A deterministic near-linear time approximation
scheme for geometric transportation

Emily Fox
Department of Computer Science
The University of Texas at Dallas

Richardson, Texas 75080
Email: emily.fox @utdallas.edu

Abstract—Given a set of points P = (PT1IP~) C R? for some
constant d and a supply function y : P — R such that u(p) >
0Vpe P, u(p) <0Vpe P, and > pep H(p) = 0, the geomet-
ric transportation problem asks one to find a transportation map
7:P" x P~ — Rxo such that > gep—T(P:q) = p(p) Vp € P,
> pep+ T(P,q) = —plq) Vg € P, and the weighted sum of
Euclidean distances for the pairs > .\ p+, p— 7(p,9)-||[q—p||2
is minimized. We present the first deterministic algorithm that
computes, in near-linear time, a transportation map whose cost is
within a (1+ ¢) factor of optimal. More precisely, our algorithm
runs in O(ne™ (2 log® nloglogn) time for any constant ¢ > 0.

While a randomized ns 9% logo(‘i> n time algorithm for
this problem was discovered in the last few years, all pre-
viously known deterministic (1 + ¢)-approximation algorithms
run in Q(n*?) time. A similar situation existed for geometric
bipartite matching, the special case of geometric transportation
where all supplies are unit, until a deterministic ne =2 log®(® n,
time (1 + ¢)-approximation algorithm was presented at STOC
2022. Surprisingly, our result is not only a generalization of
the bipartite matching one to arbitrary instances of geometric
transportation, but it also reduces the running time for all
previously known (1 + ¢)-approximation algorithms, randomized
or deterministic, even for geometric bipartite matching. In
particular, we give the first (1 4 ¢)-approximate deterministic
algorithm for geometric bipartite matching and the first (1+ ¢)-
approximate deterministic or randomized algorithm for geomet-
ric transportation with no dependence on d in the exponent of
the running time’s polylog.

As an additional application of our main ideas,
we also ive the first randomized near-linear
O(e 2mlog®®P n) time (1 + e)-approximation algorithm
for the uncapacitated minimum cost flow (transshipment)
problem in undirected graphs with arbitrary real edge costs.

I. INTRODUCTION

Let P Cc R? be a set of n points in d-dimensional
Euclidean space, and let © : P — R be a function as-
signing each point a supply such that >° _p p(p) = 0. Let
Pt ={peP|ulp) >0} and P~ = {pe P|u(p) <0}
A transportation map T : Pt x P~ — Rs(is a non-
negative assignment to each ordered pair such that for all
p € Pt we have 3 p- 7(p,q) = pu(p) and for all ¢ € P~
we have > p+ 7(p,q) = —p(g). A common interpretation
of this setting is to imagine each point p € Pt as a

E. Fox is supported in part by NSF grant CCF-1942597. J. Lu is currently
at Google. He was supported in part by NSF grant CCF-1942597.

Jiashuai Lu
Department of Computer Science
The University of Texas at Dallas

Richardson, Texas 75080
Email: jslu@utdallas.edu

pile of earth of volume u(p) and point p € P~ to be a
hole of volume —pu(p). A transportation map describes a
way to move all of the earth from the piles to the holes.
Accordingly, the cost of our transportation map is its total
earth-distance according to the Euclidean norm, COST(7) :=
Y paertxp—) T®:a) - [lg = pll2.! Our goal is to find a
transportation map of minimum cost COST* (P, i), a task we
refer to as the geometric transportation problem. Due to
the analogy relating the geometric transportation problem to
moving piles of earth, the optimal cost COST*(P, i) is often
called the earth mover’s distance. The earth mover’s distance
is a discrete version of the 1-Wasserstein distance between
continuous probability distractions, and the continuous version
of this problem has also been referred to as the optimal
transport or Monge-Kantorovich problem. Along with being
an interesting math problem in its own right, earth mover’s
distance has applications to various topics in computer science
such as shape matching and graphics [8], [11], [14], [15], [21],
[23], [28]-[30].

The geometric transportation problem can be viewed as a
special case of the minimum cost flow problem restricted to an
uncapacitated complete bipartite graph. Unfortunately, merely
constructing an explicit representation of the appropriate graph
takes ©(n?) time. The transportation map can then be found in
strongly polynomial O(n? polylogn) time using a minimum
cost flow algorithm of Orlin [20]. If supplies are integral, we
can instead use an algorithm of Lee and Sidford [18] that will
run in O(n?? polylog(n, U)) time where U = > pep 1(P)] is
the sum of the absolute values of the points’ supplies. The only
faster exact algorithm we are aware of is an implicit implemen-
tation of Orlin’s algorithm by [2] that runs in O(n? polylog n)
time and only when given points in the plane.

Agarwal and Raghvendra [24] de-
scribed an O(nV/U polylog(U, e,n))-time
(1 + e)-approximation algorithm for the integral supply
case. [5] described an O(n't°()) time algorithm that
computes a (1 + e)-factor estimate of the earth mover’s
distance (without associated transportation map) where
the o(1) hides dependencies on e. Later, [2] described

'Our results apply to any £p-norm, but we stick with the f2-norm to
simplify the presentation.

a randomized algorithm with an expected O(log®(1/¢))-
approximation ratio that runs in O(n!*¢) expected time.
Lahn, Mulchandani, and Raghvendra [17] described an
O(n(C6)? polylog(U,n))-time algorithm that computes a
transportation map of cost at most COST* (P, u) + dU where
C = maxyep |p(p)| is the maximum over the supplies’
absolute values. Finally, Khesin, Nikolov, and Paramonov [16]
described a randomized (1 + ¢)-approximation algorithm with
running time ne (@ log®@ Sp(P)logn where SP(P) is
the spread or ratio of largest to smallest distance between
any pair of points in P. Via a straightforward reduction, one
can use their algorithm to approximately solve the integer
supply case in ne=9@10g?@ Ulog? n time [16]. Fox and
Lu [13] subsequently extended their algorithm to run in time
ne=0(d) logo(d) n, a bound which is independent of both the
spread and supplies of P.

The above history of the geometric transportation prob-
lem neatly mirrors that of the geometric bipartite match-
ing problem, the special case of geometric transportation
where all supplies are either 1 or —1. (Geometric bipartite
matching also requires the output map to be 0,1, but one
can guarantee that is the case with near-linear additional
overhead in running time; see Section I'V.) Indeed, Raghvendra
and Agarwal [22], [25] achieved the same ne=©(@ 1og?@ p
running time only after a long line of work detailed in
their paper. This running time was recently improved to
n(e=9@) loglog n+e= 9@ log? nlog® log n), eliminating the
dependence on d from the polylog’s exponent [3].

One commonality held by many of the above results,
including most notably the near-linear time approximation
schemes for geometric bipartite matching and transporta-
tion [3], [13], [16], [22], is that these results are Monte Carlo
randomized algorithms that are guaranteed to work in their
reported time bounds but have a small probability of not
finding a good solution. These four results in particular work
by approximating distances between pairs of points using a
sparse graph based on a randomly shifted quadtree. Agarwal
and Raghvendra [4] were able to describe a few different
deterministic approximation algorithms for geometric bipartite
matching with varying tradeoffs between approximation ratio
and running time. Still, no deterministic (1 +¢)-approximation
algorithm with running time o(n®/?) was known, even for
the geometric bipartite matching problem, for nearly a decade
after the initial publication [25] of Raghvendra and Agarwal’s
(1 + &)-approximation algorithm.

At STOC 2022, [1] showed that randomness was not
necessary for a fast approximation of geometric bipartite
matching by describing a deterministic (1 + ¢)-approximation
algorithm that runs in ne=2@1og?? p time. Instead of
basing distances on a single randomly shifted quadtree, they
use the concept of a tree cover, introduced by Awerbuch,
Kutten, and Peleg [7]. A tree cover can be thought of as
2¢ deterministicly shifted quadtrees combined in a way to
guarantee distances are well-approximated. Through a great
deal of effort, they are able to apply the main ideas behind
Raghvendra and Agarwal’s [22] algorithm to work in the more

complicated setting of a tree cover as opposed to a single tree.

It is tempting to imagine this same work can be applied
to the geometric transportation problem. Unfortunately, the
approach originally taken by Raghvendra and Agarwal [22]
and later [3] for geometric bipartite matching is very different
from the one taken by [16] and [13] for geometric transporta-
tion. The former results iteratively add matching edges along
carefully chosen augmenting paths that increase in length
slowly enough that they can all be found in a small amount
of time. The latter results instead build a sparse spanner graph
which is entrusted to a minimum cost flow approximation
framework of Sherman [26] (see also [6]). Derandomizing the
latter results likely requires many ideas other than those used
by [1], and they presented the design of a fast deterministic
approximation scheme for geometric transportation as an open
problem in their paper.

A. Our results

We describe a deterministic (1+¢)-approximation algorithm
for the geometric transportation problem that runs in near-
linear time. Specifically, for any ¢ > 0, our algorithm is
guaranteed to compute a transportation map of cost at most
(I+¢)-cosT*(P,), and it has a worst-case running time of
O(ne=(4+2) Jog® nlog log n).

Our approximate transportation map also has the property
that each value 7(p,q) is guaranteed to be an integer
if all supplies p(p) are integers. In the special case of
all supplies being —1 and 1, this property implies each
value 7(p,q) € {0,1}; those pairs (p,q) with 7(p,q) = 1
form a matching. In other words, 7 is a (1 4 €)-approximate
solution to the geometric bipartite matching problem.

We consider our algorithm noteworthy for two main reasons.

o It derandomizes previous approximation schemes for the
geometric transportation problem, extending the recent
result of [1] beyond the more specialized geometric
bipartite matching problem.

o It actually improves upon the running times of all previ-
ously known approximation schemes for geometric trans-
portation and geometric bipartite matching, both random-
ized and deterministic (we are able to remove a log factor
from the running time for the special case of geometric
bipartite matching; see Section V). In particular, ours
is the first (1 +)-approximate deterministic algorithm
for geometric bipartite matching and the first (1 + £)-
approximate determinstic or randomized algorithm for
geometric transportion where the exponent on the run-
ning time’s polylogn factor is bounded by an absolute
constant instead of a linear function of the dimension d.

