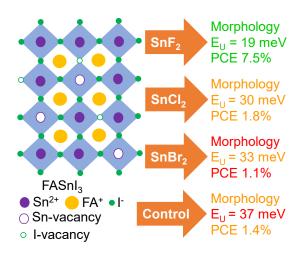
## Defect Modulation via SnX<sub>2</sub> Additives in FASnI<sub>3</sub> Perovskite Solar Cells

Syed Joy, <sup>1</sup> Tareq Hossain, <sup>1</sup> Adam Tichy, <sup>2</sup> Stephen Johnson, <sup>2</sup> and Kenneth R. Graham<sup>1,\*</sup>

<sup>1</sup>Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA.


<sup>2</sup>Department of Physics, Transylvania University, Lexington, Kentucky 40508, USA.

## **Corresponding Author**

\*Kenneth R. Graham. E-mail: kenneth.graham@uky.edu

ABSTRACT Tin halide perovskites suffer from high defect densities compared to their lead counterparts. To decrease defect densities, SnF<sub>2</sub> is commonly used as an additive in tin halide perovskites. Herein, we investigate how SnF<sub>2</sub> compares to other SnX<sub>2</sub> additives (X=F, Cl, Br) in terms of electronic and ionic defect properties in FASnI<sub>3</sub>. We find that FASnI<sub>3</sub> films with SnF<sub>2</sub> show the lowest Urbach energies (*E*<sub>U</sub>) of 19 meV and decreased p-type character, as probed with ultraviolet photoemission spectroscopy. The activation energy of ion migration, as probed with thermal admittance spectroscopy, for FASnI<sub>3</sub> with SnF<sub>2</sub> is 1.33 eV, which is higher than with SnCl<sub>2</sub> and SnBr<sub>2</sub>, which are 1.22 eV and 0.79 eV, respectively, resulting in less ion migration. Due to improved defect passivation, the champion power conversion efficiency of FASnI<sub>3</sub> with SnF<sub>2</sub> is 7.47% and only 1.84% and 1.12% with SnCl<sub>2</sub> and SnBr<sub>2</sub>, respectively.

## **TOC GRAPHIC**

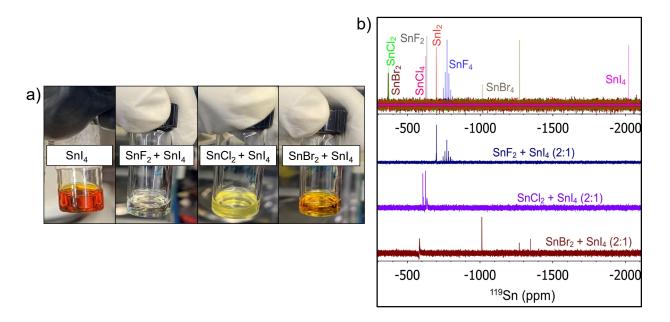


KEYWORDS: Tin halide perovskite, additives, defects, ion migration, solar cell

Tin halide perovskites (Sn-HPs) have emerged as promising alternatives to lead halide perovskites (Pb-HPs). Sn-HPs have comparable optoelectronic properties to Pb-HPs, including a narrower band gap of ~1.3-1.4 eV that is more ideal for single-junction solar cells, low exciton binding energies, and relatively high charge-carrier mobility, while also being less toxic than Pb. 1-<sup>6</sup> The record power conversion efficiency (PCE) for Sn-HPs is now 14.8%,<sup>7</sup> which is still significantly lower than their Pb-containing counterparts. The main reason for the inferior efficiency of Sn-HPs is ascribed to the instability of the Sn<sup>2+</sup> oxidation state in Sn-HPs, with minimal amounts of oxygen and/or dimethyl sulfoxide (DMSO) solvent often leading to oxidation to Sn<sup>4+</sup> even in an inert glovebox atmosphere.<sup>8-10</sup> Consequently, Sn<sup>4+</sup> species, *i.e.* SnI<sub>4</sub>, an oxidation product of SnI<sub>2</sub>, causes the release of two holes to the valence band in Sn-HPs, resulting in self-ptype doping characteristics with increased background hole density of ~10<sup>20</sup> cm<sup>-3</sup>. <sup>11, 12</sup> In Sn-HPs it is also known that surface defects such as tin vacancies (V<sub>Sn</sub>), caused by the formation of SnI<sub>4</sub> at the surface or grain boundaries, are thermodynamically stable and detrimental to device performance and stability. 13-15 The increased defect states at the surface, triggered by SnI<sub>4</sub>, act as electron traps and centers for non-radiative recombination.<sup>16</sup>

Numerous approaches have thus been adopted to retard Sn<sup>2+</sup> oxidation, including additives that act as anti-oxidants or passivate surfaces,<sup>17-19</sup> mixed A-site cations that increase stability,<sup>20</sup> mixed dimensional 3D/2D phases that impede moisture ingression,<sup>21-23</sup> and alternative solvent systems that do not oxidize Sn<sup>2+</sup>.<sup>24, 25</sup> The most ubiquitous additive used in pure Sn and mixed Sn-Pb perovskites is SnF<sub>2</sub>. The incorporation of SnF<sub>2</sub> into Sn-HPs precursor solution improves the substrate coverage, film morphology, and photovoltaic performance.<sup>26-28</sup> However, SnCl<sub>2</sub> and

 $SnBr_2$  can play a similar role as  $SnF_2$ , including improving crystallization dynamics as well as decreasing  $V_{Sn}$  defect concentrations, but only a few works report using  $SnCl_2$  or  $SnBr_2$  as additives.  $^{18,29,30}$ 


It was previously proposed that SnF2 acts as a reducing agent, either reducing the SnI4 and/or suppressing the SnI2 oxidation by creating a Sn-rich environment, which results in decreased Sn vacancies with less background charge carrier density. 31, 32 However, Pascual et al. 27 reported that both SnF2 and SnCl2 can decrease the SnI4 concentration by undergoing halide exchange reactions with SnI4 to form SnF4 and SnCl4, respectively, that can reduce the insertion of Sn<sup>4+</sup> into the Sn-HPs crystal lattice, leading to decreased defect states. We also showed that chloride-containing organic salts can undergo a similar halide exchange reaction with SnI4, which decreases the SnI4 concentration in solution as well as in thin films. 33 Recently, Meggiolaro et al. 34 reported that SnF2 can decrease the SnI4 concentration by forming a mixed valence Sn3F8 phase, which is thermodynamically preferred over SnF4. In addition, halide ion migration is a well-recognized problem for HPs that increases hysteresis in current-voltage scans and results in decreased device stability. 35 In addition, phase segregation is also observed in mixed-halides HPs under light or bias stress. 36, 37 However, a recent study showed that there is significantly less halide ion migration in Sn-HPs compared to Pb-HPs due to the strong Sn-halide bond. 38

