines 19 - 23). The three EC curves (one for each channel) are then
concatenated into a vector and used to train a linear SVM using 5-fold cross validation (CV) (Lines
29 - 49).

Code Snippet 7: Classifying images from the EC using SVMs

using PlasmoData, JLD, MLUtils, LIBSVM
### Construct matrices as graphs and get EC curves ###

# Load in the SO2 data; so2_data is size (288, 134, 134, 3)
so2_data = load("so2_data.jld")["data"]
so2_classes = load("so2_classes.jld")["classes"]

# Define threshold range for each EC curve
thresh = 0:.005:1

# Define a matrix for the EC curves; EC curves will be concatenated
so2_ECs = Array{Float64, 2}(undef, (length(thresh)*3, 288))

for i in 1:288
# Build a graph from a 3—D array (134 x 134 x 3)
mat_graph = matrix_to_graph(so2_datali, :, :, :])

for j in 1:3
# lterate through each channel and concatenate the EC curve
range_bounds = (1 + (j - 1) * length(thresh)):(j * length(thresh))
so2_ECs[range_bounds, il = run_EC_on_nodes(mat_graph, thresh, "weight$j", false)
end
end

### Perform 5 fold CV with SVMs on EC data ###

# shuffle data
Xs, ys = shuffleobs((so2_ECs, so2_classes))

# define a function for calculating accuracy
function get_accuracy(yhat, ytest)
num_errors = 0
for i in 1:length(yhat)
if yhat[i] !'= ytestl[i]
num_errors += 1
end
end
return 1 - num_errors/length(yhat)
end

# Perform 5—fold CV
accuracy_values = []
for (train_data, val_data) in kfolds((Xs, ys); k = 5)
model = svmtrain(train_datal[1], train_data[2], kernel = Kernel.Linear)
yhat, decision_values = svmpredict(model, val_datal[1]
accuracy = get_accuracy(yhat, val_data[2])
push! (accuracy_values, accuracy)
end

The method can effectively classify these images in a reasonable time. The classification accuracy,
based on 5-fold CV, was 94.8% with a standard deviation of 2.1%. Running this script on an Intel(R)
Core i9-10885H (2.40GHz) processor on a single thread with Julia 1.7.3 resulted in a data processing
time (Lines 10 - 24) of 36.2 s and a 5-fold CV (Lines 29 - 49) time of 0.09 s. This is comparable to what
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Jiang and co-workers [69] found, where they had 87.5% accuracy from other topological methods that
took less time to process and train (~ 14 s). For comparison, Jiang and co-workers [69] also trained
a convolutional neural network (CNN) for classifying these images, and the CNN was able to classify
with 95.1% accuracy while taking 154 seconds to train. Here, we do not aim to show superiority of
one method over another or provide a rigorous comparison in processing time but rather to provide a
general validation as to whether our methods yield reasonable results. In particular, our results sug-

gest that it is possible to obtain high accuracy while performing these operations in a competitive time.

We also note—as Jiang and co-workers [69] did in their study—that there are benefits to topo-
logical methods such as those we followed above. First, the linear SVM above had relatively few
parameters—each EC curve contained 201 points before concatenation, so there were only 603 param-
eters in the SVM. In contrast, CNNs can use high numbers of parameters (thousands to millions).
They also can be sensitive to rotation, whereas graphs are rotationally invariant (e.g., the EC curve
does not depend on the orientation of the graph). In addition, Jiang and co-workers [69] note that the
CNN in their study was trained on a GPU, whereas our above methods (and Jiang and co-workers
[69] TDA methods) functioned efficiently on a CPU.

A further benefit of TDA is that the results can be interpretable and potentially provide insight
into the data. For example, the EC curve can reveal how the topology of a graph is changing through-
out a filtration. For example, we show in Figure 10 an example of what the filtration looks like for
an example image from each class. In addition, the EC curves for the three different channels are
shown in Figure 11. In Figure 10, different topologies are evident at different filtration thresholds. For
example, the red channel of the 0.5 ppm SO9 class has several small, scattered holes throughout, and
its corresponding EC curve (Figure 11) is less steep than the 2.0 ppm SOs class which exhibits larger
and fewer holes in the topology. The channels also exhibit slightly different topologies at different
filtration levels and can thus provide different information in differentiating the images. For example,
the average EC curves for the 0.5 and 5.0 ppm SOs classes (Figure 11) are almost on top of each other

for most of the blue channel, whereas the two curves are more offset within the red channel.

The EC curve for each graph (and each channel) could provide insight into the image. Because the
EC of a graph is only the number of nodes minus the number of edges, the EC curve begins at the ori-
gin but can end far from the origin. In the case of images, the full graph (i.e., when nothing is filtered
out) has a large negative EC since the number of edges is much more than the number of nodes. Thus,
the EC curve of a graph tends to show when and how quickly edges and cycles begin to appear. For
example, in the case of images, if the filtration results mostly in nodes that are far apart, there are few
if any edges between them and the EC is more positive. In contrast, if the filtration results in groups
of clustered nodes, there are more edges connecting nodes and the EC is more negative. This helps
explain why the EC curves for the 0.5 ppm SO2 class tend to be more positive at a given threshold
value than the other classes (Figure 11) since, as can be seen in Figure 10, the filtration results in more

spread out, small clusters at the lower threshold values for the 0.5 ppm SOs class than the other classes.
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Figure 10: Examples by class of graph filtrations at different threshold values. Each image
has a value corresponding to the RGB channels, and these channels result in different
topologies at the filtration thresholds. The EC curve captures these different topologies
across channels and across classes. Data comes from the work of Bao and co-workers [73]

and Jiang and co-workers [69]

The EC curves also reveal some minor differences across color channels, and this helps highlight
how the multiple node weights within a graph can be used for more effectively analyzing the data. If
only gray-scale images are used, the classification accuracy of these images is at least 10% lower (see
the Supporting Information). We can thus analyze our graph structure using different weights to gain
different information. Omne area that could particularly benefit from this approach is hyperspectral
imaging [75, 76]. In hyperspectral images, rather than recording only 3 channels of colors, each image
can contain several (10s - 100s) weights at each pixel corresponding to different wavelengths of light.
Thus, it is possible for each node of the graph to contain dozens or hundreds of weights that could be

analyzed. PlasmoData. jl is able to readily handle this type of data.