Application: Approximating uncapacitated minimum cost

flow: Recent work, including [6], [19], [26], has established a
connection between the geometric transportation problem and
the minimum cost flow problem in uncapacitated undirected
graphs. The latter is often referred to as the fransshipment
problem. In adjacent papers of the same proceedings, [19]
and [6] both claim randomized near-linear O(m polylogn)

time (1 + ¢)-approximation algorithms for the latter problem.
Unfortunately, both algorithms require the edge costs to have
bounded spread or consist of small integers. While the running
times are polylogarithmic in the spread/sum of edge costs, they
can become arbitrarily high when the values are allowed to be
arbitrary real numbers.

That said, [6] reduces finding a (1 + ¢)-approximation for
minimum cost flow to finding an O(logo(l) n)-approximation
for a bounded spread instance of geometric transportation
in O(log® n)-dimensional Euclidean space. The efficiency
of their algorithm crucially relies on both the low spread
and the fact that their dependency on the dimension is
merely polynomial instead of exponential. By setting the
desired approximation ratio for our deterministic geometric
transportation algorithm to be sufficiently large, we are also
able to remove exponential dependencies on dimension while
being able to handle point sets of arbitrary spread. As a
consequence, we give the first randomized near-linear time
(1 + &)-approximation algorithm for uncapacitated minimum
cost flow in undirected graphs with arbitrary real costs.

B. Technical overview

Similar to how the recent result of [1] for geometric bipartite
matching uses many ideas originally described by Raghvendra
and Agarwal [22], our deterministic transportation algorithm
is closely tied to the randomized algorithms of [16] and [13].
We will briefly review their approach and then summarize the
new ideas required for its derandomization.

Randomized algorithms: The randomized transportation
algorithms begin by building a randomly shifted quadtree
over P, a hierarchical collection of d-dimensional cubic cells
where each cell contains at most 2¢ equal sized children and
cells containing exactly one point act as leaves. They then add
a large number of Steiner vertices to the collection of input
points P and use the tree structure to build a sparse spanner
graph over P and the Steiner vertices. The number of Steiner
vertices added to each cell of the quadtree is O((K/e)?),
where K would be the excepted distortion between any pair of
vertices if the graph was constructed as a simple tree contain-
ing one Steiner vertex per cell. In [16], K = O(log SP(P)),
while in [13], K = O(logn), and these large numbers of
Steiner vertices are essentially rhe reason why O(d) appears
in the exponents of the runtimes’ polylogs. While there are
additional edges, the spanner is essentially a rooted tree where
every point and nearly every Steiner vertex has exactly one
parent Steiner vertex. Distances between points of P are
approximately maintained in the spanner graph, implying the
value of an uncapacitated minimum cost flow with sources
and sink P will serve as a good estimate for the earth mover’s
distance (the cost of the optimal transportation map).

Both algorithms use a framework of Sherman [26] to ap-
proximately compute the minimum cost flow within the span-
ner graph. Sherman’s framework requires one to formulate the
uncapacitated minimum cost flow problem as finding a flow
vector [of minimum cost subject to linear constraints Af = b
where A is the vertex-edge incidence matrix of the graph and

b is a supply vector not necessarily equal to the supplies of P.
One repeatedly finds flows f of approximately optimal cost
that approximately satisfy linear constraints where b may vary
between rounds of the process. Applied naively, the number of
rounds of this process is polynomial in the condition number
of A which can be arbitrarily large. Fortunately, it is possible
to describe a preconditioner matrix B such that BA has low
condition number. Repeatedly finding approximate solutions
for constraints of the form BAf = Bb suffices for finding
an approximately optimal solution to the minimum cost flow
problem that meets its original supply constraints exactly.

The preconditioner B is set up so that ||Bb||; acts as an
estimate on the cost of an approximately optimal flow f where
f is found using a very restrictive kind of “oblivious” greedy
approximation algorithm. Specifically, the greedy approxima-
tion algorithm must move the surplus out of/into any vertex
mostly without regard to the other vertices’ surpluses. The
condition number of BA is proportional to the approximation
factor of this greedy approximation algorithm. The specific
greedy algorithm used in both papers just repeatedly moves
the surplus of each vertex up to its parent. If a minimum cost
flow sends some flow from a vertex u another vertex v, then
the surpluses pushed up from u and v are likely to cancel
at a common ancestor not too far away from either vertex.
Therefore, the cost of pushing these surpluses up is bounded.

When the two algorithms finally have an approximate
minimum cost flow that respects the original supplies of P,
they then need to transform it into a proper transportation map
without increasing its cost. To do so, they shortcut flow to
avoid each of the Steiner vertices one by one, using a binary
search tree based data structure to do several shortcuts at once
in the case of Fox and Lu [13].

Derandomization: We now discuss our techniques for de-
randomizing the above algorithms. To make the these discus-
sions easier to follow, we will begin with techniques that lead
to a polylogarithmic dependence on the spread of P before
adding more detail into how we handle the case of arbitrary
spread.

In the previous algorithms [13], [16], randomness is directly
used only for picking a randomly shifted quadtree. The “ob-
vious” solution, then, to derandomizing the algorithms is to
use a tree cover similar to how [1] derandomize the algorithm
for geometric bipartite matching. Indeed, we essentially take
this approach in order to construct of our sparse spanner
graph. However, instead of describing it as a collection of 2¢
quadtrees with different shifts, it becomes easier to think of it
as a single arbitrary quadtree where each cell is given a single
Steiner vertex, hereinafter referred to as its net point, that is
directly connected to a collection of O(s?) nearby net points of
equal sized cells. These nearby connections allow for paths to
go directly between close-by cells that are not comparable in
the quadtree’s hierarchy. Therefore, we do not need to worry
about two close-by points having a distant lowest common
ancestor net point in the tree, and we can guarantee distances
are maintained up to a (1 + &)-factor while using a mere
O((n/e%)1og SP(P)) net points total.

The big issue with this approach becomes apparent when
attempting to compute minimum cost flows within Sher-
man’s [26] framework. Our spanner contains edges going
between quadtree cells with potentially distant lowest common
ancestors. Therefore, the greedy approximation algorithm from
before that simply pushes surpluses to net points’ parents no
longer has an acceptable approximation factor. In fact, the
condition number of BA may be polynomial in SP(P) (and,
we emphasize, not polynomial in log SP(P)). We start to really
miss the simplicity afforded us by using a single randomized
quadtree without shortcuts between nearby cells.

The solution to our problem is to simulate random shifting
within the greedy algorithm and preconditioner themselves.
Our greedy approximation algorithm treats the initial surplus
of each vertex described by the vector b as a separate com-
modity. For each vertex u, for each cell C' closer to the root
of the tree than u, we explicitly compute the probability that
a random shift of the quadtree would cause the cell C' to
contain u. We then route an equal portion of u’s original
surplus to C"s net point. Now, suppose a minimum cost flow
sends some flow from u to another vertex v. Using similar
algebra to that used in the analyses of the randomly shifted
quadtree, we argue that the cost of surplus from w and v
that does not cancel out at any given level is proportional
to the total cost of flow sent from w to v. Therefore, the
approximation factor of the greedy algorithm is proportional
to log SP(P), the height of the quadtree. This greedy algorithm
is still oblivious enough to imply a preconditioner with con-
dition number roughly log SP(P), so we can make Sherman’s
framework run in near-linear time.

Adding edges between nearby non-related cells also compli-
cates recovering a transportation map from the approximately
optimal flow, because the connected components on each level
of the quadtree now have unbounded size. We describe a new
method of recovering the transportation map that no longer
relies on the spanner having a particular structure. In fact, our
method is general enough that it can be applied to any flow on
a spanner over P, with or without Steiner vertices. In short, we
process vertices in topological order according to the flow’s
support graph, shortcutting flow passing through each vertex
we process. We continue performing the shortcuts through a
single vertex in groups using the data structure of Fox and
Lu [13].

Unbounded spread: The deterministic algorithm for the
geometric bipartite matching problem does an O(n log2 n)
time reduction to an instance where the spread is polynomial in
n [1]. Applying this reduction with the above observations is
already enough to speed up the previous result; see Section V.
However, we do require more work to account for unbounded
spread cases of geometric transportation. The main observation
used by Fox and Lu [13] to avoid dependencies on spread
is that, with high probability, no input point lies within
distance A/ poly n of the edge of any enclosing cell where A
is the side length of that cell (see also [2]). These forbidden
regions for cell boundaries are referred to as moats around
the input points. Most of their algorithm design and analysis

is conditioned on this high probability event. In particular, the
event occuring has two main implications of interest to us:
First, if the set of points within a cell has a bounding box of
side length A/ poly n, then those points are far enough away
from everything else that we can essentially treat them as a
separate instance. In turn, one can “compress” the quadtree so
it has height O(nlog n) using purely combinatorial operations.
Second, the expected distortion of distances between any pair
of points when using a single Steiner point per cell is O(log n)
instead O(log SP), implying a reasonable approximation ratio
is acheivable by adding extra dependencies on logn to the
running time. The gist of their argument is that expected
distortion is proportional to the number of quadtree levels
in which a pair of points may be separated with probability
strictly between O and 1.

To replicate the first implication, we subtly move the
axis-aligned hyperplanes bounding cells while building our
quadtree so that no input point lies within the aforementioned
A/ polyn distance from the edge of a cell. The amount we
move the hyperplanes is small enough as to not affect the
quality of the spanner, but it does make it possible to compress
the quadtree in a similar manner to Fox and Lu [13]. In order
to consistently move individual hyperplanes, we first build
a collection of binary search tree based data structures that
help us quickly determine whether a particular placement of
a hyperplane would lie too close to one or more points.