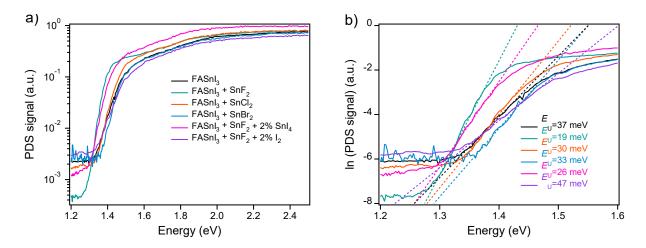
While much has been done to elucidate how SnF<sub>2</sub> improves the electronic properties and performance of Sn-HPs, a complete picture of how SnX<sub>2</sub> additives with varying halides affect the electronic and ionic defect properties in FASnI<sub>3</sub> perovskites is still missing. Herein, we use a combination of photothermal deflection spectroscopy (PDS) and ultraviolet photoemission spectroscopy (UPS) to provide insight into defect states in FASnI<sub>3</sub> films fabricated with and without SnX<sub>2</sub> additives. The activation energies of ion migration in FASnI<sub>3</sub> devices are determined

using thermal admittance spectroscopy (TAS). Our results show that SnF<sub>2</sub> decreases energetic disorder in FASnI<sub>3</sub> films and decreases ion migration more than SnCl<sub>2</sub> and SnBr<sub>2</sub>, while also resulting in improved film morphologies. As a result, FASnI<sub>3</sub> devices with SnF<sub>2</sub> display the highest PCE compared to devices with SnCl<sub>2</sub> and SnBr<sub>2</sub>. Moreover, impurities such as SnI<sub>4</sub> and I<sub>2</sub> are intentionally introduced into the FASnI<sub>3</sub> precursor solution with SnF<sub>2</sub> as an additive, and we directly observe that SnF<sub>2</sub> decreases the detrimental effects of SnI<sub>4</sub>.

To qualitatively probe halide exchange with SnX<sub>2</sub> additives, we prepared mixed solutions of SnI<sub>4</sub> with SnF<sub>2</sub>, SnCl<sub>2</sub>, and SnBr<sub>2</sub>, respectively, and first examined the solution color change. As shown in Figure 1a, the red color of the initial SnI<sub>4</sub> solution turns colorless, yellow, or orange after the addition of SnF<sub>2</sub>, SnCl<sub>2</sub>, or SnBr<sub>2</sub>, respectively, and the absorbance of SnI<sub>4</sub> decreases as evidenced by the UV-vis absorbance spectra (Figure S1). While readily observable color changes and UV-vis absorbance measurements provide a qualitative indicator that the SnI4 concentration is reduced upon addition of SnX<sub>2</sub>, <sup>119</sup>Sn NMR can provide a more comprehensive picture of the different Sn species in the mixed solution. Here, SnI4 shows a peak at a chemical shift of -2023 ppm while the SnI<sub>2</sub> peak appears at -699 ppm (Figure 1b). As previously reported,<sup>27</sup> SnI<sub>4</sub> is able to undergo complete halide exchange with SnF2 when mixed at 1:2 (SnI4:SnF2) mole ratio, and we observe similar results. When SnF<sub>2</sub> is mixed with SnI<sub>4</sub>, there is a disappearance of the SnI<sub>4</sub> signal in the <sup>119</sup>Sn NMR and a corresponding increase in two new peaks at -700 and -771 ppm, confirming the formation of SnF4 and SnI2. This halide exchange occurs because F is a highly electronegative anion with hard Lewis base character, and it has a greater affinity towards the harder Sn<sup>4+</sup> Lewis acid as opposed to the softer Sn<sup>2+</sup>. Therefore, F<sup>-</sup> replaces I<sup>-</sup> from SnI<sub>4</sub> and forms SnF<sub>4</sub> and SnI<sub>2</sub>.<sup>27</sup> Similarly, reaction with SnCl<sub>2</sub> completely eliminates the SnI<sub>4</sub> signal through the formation of Sn<sup>4+</sup> complexes, i.e., SnCl<sub>4</sub> and/or SnI<sub>x</sub>Cl<sub>y</sub> species with signals at -606, -610, -625

and -634 ppm (reference SnCl<sub>4</sub> peak appears at -625 ppm), and no SnI<sub>2</sub> is observed. When SnBr<sub>2</sub> is mixed with SnI<sub>4</sub>, four signals show up at -583, -1013, -1270, and -1347 ppm (reference SnBr<sub>4</sub> shows two peaks at -1013 and -1270 ppm) and again no SnI<sub>4</sub> peak remains. However, while SnF<sub>2</sub> leaves no doubt that complete halide exchange to form SnI<sub>2</sub> and SnF<sub>4</sub> occurs, both SnCl<sub>2</sub> and SnBr<sub>2</sub> show evidence of incomplete halide exchange (*i.e.*, the formation of SnI<sub>x</sub>Cl<sub>y</sub> and SnI<sub>x</sub>Br<sub>y</sub>, where x and y are both greater than zero).

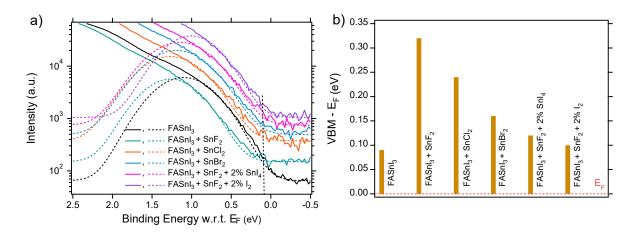



**Figure 1.** a) Photographic images of 0.5 M solution of reference SnI<sub>4</sub> and a mixture of SnF<sub>2</sub>, SnCl<sub>2</sub>, and SnBr<sub>2</sub> with SnI<sub>4</sub> (2:1 mole ratio), respectively, in DMSO. b) <sup>119</sup>Sn NMR of the reference Sn compounds (top), and a mixture of SnF<sub>2</sub>, SnCl<sub>2</sub>, and SnBr<sub>2</sub> with SnI<sub>4</sub> (2:1 mole ratio), respectively, in DMSO-*d*<sub>6</sub>.