In this example, we have described how PlasmoData. j1 can be used to combine TDA with machine
learning. There are more details that could be valuable on these topics which we include in the
supporting information, including i) a comparison of memory allocation between PlasmoData.jl,
Networkx, MetaGraphs.jl, and Matlab’s graph function for the image application; and ii) a brief
discussion of how the graph structure and data impact classification results. In the above example, if
gray-scale data is used instead of colored data (i.e., one weight instead of three weights are stored on

each node), the classification accuracy decreases.
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Figure 11: EC Curves for the RGB channels of four classes of images for LC data from
Bao and co-workers [73] and Jiang and co-workers [69]

31


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

4.1.2 Classification using Graph Neural Networks

An alternative method to TDA+SVM for graph classification are convolutional GNNs. PlasmoData. jl
facilitates the implementation of this method and enables systematic comparisons with other ap-
proaches. Since the data for nodes and edges is stored as a matrix within the PlasmoData.DataGraph
(or DataDiGraph) structure, we can easily query this data to create the needed structure for GNNs.
In Code Snippet 8, we show how our data for the image classification can be easily transformed
into a format used by a GNN. In this example, we use the packages GraphNeuralNetworks.jl
[31] and Flux.jl [77]. After the data is loaded, we build the PlasmoData.DataGraph as before
from the image data (Line 12). The PlasmoData.DataGraph can then be passed to the GNNGraph
function from GraphNeuralNetworks.jl (Lines 13 - 16). This function takes as an argument a
Graphs.SimpleGraph (or Graphs.SimpleDiGraph) to provide the adjacency lists, and a matrix of
node and/or edge data. Since the PlasmoData.DataGraph stores a Graphs.SimpleGraph, this is read-
ily provided to the GNNGraph function. In addition, the node or edge data is provided by calling the
API function get_node_data (Line 15). The classes are also passed to Flux.onehotbatch (Line 21)
to provide a one hot encoded array that can be used by the GNN.

Code Snippet 8: Interfacing PlasmoData.jl with GNNs

using PlasmoData, JLD, Flux, GraphNeuralNetworks

function getdataset()
# Load in data
so2_data = load("so2_data.jld") ["data"]
so2_classes = load("so2_classes.jld")["classes"]

GNN_graphs = []

# Create GNNGraph from DataGraph
for i in 1:288

mat_graph = matrix_to_graph(datali, :, :, :1)
gnn_graph = GraphNeuralNetworks.GNNGraph (
mat_graph.g,

ndata = get_node_data(mat_graph)’
)
push! (GNN_graphs, gnn_graph)
end

# One hot encode classes
y = Flux.onehotbatch(so2_classes, 1:4)

return GNN_graphs, y
end

With the data formatted as GNNGraphs, we can build a full GNN through GraphNeuralNetworks. j1.
We ran our script on an AMD EPYC 7302 16-core processor with access to a NVIDIA Quadro RTX
6000 GPU (used for training the GNN). Using the same 288 images as before, we were able to classify
the images with 89.2% accuracy with a standard deviation of 5.1% based on 5-fold CV. While the
time for data processing was short (3.8 s), the GNN did take a long time to train and perform CV
(947 s).

The ability to use PlasmoData.DataGraphs for GNNs is a powerful capability. This framework
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for building GNNs from PlasmoData.DataGraphs could be applied much more broadly than just to
images (e.g., molecular property prediction). The user has significant flexibility in constructing their
own graph data and using GNNs with that data, enabling application of PlasmoData. jl to a variety
of fields or use cases. For further details on constructing a GNNGraph from data using PlasmoData. j1,

see the Supporting Information.

4.2 Multivariate Time Series Analysis

In this example, we illustrate how multivariate time series can be represented as graphs, and we
highlight how the topology of this graph representation can provide interesting insights. Recently, de
Souza and co-workers [13] explored the use of TDA (and in particular the EC) as a potential tool for
data-driven surveillance of epidemic outbreaks. Specifically, they were interested in finding indicators
or fingerprints of when an outbreak is occurring (or likely to occur), and they based their efforts on
locally reported disease data and on simulated data. In their work, they constructed correlation matri-
ces as graphs, filtered these graphs, and looked at the resulting topology. They identified that there is
a strong correlation between the EC curve and epidemic outbreaks, and they suggest that TDA could
be used as a tool in disease surveillance. In this section, we will recreate some of their results using the
DataGraph abstraction and using PlasmoData. j1, and we will suggest some other topological metrics
that could be useful in analyzing datasets like these. In doing this, we emphasize that our purpose in
this example is to highlight how data can be modeled with graphs and how PlasmoData. j1 facilitates

much of this analysis.

First, we highlight the general data and methodology of de Souza and co-workers [13], but point
the reader to their original paper to find an in depth explanation [13]. For this analysis, we will use
their data from Recife, Brazil of new daily dengue cases from 93 individual districts from 2014 - 2021
(Figure 12). For each seven-day moving window of data, they computed the Pearson correlation for
the 93 time series (one for each district) and then constructed the edge-weighted graph as outlined
earlier (see for example Figure 6). They then computed a characteristic threshold value (what they
call a critical percolation value) for this edge-weighted graph. This characteristic threshold value is
the maximum possible threshold value that does not change the number of connected components
from the number in the original graph when all edges with weights less than that threshold value are
removed. A visualization of a this process can be seen in Figure 13, where ¢ is the threshold value
used for filtration.

Note that, in computing the EC of the filtered graph, de Souza and co-workers use methods dif-
ferent from that discussed in this present work. Where we have only discussed computing the EC
for a graph (a 2D object), de Souza and co-workers [13] treat the filtered graph as a CW-complex.
CW-complexes are different than graphs, and involve the union of all d-cells in a graph (equivalently,
the union of all d-node or -vertex cliques; see [13, 78]). A d-cell or d-vertex clique is a subset of nodes
in a graph such that every node is connected by an edge to every other node in the subset (i.e., every
two nodes in the subset are adjacent). A detailed discussion of CW-complexes is outside the scope of

this paper; however, we mention this to highlight that the EC computed by de Souza and co-workers
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for CW-complexes is different than the EC we will show computed for a graph. Instead, their methods
for computing the EC involve finding all d-cells up to some d;q, value. We will discuss later in this

subsection some of the implications of this difference.

We can represent the Pearson correlation matrix at each time point within the DataGraph abstrac-
tion, and we then can perform a similar analysis as de Souza and co-workers [13] on the DataGraph
within PlasmoData. j1. For the time series of data X € Z%rg22x93 and X = [X1, X2, ..., Xog22], we first
construct the Pearson correlation matrix Ry = corr([Xi—¢, X;—5, ..., X¢]) for each time ¢ between 7 and
2922. Since R; is a symmetric matrix, we can construct a DataGraph following the method outlined

in Section 2.3.3. The DataGraph for R; is given in (17), where r; ; is the ¢, j entry of Ry.

DG(N,E, A, 0,d5,0,0, A, 0)
where {n; : i € Ng3}
£ = {(ni,n;) i € Ngg,j € No3 \ N;} (17)
Ag = {a}
d5 ((ni,n;)) = rij,i € No, j € Nog \ N

where A is a symmetric matrix (DG is undirected) matching the connectivity defined by .