We replicate the second implication by modifying how
we simulate random shifts during the minimum cost flow
phase of the algorithm. In short, our goal is to compute
probabilities conditioned on shifts not placing cell boundaries
too close to any vertex point. Suppose we wish to compute
how much surplus various net points throughout the spanner
should send to a net point at level ¢ where cells at level /¢
have side length (141/ poly n)A. We group together maximal
collections of net points called blobs that cannot be separated
by a shift without one or more of them lying very close to the
boundary of a level ¢ cell. The surpluses of a blob’s constituent
points are treated as a single commodity as we figure out
how much surplus to route to each level ¢ net point. Now,
if a minimum cost flow sends flow from net point u to net
point v, there are only O(logn) levels in which the cost of
moving their surpluses is non-negligible; at levels closer to
the root, u and v appear in the same blob and their surpluses
cancel perfectly. In order to guarantee the uncancelled portions
of their surpluses still have cost proportional to the flow
between u and v across the O(logn) levels that matter, we
build a collection of d binary search based data structures
that describe the full collection of shifts that do not separate
members of any one blob into distinct level £ cells. Probability
computations are based on the proportional amount of shift
allowed according to these data structures, and we can still use
similar algebra to that of the randomized algorithm analyses
to prove approximation quality.

C. Organization

We describe the construction of the sparse spanner graph
in Section II. We describe how to approximate the minimum
cost flow within the spanner in Section III. We describe how
to recover an actual transportation map from the approximate
minimum cost flow and give a theorem stating our main result
in Section IV. We describe some simplifications we can make
to our algorithm for the case where Sp(P) is sufficiently
small in Section V. These simplifications ultimately result in
a slightly lower running time for the special case of geometric
bipartite matching. Finally, we describe our approximation
algorithm for uncapacitated minimum cost flow in general
undirected graphs in Section VI.

II. REDUCTION TO MINIMUM COST FLOW IN A SPARSE
SPANNER GRAPH

In this section, we describe a way to build a sparse spanner
graph G = (V, F) based on a deterministically constructed
quadtree. As we construct the quadtree, we will subtly shift
the hyperplanes bounding its cells so that no hyperplane goes
through a small rectangular moat around each input point.
At the end of this section, we describe a way to reduce the
geometric transportation problem to finding a minimum cost
flow in our graph.

Throughout the rest of this report, we assume without loss
of generality that 1/¢ is a power of 2 and that n > 1/¢. We
use d to denote the set of d dimensions, and lg to denote the
logarithm with base 2. As is standard, we will directly prove
our algorithm returns a (14 O(e))-approximate transportation
map. An actual (1 + €)-approximation can be obtained in the
same asymptotic running time by dividing € by a sufficiently
large constant.

A. A data structure for avoiding moats

Before we begin constructing our quadtree, we need to build
a collection of d data structures that can be queried to quickly
decide if a given axis-aligned hyperplane will intersect any
moats of a given size. For each dimension ¢ € d, we store
a sequence of balanced binary search trees in a persistent
data structure [12] parameterized by moat size where the
nodes of each tree correspond to maximal collections of points
that cannot be separated by the hyperplane orthogonal to
dimension ¢. Each node stores the least ¢th coordinate of the
points in its collection along with the greatest ¢th coordinate
of its points. Given a value x; and a moat size A, we can easily
check in O(logn) time whether the hyperplane orthogonal to
direction ¢ with ith coordinate x; intersects a moat, and if so,
how far back in the ¢ direction it would need to shift to no
longer intersect any moat. To do so, we do both a predecessor
and successor search for x; in the tree for \. If x; lies between
the two values [; < r; stored for a node, then we need to move
the hyperplane back to [; — \. Otherwise, if its predecessor has
highest coordinate r; and r; + A\ > x;, we let [; be the least
coordinate of the predecessor node and move the hyperplane
to [; — A. Finally, if the successor has least coordinate /; with
li — X\ < x;, we again move the hyperplane to [; — A.

To build the data structure for dimension i, we begin
by building the tree for moat size A = 0: it is simply a
balanced binary search tree over the members of P where
their ith coordinates act as the keys. We now act as if \ is
continuously increasing, processing the next event moment \
where the moats around two consecutive nodes’ points meet.
These event moments can be computed and ordered in advance
in O(nlogn) time by looking at the difference in i-coordinate
between consecutive points and sorting. At each event mo-
ment, we remove the two nodes whose moats are meeting and
replace them with a single node. It takes O(nlogn) time total
to processes all the events. Again, we store the sequence of
trees in a persistent data structure so we can easily access
the current tree for any given value A\ in O(logn) time. We
require O(logn) additional space per tree in the sequence,
for O(nlogn) space total.

Lemma 2.1: ITn O(nlogn) time, we can create a collection
of d data structures using O(nlogn) space each so that, for
any given dimension ¢ € d, coordinate x;, and moat size A\ >
0, we can lookup in O(logn) time whether the hyperplane
orthogonal to dimension ¢ at x; intersects any point’s moat,
and if so, how far back in the 7th dimension it needs to be
shifted to avoid hitting any moats.

B. Warped quadtree

With the preprocessing out of the way, we can turn to
constructing the spanner itself. We begin by building what
we call a warped quadtree T on P. Let [1p be the minimum
bounding hypercube containing P. Let C* be the hypercube
centered at the center of [Jp but with twice its side length.
Warped quadtree 7' has root cell C*. The other cells of T
are not necessarily hypercubes, but we do guarantee each cell
is an axis-parallel box. We generally use Ac ; to denote the
length of a cell C in the ith dimension and /¢ to denote its
level or number of edges on the unique path in 7" from C*
to C.

We construct T iteratively as follows. We first add C* to
a queue of unprocessed cells. While there exists a cell C' we
have not yet processed, we remove C from the queue and
perform the following steps. If there are Ig(n?/e) ancestor
cells of C including C' itself that all contain a single point
from P, then C'is a leaf. We are done processing C'.

Otherwise, let P/ C P = C N P, and let Op/ denote
the minimum bounding hypercube containing P’. Let Ag =
min; Ac,; and Aps denote the side length of Op.. If |P/| > 2
and Apr < Ac/n*, we contract P’ to a single point p € P’
as described below before moving on to the next steps in
processing C'.

Now, we partition C' into 2¢ approximately equal sized
axis-aligned boxes by splitting C' along the following d
hyperplanes. For each dimension ¢ € d, the ith hyperplane lies
orthogonal to dimension i. Let x; be the average of the ¢th
coordinates for the two bounding faces of C' lying orthogonal
to dimension <. We query the moat-avoiding data structure
for dimension ¢ and place hyperplane ¢ at the coordinate the

data structure says we should use instead of z; so it does not
intersect any moat of size A = Ac;/(2n?).

As stated, the d hyperplanes partition C' into 2¢ boxes. For
each such box C’ such that C' N P # (), we add C” as a child
of C and add C’ to the queue of unprocessed cells. We are
done processing C.

We now specify how to contract a subset of points P’ C P
as mentioned above. Let p € P’ be an arbitrary member
of P’. We create a new instance of the geometric transportation
problem (P’, ') such that 1/(q) = p(q) for all ¢ € P’ \ {p}
anq //.(p) — 2 qe(p\{pp) H(q). Finally, we remove all
points in '\ {p} from P and change /i(p) to be > p 11(q),
the total supply of all points in P’, including the original
supply of p. We do not modify the currently constructed tree 7’
or the data structures for avoiding moats when we modify P.

Later, we describe how to build a sparse spanner graph G
over the contracted set of points P (note that we may perform
further contractions to PP before we actually construct). We
then compute a (1+ O(e))-approximately minimum cost flow
f on G. The last component of our contraction procedure is
to recursively compute one or more spanners for (P’, 1) and
(14+0(e))-approximate flows on those spanners. In Section IV,
we recover an approximately optimal transportation map from
the union of these flows. The following lemma will be of use
when we analyze the total cost of these flows and our final
transportation map.

Lemma 2.2: Let (P/,u/) denote the problem
instance (P,u) after contracting P’. We have
cost*(P/,u/) + cosT (P, i) < 1 +

O(1/n?))cosT* (P,).

Proof: Let 7 be an arbitrary transportation map for (P,), and
let p € P’ be the point replacing P’ during its contraction. We
will construct two transportation maps 7/ and 7/ for (P/, u/)
and (P’, ii'), respectively, such that cosT(7/) + cosT(7') <
(1 4+ O(1/n?))cosT(t). For all (a,b) € ((P/)* x (P/)7),
a,b # p, we set 7/(a,b) := 7(a,b). Similarly, for all (a,b) €
((P)* x (P")7), a,b # p, we set 7'(a,b) := 7(a,b). For all

€ (P)*\ {p}), we set 7/(q,p) := X, c(pry- T(q,7), and
forall g € ((P/)~\{p}), we set 7/(p, q) := 3=, c(pry+ 7(1,).
Note that we might now have non-zero pair assignments with p
in both the first and second position, but we can shortcut
“flow” going through p to make 7/ a valid transportation
map while only reducing its cost. Similarly, for all ¢ &
((P"Y*\{p}), we set 7'(q, p) := >_re(p/)- T(g,7), and for all

€ ((P)"\{p}), we set 7'(p, q) := >, c(ps)+ 7(7, q), again
shortcutting as necessary to make 7' a valid transportation
map.

We now verify our claim on the total cost of 7/ and 7'.
Consider any ¢ € (P/\{p}) and » € (P"\{p}). Our algorithm
contracts P’ while processing a cell C. By construction of C,
every point in P’ is distance at least Ac/n? from the boundary
of C, and our choice to contract implies the diameter of P’
is less than VdAq/n*. Therefore, ||p — q||2 + ||r — pll2 <
(1 + O(1/n?))||r — q||2- To keep the algebra concise, we
define 7/ (g, 7) or 7/(q,7) to be 0 whenever (¢, r) is not really

in the domain of 7/ or 7. We see

cosT(r/) + cost(r)

- 5

(g,r)E(P/xP/)

+ Y. T

(g,r)E(P'XP")

= > 7(q;

(g:m)€((P/x P/)U(P’ X P'))|q,r#p

Y (Yeo+@n) -

a€(P/\{p})

DY

q€(P'\{p})

< > 7(¢.7)

(q.r)E((P/ xP/YU(P'xP"))|q,r#p

o 2

q€(P/\{p}) r€P’

P

qe(P'\{p}) rep/

= > 7(q,

(a.1)E((P/ x P/)U(P'x P"))

+ o>
q€(P/\{p}) r€(P'\{p})
“(Ilp = gll2 + llr = pll2)

< > 7(g,7) - |Ir = dll2

(a,r)e((P/ x P/)U(P’'xP"))
DS
a€(P/\{p}) re(P'\{r})
(1+0(1/n?)|lr — qll2
< (14 0(1/n?))cost(7).

m(q.r) - ||r = qll2

r) -l —dll2

r) - |lr —qll2

(7' (p, @) + 7' (¢,) lIp — qll2

lr —all2
7(r,q) +7(q,7)) - |lp — qll2
7(r.q) +7(g 7)) - |[p — qll2
) |lr—all2

(r(r.q) +7(q,7))

(r(r,q) +7(g,7))

C. Properties of warped quadtrees

We now prove some basic properties of the warped
quadtree 7'

Lemma 2.3: Suppose P has n’ points remaining after all
contractions used in the construction of 7. Warped quadtree T’
contains at most O(n'logn) cells.