With a clear picture of solution behavior, we next turn to understand how different SnX<sub>2</sub> additives affect the FASnI<sub>3</sub> perovskite thin film properties. To do so, FASnI<sub>3</sub> was fabricated with 7.5 mol% SnX<sub>2</sub> additives. The XRD spectra of the resulting perovskite films show no new peaks or significant peak shifts upon the addition of SnX<sub>2</sub> additives compared to the reference FASnI<sub>3</sub>

film (Figure S2). SEM images (Figure S3) show that in the case of FASnI<sub>3</sub> + SnF<sub>2</sub> the grain size increases compared to the FASnI<sub>3</sub> film without SnX<sub>2</sub> additives. This increase in grain size with SnF<sub>2</sub> is attributed to the ability of SnF<sub>2</sub> to slow the prompt nucleation of Sn-HPs, which helps increase the grain size.<sup>28, 39</sup> On the contrary, FASnI<sub>3</sub> + SnCl<sub>2</sub> and FASnI<sub>3</sub> + SnBr<sub>2</sub> films exhibit similar or worse morphologies than the pristine FASnI<sub>3</sub> film. Here, SnCl<sub>2</sub> leads to similar morphologies as observed for the control while SnBr<sub>2</sub> results in a significantly higher pin-hole density. Since SnI<sub>4</sub> and I<sub>2</sub> are degradation products of Sn-HPs, we then intentionally added 2 mol% SnI<sub>4</sub> and 2 mol% I<sub>2</sub> to FASnI<sub>3</sub> + SnF<sub>2</sub> precursor solutions. The XRD patterns with SnI<sub>4</sub> or I<sub>2</sub> introduced show no major changes relative to the control. The SEM images show that grain sizes decrease and pinhole densities increase upon addition of SnI<sub>4</sub>, and with I<sub>2</sub> the grain sizes and pinhole densities are similar to the pristine FASnI<sub>3</sub> film.

To quantify how the SnX<sub>2</sub> additives impact disorder at the band-edge in the FASnI<sub>3</sub> thin films, we carried out PDS measurements, as shown in Figure 2a. The Urbach energy ( $E_{\rm U}$ ) is evaluated from the exponential function of the decaying absorption onset tail at the band edge, <sup>40</sup> and provides a quantitative measurement of energetic disorder at and near the band edge. The lower the  $E_{\rm U}$  value, the less energetic disorder is present. The pristine FASnI<sub>3</sub> film shows an  $E_{\rm U}$  of 37 meV, which decreases to 19 meV with SnF<sub>2</sub>. The  $E_{\rm U}$  of FASnI<sub>3</sub> with SnCl<sub>2</sub> and SnBr<sub>2</sub> are 30 and 33 meV, respectively, which are significantly higher than the FASnI<sub>3</sub> + SnF<sub>2</sub> film but less than the pristine FASnI<sub>3</sub> film. Therefore, all SnX<sub>2</sub> additives decrease electronic disorder at the band-edge, with SnF<sub>2</sub> proving more effective than SnCl<sub>2</sub> and SnBr<sub>2</sub>. When an intentional impurity of 2% SnI<sub>4</sub> is added to the FASnI<sub>3</sub> + SnF<sub>2</sub> solution, the resulting  $E_{\rm U}$  of the film increases to 26 meV. This  $E_{\rm U}$  is still significantly lower than the 37 meV observed for the film without SnF<sub>2</sub> and no added impurities. On the contrary, the  $E_{\rm U}$  is further increased to 47 meV after adding 2% I<sub>2</sub> to the FASnI<sub>3</sub>


+ SnF<sub>2</sub> solution. It is reported that when I<sub>2</sub> is formed during the degradation of Sn-HPs, it facilitates the further oxidation of SnI<sub>2</sub>.<sup>8,41</sup> As a result, I<sub>2</sub> addition consumes SnI<sub>2</sub> from the precursor solution and makes the solution more Sn deficient as compared to when SnI<sub>4</sub> is added. This increased Sn deficiency could result in increased V<sub>Sn</sub> and/or Frenkel pair type defects, leading to more energetic disorder in the material.



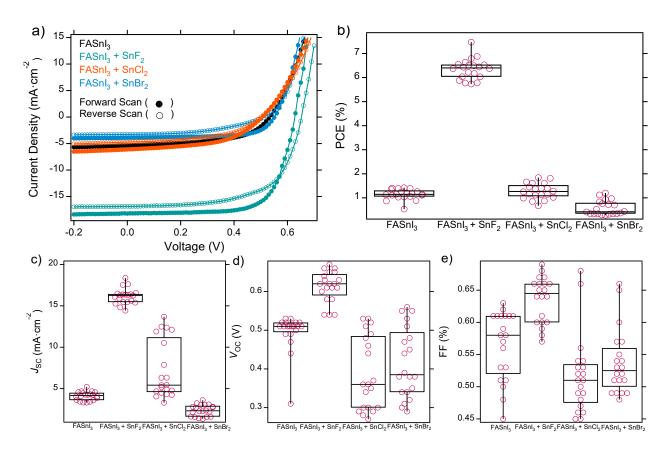
**Figure 2.** PDS spectra on a semi-log plot (a) and after taking the natural log of the PDS signal (b) to extract the Urbach energy ( $E_U$ ) of FASnI<sub>3</sub>, FASnI<sub>3</sub> + SnF<sub>2</sub>, FASnI<sub>3</sub> + SnCl<sub>2</sub>, FASnI<sub>3</sub> + SnBr<sub>2</sub>, FASnI<sub>3</sub> + SnF<sub>2</sub> + 2% SnI<sub>4</sub>, and FASnI<sub>3</sub> + SnF<sub>2</sub> + 2% I<sub>2</sub> films.

The PDS spectra also show that the absorption onset of the FASnI<sub>3</sub> + SnF<sub>2</sub> film red shifts by 60 meV with respect to the pristine FASnI<sub>3</sub> film. The red shift of this absorbance onset for the FASnI<sub>3</sub> + SnF<sub>2</sub> film is also confirmed by the UV-vis absorbance spectra (Figure S4). On the other hand, FASnI<sub>3</sub> films with SnCl<sub>2</sub> and SnBr<sub>2</sub> show similar absorption onsets as the pristine FASnI<sub>3</sub> film. The increased Sn<sup>4+</sup>-related defects likely induce more lattice distortion, which increases the optical gap. These trends are consistent with the Urbach energies and suggest that Sn<sup>4+</sup>associated defects increase the optical gap.