With the DataGraph defined, we can perform the analysis shown in Figure 13. The graph edges

are filtered using the logic set

y

Lio= {a [0, max ({r:r € Ri})]
for attribute a. We define the characteristic threshold value for time ¢ to be
et = sup{e : |fn(DGe, Lie)| = [DGil}-

The value of ¢; can be found by setting £ in £, , to be the largest edge weights and then progressively
choosing the next largest edge weights until | far(DGy, Li¢)] = |DGy|. This process is repeated for
each time value. For each graph filtered by the characteristic threshold value, we can consider various

topological metrics like the EC or the number of communities.

We performed the above analysis in PlasmoData. jl, and we will show how the DataGraph ab-
straction can enable topological analysis of the dengue data. PlasmoData.jl readily facilitates the
process of building the graph, filtering the edges, and performing TDA. Code Snippet 9 shows how
these tasks can be implemented. First, the data for Recife, Brazil from de Souza and co-workers [13]
is loaded on line 4. This data are daily reported new cases of dengue outbreaks in each of 93 city
districts. We then define the function find _smallest_filtered graph on Lines 7 - 25 that will add
edges to the graph until the graph has only one connected componentent. The symmetric matrix for
building the graph is formed by computing the Pearson correlation matrix on Line 34. Because we
use a limited time window (7 days), some values in the matrix were not defined (i.e., NaN values). We

removed all rows/columns of the symmetric matrix that were NaN values (Lines 37 - 38), and used
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the resulting symmetric matrix to construct the edge weighted graph, DG (line 46) (this results in a
symmetric matrix with fewer than 93 nodes). We next define a sequence of values (1, fa, ..., £}, which
are equal to the edge weights of the graph (d¢) in descending order (see Line 10; non-unique values
are removed in the code). Once DG, is defined, we then iterate through the sequnce of edges weights
until | far(DGy, Lte,)| = 1, where ¢; is the ith value in the sequence, and where ¢; = ¢,.. Note that we
use |fa (DG, Lig;)| = 1 rather than |far(DGy, Lts,)| = |DGy| because we have removed the rows and
columns of the matrix which are not defined; this results in the edge-weighted PlasmoData.DataGraph

formed in line 15 having only one connected component.

Code Snippet 9: Code for converting time series data to an edge-weighted graph. The code follows the

general procedure of de Souza and co-workers [13] in filtering the graph

using PlasmoData, Graphs, DelimitedFiles

# Read in data
data = readdlm("Recife_data.csv", ’,’, Int)

# Define function for performing filtration
function find_smallest_filtered_graph(graph)

# Define values for iteration; this ensures that we only add one edge at a time
iter_values = sort(get_edge_data(graph)[:], rev = true)

for i in iter_values
# Filter out all edges below a given threshold
# Only keeps edges where Base.isgreater(edge_weight, i) is true
filtered_graph = filter_edges(graph, i; fn = Base.isgreater)

# If the number of connected components is 1, return the TDA metrics

if length(connected_components(filtered_graph)) ==
EC = get_EC(filtered_graph)
num_max_cliques = length(maximal_cliques(filtered_graph))
num_communities = length(clique_percolation(filtered_graph, k = 25))
return EC, num_max_cliques, num_communities

end

end
end

# Create array for storing solutions
ECs = zeros(size(data, 1) - 6)
num_max_cliques = zeros(size(data, 1) - 6)
num_communities = zeros(size(data, 1) - 6)

for i in 1:length(sols)
# Form a correlation matrix based on 7 days of data
cor_mat = cor(datali:(i + 6), :], dims = 1)

# Remove the matrix entries that are NaNs
bit_vec = (!).(isnan.(cor_mat[:, 11))
sym_mat = cor_mat[bit_vec, bit_vec]

# If there are not more than 2 nodes in the graph, skip this iteration
node_count = size(sym_mat, 1)
if node_count <= 2
continue
end

sym_graph = symmetric_matrix_to_graph(sym_mat)

ECs[i], num_max_cliques[i], num_communities[i] = find_smallest_filtered_graph(sym_graph)
end

With the filtered DataGraph defined, we can consider several topological metrics for analyzing our

data. The goal of de Souza and co-workers [13] was to identify ways of “fingerprinting” when disease
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outbreaks were occurring. They chose the EC as their primary indicator, and they showed how the
EC was able to help indicate when outbreaks were occurring, especially for larger d;,q. values. This
may be because the higher d,,,, values indicate when there are several nodes (districts) are closely
correlated. Consequently, we consider the EC of the graphs being formed, and then we also consider
the size of cliques in the graph and the number of communities in the graph. In graph theory, a
k-clique is a set of k nodes which are connected to all other nodes in the clique. We hypothesize that a
possible fingerprint for outbreaks may be when several nodes (districts) are closely correlated. Thus,
we compute the EC for comparison with de Souza and co-workers [13], we compute the total number
of maximal cliques in the graph (i.e, the total number of k,q,-cliques in the graph, where ky,q, is the
largest integer value for which there is a nonempty set of nodes forming a kj,q.,-clique in the graph)
and we compute the number of communities in the graph (found by clique percolation [46], with k =
25; see Lines 18 - 23). The results of these computations, as well as the average daily new cases during

each 7 day moving window, are shown in Figure 14.
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Figure 14: Results for TDA of dengue data for 93 districts in Recife, Brazil [13]. For each
7-day moving time window, an edge-weighted DataGraph was formed. Results presented
include the average number of new cases per day for the moving time window (a), the
EC for the DataGraph (b), the number of maximal cliques in the DataGraph (c), and the

number of communities in the DataGraph using clique percolation (k = 25) [46]

The results shown in Figure 14 are consistent with the results of de Souza and co-workers [13].
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As mentioned above, the EC we compute in the above code is for a graph, while de Souza and co-
workers [13] computed the EC for CW-complexes, where their computed EC was a function of d;,q,.
They used various di,q, values up to 7, and found that the noise of the EC decreased with increasing
dpmaz- In this case, the EC in Figure 14 does contain significant noise (visually similar to that seen
for dpar = 2 and dypa, = 3 of de Souza and co-workers’ [13] work). However, the trends are similar,
and we note that it is computationally much easier to compute the EC for a graph (i.e., number of
nodes minus number of edges) than to compute the EC for a CW-complex with larger dy,q, (Where
each dpqe-cell may have to be determined). In addition, the number of maximal cliques (Figure 14c)
and the number of communities (Figure 14d) also correlate to the average number of new cases per
day, and they appear slightly less noisy than the EC. A detailed analysis of these additional indicators
as fingerprints for disease outbreaks is outside the scope of this work; instead, our purpose in showing
these results is to highlight how the DataGraph abstraction and how PlasmoData. j1 facilitates different
TDA approaches.

4.3 Connectivity Analysis

In this subsection, we present a technology pathway analysis example to illustrate how the DataGraph
abstraction and PlasmoData.jl can be used to navigate connectivity and provide insights into the
technology pathway. The technology pathway we consider has five raw materials (petroleum naph-
tha, natural gas, corn stover, sugar beets, and sugarcane) that can be used in technologies to pro-
duce seven different polymers (low density polyethylene (LDPE), high density polyethylene (HDPE),
polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET),
and Nylon66). There are 15 different intermediate chemicals produced and 27 different technologies
that can be used to produce different chemicals. Each of these raw materials, products, intermediates,
and technologies are represented by nodes. The interconnectivity of materials and technologies is
complex and difficult to navigate [79]. This type of connectivity also arises in complex, multi-product

supply chains [80].