Proof: Consider a path of cells (C1,Cy, ..., Ck) where each
cell C; in the path contains the same point subset P’. If | P’| =
1, then k < 1g(n?/e) = O(logn). Now suppose otherwise. For
each j € {2,...,k}, we have Ac, < ((1/2+1/(2n?))A¢,_,.
Therefore, Ap < A¢g, < (1/2+1/(2n2))*"1Ac,. On the
other hand, Apr > A¢, / n?, because we did not contract P’ to
one point. We again conclude that £ = O(logn). We complete
the proof by recalling there are at most n’ — 1 cells C' where
each child of C contains strictly fewer points than C. O

Lemma 2.4: Let m be the total number of cells in all
warped quadtrees, including those constructed recursively dur-
ing contractions. We can construct all the warped quadtrees
in O((m + n)logn) time total.

Proof: We use a similar strategy to that used in prior
work [10], [13], complicated only by the existence of our
data structures for avoiding moats. Given the original input
point set P, we begin by creating d doubly-linked lists of the
points P, each sorted by a different coordinate. As we process
any cell C' with point subset P’, we will provide access to
a sorted sublists containing just the points P’. We will also
provide the total supply of points in P’.

Suppose we wish to process a cell C. If |P'/| = 1, we
check if the 1g(n?/e) — 1 first strict ancestors of C' have other
children in O(log n) time, and if not, declare C' to be a leaf and
stop processing it. If not, we use the sorted lists to determine
whether Ap: < A¢/ n* in constant time. If so, let p be the
point chosen to represent P’ after contraction. We can use the
total supply of P’ to compute the new supplies of p in both the
current and recursive instances of the geometric transportation
problem in constant time. Further, we directly hand off the
sorted lists for P’ to the recursive instance so that the root
cell of the recursive instance can be computed in constant
time as well.

After the possible contraction, we still need to find the
child cells of C. For each dimension 7 € d, we use its moat
avoiding data structure to compute the coordinate for the axis-
aligned hyperplane orthogonal to ¢ in O(logn) time. We then
search that dimension’s linked list of points from both ends
in simultaneously to find where that hyperplane splits in the
points in time proportional to the number of points in the
less populated side of the split. We also perform individual
deletions and insertions of the other dimensions’ linked lists to
create the sorted lists of every dimension for the less populated
side in time proportional to its number of points. The remains
of the original linked lists are the sorted point sets for the
more populated side. When we have finished splitting along
each dimension, we add all cells with at least one point to
be children of C' and then add them to the queue of cells to
process.

Outside of splitting the point sets, we spend at
most O(logn) time per each of the m cells. The total time
spent doing splits throughout all cells is proportional to the
total number of points going to the less populated sides of
splits. Every time a point goes to a less populated cell, it
shares that cell with at most half as many points as it did
before, meaning we move each point to a less populated cell
at most O(logn) times. The total time computing splits is
therefore O(nlogn), and we spend O((m + n)logn) time
total computing all warped quadtrees.]

Lemma 2.5: Any cell at level ¢ has sides of length at least
Ac-/(2%) and at most (eAc+)/2¢ where e ~ 2.72 denotes
Euler’s number.

Proof: Assuming n is sufficiently large, Lemma 2.3 implies

warped quadtree 7' has height strictly less than n?. Let i €
d be any dimension. For any cell C' and child cell C’, we
have (1/2 — 1/(2n%))Ac < Acrs < (1/2 4 1/(2n2))Acss.
Therefore, the minimum side length at level ¢ is at least

4 n?
(2_2n2) A >ze(1‘nz) >

and the maximum side length is at most
4 n?
1 1 Ao 1 eAcx
— — Ao < — [1 — < —.
<2+2n2) @y < +n2) 2!

D. Constructing the spanner

Ac-
26’

We now describe how to build our sparse spanner
graph G = (V| E) using the warped quadtree described above.
For each cell C' in T, we add a single net point N¢ at the
center of C'. The vertices V' of G constitute the set P unioned
with the set of net points.

We add an edge from each point p € P to the net point N¢
where C' is the leaf cell containing p. For each pair of
net points No and N¢» such that C” is the parent cell of
C, we add an edge between N¢o and N¢v. By construction
of T, the cells at any single level ¢ form a subset of a
d-dimensional grid, albeit with somewhat uneven spacing
between consecutive parallel boundary hyperplanes. For each
cell C' belonging to some level ¢, we add edges from N¢ to
the at most (1/e +1)¢ — 1 = O(1/e?) other net points N¢»
where C” is another level ¢ cell at most 1/(2¢) grid cells
away in each of the d dimensions. All edges are weighted
according to the Euclidean distance between their endpoints.
We let distg(p, ¢) denote the shortest path distance between
vertices p and ¢ in G.

Lemma 2.6: Let n' be the number of points in P after
contractions. The sparse spanner graph G = (V,E) has
O(n'logn) vertices and O((n'/e%)1logn) edges. Given the
warped quadtree 7, it can be built in O((n'/e%)logn) time.

Proof: The number of vertices follows immediately from
Lemma 2.3. We add O(1/e%) edges per net point, establishing
the claimed total number of edges. We do the following to
construct GG. Recall, the cells at any particular level form a
subset of a grid. For each level ¢, we sort its cells by their
location in their grid so we may efficiently find all adjacent
pairs of cell. We then search the neighborhood around each
cell to figure out which edges to add to that cell’s net point.
Each level contains at most n cell, so the total time spent
sorting at all levels is O(n’logn). The time spent searching
neighbors is proportional to the number of edges in G.]

Lemma 2.7: The distance between any pair of points p, q €
P in G is at most (1 4+ O(g)) - ||p — ¢||2-

Proof: Let C be the deepest/smallest cell containing both p
and ¢g. There exists at least one axis-aligned hyperplane
splitting C' into children cells that specifically separates p
and ¢. Let this hyperplane be orthogonal to dimension i. By

construction, both p and ¢ are distance A¢ ;/n? or more from
this hyperplane. Applying Lemma 2.5, we conclude ||g —
pllz > Ac- /(2% en?).

Let C, and C, be the leaf cells containing p and g,
respectively. Both leaf cells lie at level £ +1g(n? /) or higher.
Therefore, they have side lengths at most (ceAc-)/(2¢¢n?) <
((¢2)/2) - 1la — pll2-

Let ¢’ denote the greatest level where either C),, and C,
have the same ancestor at level ¢/ or the net points of their
level ¢' ancestors are adjacent in G. Let C}, and C; denote
the ancestors of C), and C|, respectively, at level ¢. Suppose
C, # Cp and C; # C,. In that case, their children cells
containing p and ¢, respectively, do not contain adjacent
net points. There must be at least 1/(2¢) level ¢ + 1 cells
separating those two children in some dimension, implying
llg — plla > Ac-/(2¢2ec). Meanwhile, the sides of c,
and Cy have length at most (eAc+)/2Y < (4e%e) - ||q — pl|o-
We conclude, whether or not one of C;) or C! is a leaf, they

q
have sides of length at most (4e%¢) - ||g — p||a-

Let N; = NC;, and N; = NC!; denote the net points
of C” and C” respectively. Triangle inequality implies
distG(N/ ’)— INg = Npll2 < |lp = Npll2 + [lg — pll2 +

IING —qlla < (14 4\@625) - |lg = pll2- Some (admittedly
loose) algebra based on the diameters of the descendent cells
of C,, and C} implies both distg(p, IV,) and distg (g, Ny)

to be at most (v/d/2) Zk o(1/2 4+ 1/(2n2))k((4e%e) - ||q —

pll2) < (4\fe e) - |lg — p||2- Finally, we see distg(p,q) <
distg(p,N)+dista (N}, N))+dista (N, q) < (1+4vd(e*+
e)e) - llg—pll2 = (1 +0() - llg — pl\z O

E. Reduction to minimum cost flow

We are now ready to reduce the problem of computing
an approximately optimal transportation map for contracted
instance (P, i) to one of computing an approximately optimal
minimum cost flow in our sparse spanner graph G = (V, E).
Our formulation of the uncapacitated minimum cost flow
problem follows prior work [13], [16].

Let E be the set of edges E oriented arbitrarily. A vec-
tor f € RF indexed by the oriented edges E is called
a flow vector or often simply a flow. Let A denote the
|V | x| E| vertex-edge incidence matrix where for each vertex-
edge pair (u, (v,w)) € V x E, we have Ay = 1if
u = v, Au,(v,w) = —1if u = w, and Au,(v,w) =0
otherwise. The divergence of a flow f at a vertex v is defined

S (Af)v = Z(v,w) f(v,w) - Z(u,v) f(u,v)' For each edge
(u,v) € E, we abuse notation by letting fry.u) := — fruv)-

Let || - ||z denote the norm on RF where ||f||z =
Z(u,v)EE | f(u)] - |lv — ul[2. We define an instance of the
uncapacited minimum cost flow problem in our spanner graph
G as a pair (G,b) where b € RY is a given set of vertex
divergences. A feasible solution to the problem is a flow vector
f such that Af = b. Let COST*(G, b) to be the minimum value
|| || z among feasible flow vectors f. The goal is to find a flow
vector achieving this minimum.

For our reduction from the geometric transportation prob-
lem, we define b* € RV to be the set of divergences such
that by = p(p) for all p € P and b; = 0 for all net
points v. By the construction of G and Lemma 2.7, we have
CcoST*(P,) < cosT*(G,b*) < (1 + O(e))CcoST*(P,).
Our goal in Section III is to compute a feasible flow f
for (G,b*) of cost [|f||z < (1 + O(e)) - cOST*(G,b*) =
(14 0(g))cosT*(P,).