Photoluminescence (PL) measurements were carried out to gain insight into radiative and nonradiative recombination dynamics. All films are prepared on glass substrates for PL measurements to avoid quenching by the electrodes or transport layers. As shown in Figure S5a and b, the PL intensity of FASnI<sub>3</sub> + SnF<sub>2</sub> is 6.6 times higher than pristine FASnI<sub>3</sub>, which is consistent with decreased non-radiative recombination at defect sites following SnF<sub>2</sub> addition. Also, the emission peak of FASnI<sub>3</sub> + SnF<sub>2</sub> film red shifts by  $\sim$ 15 nm and the full-width half maxima (FWHM) decreases from 82 nm to 70 nm compared to the pristine FASnI<sub>3</sub> film. In contrast, the PL intensities of FASnI<sub>3</sub> with SnCl<sub>2</sub> and SnBr<sub>2</sub> are more comparable to pristine FASnI<sub>3</sub>, with SnCl<sub>2</sub> and SnBr<sub>2</sub> showing slightly increased and decreased emission intensity, respectively, relative to pristine FASnI<sub>3</sub>. Furthermore, the FWHM with SnCl<sub>2</sub> and SnBr<sub>2</sub> is 79 and 73 nm, respectively, which are narrower than pristine FASnI<sub>3</sub> and wider than with SnF<sub>2</sub>. The emission peaks with SnCl<sub>2</sub> and SnBr<sub>2</sub> blue shift by 9 nm compared to pristine FASnI<sub>3</sub>. Considering that the Urbach energies with SnCl<sub>2</sub> and SnBr<sub>2</sub> are lower than the pristine FASnI<sub>3</sub>, we suspect the blueshift in emission may be due to a small amount of Cl and Br incorporation into the FASnI<sub>3</sub> lattice. This Cl or Br incorporation is consistent with the (001) plane peak shift to slightly higher diffraction angle with SnCl<sub>2</sub> and SnBr<sub>2</sub> addition (see Figure S2b). Similar to the PDS results, it appears that the 2% SnI<sub>4</sub> impurity addition is compensated by the presence of SnF<sub>2</sub>, as it shows higher PL intensity and slightly redshifted emission compared to the pristine FASnI<sub>3</sub> film. On the other hand, the emission peak with 2% I<sub>2</sub> is much broader with FWHM of ~95 nm and the intensity is ~2 times lower than the control FASnI<sub>3</sub> film.



**Figure 3.** a) UPS spectra zoomed into the valence band maxima (VBM) region with the Gaussian fits used to extract the VBM onset energy displayed (dashed lines) and b) difference between the VBM and Fermi energy (E<sub>F</sub>).


Ultraviolet photoemission spectroscopy (UPS) can provide insight into the p-type characteristic of the respective Sn-HP films. Here, more Sn<sup>4+</sup> in the film will lead to more p-type character as the p-type charge carriers (holes) increase with increasing Sn<sup>4+</sup> in FASnI<sub>3</sub>. The extent of p-type doping is related to the energy difference between the valence band maximum (VBM) and the Fermi energy (E<sub>F</sub>), where this energy difference decreases as the amount of p-type charge-carriers increases. The pristine FASnI<sub>3</sub> film without any additives shows a WF of 4.60 eV and VBM of 0.09 eV vs. E<sub>F</sub> (Figure 3, SI Figure S6 and Table S1). The Sn<sup>4+</sup> and Sn<sup>2+</sup> content determined by X-ray photoelectron spectroscopy (XPS) is 8.2% and 91.8%, respectively, in the pristine FASnI<sub>3</sub> film (Figure S7 and Table S2). In the case of FASnI<sub>3</sub> + SnF<sub>2</sub>, a deeper WF of 4.73 eV is determined and the VBM lies 0.32 eV away from E<sub>F</sub>, which confirms that SnF<sub>2</sub> decreases the p-type character of the FASnI<sub>3</sub> film. The XPS spectra confirm that the Sn<sup>4+</sup> content decreases upon SnF<sub>2</sub> addition, with the FASnI<sub>3</sub> + SnF<sub>2</sub> film displaying a Sn<sup>4+</sup> concentration of 6.1% as compared to 8.2% for the control film in the near-surface region. In the case of FASnI<sub>3</sub> with SnCl<sub>2</sub> and SnBr<sub>2</sub>, the difference between the VBM and E<sub>F</sub> is greater than for pristine FASnI<sub>3</sub> and less than with SnF<sub>2</sub>. These trends

further support that SnCl<sub>2</sub> and SnBr<sub>2</sub> both play a role in passivating Sn<sup>4+</sup> associated defects, yet both are less effective than SnF<sub>2</sub>. Surprisingly, the addition of 2% SnI<sub>4</sub> and 2% I<sub>2</sub> to the FASnI<sub>3</sub>+SnF<sub>2</sub> solution leads to more p-type character and higher Sn<sup>4+</sup> concentrations of 13.5% and 12.8%, respectively. Additionally, the addition of both SnCl<sub>2</sub> and SnBr<sub>2</sub> increase the Sn<sup>4+</sup> content detected by XPS. Such increases in Sn<sup>4+</sup> relative to pristine FASnI<sub>3</sub> does not agree with the PDS and PL intensity trends, which could be attributed to differences between the film surface probed by XPS and UPS and the bulk film probed by PDS and PL. For example, we expect that the majority of Sn<sup>4+</sup> is at the film surface or at grain boundaries, as theoretical calculations indicate that Sn<sup>4+</sup>formation is unfavorable in the bulk and highly favorable at the surface.<sup>11, 13, 27</sup>

To understand how electronic defects impact the FASnI<sub>3</sub> photovoltaic (PV) devices with and without  $SnX_2$ additives, fabricated with we p-i-n devices ITO/PEDOT:PSS/FASnI<sub>3</sub>/ICBA/BCP/Ag structure. The current density-voltage (J-V) plots and statistical distributions of PV performance of the corresponding devices are shown in Figure 4a-e. The best performing control FASnI<sub>3</sub> device without SnX<sub>2</sub> additives has a PCE of 1.39% (average of forward and reverse scans), with a  $J_{SC}$ ,  $V_{OC}$ , and FF of 5.22 mA·cm<sup>-2</sup>, 0.520 V, and 0.513, respectively (Table 1). In the case of the FASnI<sub>3</sub> + SnF<sub>2</sub> devices, the best performing device shows a  $J_{SC}$  of 17.5 mA·cm<sup>-2</sup>,  $V_{OC}$  of 0.641 V, and FF of 0.665 and thus a PCE of 7.47% (average of forward and reverse scans), which corresponds with the decrease in defect states observed upon SnF<sub>2</sub> addition. On the contrary, the best performing cells with SnCl<sub>2</sub> and SnBr<sub>2</sub> show PCEs close to the control device, with PCEs of 1.84% and 1.20%, respectively. Such results are comparable to previous Sn-HP devices, where devices with SnCl<sub>2</sub> and SnBr<sub>2</sub> as additives reach PCEs of 2.71 and 0.35%, respectively.<sup>30</sup> The improvement in PCE with SnCl<sub>2</sub> relative to the control may be attributed to the lower energetic disorder and decreased p-type character, while the decreased

average performance with SnBr<sub>2</sub> compared to the control likely stems from the poor film morphology.