Within the above technology pathway, different types of nodes have specific data attached to
them. For example, nodes can contain supply limitations, demands, costs, and carbon emissions,
and these will be saved as node data. This problem also contains connections between raw materials
and technologies, technologies and intermediates, intermediates and technologies, and technologies
and products which can all be represented by directed edges, forming a directed graph, with 57 total
edges. In addition, we also have flows that are represented as edge data. These flows are dependent
on the connections in the graph and on the data stored in the nodes (e.g., it depends on the cost of

technologies or the maximum available supply of the products).

The DataGraph for this technology pathway is a heterogenous graph and contains multiple at-
tributes for node and edge data. The DataGraph contains the set of 54 nodes and 57 directed edges
discussed above, which we notate here as A" and £. There are four subsets of nodes, N,quw, /\/prod, Nint,

and N, for the sets of raw materials, products, intermediates, and technologies, respectively, such

38


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

that N = Npaw U Nproa U Ning U Nieer,. Each node stores data under different attributes indicating
whether the node is a raw material (ayqy), product (aproq), intermediate (aint), or technology (aec)
and data under different attributes for the raw material cost (acost), the COo emissions per weight
of material (aco,), maximum raw material supply (asyp), and maximum production demand (ager,)-

Each edge has data for the optimal flow of material along the edge under attribute afpy-

The DataGraph, DG, can be represented mathematically as:

DGN,E, A, dN,d*,0, A, Ae, 1)
where N = Nraw U Nprod U Mnt U Mech

An = {arawa Qprody Atechy Qcosty ACOq s Asups adem}

As ={ajiow}

& )=1, neNugw, A =0, neN\NMau

& ()=1, nENpoa, d =0, nEN\Npoa

' (n)=1, n€ N, d =0, neN\ N (18)
dN Qtech

N

Qcost

div.o, (n) = aco,(n), 1 € Noaw UNieeh, oty (1) =0, 1 € Nproa U Nims

n)=1, n € Necn, & =0, n € N\ Nieeh
) = acost(n)a n c Nraw U/\/‘teclu dN = 07 nc Nprod UMnt

Qcost

aco,
{l\iup(n) = asup(n), n € Npaw, dﬁéw =0, neN\Nuaw
{l\gem (n) - adem(n)7 ne Nprod7 dﬁgm = Oa n e N\Nprod

i, (€)= aowe), e€&

where A is an asymmetric matrix (DG is directed) matching the connectivity defined by £. Here,
Qeost(n) is the raw material cost for node n, aco,(n) is the CO2 emissions per weight of material for
node n, agyp(n) is the maximum raw material supply for node n, agem, () is the maximum production
demand for node n, and o, (e) is the optimal flow on edge e (this value is computed separately by

solving an optimization problem that uses the above data).

The code for creating DG in PlasmoData. j1 is given in Code Snippet 10. In this code, each type of
node (Raw Material, Product, Intermediate, and Technology) is loaded as a separate CSV file, where
the CSV contains the name of the node and data corresponding to that node. Each node is added
using the add node! function, and data is added using the add node_data! function. In addition,
we add an attribute to each node (Lines 16, 24, 30, and 35) where a value of 1 indicates the type of
node. The edges and edge data are then added to the graph using the add_edge! and add_edge_data!
functions (Lines 41 - 45).
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Code Snippet 10: Code for constructing a directed graph for a technology pathway problem

using PlasmoData, Graphs, DelimitedFiles, PlasmoDataPlots

# Read in data

raw_data = readdlm("rawmaterial_data_array.csv", ’,’)
prod_data = readdlm('"product_data_array.csv", ’,’)
int_data = readdlm("intermediates_data_array.csv", ’,’)
tech_data = readdlm("technology_data_array.csv", ’,’)
edge_data = readdlm('"edge_data.csv", ’,’)

# Define DataDiGraph
dg = DataDiGraph()

# Add nodes and node data
for i in 1:size(raw_data, 1)
add_node! (dg, raw_datal[i, 1])
add_node_data! (dg, raw_datal[i, 1], 1, "Raw Material")
add_node_data! (dg, raw_datal[i, 1], raw_datal[i, 2], "Cost")
add_node_data! (dg, raw_datal[i, 1], raw_datal[i, 3], "CO2 Cost")
add_node_data! (dg, raw_datal[i, 1], raw_datali, 4], "Max Supply")
end

for i in 1:size(prod_data, 1)

add_node! (dg, prod_datali, 1])

add_node_data! (dg, prod_datali, 1], 1, "Product")

add_node_data! (dg, prod_datal[i, 1], prod_datali, 2], "Demand Limit")
end

for i in 1:size(int_data, 1)

add_node! (dg, int_datali, 11)

add_node_data! (dg, int_datal[i, 1], 1, "Intermediate")
end

for i in 1:size(tech_data, 1)
add_node! (dg, tech_datali, 1])
add_node_data! (dg, tech_datali, 1], 1, "Technology")
add_node_data! (dg, tech_datal[i, 1], tech_datal[i, 2], "Cost")
add_node_data! (dg, tech_datali, 1], tech_datali, 3], "CO02 Cost")
end

# Add edges and edge data
for i in 1:size(edge_data, 1)

edge = (edge_datali, 1], edge_datali, 2])

PlasmoData.add_edge! (dg, edge)

PlasmoData.add_edge_data! (dg, edge, edge_datal[i, 3], "Optimal Flow")
end

plot_graph(dg, dag_positions = true, nlabels = dg.nodes)
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4.3.1 Visualization

One of the potential benefits of these graph representations is the ability to visualize the structure of
the problem. In this example, DG is a directed acyclic graph (DAG), which is a common structure
in pathway and supply chain problems. Because it is a DAG, the graph can be presented in different
layers, and different algorithms have been proposed for identifying these layers and the positions of
nodes within the visualization [81, 82]. The above technology problem is shown in Figure 15 using the
algorithm of Zarate and co-workers [82] to determine node positions (as implemented within the Julia
package LayeredLayouts. jl [83]). This visualization is automated through PlasmoDataPlots.jl. In
this case, Figure 15 (without node coloring) can be easily constructed with just Line 47 of Code Snip-

pet 10 (abbreviation meanings are available in the supporting information).

Raw Materials

ex. Meth. Diam.
Products

@ 'ntermediates

@ Technologies

Jer. Acid  &DPEPoly. LDPE PET Poy,

Nylon

PS

thydrog. §tyrene

&S Poly.