We perform at most n — 1 contraction operations across
the whole of our algorithm. Lemma 2.2 implies the total cost
of optimal transportation maps across all contracted instances
form a (1 + O(1/n))-approximation of the optimal cost for
the original input point set. We build spanners for all of
these instances, and use them to find flows of cost at most
(1 4+ O(e)) times the optimal cost of a transportation map
for each of these instances. The total cost of these flows
is a (1 + O(e))-approximation of the optimal cost for the
original input transportation instance. If n’ is the size of
any of these minimal point sets, its approximate flow will
be computed in O(n'c~(4+2) log® nloglogn) time, implying
computing and combining all the individual flows will take
O(ne=@t2) log® nloglog n) time. Finally, in Section IV, we
turn this combined flow into a transportation map of no greater
cost in O(nlog?n) time.

III. PRECONDITIONING FOR MINIMUM COST FLOW

Let G = (V, E) be the spanner defined in Section II for con-
tracted geometric transportation instance (P, i), and let b* be
the set of divergences defined for the corresponding instance of
minimum cost flow. In this section, we describe a way to find
a (1+ O(e))-approximate solution for the minimum cost flow
instance (G,b*) using Sherman’s generalized preconditioning
framework [26].

Let C), be denote the leaf cell containing a point p € P.
By the definition of G, point p is incident to exact one edge
connecting p to N¢,. For simplicity, let f’ be a flow such
that, for all points p € P, f(’p7 Ne) = b;. From now on, we
assume G = (V, E) does not have any point in P, and let
b € RV such that chp = by, Vp € P and b, = 0 otherwise.
We focus on finding an (1 4+ O(e))-approximation f of the
minimum cost flow instance on (G,b). The flow f + f’ is
then a (14 O(e))-approximate solution for the minimum cost
flow instance (G, b*).

Consider any instance of the minimum cost flow problem
in G with an arbitrary divergence vector b € RY, and let
fi = argming ps 4, g [[fll5. A flow vector f € RE is an
(o, B)-solution to the problem if

11l < ol 5115
|Af = bl < BIIA[I I f5 1] 5

where ||A|| is the norm of the linear map represented by A.
An algorithm yielding an («, §)-solution is called an («, 3)-
solver.

By arguments in [16], we seek a preconditioner B € RVXV
of full column rank such that, for any b € RY with Y
0, it satisfies

vGV

|Bb|y < min{||f||5: f € RZ, Af = b} <x|[BHl; (1)

for some sufficiently small function s of n, €, and d.

Let M be the time it takes to multiply BA and (BA)” by
a vector. Then there exists a (14 ¢, 3)-solver for any £, 8 > 0
for this problem with running time bounded by O(x?(|V| +
|E|+ M) log |E|(2 +1og 871) [26]. Moreover, if a feasible
flow f € R¥ with cost || f||z < #||Bb||; can be found in time
K, there is a (k,0)-solver with running time K. By setting
B = ex~2 [16], the composition of these two solvers is a
(14 2¢,0)-solver with running time bounded by

O(K* (V| + |E| + M) log|E|(e 2 + log k) + K).

A. Legal shifts, blobs, and probabilities

Our preconditioner B essentially simulates the effects of
randomly shifting 7" along a diagonal. For each level of T,
we need to determine the probabilities that a random shift,
conditioned on cell boundaries not touching any moats, causes
certain cells to contain certain subsets of vertices. In order to
do so efficiently, we build two sets of data structures. One set
helps us determine the set of legal shifts for 7" relative to each
dimension, and the other set helps us maintain collections of
points that cannot be separated into distinct cells during a legal
shift. The second set of data structures will prove useful for
efficiently determining how much flow to send from several
vertices at once as figuring these flows out for each individual
vertex would be too expensive.

Let Ay = Ac-/(2%) be the lower bound on the side length
of any level ¢ cell as established in Lemma 2.5. For each
level ¢, we compute a maximal set s,, of values in [0, Ay) per
dimension ¢ € d such that no grid lines clip any moat of size
Qn—Af} around any vertex v € V' when we shift the grid by any
value in sp,. We call s/, the legal shifts at level ¢ relative to
dimension 7, and we use s, := N;s,, to denote the collection
of legal shifts relative to all dimensions.

For computing sy, we define a blob at level ¢ as a maximal
set of points that are guaranteed to be in the same cell at
this level in our quadtree after an arbitrary shift. Now we
describe how to compute the set of all blobs bl, at each level
(. Because the moat size is equal to 2?}, a blob can only
become larger when ¢ decreases. Therefore, we compute each
bly in decreasing order of ¢ by combining smaller blobs to
bigger ones as we consider each level. For any net point N¢
and level ¢ < (¢, let bly(N¢) denote the blob containing N¢
at level ¢. We leave bly(N¢) undefined for any ¢ > /. Let
Uy be a near-minimum bounding box of all points in a blob
bl. More specifically, if blob bl is at level ¢, we make [Jy; the
box obtained by extending the minimum bounding box of bl

Ay to denote the

by 2% in each dimension. We use [y}’ and O}’
coordinates of left and right sides of [Jj; for each dimension
i.

We now describe a way to compute bl, given bl ;. First, for
every bl € bly41, we extend [Jy; so it is now a near-minimum

bounding box of bl at level ¢. Then, we sort blobs in bly 1
by the least coordinate of their bounding boxes in the first
dimension. After that, we split these blobs to subsets by putting
any two blobs bi1 and b2 to the same subset if [T}, ;7]
and [Obi C01] are not disjoint, because we cannot put a
grid line between these two blobs without hitting the moat
around at least one point in them. For each of these subsets,
we recursively perform this procedure for the remaining d — 1
dimensions. Every subset at the lowest level of recursion is a
blob in bl,. If ¢ is the largest level, we may assume blyyq is
the set of blobs where each blob contains a single vertex in V.
For each blob bl € bl,, we call the blobs at level £+ 1 inside it
its child blobs. We use children(bl) to denote the set of child
blobs of bl and parent(bl) to denote the parent blob of bl.
Since the sets of points in blobs at the same level are disjoint,
it is easy to see that the number of distinct blobs among all
levels together is at most 2|V|— 1. Now, consider a blob bl for
some level ¢, and let C' be the level ¢ cell containing bl. By
the definition of 7', there is an ancestor of C' at most O(logn)
levels closer to the root that has a sibling cell C’. Cell C’
contains at least one blob bl’. Within another O(logn) levels,
blobs bl and bl’ will have near-bounding boxes large enough
to touch. Therefore, every blob can only appear in at most
O(logn) levels. We define the blob forest as the hierarchical
structure of blobs defined above. For simplicity, we allow the
same blob (with the same set of points) to appear multiple
times in the blob forest, once per level it appears. The blob
forest has O(]V'|logn) nodes in total.

We now compute the legal shifts at each level £ using blobs
in bly. To compute sy, for some dimension 7, we look at Df;;
and 00" for bl € bl,. Let C' be the cell that contains bl at level
¢. Let coor; ;(C) and coor, ;(C) denote the coordinates of the
left and right sides of C' in dimension ¢, respectively. Then we
call [0, Ag) N (L — coor;(C), 055 — coor; 4(C)) the set of
Jorbidden shifts for bl. Naturally, the set of legal shifts sy, is
equal to [0, Ay) minus the union of forbidden shifts of all blobs
in this dimension. We can store sy, in an array of size at most
the number of blobs in bl, such that every element in the array
is a maximal continuous subset in the union. From now on, we
assume elements in sy, is sorted in increasing order by their
lower bounds. Therefore, we can precompute the total size of
legal shifts before any element and then query the size of all
legal shifts in [z, y] N sy, for any values =,y in O(logn) time.
The construction of all data structures mentioned above can
be accomplished in O(|V|log®n) time total through careful
use of dynamic ordered dictionaries such as balanced binary
search trees.

The last preparation for constructing the preconditioner is
to compute the probability that a cell C' contains a blob bl if
we shift the grid using a random value in s, for every pair
of bl and C' at the same level. We use P[bl € C] to denote
this probability. Recall, the side length of any cell at level ¢
is at least Ay. Let Cpy; be the cell containing bl at level £.
If we consider the legal shifts putting bl in different cells in
increasing order, we see each dimension is crossed at most

once. Therefore, there are at most d + 1 cells for which we
need to calculate the probability for each blob per level. Let
Cy,p1 denote this subset of cells. Starting from the root level,
for every level £, we process the cells Cz ;. Not every cell
in T has all 2¢ possible children, so some of the left neighbors
of Cyyp in the grid at level £ may not exist in 7" itself. For
simplicity, we put a softlink to C; 4, in place of such a grid
cell if it does not already have one. For each C' € C;, we
define sc ;. ; to be the subset of sy, that could make C' cover
bl in dimension 4. Let Iy := |s¢| and lcp == | Ny Sopri|- We
have P[bl € C| = lc =3

B. The preconditioner

The preconditioner B is the V x V matrix defined as follows.
For every net point u = N¢, for every level { < (o, we
let P'[bl;(u) € C] denote the sum of values P[bly(u) € C’]
for all C’ equal to or softlinked to C. We set By, . =
A[C -P'[bly(u) € C"") where A = 48d%/2¢? g n, for each cell
C € Cy 1, (w) that is part of 7. In addition, we set B, =

310 for all uw € V' and set all other entries to 0.

Observe how for each column Ng of B, the entries for
each row N¢gv with o >l are all 0, with the exception of
row N¢ itself. Any linear combination of columns excluding

. Ay
column N¢ with By, N = —x- must have at least one
non-zero value for some row N¢v,lcor > Lo, implying the
combination does not equal column N¢. Matrix B has full
column rank.