There are multiple reports on halide perovskite devices where there is a correlation between *E*<sub>U</sub> and *V*<sub>OC</sub> deficit along with their PV performance. <sup>40, 42, 43</sup> We observe a similar trend, with the *V*<sub>OC</sub> of FASnI<sub>3</sub> + SnF<sub>2</sub> surpassing the V<sub>OC</sub> of the pristine FASnI<sub>3</sub> devices and the devices with SnCl<sub>2</sub> and SnBr<sub>2</sub>. Moreover, large grain sizes and fewer grain boundaries lead to less non-radiative recombination and higher shunt resistance, resulting in higher *J*<sub>SC</sub>, *V*<sub>OC</sub>, and FF of FASnI<sub>3</sub> + SnF<sub>2</sub> device. In the case of FASnI<sub>3</sub> with SnCl<sub>2</sub> and SnBr<sub>2</sub>, smaller grains and higher pinhole densities relative to with SnF<sub>2</sub>, as seen from SEM images (Figure S3), likely contribute further to the decreased PV performance. In general, the much more pronounced PCE increase with SnF<sub>2</sub> arises from the culmination of multiple beneficial effects, including the complete conversion of SnI<sub>4</sub> to SnF<sub>4</sub>, significantly decreased energetic disorder observed with PDS, largest decrease in p-type character, greatest proportion of radiative emission, and uniform film morphologies with increased grain sizes.



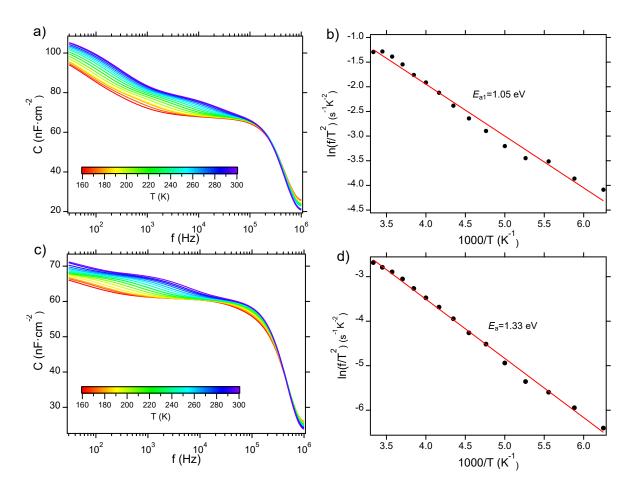
**Figure 4.** a) Current density-voltage (J-V) plots, and statistical distributions of b) power conversion efficiency (PCE), c) short-circuit current  $(J_{SC})$ , d) open-circuit voltage  $(V_{OC})$ , and e) fill factor (FF) for FASnI<sub>3</sub>, FASnI<sub>3</sub> + SnF<sub>2</sub>, FASnI<sub>3</sub> + SnCl<sub>2</sub>, and FASnI<sub>3</sub> + SnBr<sub>2</sub> devices.

Table 1. Photovoltaic performance

| Samples                                |          | $J_{\rm SC}$ (mA·cm <sup>-2</sup> ) | Voc (V)     | FF          | PCE (%)     |
|----------------------------------------|----------|-------------------------------------|-------------|-------------|-------------|
| FASnI <sub>3</sub>                     | Average* | 4.09±0.54                           | 0.494±0.050 | 0.561±0.058 | 1.15±0.24   |
| $FASnI_3 + SnF_2$                      | Average  | 16.1±1.2                            | 0.612±0.041 | 0.634±0.047 | 6.35±0.76   |
| FASnI <sub>3</sub> + SnCl <sub>2</sub> | Average  | 7.22±3.43                           | 0.388±0.132 | 0.516±0.086 | 1.28±0.56   |
| FASnI <sub>3</sub> + SnBr <sub>2</sub> | Average  | 2.37±0.68                           | 0.414±0.117 | 0.535±0.082 | 0.575±0.333 |

<sup>\*</sup>Average value is calculated from the forward and reverse scans of 20 devices.

To calculate the carrier concentration in FASnI<sub>3</sub> PV cells with and without SnX<sub>2</sub> additives, the capacitance-voltage (C-V) measurement was performed using the Mott-Schottky approach according to the following equation<sup>44</sup>:


$$\frac{1}{C^2} = \frac{2(V_{bi} - V)}{e \varepsilon_0 \varepsilon_r N_i} \tag{1}$$

where C is the measured capacitance, V is the applied voltage,  $V_{\rm bi}$  is the built-in voltage, e is the elementary charge,  $\varepsilon_0$  is the vacuum permittivity,  $\varepsilon_r$  is the dielectric constant of perovskite material, and  $N_i$  is the intrinsic carrier density. By fitting equation (1) in the Mott-Schottky plot (Figure S8b), the built-in potential  $(V_{bi})$  and intrinsic carrier density  $(N_i)$  are extracted. The  $V_{bi}$  extracted for the FASnI<sub>3</sub> + SnF<sub>2</sub>, FASnI<sub>3</sub> + SnCl<sub>2</sub>, and FASnI<sub>3</sub> + SnBr<sub>2</sub> devices is 0.63, 0.54, and 0.47 V, respectively. The calculated  $N_i$  of FASnI<sub>3</sub> + SnF<sub>2</sub>, FASnI<sub>3</sub> + SnCl<sub>2</sub>, and FASnI<sub>3</sub> + SnBr<sub>2</sub> devices is  $9.05 \times 10^{15}$ ,  $1.38 \times 10^{16}$ , and  $1.11 \times 10^{16}$  cm<sup>-3</sup>, respectively, which are comparable to the literature values determined by capacitance and Hall measurements. <sup>24, 26, 45-47</sup> The lower N<sub>i</sub> of FASnI<sub>3</sub> + SnF<sub>2</sub> relative to with SnCl<sub>2</sub> and SnBr<sub>2</sub> supports that the formation of Sn<sup>4+</sup> is most suppressed, leading to less background carriers (holes) and lower defect densities, which agrees with the UPS and XPS measurements. Dark J-V measurements (Figure S9) also support the decreased hole density, with decreased dark current densities for FASnI<sub>3</sub> + SnF<sub>2</sub> compared to with other SnX<sub>2</sub> additives. The higher  $V_{bi}$  and decreased  $N_i$  of FASnI<sub>3</sub> + SnF<sub>2</sub> device is expected to lead to better charge extraction and decreased charge carrier recombination, which is consistent with the enhanced J<sub>SC</sub>, V<sub>OC</sub>, and FF.

Thermal admittance spectroscopy was carried out to determine the activation energy ( $E_a$ ) for ion migration in the devices, as shown in Figure 5. Notably, we attribute the TAS signals to ionic migration as opposed to electronic trapping and detrapping based on recent work with Pb-HPs performed by the Deibel group.<sup>48</sup> The emission rate is directly related to the applied frequency (f),

and  $E_a$  is calculated from the slope of the Arrhenius plot (details are included in the SI). For the pristine FASnI<sub>3</sub> device (Figure 5a and b, Figure S11a), two ionic defect species with  $E_{a1}$  of 1.05 eV and  $E_{a2}$  of 0.24 eV are determined. In the case of the FASnI<sub>3</sub> + SnF<sub>2</sub> device (Figure 5 c and d, Figure S11b),  $E_a$  is increased to 1.33 eV, indicating that ionic migration will be decreased during device operation. We find a similar  $E_a$  of 1.29 eV for FASnI<sub>3</sub> + SnCl<sub>2</sub> (Figure S12). In contrast, the lowest  $E_a$  of 0.79 eV is found for FASnI<sub>3</sub> + SnBr<sub>2</sub> (Figure S13).