Propylene PP Poly. PP

Figure 15: Directed graph of a layered technology pathway example; created using
PlasmoDataPlots.jl

The ability to visualize these structures can be a significant resource in evaluating the data. For
example, it can make clear what some of the paths are or what some of the most essential nodes are.
For instance, from Figure 15, it is clear that the node ”Ethylene” has more connections than any other
node and is directly connected to several products. In addition, PlasmoDataPlots.jl provides the
ability to highlight paths within a graph. For example, by calling the function plot_graph path with
the source (”Corn Stover”) and destination (”Nylon”) nodes of the path, Figure 16 can be generated.
Visualizations for DAGs or for layered graphs are often not implemented directly in graph plotting
tools, and other tools for visualization (e.g., yFiles [84]) can require subscriptions, so this ability for

visualization is a powerful capability of PlasmoData. j1.
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ropylene J’P Poly. PP

Figure 16: Directed graph with a pathway between ”Corn Stover” and ”Nylon” high-
lighted, created using PlasmoDataPlots. jl

In addition to plotting the layered structure, incorporating the data of the graph could also be
useful. One way of doing this would be to create a Sankey diagram. Often, Sankey diagrams are not
thought of as graphs, but they are effectively just directed graphs with edge weights. Thus, to go from
the directed graph defined in Code Snippet 10 to a Sankey diagram, we essentially need only five lines
of code (see Code Snippet 11). The resulting diagram can be seen in Figure 17. Thus, constructing

data within a graph structure can provide unique and useful visualization capabilities.

Code Snippet 11: Code for constructing a Sankey diagram from a PlasmoData.DataDiGraph

using SankeyPlots

# Define src and dst for edges

src = [i for (i, j) in dg.edges]

dst = [j for (i, j) in dg.edges]

weights = get_edge_data(dg, "Optimal Flow")

# Plot sankey diagram
sankey(src, dst, weights;
size = (1400, 800),

node_labels = dg.nodes,
edge_color = :black,
label_size = 9
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Figure 17: Sankey diagram of a technology pathway example

4.3.2 Connectivity Measures

An important challenge in working with graph models of data is how to navigate connections to get
information out of the data. For example, in the above technology pathway, how nodes are connected
can reveal information about each node. Different metrics can give insight into how “important” or
connected a node may be. Thus, we can consider metrics such as the number of upstream or down-
stream nodes or the number of products to which a node is connected. PlasmoData.jl facilitates
these kinds of metrics by providing functions for identifying paths between nodes and identifying sets
of upstream or downstream nodes (in part through accessing functions in Graphs.jl). In addition,
one might also be interested in how manipulating the graph structure can impact these paths (e.g., If
a node is removed, what happens to the structure?). We will show here how some of these analyses

can be performed.

We consider how connectivity metrics can assist in understanding the data. Algorithms have been
proposed in literature for identifying paths and connections between nodes in a graph [85, 86, 87, 88].
For example, we can consider to how many products each raw material can contribute, or we can
consider how many raw materials contribute to each product. Analyses like these can give insight into
the raw materials or products; for example this could help identify which raw materials or products are
most susceptible to disruption (i.e., if a product only has one raw material connected to it, it may be

more easily disrupted if anything happens to the supply of that material). For each raw material and
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product, we can also count the total number of upstream and downstream nodes to provide an idea
of how ”connected” each raw material and product is to the rest of the graph. All of the above met-
rics are easily performed in PlasmoData as shown in Code Snippet 12, using functions like has_path
(Line 20), downstream nodes (Line 4), and upstream nodes (Line 17). The above metrics can also

be added to the graph as new data by defining a new attribute for each metric (see Lines 5, 18, and 24).

Code Snippet 12: Code for determining the connectivity metrics of the technology graph given in Code
Snippet 10

# Compute metrics for raw materials
for r in raw_datal[:, 1]
count = 0
num_downstream = length(downstream_nodes(dg, r))
add_node_data! (dg, r, num_downstream, "Number Downstream")
for p in prod_datal[:, 1]
if PlasmoData.has_path(dg, r, p)
count += 1
end
end
add_node_data!(dg, r, count, "Connected Products")
end

# Compute metrics for products
for p in prod_datal:, 1]
count = 0
num_upstream = length(upstream_nodes(dg, p))
add_node_data! (dg, p, num_upstream, "Number Upstream")
for r in raw_datal:, 1]
if PlasmoData.has_path(dg, r, p)
count += 1
end
end
add_node_data!(dg, p, count, "Connected Raw")
end

In addition to computing measures on the original graph, we can also consider how these metrics
change as the graph structure is altered such as through node- or edge-removal, node- or edge-filtration,
or aggregation. For example, we can look at what happens if we remove different intermediates or
technologies from the graph. Doing so can be thought of as considering the impact if an intermediate
material or technology were no longer available or taken off-line unexpectedly. Using PlasmoData. j1,
we remove the intermediates Ethylene, Terephthalic Acid, and Cyclohexane separately from the graph
and see what impact each has on the metrics (i.e., we call remove node! and reevaluate Code Snippet
12). The original metrics for each graph and the resulting changes can be seen in Tables 1 and 2.
Of those three intermediates, the only intermediate that is completely essential is Ethylene (when
ethylene is removed, LDPE, HDPE, and PVC have no connection to any raw materials). It is also
clear from the metrics that removing Ethylene from the graph could impact the production of PS
and PET since these are no longer connected to as many raw materials. This type of analysis can be
valuable in analyzing the resilience of a system in the face of failure of certain elements.

The above tools can also be coupled with the visualization tools to provide an easier interface
to understand these changes. For example, Figure 18 shows the technology graph where nodes are
sized by their number of downstream connections (i.e., sizing by node data). This shows visually

which raw materials are connected to the most downstream nodes, but it also gives insight into which
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Table 1: Metrics on a technology graph with the number of connected products (Prod)
to each raw material and the number of downstream nodes (Down) for each raw material.
The nodes Ethylene, Ter Acid, and C.-hexane were each individually removed from the

original graph and metrics recomputed

Original Graph w/o Ethylene w/o Ter. Acid w/o C.-hexane

Raw Material Prod Down Prod Down Prod Down Prod Down
Sugar Beets 6 29 1 10 6 29 6 29
Sugarcane 1 5 1 5 1 5 1 5
Corn Stover 3 23 3 23 2 20 2 16
Natural Gas 1 7 1 7 1 7 1 7
Pet Naphtha 7 39 4 28 7 38 6 32

Table 2: Metrics on the technology graph with the number of connected raw materials
(Raw) to each product and the number of upstream nodes (Up) for each product. The
nodes Ethylene, Ter Acid, and C.-hexane were each individually removed from the original

graph and metrics recomputed

Original Graph | w/o Ethylene | w/o Ter. Acid | w/o C.-hexane

Product Raw Up Raw Up Raw Up Raw Up
LDPE 2 9 0 2 2 9 2 9
HDPE 2 9 0 2 2 9 2 9
PP 2 7 2 7 2 7 2 7
PVC 2 11 0 4 2 11 2 11
PS 3 17 2 11 3 17 3 17
PET 4 17 2 11 2 11 3 17
Nylon 4 22 4 22 4 22 2 15

intermediate and technology nodes contain the most downstream connections.