We now describe an oblivious greedy algorithm that com-
putes a flow f such that Af = b and the cost is at most A
times that of the minimum cost. This algorithm is used in the
algorithm explicitly as the (k,0)-solver discussed above, and
its existence is also used in establishing the condition number
of BA. We treat each blob as if it is moving the total diver-
gence of higher level constituent vertices together up toward
the root. By the time all the divergences reach the root, they
will cancel each other out and the flow will be valid for the
vector b. For a blob bl € bly, define by := D Ncebiltg >t bne-
Observe, by = Zbl/EChﬂdrcn(bl) by + ZNcebl\Zc:Z bne- To
aid in moving divergences we treat the total divergence of
each child blob of bl as a separate commodity. The flow along
each edge will be the sum of flows of all commodities on
that edge. Precisely, for every cell C' in a postorder traversal
of T, for every bl with P'[bl € C] > 0, for every cell ¢’ €
Cre—1,parent(bl). We add P’ [parent(bl) € C'|P'[bl € Clby
units of flow along the unique path from N¢ to its parent
to IN/.. Observe that for any blob bl € bl, for some level ¢,
we send by; units total to level ¢ — 1 cells.

We now establish both the approximation ratio of the
greedy algorithm and the condition number of BA. Let
f7 = argmin; g5 4 f 3 11| 5. We arbitrarily decompose f7
into a set of flows F = { 2. } with the followmg
properties: 1) each flow follows a s1mple path between two
vertices u and v; 2) for each flow f* € F and edge (u,v) € E
either f(u,v) = 0 or its sign is equal to the sign of fi (u,v);
3) for each flow f¢ € F and vertex v, either (Af%), = 0 or its

sign is equal to that of b,; and 4) for each edge (u,v) € E,
we have f7(u,v) =) icp f%(u,v). The existence of such a
decomposition is a standard part of network flow theory.

Let f be the flow found by our greedy algorithm. We charge
a portion of || f||z to ||f?|| z for each flow f* so that the sum
of charges over all choices for f* sum to at least ||f||; and
for any one f?, we overcharge by a factor of at most A Fix
some f? € F sending flow from some vertex u to some vertex
v. Let b, = Afi. We define b,(C) as the part of divergence
bi, that the greedy algorithm sends to C. Observe bi, = —b’.
Without loss of generality we assume bfL > 0 and bf) <0.

Now we are ready to give the main lemma of the greedy
algorithm.

Lemma 3.1: Let C,, and C,, be the leaf cells containing u
and v, respectively. Let £ be any level with £ < min{/{¢,, ¢c, }.
Then the total amount of b, not cancelled out by b’ at level

{is
>

CET o=t

Adju ol

max{0, (A, "

bu(C) +b,(C))} <

Proof: Let L; C Cgy,(y) denote the subset of cells in
Cy b1, (u) that have lesser coordinates in dimension j, and let
Rj = CZ,bl@(u) \LJ If (Cl,blg(v) ﬂLj =0or (Cf,blg(v) ﬁRj = (Z)
for any j, then |[u — v||s > |coor;(u) — coor;(v)| > (1 —
2/n?)A, and the lemma holds. From here on, we assume
both Cypy,(v) N L; and Cgpy, () N R; are non-empty for all
dimensions j.

Let b, (L;) := > oy, bu(C) be the total amount of bl sent
to L;, and deﬁne bu(R;), by(Lj), and b, (R;) similarly. There
are O(\V| log n) nodes in the blob forest, and we may assume
|[V] < O(nlogn). Therefore, |s;| > Ay — M >
Ay/2, assuming n is sufficiently large. Let leblg(u) denote
the total length of legal shifts in s, that make any cell of L;
cover bly(u) and define Iy, 7, (. similarly. We have I, 7, (u) —
IL, bty (v) < || — vl[|2. Therefore,

2||lu —

Sy - Ay

Similarly, b, (R;) + by(R;) < 2||u — v||2/Ag - VL,
Finally, summing over all dimensions j, we have

> bu(C) + 0y (C))}

CET b=t

< Z max{0, b, (L;) + by(L;)}
jed
+ max{0, by (R;) + b,(R;)}
_ ddu—oll,
~ AZ u

by o) = I) 5 Vllz

bu(Lj) + by(Lj) =

max{0, (

O

Lemma 3.2: The flow computed by the greedy algorithm
overcharges the cost of f? by a factor of at most 48d%/2¢? 1g n.

Proof: Let ¢ be the smallest value such that 4d||u—v||s > Ay.
By Lemma 3.1, the divergence of b! remaining at level ¢
and greater is b’,. The divergence at each level ¢ is sent to

net points at level ¢/ — 1 through paths of length at most
3v/de? Ay So the cost of carrying bi, to level £ is at most
S 3VAE AP, < 3Vde2Agbi, < 12d%/%¢2||f| 5 in
total. Starting from level ¢/ = ¢, the cost of carrying the remain
divergence of b}, to one level less than the current level is
at most Mbl 3vVde? Ay < 12d%/%€2||f?|| 5. Because
Apy > 4d||U — vll2, we have Ay 1) (21gn-2-1g4) >

n?|ju — v||2. Moats will force u and v to be in the same
blob at any level ¢/ < ({—1)—(2lgn—2—1gd). This means
for any cell C' with ¢ < ({—1)—(21gn—2—1gd), we have
by(C) + b,(C) = 0. So we spend at most 12d/2¢2|| || 5
cost to send divergence of b, per level from level ¢ to level
(¢ —1) — (2lgn — 2 — lgd), and we spend zero cost for
bi, after that. In total, the greedy algorithm charges at most
(21gn — lgd)12d3/2€?||]| 5 cost to divergence of u in f°.
Similarly, we can show the cost it charges to divergence of v
has the same upper bound, and the lemma holds. ([

. |Bbn |3A
In our algorithm, I v

N¢ of a cell C through paths of length at most 3\/362Agc.
On the other hand, these divergences leave N through edges
of length at least v/d(1/2 — (1/(n? 4 1)))Ay,.. All together,
we see || Bb||, < % < ||f*|| 3. Therefore, by setting x =
9v/de? A, we have

divergence leaves the net point

18D/, < min{||f]|z :

Lemma 3.3: Applications of BA and (BA)T to arbitrary
vectors [€ RE and b € RY, respectively, can be done in
O(|E|logn) time.

Proof: Let A’ = Af and let ¥ = BTb. Both A, f and b’ has
O(|E|) non-zero entries, so we can compute A’ and ATd in
O(|E|) time given b'. We show how to compute BA’ and BTb
in O(|E|logn) time.

Computing BA’: Let C,, be the cell with u as its net
point. By the definition of B, for each cell C,

(BA/)NC
Ac
= 3 e
Ac / /
+ 35 > P'[bly,. (u) € C|A,
ueV,P'[bly, (u)€C]>0
_ Ac
T 3N Ne
AC / /
blebly,, ,P'[bleC]>0 uebl,lo, >0
There are at most 2|V| — 1 different blobs and

/ — ’
Zuebl Lo, >L A - Zbl’EChlldren(bl) Zuebl Lo, >0+1 A
webl’ L, —0-+1,bl’ €children(bl) A!, for each blob at some level

¢. So we can compute Y cble - A, for each blob bl in
u Cu
O(|V|logn) time in total during ‘a postorder traversal of the
blobs. After that, we can fill in all entries in BA’ in O(|E|)
time.

feRFAf =} <[|fl| 5 < sl Bb|1.

Computing b': For every point u, except By .
every non-zero entry in Bl corresponds to a net point
Nco of a cell C with P'[bly.(u) € C] > 0. Let
C, be the cell with » as its net point We have
b, = Sbe + 220 ble, (w)€C]>0 SEP bl (u) €
C]ENC. Let bl~ denote the set of strict ancestor blobs
of a blob bl. Let ¢ be any level where bly(u) is de-

fined. We have > c, P’[blzc(u)EC]>0 SEP [blec(v) €
Clbwe = 2cto= Z]P”[bl@(u)EC]>0 SCPble(u) € Clone
+ Zbl’eblg(u ZC]P” [bl’eC]>0 3A]P/[bl/ € C}ch We can
compute Y - Do B[€C]>0 S P'[bl' € Clby,. for each
blob bl in O(|V']log n) time in total during a preorder traversal

of the blobs. Then we can fill in each entry of b’ in constant
time. |

We have shown there exists a (1 + 2¢,0)-solver for the
minimum cost flow problem on G. Plugging in all the
pieces, we see the running time of the solver is at most
O(|Ele21og* nloglogn).

IV. RECOVERING A TRANSPORTATION MAP FROM A FLOW

Let G = (V, E) be any connected graph such that P C V C
R? and each edge has weight equal to the Euclidean distance
between endpoints. Let A be the vertex-edge incidence matrix
of G, and let f € R¥ be any flow in G such that Af =Lu
where pu(v) = 0 if v ¢ P. In this section, we show how
to transform f into a transformation map for (P,) where
CcoST(1) < HfHE Throughout this section, we let m = |E|.
We also assume m = O(n?), as we could simply compute an
optimal transportation map from scratch otherwise using an
algorithm for minimum cost flow in general graphs [20].

Let £’ denote the edges of the complete graph over V' where
each edge is oriented consistently with its counterpart in E
if it exists and oriented arbitrarily otherwise. We maintain a
flow f € RE’ where initially f(,,) = f(u vy if uv € E, and
fuw) = 0 otherwise. We will eventually guarantee f,) 7 0
only for u,v € P.

For each point p € P, there are potentially ©(|E|) other
vertices that may at some point during the process directly
send flow to or receive flow from p. We cannot afford to update
these flow assignments individually, so for each vertex v € V,
we instead maintain a single prefix split tree [13] S(v) that
will contain representations of certain vertices sending flow
to v. A prefix split tree S is an ordered binary tree where
each node 7 is assigned a non-negative potential ¢(n). We
let ¢(.S) denote the total potential of nodes in S. Prefix split
trees containing s nodes support the following operations in
amortized O(log s) time each:

o INSERT(S, ¢): Insert a node of potential ¢ into tree S
and return a reference to this node.

o DELETE(S,n): Delete the node 7 from the tree S.

o MERGE(S, S’): Modify S by adding all nodes of S’ after
the nodes of S, emptying S’ in the process.

e PREFIXSPLIT(S,t): Assume 0 < ¢ < ¢(S). If a prefix
of nodes in S has total potential exactly ¢, then let 7; be

the last member of this prefix. Otherwise, let 7 be the
first node where the prefix through 7 has total potential
greater than ¢. Split n by replacing it in-place with two
nodes 7; and 72 such ¢(n1)+¢(n2) = ¢(n) and the prefix
through 7; has total potential exactly ¢. Either way, create
anew tree S’ containing the prefix through 7; and remove
this prefix from S.