Insight into the nature of the defects can be inferred from previous computational results.  $^{14, 49}$  Here,  $V_{Sn}$  is the dominant defect (*i.e.*, it has the lowest formation energy) under Sn-poor conditions and  $V_I$  has the lowest formation energy under Sn-rich conditions.  $^{49}$  It is reported that the energy barrier for migration of  $V_{Sn}$  and  $V_I$  is 2.40 eV and <0.60 eV, respectively.  $^{50, 51}$  Our TAS measurements, with an  $E_{a1}$  of 1.05 eV and  $E_{a2}$  of 0.24 eV, are approximately half of these calculated values and are tentatively attributed to  $V_{Sn}$  and  $V_I$ , respectively. X-ray photoemission spectroscopy indicates that the FASnI3 film with no additive is Sn deficient, with a N:Sn:I ratio of 2.2:1:3.4 (Table S4); however, when SnF2 is added the stoichiometry becomes nearly ideal at 2.0:1:2.9. The  $V_{Sn}$  concentration should therefore decrease upon addition of SnF2. The  $E_a$  for  $V_{Sn}$  in the FASnI3 + SnF2 sample increases to 1.33 eV. A similar stoichiometry is observed with SnCl2, and a similarly high  $E_a$  is also observed. On the other hand, the  $E_a$  with SnBr2 is reduced to even less than pristine FASnI3, even though the stoichiometry is closer to ideal (2.1:1:3.1) than pristine FASnI3.



**Figure 5.** Capacitance-frequency (C-f) plots from TAS measurements a) FASnI<sub>3</sub> and c) FASnI<sub>3</sub> + SnF<sub>2</sub> devices carried out under dark conditions between 160 and 300 K at 0 V DC bias with an AC bias amplitude of 10 mV. Activation energy (*E*<sub>a</sub>) of the ionic defects of b) FASnI<sub>3</sub> and d) FASnI<sub>3</sub> + SnF<sub>2</sub> devices extracted from Arrhenius plots of the characteristic peak frequency, obtained from the differential capacitance (-f.dC/df) at various temperatures.

In summary, the work presented here identifies the role of SnX<sub>2</sub> additives on electronic and ionic defects in FASnI<sub>3</sub> perovskite solar cells. The beneficial role of the SnF<sub>2</sub> additive in FASnI<sub>3</sub> can be attributed to improved morphology, less energetic disorder, and decreased Sn<sup>4+</sup> associated defects in the film, whereas these benefits are significantly decreased with SnCl<sub>2</sub> and SnBr<sub>2</sub> additives. Here, the formation of SnF<sub>4</sub> through the halide exchange reaction with SnI<sub>4</sub> prevents the insertion

of  $Sn^{4+}$  into the crystal lattice, which retards the self p-type doping and decreases the background hole density and dark current. Moreover, the activation energy of ion migration increases upon  $SnF_2$  addition, which could be attributed to the strong Sn-F bond and its effect on passivating grain boundaries as well as the decreased concentration of  $Sn^{4+}$ . Consequently, the photovoltaic performance of  $FASnI_3 + SnF_2$  is significantly improved relative to the control and the other  $SnX_2$  additives.

ASSOCIATED CONTENT

Supporting Information. Experimental methods, UV-vis absorbance spectra, PL spectra, SEM

images, UPS and XPS spectra, C-V plots, dark J-V plots, device data, and TAS data.

**AUTHOR INFORMATION** 

**Corresponding Author** 

Kenneth R. Graham - Department of Chemistry, University of Kentucky, Lexington, Kentucky

40506, USA; E-mail: Kenneth.graham@uky.edu

**Notes** 

The authors declare no competing financial interests.

ACKNOWLEDGMENT

S. Joy, A. T., S. Johnson, and K.R.G. acknowledge support from the National Science Foundation

under cooperative agreement No. 1849213. T.H. and K.R.G. also acknowledge support from the

National Science Foundation under DMR-2102257. The authors thank Olajumoke Oladele and

Prof. Anne-Frances Miller for performing NMR measurements and Kiera Draffen for assistance

with PDS measurements.

18

## References

- (1) Liu, H.; Zhang, Z.; Zuo, W.; Roy, R.; Li, M.; Byranvand, M. M.; Saliba, M. Pure Tin Halide Perovskite Solar Cells: Focusing on Preparation and Strategies. *Adv. Energy Mater.* **2022**, *13* (3).
- (2) Tong, J.; Jiang, Q.; Ferguson, A. J.; Palmstrom, A. F.; Wang, X.; Hao, J.; Dunfield, S. P.; Louks, A. E.; Harvey, S. P.; Li, C.; et al. Carrier Control in Sn–Pb Perovskites via 2D Cation Engineering for All-Perovskite Tandem Solar Cells with Improved Efficiency and Stability. *Nat. Energy* **2022**, *7* (7), 642-651.
- (3) Hu, M.; Zhang, Y.; Gong, J.; Zhou, H.; Huang, X.; Liu, M.; Zhou, Y.; Yang, S. Surface Sn(IV) Hydrolysis Improves Inorganic Sn–Pb Perovskite Solar Cells. *ACS Energy Lett.* **2023**, *8* (2), 1035-1041.
- (4) Lanzetta, L.; Webb, T.; Marin-Beloqui, J. M.; Macdonald, T. J.; Haque, S. A. Halide Chemistry in Tin Perovskite Optoelectronics: Bottlenecks and Opportunities. *Angew. Chem. Int. Ed. Engl.* **2023**, *62* (8), e202213966.
- (5) Song, D.; Li, H.; Xu, Y.; Yu, Q. Amplifying Hole Extraction Characteristics of PEDOT:PSS via Post-treatment with Aromatic Diammonium Acetates for Tin Perovskite Solar Cells. *ACS Energy Lett.* **2023**, *8* (8), 3280-3287.
- (6) Zhao, J.; Zhang, Z.; Li, G.; Aldamasy, M. H.; Li, M.; Abate, A. Dimensional Tuning in Lead-Free Tin Halide Perovskite for Solar Cells. *Adv. Energy Mater.* **2023**, *13* (13).
- (7) Yu, B. B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. *Adv. Mater.* **2021**, *33* (36), e2102055.