The DataGraph abstraction and PlasmoData.jl provide a framework for examining the connec-
tions within data structures to gain insight into the data or system. In the above example, we have
highlighted just a couple ways that this could be done, but several other methods (enabled within
PlasmoData.jl) could likewise be used. For example, the structure of the graph could be filtered
based on node weights (e.g., cost or carbon emissions) or edge weights (e.g., flows) which would alter
the structure and connections of the graph. Further, other structure manipulations (such as adding
edges) could be important in studying these graphs. For example, you could consider where edges
could be placed to increase the number of connections between raw materials and products (hypo-
thetically increasing the ”resilience” of the structure). These are just a couple examples of other ways

PlasmoData. j1 could be used to elucidate more information about a graph.
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Figure 18: Directed graph of a layered technology pathway example with nodes sized by

the number of downstream nodes, created using PlasmoDataPlots. jl

5 Conclusions and Future Work

We presented a graph-theoretic abstraction for modeling data; we call this abstractionDataGraph and
provide a software implementation in the Julia package that we call PlasmoData. j1. We show that
common data structures (e.g., matrices, tensors, images) can be represented under the DataGraph
abstraction, and there are a variety of mathematical tools available for analyzing the data modeled
as a graph (e.g., filtration, aggregation, topological analysis). We presented case studies to show this
abstraction can be used for a variety of tasks including determining features for machine learning, an-
alyzing time series, and performing path analysis. In doing this, we have highlighted how representing
data can be a modeling’ task and having the correct abstraction for the data can strongly influence
the value of the data.

There are a couple of areas that we would like to focus on in future work. First, there are more
applications we would like to explore. Using graphs to represent molecules has garnered significant in-
terest and has been applied in many studies and we would like to streamline molecular representations
within PlasmoData. j1, such as enabling construction of the graph from a SMILES (Simplified Molec-
ular Input Line Entry System) string, and explore how PlasmoData. j1 can enhance this analysis. We
are also interested in other applications of the pathway analysis performed above. Additionally, we
would like to expand the capabilities of PlasmoData.j1l. There are other TDA metrics and path func-
tions that could be implemented, and there are topological descriptors that could be approximated

with graphs. For example, in the work by Jiang and co-workers [69], they use a marching-square
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algorithm to approximate the Minkowski functionals of a filtered image. A marching-square algorithm
could be implemented for an image represented by a graph by iterating through the nodes and ana-
lyzing the connections to the adjacent nodes. This could lead to more in-depth image analysis. Also,
we would like to expand the integration of PlasmoData.jl with GNN packages; this could include
improving the interface with GNN packages and enabling different graph manipulation functions with

GNN algorithms, such as using aggregation for pooling operations or message-aggregator operators.

In addition, while graphs can be powerful tools for modeling data, they do have some limitations.
Nodes and edges do not have any notion of placement in space. Oftentimes, the systems being
represented by graphs have a fixed location (e.g., supply chains may have a fixed production location)
which can significantly influence the system. Furthermore, graphs only capture connectivity between
nodes; in many instances, it may be more accurate to include a link between more than two nodes.
In these cases, hypergraphs (or other representations) may be more appropriate. Finally, graphs
are restricted to edges between no more than two nodes; in future work, we would like to explore
generalizations of hypergraphs and simplicial complexes (which may capture more complex and higher-

order relations) and how to capture more complex attributes for these objects, such as spatial locations.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research (ASCR) under contract DE-SC0023361 and in part
by the National Science Foundation under award CBET-2315963.

References

[1] Wesley Willett, Yvonne Jansen, and Pierre Dragicevic. Embedded data representations. IEEE

transactions on visualization and computer graphics, 23(1):461-470, 2016.

[2] Philip K Robertson. A methodology for choosing data representations. IEEE Computer Graphics
and Applications, 11(03):56-67, 1991.

[3] Leo Torres, Ann S Blevins, Danielle Bassett, and Tina Eliassi-Rad. The why, how, and when of
representations for complex systems. STAM Review, 63(3):435-485, 2021.

[4] Jordan Jalving, Sungho Shin, and Victor M Zavala. A graph-based modeling abstraction for opti-
mization: Concepts and implementation in plasmo. jl. Mathematical Programming Computation,
14(4):699-747, 2022.

[5] Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzman-Saenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K Dey, Soham Mukherjee, Shreyas N
Samaga, et al. Topological deep learning: Going beyond graph data. arXiv preprint
arXiv:2206.00606, 2023.

47


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[17]

Yue Shao and Victor M Zavala. Modularity measures: Concepts, computation, and applications
to manufacturing systems. AIChE Journal, 66(6):e16965, 2020.

Georgios A Pavlopoulos, Maria Secrier, Charalampos N Moschopoulos, Theodoros G Soldatos,
Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G Bagos. Using graph theory to
analyze biological networks. BioData mining, 4:1-27, 2011.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural

and functional systems. Nature reviews neuroscience, 10(3):186-198, 2009.

Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage, 52(3):1059-1069, 2010.

David L. Cole, Gerardo J. Ruiz-Mercado, and Victor M. Zavala. A graph-based model-
ing framework for tracing hydrological pollutant transport in surface waters. arXiv preprint:
https://arxiv.org/abs/2302.04991, 2023.

Tobias Heckmann, Wolfgang Schwanghart, and Jonathan D Phillips. Graph theory—recent de-
velopments of its application in geomorphology. Geomorphology, 243:130-146, 2015.

Katelyn BS King, Qi Wang, Lauren K Rodriguez, and Kendra S Cheruvelil. Lake networks and
connectivity metrics for the conterminous us (lagos-us networks v1). Limnology and Oceanography
Letters, 6(5):293-307, 2021.

Danillo Barros de Souza, Everlon Figueiréa dos Santos, and Fernando AN Santos. The euler
characteristic as a topological marker for outbreaks in vector-borne disease. Journal of Statistical
Mechanics: Theory and Experiment, 2022(12):123501, 2022.

Dane Taylor, Florian Klimm, Heather A Harrington, Miroslav Kramaér, Konstantin Mischaikow,
Mason A Porter, and Peter J Mucha. Topological data analysis of contagion maps for examining

spreading processes on networks. Nature communications, 6(1):7723, 2015.

Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications.

Structural Analysis in the Social Sciences. Cambridge University Press, 1994.

Shiyi Qin, Tianyi Jin, Reid C Van Lehn, and Victor M Zavala. Predicting critical micelle con-
centrations for surfactants using graph convolutional neural networks. The Journal of Physical
Chemistry B, 125(37):10610-10620, 2021.