Each node 7 in S(v) represents a vertex v € V, and each
vertex may be represented by multiple nodes, even within a
single prefix split tree. We denote the vertex represented by n
as r(n). All split tree S(v) are initially empty. When a node
7 is split into two nodes 7, and 7o, we set r(n1) = r(n2) :=
7(n). Along with the prefix split trees, we maintain a so-called
base flow f' € R that is initially equal to f. We maintain
the invariant that for each pair of vertices u and v, f(’u)v) +
ZnES(U)h'(n):u ¢(77) = f(u,v)~

The support of flow f’ is the set of undirected edges uv for
which f(’ wv) 7 0. We begin by changing /' and therefore f
so that its support is a forest. We use a process inspired
by the acyclic flow algorithm of Sleator and Tarjan [27].
Let G = (V,E) be initially empty. We iteratively process
each directed edge (u,v) € E such that ftuwy > 0. When it
comes time to process (u,v), we check if u and v are in the
same component of G. If not, we add uv to G. Otherwise,
let 7 be the directed path from u to v in G. We define the
unit cost of w to be |n| = Z(az,y)err\f(x,ypo l|ly

Z(m$y)e7r|f(zﬁy)<0 [y — |2, the amount ||f]|5 increases per
unit of flow added to the directed edges of 7. If |[v—ul|2 > |7|,
let (O,p) = arg mln(m,y)e({(x’,y’)eﬂf(wz’yq<0}U(v,u)) _f(m,y)’
the first edge to go to O flow if we “reroute* as much flow
along 7 instead of (u,v) as we can, and let F' = f(,). If
||U —’LL||2 < |7T‘, let (Ovp) = arg min(m,y)€W|f(mﬁy)>O f(T,y) and
F = —f(o,) instead. We modify f’ by increasing the flow
along all directed edges of m by F' and decreasing the flow
along (u,v) by F. Doing so causes f(’o’p) = 0. If op # uv,
we remove op from G and add wv in its place. We are
now done processing uv. Observe G remains a forest after
processing each edge. Therefore, each edge can be processed
in (amortized) O(logn) time using standard extensions to
dynamic tree data structures [27].

Lemma 4.1: The above procedure does not change Af, the
cost of || f|| z does not increase, and the support of f becomes
a forest. Further, if u(p) is an integer for all p € P, then the
procedure guarantees f(, ,) is an integer for all uv € E.

_IH2 —

Proof: Each time the flow f’, and thus f, are changed, we
do so by changing the route some flow takes between a pair
of vertices u and v. We change the flow along the path 7 by
the opposite amount we change f(’u,v), so the vector Af does
not change. Further, the choice to increase or decrease flow
along 7 is made so that the change cannot increase ||f||z.
Whenever an edge uv is about to be added to GG and create a
cycle, we remove an edge (possibly uv itself) from that cycle.
Therefore G and the support of f is a forest.

For the claim about f being integral, observe that it is
trivially true if every component of G contains one vertex.

If some component contains multiple vertices, let v be a
leaf in that component, and let uv be its one incident edge.
Because (Af), is integral, f(,.) must be integral as well. If
we (for the sake of proof) remove u from G and set f(,) = 0,
then (Af), remains integral. The claim follows by induction
on the number of vertices in G.]

Consider the orientation of G such that for each directed
edge (u,v) in the orientation, f(, ,y > 0. We now process each
vertex in topological order with respect to this orientation.

Suppose it is time to start processing vertex v. Our proce-
dure guarantees that 1) f(/u,v) = 0 for each vertex u that has
already been processed, 2) f(’ v.0) has not yet changed for each
vertex w that we have not yet processed, and 3) v is not yet
represented in S(w) for any vertex w.

From the above guarantees and the definition of G, we may
conclude that f(,v, w) > 0 for any vertex w we have not yet
processed. Our goal is to shortcut flow passing through v from
a processed vertex u to an unprocessed vertex w by adding
to w’s split tree. If v € P, then let 1 be the node returned
by INSERT(S(v), u(v)) and set (1) < v. In doing so, we’re
implicitly declaring that v is receiving p(v) units of flow from
itself, and we don’t have to set up any special cases for when
we want v to actually send flow. This moment is the only time
we create new nodes for the split trees. Observe whether or not
we create a new node, we now have ¢(S(v)) > > v f(’ww).

While there exists a vertex w such that f(/v,w) > 0,
we do the following. Let S’ be the tree returned
by PREFIXSPLIT(S(v), f(,). ~ We perform a
MERGE(S(w), S’), shortcutting the flow through v to
w as desired. Finally, we set f(’mw) < 0 as all flow into w
originally from v is now represented in S(w). We are done
processing v when the while loop concludes. We may easily
verify each of our guarantees hold for later vertices in the
topological order.

Consider when we have finished processing all the vertices.
Those vertices v € P are represented as one or more nodes
in the vertices’ split trees, and these nodes have total potential
w(v). Those vertices v € P~ each have a split tree of total po-
tential ¢(S(v)) = —u(v). We now construct the transportation
map 7. Initially 7(u,v) = 0 for all (u,v) € PT x P~. While
there exists a split tree S(v) containing at least one node 7, we
increase 7(r(n),v) by ¢(n) and perform a DELETE(S(v), n).
When the loop completes, we are done constructing 7.

Lemma 4.2: The algorithm above produces a transportation
map 7 for (P,) such that COST(7) < ||f”1§ in O(mlogn)
time. Further, if u(p) is an integer for all p € P, then the
procedure guarantees 7(p,q) is an integer for all (p,q) €
(Pt x P7).

Proof: The fact that 7 is a transportation map for (P,)
follows from the above discussions. Observe that every time
we change f while processing vertices in topological order,
we do so by rerouting flow going from some vertex u through
a vertex v and then to a vertex w. By triangle inequality, these
shortcuts can only reduce the cost of f, implying our bound
on COST(7). If u(p) is integral for all p € P, then f,)

is integral immediately before we start processing vertices in
topological order. Each change reroutes an amount of flow
equal to the flow along an edge, so the flow values remain
integral.

For running time, we observe we perform a constant number
of split tree operations for each of the m or fewer edges
in G while processing the vertices in topological order. These
operations takes O(mlogn) time total. We then do a number
of split trees operations equal to the total number of nodes in
all split trees while adding values to pairs in the transportation
map 7. The only operations that can add nodes to a split tree
are the INSERTs done for each vertex of positive supply, and
the PREFIXSPLITS done for each edge in G. Therefore, we
create O(m) nodes total and remove them from the split trees
in O(mlogn) time. Adding in the O(mlogn) time needed to
construct and topologically sort i, we conclude our proof of
the running time.]

We are now ready to state and prove our main theorem.

Theorem 4.3: There exists a deterministic algorithm that,
given a set of n points P C R? and a supply function s :
P — R, runs in time O(ne~(4t2) log® nloglogn) and returns
a transportation map 7 with cost at most (1+¢)-COST* (P, p).
Further, if x(p) is an integer for all p € P, then 7(p, q) is an
integer for all (p,q) € (P x P7).

Proof: Recall, we build a warped quadtree 1" while contract-
ing certain subsets of P. Let (P’, ') denote the geometric
transportation instance after contraction and let n’ = |P’|.
We build the sparse spanner graph G = (V,E) over P’
in O(n’e~%logn) time. Let m = |E| = O(n’s~%logn). We
define an instance of uncapacitated maximum flow (G,b*)
where b} is equal to ¢/ (v) if v € P and equal to 0 otherwise.
By Lemma 2.7, COST*(G,b*) < (1 4+ O(g))cosT*(P’, i/).
We compute a flow f of cost (1 + O(¢g)) - COST*(G,b*) =
O(1 + O(g))cost*(P’, 1) in O(me=2log* nloglogn) =
O(n'e= (42 log” loglogn) time using the algorithm de-
scribed in Section III.

By the discussion at the end of Section II, we can combine
the spanner G and the flow f with the recursively computed
spanners’ (1 + O(e))-approximate flows for each contracted
subset of P to yield a flow f for a single spanner G on (P,).
This flow has cost \|f||§ = (14 0(e))-cosT*(P,). Finally,
we compute a transportation map 7 for (P,) with cost at
most ||f”1~3 = (1+0(e))cosT*(P, u). If u(p) is an integer for
all p € P, then 7(p, q) is an integer for all (p,q) € (PTxP7)
per the above discussions.

By Lemmas 2.3 and 2.4, we spend O(nlog®n) time total
constructing all warped quadtrees across the various recur-
sive subproblems. We then spend O(nef(d”) log® nloglog n)
time computing flows for all individual subproblems
and O(n log? n) time transforming the flows into a transporta-
tion map. We conclude our proof. (]

V. SIMPLIFYING THE ALGORITHM FOR LOW SPREAD
CASES

In this section, we sketch some simplifications that can
be made to our algorithm for the case that SP(P) is small.
Our simplified algorithm computes a (1 + ¢)-approximation
of the optimal transportation map in O(ne~(4*2)(logn +
log® SP(P) loglog SP(P)) log SP(P)) time. When SP(P) =
n®W) | the running time of the simplified algorithm is slightly
better than the one for the unbounded spread case.

Instead of building a warped quadtree as in the first half of
Section II, we use a standard quadtree 7" where all cells at
a level have exactly the same size and the leaves are exactly
those cells containing one point of P. Therefore, we do not
need the moat avoidance data structures. There is no need
to contract subsets of P, and the depth of T' is log SP(P) +
1. We build our sparse graph G = (V,FE) on T using the
procedure described in Section II-D. Lemma 2.7 still holds
on G. The time to construct 7' and G is O(ne~?log SP) and
|E| = O(ne~%log SP) as well.

When finding the (1 4+ O(g))-approximation for the min-
imum cost flow instance (G,b*), we no longer worry about
moats. For the greedy algorithm and preconditioner in Sec-
tion III, we essentially treat each point u € V' as its own blob
appearing at every level of the quadtree. At level ¢, we allow
all shifts in [0, A*/2¢]%, thus eliminating the need for the legal
shift and blob data structures. Lemma 3.1 and Lemma 3.2 to-
gether imply the conditioner number « of the preconditioner in
the low spread case is at most 144d? log SP(P). Therefore, we
can compute a flow with cost at most (1+O(e))-coST*(P, 1)
in O(ne=(4+2)(log" SP(P) loglog SP(P))) time using Sher-
man’s preconditioner framework.