- (8) Pascual, J.; Nasti, G.; Aldamasy, M. H.; Smith, J. A.; Flatken, M.; Phung, N.; Di Girolamo, D.; Turren-Cruz, S.-H.; Li, M.; Dallmann, A.; et al. Origin of Sn(II) Oxidation in Tin Halide Perovskites. *Mater. Adv.* **2020**, *1* (5), 1066-1070.
- (9) Saidaminov, M. I.; Spanopoulos, I.; Abed, J.; Ke, W.; Wicks, J.; Kanatzidis, M. G.; Sargent, E. H. Conventional Solvent Oxidizes Sn(II) in Perovskite Inks. *ACS Energy Lett.* **2020**, *5* (4), 1153-1155.
- (10) Hossain, T.; Joy, S.; Draffen, K.; Bright, R.; Johnson, S.; Graham, K. R. Oxidation in Tin Halide Perovskites: Influence of Acidic and Basic Additives. *ACS Appl. Energy Mater.* **2023**, *6* (24), 12334-12342.
- (11) Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; Angelis, F. D. Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. *ACS Energy Lett.* **2020**, *5* (9), 2787-2795.
- (12) Milot, R. L.; Klug, M. T.; Davies, C. L.; Wang, Z.; Kraus, H.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films. *Adv. Mater.* **2018**, *30* (44), e1804506.
- (13) Meggiolaro, D.; Ricciarelli, D.; Alasmari, A. A.; Alasmary, F. A. S.; De Angelis, F. Tin versus Lead Redox Chemistry Modulates Charge Trapping and Self-Doping in Tin/Lead Iodide Perovskites. *J. Phys. Chem. Lett.* **2020**, *11* (9), 3546-3556.
- (14) Shi, T.; Zhang, H.-S.; Meng, W.; Teng, Q.; Liu, M.; Yang, X.; Yan, Y.; Yip, H.-L.; Zhao, Y.-J. Effects of Organic Cations on the Defect Physics of Tin Halide Perovskites. *J. Mater. Chem. A* **2017**, *5* (29), 15124-15129.

- (15) Naito, T.; Takagi, M.; Tachikawa, M.; Yamashita, K.; Shimazaki, T. Theoretical Study of the Molecular Passivation Effect of Lewis Base/Acid on Lead-Free Tin Perovskite Surface Defects. *J. Phys. Chem. Lett.* **2023**, *14* (29), 6695-6701.
- (16) Treglia, A.; Ambrosio, F.; Martani, S.; Folpini, G.; Barker, A. J.; Albaqami, M. D.; De Angelis, F.; Poli, I.; Petrozza, A. Effect of Electronic Doping and Traps on Carrier Dynamics in Tin Halide Perovskites. *Mater. Horizon* **2022**, *9* (6), 1763-1773.
- (17) Liu, H.; Wang, L.; Li, R.; Shi, B.; Wang, P.; Zhao, Y.; Zhang, X. Modulated Crystallization and Reduced Voc Deficit of Mixed Lead–Tin Perovskite Solar Cells with Antioxidant Caffeic Acid. *ACS Energy Lett.* **2021**, *6* (8), 2907-2916.
- (18) Wang, T.; Tai, Q.; Guo, X.; Cao, J.; Liu, C.-K.; Wang, N.; Shen, D.; Zhu, Y.; Lee, C.-S.; Yan, F. Highly Air-Stable Tin-Based Perovskite Solar Cells through Grain-Surface Protection by Gallic Acid. *ACS Energy Lett.* **2020**, *5* (6), 1741-1749.
- (19) Tai, Q.; Guo, X.; Tang, G.; You, P.; Ng, T. W.; Shen, D.; Cao, J.; Liu, C. K.; Wang, N.; Zhu, Y.; et al. Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells. *Angew. Chem. Int. Ed. Engl.* **2019**, *58* (3), 806-810.
- (20) Zhou, J.; Hao, M.; Zhang, Y.; Ma, X.; Dong, J.; Lu, F.; Wang, J.; Wang, N.; Zhou, Y. Chemo-Thermal Surface Dedoping for High-Performance Tin Perovskite Solar Cells. *Matter* **2022**, *5* (2), 683-693.
- (21) Jiang, X.; Li, H.; Zhou, Q.; Wei, Q.; Wei, M.; Jiang, L.; Wang, Z.; Peng, Z.; Wang, F.; Zang, Z.; et al. One-Step Synthesis of SnI<sub>2</sub>.(DMSO)<sub>x</sub> Adducts for High-Performance Tin Perovskite Solar Cells. *J. Am. Chem. Soc.* **2021**, *143* (29), 10970-10976.

- (22) Jokar, E.; Cheng, P.-Y.; Lin, C.-Y.; Narra, S.; Shahbazi, S.; Diau, E. W.-G. Enhanced Performance and Stability of 3D/2D Tin Perovskite Solar Cells Fabricated with a Sequential Solution Deposition. *ACS Energy Lett.* **2021**, *6* (2), 485-492.
- (23) Wang, F.; Jiang, X.; Chen, H.; Shang, Y.; Liu, H.; Wei, J.; Zhou, W.; He, H.; Liu, W.; Ning, Z. 2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability. *Joule* **2018**, *2*, 2732-2743.
- (24) Nasti, G.; Aldamasy, M. H.; Flatken, M. A.; Musto, P.; Matczak, P.; Dallmann, A.; Hoell, A.; Musiienko, A.; Hempel, H.; Aktas, E.; et al. Pyridine Controlled Tin Perovskite Crystallization. *ACS Energy. Lett.* **2022**, *7* (10), 3197-3203.
- (25) Aktas, E.; Poli, I.; Ponti, C.; Li, G.; Olivati, A.; Girolamo, D. D.; Alharthi, F. A.; Li, M.; Polamares, E.; Petrozza, A.; et al. One-Step Solution Deposition of Tin-Perovskite onto a Self-Assembled Monolayer with a DMSO-Free Solvent System. *ACS Energy Lett.* **2023**, *8*, 5170-5174. (26) Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Lead-free Halide Perovskite Solar Cells with High Photocurrents Realized through Vacancy Modulation. *Adv. Mater.* **2014**, *26* (41), 7122-7127.
- (27) Pascual, J. F., M.; Félix, R.; Li, G.; Turren-Cruz, S.-H.; Aldamasy, M. H.; Hartmann, C.; Li, M.; Girolamo, D. D.; Nasti, G.; Hüsam, E.; Wilks, R. G.; Dallmann, A.; Bär, M.; Hoell, A.; Abate, A. Fluoride Chemistry in Tin Halide Perovskites. *Angew. Chem. Int. Ed.* **2021**, *60*, 21583 21591. (28) Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; et al. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite

Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. *Adv. Mater.* **2016**, *28* (42), 9333-9340.