Shiyi Qin, Shengli Jiang, Jianping Li, Prasanna Balaprakash, Reid C Van Lehn, and Victor M
Zavala. Capturing molecular interactions in graph neural networks: a case study in multi-

component phase equilibrium. Digital Discovery, 2(1):138-151, 2023.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513-530, 2018.

48


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[19]

[20]

[21]

[29]

Alexander Smith and Victor M Zavala. The euler characteristic: A general topological descriptor
for complex data. Computers & Chemical Engineering, 154:107463, 2021.

Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B. Wiltschko. A gentle
introduction to graph neural networks. Distill, 2021. https://distill.pub/2021/gnn-intro.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

James Fairbanks, Mathieu Besangon, Scholly Simon, Julio Hoffiman, Nick Eubank, and Stefan
Karpinski. JuliaGraphs/Graphs.jl: an optimized graphs package for the julia programming lan-
guage, 2021. https://github.com/JuliaGraphs/Graphs.jl/. accessed 17 March 2023.

Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.

InterJournal, Complex Systems:1695, 2006.

Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

MathWorks. Graph and network algorithms. https://www.mathworks.com/help/matlab/graph-
and-network-algorithms.html?s_tid=CRUX_Iftnav. Accessed on February 25, 2023.

JD Kruschwitz, D List, L Waller, M Rubinov, and H Walter. Graphvar: a user-friendly toolbox for
comprehensive graph analyses of functional brain connectivity. Journal of neuroscience methods,
245:107-115, 2015.

Jinhui Wang, Xindi Wang, Mingrui Xia, Xuhong Liao, Alan Evans, and Yong He. Gretna: a graph
theoretical network analysis toolbox for imaging connectomics. Frontiers in human neuroscience,
9:386, 2015.

Mite Mijalkov, Ehsan Kakaei, Joana B Pereira, Eric Westman, Giovanni Volpe, and Alzheimer’s
Disease Neuroimaging Initiative. Braph: a graph theory software for the analysis of brain con-

nectivity. PloS one, 12(8):e0178798, 2017.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Thomas Bonald, Nathan de Lara, Quentin Lutz, and Bertrand Charpentier. Scikit-network:
Graph analysis in python. Journal of Machine Learning Research, 21(185):1-6, 2020.

Carlo Lucibello and other contributors. GraphNeuralNetworks.jl: a ge-
ometric deep learning library for the julia programming language, 2021.
https://github.com/CarloLucibello/GraphNeuralNetworks.jl. Accessed 14 March 2023.

49


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

32]

[33]

[34]

[35]

[38]

[39]

[42]

Tara L. Andrews and Caroline Macé. Beyond the tree of texts: Building an empirical model

of scribal variation through graph analysis of texts and stemmata. Literary and Linguistic

Computing, 28(4):504-521, 2013.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Text level graph
neural network for text classification. arXiv preprint arXiv:1910.02356, 2019.

Victor M Zavala. Outlook: How i learned to love machine learning (a personal perspective on
machine learning in process systems engineering). Industrial & Engineering Chemistry Research,
2023.

Vikramsingh R Parihar. ICSES Trans. Image Process. Pattern Recognit., volume 4, chapter

Chapter 5: Image segmentation based on graph theory and threshold, pages 61-82. ITIPPR,
2018.

TN Janakiraman and PVSSR Chandra Mouli. Image segmentation using euler graphs.
International Journal of Computers Communications & Control, 5(3):314-324, 2010.

OJ Morris, M de J Lee, and AG Constantinides. Graph theory for image analysis: an approach
based on the shortest spanning tree. In IEE Proceedings F (Communications, Radar and Signal
Processing), volume 133, pages 146-152. IET, 1986.

Benjamin Perret, Giovanni Chierchia, Jean Cousty, Silvio Jamil Ferzoli Guimaraes, Yukiko Ken-

mochi, and Laurent Najman. Higra: Hierarchical graph analysis. SoftwareX, 10:100335, 2019.

Philippe Salembier and Luis Garrido. Binary partition tree as an efficient representation for image
processing, segmentation, and information retrieval. IEEE transactions on Image Processing,
9(4):561-576, 2000.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75-174, 2010.

Muhammad Aqib Javed, Muhammad Shahzad Younis, Siddique Latif, Junaid Qadir, and Adeel

Baig. Community detection in networks: A multidisciplinary review. Journal of Network and

Computer Applications, 108:87-111, 2018.

Andrew Allman, Wentao Tang, and Prodromos Daoutidis. DeCODe: a community-based algo-

rithm for generating high-quality decompositions of optimization problems. Optimization and

Engineering, 20:1067-1084, 2019.

Ilias Mitrai and Prodromos Daoutidis. Decomposition of integrated scheduling and dynamic

optimization problems using community detection. Journal of Process Control, 90:63-74, 2020.

Pall F Jonsson, Tamara Cavanna, Daniel Zicha, and Paul A Bates. Cluster analysis of networks
generated through homology: automatic identification of important protein communities involved

in cancer metastasis. BMC bioinformatics, 7:1-13, 2006.

50


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[45]

[49]

[50]

[51]

[53]

[54]

[55]

[56]

[57]

[58]

Aryya Gangopadhyay and Song Chen. Health care fraud detection with community detection
algorithms. In 2016 IEEE International Conference on Smart Computing (SMARTCOMP), pages
1-5. IEEE, 2016.

Gergely Palla, Imre Derényi, Illés Farkas, and Tamas Vicsek. Uncovering the overlapping com-

munity structure of complex networks in nature and society. nature, 435(7043):814-818, 2005.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect

community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.

Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255—
308, 2009.

Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental

and practical aspects for data scientists. Frontiers in artificial intelligence, 4:108, 2021.

Elizabeth Munch. A user’s guide to topological data analysis. Journal of Learning Analytics,
4(2):47-61, 2017.

Larry Wasserman. Topological data analysis. Annual Review of Statistics and Its Application,
5:501-532, 2018.

Robin J Wilson. Introduction to graph theory. Pearson Education India, 1979.

Tero Aittokallio and Benno Schwikowski. Graph-based methods for analysing networks in cell
biology. Briefings in bioinformatics, 7(3):243-255, 2006.

Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan. QNet:
a tool for querying protein interaction networks. Journal of Computational Biology, 15(7):913—
925, 2008.

Pourya Naderi Yeganeh, Chrsitine Richardson, Erik Saule, Ann Loraine, and M Taghi Mostafavi.
Revisiting the use of graph centrality models in biological pathway analysis. BioData mining,
13(1):1-23, 2020.

Young Kim and Sunwon Park. Supply network modeling using process graph theory: a framework
for analysis. In 2006 SICE-ICASE International Joint Conference, pages 1726-1729. IEEE, 2006.

Tyler Wilson, Abheek Chatterjee, and Astrid Layton. Exploring the effects of partnership and

inventory for supply chain resilience using an ecological network analysis. In International Design

Engineering Technical Conferences and Computers and Information in Engineering Conference,

volume 86250, page VO05T05A011. American Society of Mechanical Engineers, 2022.