- (29) Liu, X.; Wang, Y.; Wu, T.; He, X.; Meng, X.; Barbaud, J.; Chen, H.; Segawa, H.; Yang, X.; Han, L. Efficient and Stable Tin Perovskite Solar Cells Enabled by Amorphous-Polycrystalline Structure. *Nat. Comm.* **2020**, *11* (1), 2678.
- (30) Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A. Enhanced Stability and Efficiency in Hole-Transport-Layer-Free CsSnI<sub>3</sub> Perovskite Photovoltaics. *Nat. Energy* **2016**, *1* (12), 16178.
- (31) Chen, Q.; Luo, J.; He, R.; Lai, H.; Ren, S.; Jiang, Y.; Wan, Z.; Wang, W.; Hao, X.; Wang, Y.; et al. Unveiling Roles of Tin Fluoride Additives in High-Efficiency Low-Bandgap Mixed Tin-Lead Perovskite Solar Cells. *Adv. Energy Mater.* **2021**, *11* (29), 2101045.
- (32) Gupta, S.; Cahen, D.; Hodes, G. How SnF<sub>2</sub> Impacts the Material Properties of Lead-Free Tin Perovskites. *J. Phys. Chem. C* **2018**, *122* (25), 13926-13936.
- (33) Joy, S.; Atapattu, H. R.; Sorensen, S.; Pruett, H.; Olivelli, A. B.; Huckaba, A. J.; Miller, A.-F.; Graham, K. R. How Additives for Tin Halide Perovskites Influence the Sn<sup>4+</sup> Concentration. *J. Mater. Chem. A* **2022**, *10* (25), 13278-13285.
- (34) Meggiolaro, D.; Gregori, L.; De Angelis, F. Formation of a Mixed Valence Sn<sub>3</sub>F<sub>8</sub> Phase May Explain the SnF<sub>2</sub> Stabilizing Role in Tin-Halide Perovskites. *ACS Energy Lett.* **2023**, *8* (5), 2373-2375.
- (35) Sakhatskyi, K.; John, R. A.; Guerrero, A.; Tsarev, S.; Sabisch, S.; Das, T.; Matt, G. J.; Yakunin, S.; Cherniukh, I.; Kotyrba, M.; et al. Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites. *ACS Energy Lett.* **2022**, *7*, 3401-3414.
- (36) Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. *ACS Energy Lett.* **2018**, *3*, 204-213.

- (37) Xiao, Z.; Zhao, L.; Tran, N. L.; Lin, Y. L.; Silver, S. H.; Kerner, R. A.; Yao, N.; Kahn, A.; Scholes, G. D.; Rand, B. P. Mixed-Halide Perovskites with Stabilized Bandgaps. *Nano Lett.* **2017**, 17, 6863-6869.
- (38) Ighodalo, K. O.; Chen, W.; Liang, Z.; Shi, Y.; Chu, S.; Zhang, Y.; Khan, R.; Zhou, H.; Pan, X.; Ye, J.; et al. Negligible Ion Migration in Tin-Based and Tin-Doped Perovskites. *Angew. Chem. Int. Ed.* **2023**, *62* (5), e202213932.
- (39) Xiao, M.; Gu, S.; Zhu, P.; Tang, M.; Zhu, W.; Lin, R.; Chen, C.; Xu, W.; Yu, T.; Zhu, J. Tin-Based Perovskite with Improved Coverage and Crystallinity through Tin-Fluoride-Assisted Heterogeneous Nucleation. *Adv. Optical Mater.* **2017**, *6* (1), 1700615.
- (40) Subedi, B. L., C.; Chen, C.; Liu, D.; Junda, M. M.; Song, Z.; Yan, Y.; Podraza, N. J. Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion–Cation Perovskite Solar Cells. *ACS Appl. Mater. Interfaces* **2022**, *14*, 7796-7804.
- (41) Lanzetta, L.; Webb, T.; Zibouche, N.; Liang, X.; Ding, D.; Min, G.; Westbrook, R. J. E.; Gaggio, B.; Macdonald, T. J.; Islam, M. S.; et al. Degradation Mechanism of Hybrid Tin-based Perovskite Solar Cells and the Critical Role of Tin (IV) Iodide. *Nat. Comm.* **2021**, *12* (1), 2853.
- (42) Ledinsky, M.; Schonfeldova, T.; Holovsky, J.; Aydin, E.; Hajkova, Z.; Landova, L.; Neykova, N.; Fejfar, A.; Wolf, S. D. Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. *J. Phys. Chem. Lett.* **2019**, *10* (6), 1368-1373.
- (43) Mahesh, S.; Ball, J. M.; Oliver, R. D. J.; McMeekin, D. P.; Nayak, P. K.; Johnston, M. B.; Snaith, H. J. Revealing the Origin of Voltage Loss in Mixed-Halide Perovskite Solar Cells. *Energy Environ. Sci.* **2020**, *13* (1), 258-267.
- (44) Reichert, S.; An, Q.; Woo, Y. W.; Walsh, A.; Vaynzof, Y.; Deibel, C. Probing the Ionic Defect Landscape in Halide Perovskite Solar Cells. *Nat. Comm.* **2020**, *11* (1), 6098.

- (45) Lee, S. J.; Shin, S. S.; Im, J.; Ahn, T. K.; Noh, J. H.; Jeon, N. J.; Seok, S. I.; Seo, J. Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Peorvskite Solar Cells. *ACS Energy Lett.* **2018**, *3*, 46-53.
- (46) Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G. Diammonium Cations in the FASnI<sub>3</sub> Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. *ACS Energy Lett.* **2018**, *3* (7), 1470-1476.
- (47) Khadka, D. B.; Shirai, Y.; Yanagida, M.; Tadano, T.; Miyano, K. Alleviating Defect and Oxidation in Tin Perovskite Solar Cells Using a Bidentate Ligand. *Chem. Mater.* **2023**, *35* (11), 4250-4258.
- (48) Futscher, M. H.; Deibel, C. Defect Spectroscopy in Halide Perovskites Is Dominated by Ionic Rather than Electronic Defects. *ACS Energy Lett.* **2021**, *7* (1), 140-144.
- (49) Zhang, Z.; Huang, Y.; Wang, C.; Jiang, Y.; Jin, J.; Xu, J.; Li, Z.; Su, Z.; Zhou, Q.; Zhu, J.; et al. Green-Antisolvent-Regulated Distribution of P-type Self-Doping Enables Tin Perovskite Solar Cells with An Efficiency of Over 14%. *Energy Environ. Sci.* **2023**, *16* (8), 3430-3440.
- (50) Zhou, S.; Zhu, S.; Guan, J.; Wang, R.; Zheng, W.; Gao, P.; Lu, X. Confronting the Air Instability of Cesium Tin Halide Perovskites by Metal Ion Incorporation. *J. Phys. Chem. Lett.* **2021**, *12* (45), 10996-11004.
- (51) Eames, C.; Frost, J. M.; Barnes, P. R.; O'Regan, B. C.; Walsh, A.; Islam, M. S. Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells. *Nat. Comm.* **2015**, *6*, 7497.