51


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[59]

[70]

Gamage Sanka Nirodha Perera and Hans-Gerd Maas. Cycle graph analysis for 3d roof structure
modelling: Concepts and performance. ISPRS Journal of Photogrammetry and Remote Sensing,
93:213-226, 2014.

Franziska Berger, Peter Gritzmann, and Sven de Vries. Minimum cycle bases for network graphs.

Algorithmica, 40:51-62, 2004.

Florian Dorfler, John W Simpson-Porco, and Francesco Bullo. Electrical networks and algebraic
graph theory: Models, properties, and applications. Proceedings of the IEEE, 106(5):977-1005,
2018.

Telikepalli Kavitha, Christian Liebchen, Kurt Mehlhorn, Dimitrios Michail, Romeo Rizzi, Torsten
Ueckerdt, and Katharina A Zweig. Cycle bases in graphs characterization, algorithms, complexity,
and applications. Computer Science Review, 3(4):199-243, 2009.

JiaQi Liu, XueRong Li, and JiChang Dong. A survey on network node ranking algorithms:
Representative methods, extensions, and applications. Science China Technological Sciences,
64(3):451-461, 2021.

Aarti Jain and BVR Reddy. Node centrality in wireless sensor networks: Importance, applications
and advances. In 2013 3rd IEEE International Advance Computing Conference (IACC), pages
127-131. IEEE, 2013.

Luiz Filipe M Vieira, Marcelo G Almiron, and Antonio AF Loureiro. Link probability, node
degree and coverage in three-dimensional networks. Ad Hoc Networks, 37:153-159, 2016.

Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A Kosters, Andrea Marino, and
Frank W Takes. Fast diameter and radius bfs-based computation in (weakly connected) real-
world graphs: With an application to the six degrees of separation games. Theoretical Computer
Science, 586:59-80, 2015.

James R Munkres. Elements of algebraic topology. CRC press, 2018.

Alexander Smith, Spencer Runde, Alex K Chew, Atharva S Kelkar, Utkarsh Maheshwari, Reid C
Van Lehn, and Victor M Zavala. Topological analysis of molecular dynamics simulations using

the euler characteristic. Journal of Chemical Theory and Computation, 2022.

Shengli Jiang, Nanqgi Bao, Alexander D. Smith, Shraddha Byndoor, Reid C. Van Lehn, Manos
Mavrikakis, Nicholas L. Abbott, and Victor M. Zavala. Scalable extraction of information from
spatiotemporal patterns of chemoresponsive liquid crystals using topological descriptors. The
Journal of Physical Chemistry C, 127(32):16081-16098, 2023.

Rahul R Shah and Nicholas L. Abbott. Principles for measurement of chemical exposure based on

recognition-driven anchoring transitions in liquid crystals. Science, 293(5533):1296-1299, 2001.

52


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[71]

[72]

[74]

[75]

78]

[79]

[82]

[83]

Rebecca J Carlton, Jacob T Hunter, Daniel S Miller, Reza Abbasi, Peter C Mushenheim, Lie Na
Tan, and Nicholas L Abbott. Chemical and biological sensing using liquid crystals. Liquid crystals
reviews, 1(1):29-51, 2013.

Carina Esteves, Efthymia Ramou, Ana Raquel Pina Porteira, Arménio Jorge Moura Barbosa,
and Ana Cecilia Afonso Roque. Seeing the unseen: the role of liquid crystals in gas-sensing
technologies. Advanced optical materials, 8(11):1902117, 2020.

Nanqgi Bao, Jake I Gold, Jonathan K Sheavly, James J Schauer, Victor M Zavala, Reid C
Van Lehn, Manos Mavrikakis, and Nicholas L Abbott. Ordering transitions of liquid crystals
triggered by metal oxide-catalyzed reactions of sulfur oxide species. Journal of the American
Chemical Society, 144(36):16378-16388, 2022.

Tibor Szilvasi, Nanqi Bao, Karthik Nayani, Huaizhe Yu, Prabin Rai, Robert J Twieg, Manos
Mavrikakis, and Nicholas L. Abbott. Redox-triggered orientational responses of liquid crystals to
chlorine gas. Angewandte Chemie, 130(31):9813-9817, 2018.

Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, and Jon Atli Benedikts-
son. Deep learning for hyperspectral image classification: An overview. IEEE Transactions on
Geoscience and Remote Sensing, 57(9):6690-6709, 2019.

Qu Shenming, Li Xiang, and Gan Zhihua. A new hyperspectral image classification method based
on spatial-spectral features. Scientific Reports, 12(1):1541, 2022.

Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto Rudilosso,
Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral Shah. Fashionable modelling with flux.
CoRR, abs/1811.01457, 2018.

John HC Whitehead. Combinatorial homotopy i. Bull. Amer. Math. Soc, 55(3):213-245, 1949.

Blake Lopez, Jiaze Ma, and Victor M Zavala. Graph-based optimization for technology
pathway analysis: A case study in decarbonization of university campuses. arXiv preprint
arXiv:2311.00809, 2023.

Philip A Tominac and Victor M Zavala. Economic properties of multi-product supply chains.
Computers & Chemical Engineering, 145:107157, 2021.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of
hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109—
125, 1981.

David Cheng Zarate, Pierre Le Bodic, Tim Dwyer, Graeme Gange, and Peter Stuckey. Opti-
mal sankey diagrams via integer programming. In 2018 IEEE pacific visualization symposium
(PacificVis), pages 135-139. IEEE, 2018.

Lyndon White and contributors. LayeredLayouts.jl, 6 2020.
https://github.com/oxinabox /LayeredLayouts.jl. Accessed 14 March 2023.

93


http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[84]
[85]

[86]

yworks. yFiles. https://www.yworks.com/yfiles-overview. Accessed 14 March 2023.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87-90, 1958.

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra:
His Life, Work, and Legacy, pages 287-290. 2022.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

Chin Yang Lee. An algorithm for path connections and its applications. IRE transactions on
electronic computers, (3):346-365, 1961.

o4


http://zavalab.engr.wisc.edu

	Introduction
	Graph Abstraction and Software Implementation
	Mathematical Formulation
	Software Implementation
	PlasmoData.jl Tutorial Example

	Modeling Common Data Objects as DataGraphs
	Matrices as a Node-Weighted Graphs
	3D Tensors as Node-Weighted Graphs
	Symmetric Matrices as Edge-Weighted Graphs


	Data Analysis using the DataGraph Abstraction
	Structure Manipulation
	Node and Edge Removal
	Graph Filtration
	Graph Aggregation

	Graph Structural Analysis
	Graph Connectivity
	Euler Characteristic


	Case Studies
	Image Analysis
	Classification using TDA and SVMs
	Classification using Graph Neural Networks

	Multivariate Time Series Analysis
	Connectivity Analysis
	Visualization
	Connectivity Measures


	Conclusions and Future Work