Our procedure for recovering a transportation map from the
flow is unchanged, running in O(ne=?lognlog SP(P)) time.
Considering everything above, we get the following theorem.

Theorem 5.1: There exists a deterministic algorithm
that, given a set of n points P C R? of spread Sp(P)
and a supply function g P — R, runs in time
O(ne=(4*2) (logn + log® SP(P)loglog SP(P))log SP(P))
and returns a transportation map 7 with cost at most
(1 4+ ¢) - cosT*(P,). Further, if p(p) is an integer for
all p € P, then 7(p, ¢) is an integer for all (p, q) € (PTxP7).

Recall, the geometric bipartite matching problem is the
special case where pu(p) € {—1,1} for all P, and the trans-
portation map is required to assign either 0 or 1 to each pair
of points. Approximating an arbitrary case of the geometric
bipartite matching problem can be reduced in O(n 1og;2 n) time
to an instance where the spread is polynomial in n [1]. As
our algorithm is guaranteed to return a 0,1 map given such
an instance, we conclude with the follow corollary.

5.2: There exists a deterministic
algorithm that, given an n-point instance of the
geometric bipartite matching problem, returns a
(1 + &)-approximately optimal matching in time

O(ne=(4+2) Jog* nloglogn).

Corollary

VI. UNCAPACITATED MINIMUM-COST FLOW IN GENERAL
GRAPHS

Previously, we reduced approximating the geometric trans-
portation problem to approximating a special case of
minimum-cost flow without edge capacities. In this section,
we turn the situation around by showing how to approximate
minimum-cost flow in a general graph via reductions to our
algorithm for geometric transportation. Our algorithm is based
on the one given in [6] for the case of moderate integer edge
costs.

Let G = (V,E) be an arbitrary undirected graph, let || -
|| 7 denote an arbitrary norm on R¥, and let b € RY denote
an arbitrary set of vertex divergences. In this section, we let
n := |V| and m := |E|. Fix a parameter £ > 0. We again
use Sherman’s [26] framework as described in Section III.
Accordingly, we need a preconditioner Q € R™V of full
column rank such that

1Qbll < min{||f||z: f € RE, Af =B} < k[|QB|L (2

for any b € RY and with x small. Note that r # |V
in this case; we’ll leave it unspecified for now. We also
need to describe an efficient x-approximate “oblivious” greedy
algorithm to help us estimate x. However, as in [6], we’ll
actually run iterations of Sherman’s framework until it suffices
to use a simple m-approximation to satisfy the final set of
divergences.

We’ll begin with the greedy algorithm as it makes it easier to
describe the preconditioner itself. We start with the following
lemma.

Lemma 6.1 ([9]): There is a randomized algorithm which
can output a mapping ¢ : V — R? with d = O(log®n)
with constant probability in O(mlog®n) time such that for
all u,v eV

distg(u,v) < || (u) —(v)|]2 < O(logn) - distg (u, v).

A solution to the geoemtric transportation problem for
(V') should form a reasonable estimate of the cost of the
optimal flow. Unfortunately, the dimension of the target space
is moderately large. We can deal with the large dimensionality
by using the following weakening of our main result.

Theorem 6.2: Suppose d is not constant. There exists a
deterministic algorithm that, given a set of n points P C
R? and a supply function g : P — R, runs in time
O(dnlogn) and returns a transportation map 7 with cost at
most O(d? logn) - cOST*(P, p).

Proof: We build the spanners as before, except we place
leaves immediately when a cell contains exactly one point and
add edges only between net points and the net points of their
neighboring cells. The resulting spanners have O(dnlogn)
vertices and edges total, and they maintain shortest path
distances up to an O(+/d) factor. See Lemma 2.7.

We define the preconditioner B as before. A single it-
eration of the greedy algorithm results in an O(d/?logn)
approximation to the spanner’s minimum cost flow instance.
See Lemma 3.2. We run a single iteration of the greedy

algorithm in each spanner in O(dnlog®n) time total, result-
ing in O(d?logn) approximately optimal flows. We com-
bine and transform them into proper transportation maps in
O(dnlog® n) additional time as described in Section IV. [J

Our greedy algorithm for seeking approximately optimal
flows on G computes a Bourgain embedding as described in
Lemma 6.1. We can then use the algorithm of Theorem 6.2
to get an O(d2logn) - O(logn) = log®) n approximation
on the minimum-cost flow value for the original problem in
nlogo(l) n time. Note that our algorithm for minimum cost
flow need not actually extract a transportation map from the
spanner flows.

We are now ready to describe the preconditioner () needed
for the minimum-cost flow instance on G. Let V' denote the
full set of net points in each of the spanners built by the
algorithm of Theorem 6.2. Let Q' denote the [V’| x |[V]| 0—1

matrix where Qal,b(u) New o = 1 for all vertices v € V, and all
Ney, (u

other entries are 0. Let Q* denote the |V’| x |V’| real-valued
matrix composed of the spanners’ individual preconditioner
matrices where Q7 , = By, if u and v belong to the same
spanner with preconditioner B. All other entries of Q2 are 0.
Finally, let Q = Q2Q* € RV'*V.

Matrix) has full column rank. The value of x in (2)
oMW . For any f € RF, we can compute QAf in
O(mlogn)+n logo(l) n time by first computing ¢’ := Q' Af
and then applying the algorithm of Lemma 3.3 to compute
Q?%q'. In fact, we can compute Q?¢’ in time proportional to
the size of the spanners, because we no longer need to track
which blob flow originally came from. For any beRY, we
can compute (QA)TB in the same time by first computing
b :=Q2"b and then computing ATQ'" V.

Assuming we compute a good embedding with Lemma 6.1,
there exists a (1 + &,e'718" /k)-solver for the minimum cost
flow instance that performs 2 logo(l) n matrix multiplica-
tions. We can compose this solver with a simple (n, 0)-solver
that runs in m log®™® n time to get a (1+ O(e))-approximate
solution to the minimum cost flow instance. The total time
spent is m log® " n. We can run our algorithm O(logn) times
to guarantee success with high probability 1 — 1/n¢ for any
constant c.

Theorem 6.3: There exists a randomized algorithm that,
given an undirected graph G' = (V, E)) with n vertices and
m edges, an arbitrarily norm on R¥, and an arbitrarily set
of vertex divergences b € RV, runs in time ms’QlogO(l) n
and returns a (14¢)-approximate uncapacitated minimum cost
flow in G with high probability.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
of earlier versions of this paper for their helpful and insightful
comments.

REFERENCES
[1] P. K. Agarwal, H.-C. Chang, S. Raghvendra, and A. Xiao, “Deter-

ministic, near-linear e-approximation algorithm for geometric bipartite
matching,” in Proc. 54th Symp. Theory Comput., 2022, pp. 1052-1065.

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

P. K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao,
“Faster algorithms for the geometric transportation problem,” in Proc.
33rd Intern. Symp. Comput. Geom., 2017, pp. 7:1-7:16.

P. K. Agarwal, S. Raghvendra, P. Shirzadian, and R. Sowle, “An
improved e-approximation algorithm for geometric bipartite matching,”
in Proc. 18th Scandinavian Symp. and Workshops Algo. Theory, vol.
227, 2022, pp. 6:1-6:20.

P. K. Agarwal and R. Sharathkumar, “Approximation algorithms for
bipartite matching with metric and geometric costs,” in Proc. 46th Symp.
Theory Comput., 2014, pp. 555-564.

A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev, “Parallel al-
gorithms for geometric graph problems,” in Proc. 46th Symp. Theory
Comput., 2014, pp. 574-583.

A. Andoni, C. Stein, and P. Zhong, “Parallel approximate undirected
shortest paths via low hop emulators,” in Proc. 52nd Ann. ACM SIGACT
Symp. Theory of Comput., 2020, p. 322-335.

B. Awerbuch, S. Kutten, and D. Peleg, “On buffer-economical store-and-
forward deadlock prevention,” IEEE transactions on communications,
vol. 42, no. 11, pp. 2934-2937, 1994.

N. Bonneel, M. van de Panne, S. Paris, and W. Heidrich, “Displacement
interpolation using Lagrangian mass transport,” ACM Trans. Graph.,
vol. 30, no. 6, pp. 1-12, 2011.

J. Bourgain, “On Lipschitz embedding of finite metric spaces in Hilbert
space,” Israel J. Math., vol. 52, no. 1-2, 1985.

P. B. Callahan and S. R. Kosaraju, “Faster algorithms for some geometric
graph problems in higher dimensions,” in Proc. 4th Ann. ACM-SIAM
Symp. Discrete Algorithms, 1993, pp. 291-300.

M. Cuturi and A. Doucet, “Fast computation of Wasserstein barycen-
ters,” in Proc. 31st Intern. Conf. Machine Learning, ser. IMLR Work-
shop and Conference Proceedings, vol. 32, 2014, pp. 685-693.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” J. Comput. System Sci., vol. 38, no. 1, pp. 86—123,
1989.

K. Fox and J. Lu, “A near-linear time approximation scheme for
geometric transportation with arbitrary supplies and spread,” J. Comput.
Geom., vol. 13, no. 1, pp. 204-225, 2022.

P. Giannopoulos and R. C. Veltkamp, “A pseudo-metric for weighted
point sets,” in Proc. 7th Europ. Conf. Comput. Vision, ser. Lecture Notes
in Computer Science, A. Heyden, G. Sparr, M. Nielsen, and P. Johansen,
Eds., vol. 2352, 2002, pp. 715-730.

K. Grauman and T. Darrell, “Fast contour matching using approximate
earth mover’s distance,” in Proc. 24th IEEE Conf. Comput. Vision and
Pattern Recog. 1EEE Computer Society, 2004, pp. 1:220-1:227.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

A. B. Khesin, A. Nikolov, and D. Paramonov, “Preconditioning for the
geometric transportation problem,” J. Comput. Geom., vol. 11, no. 2,
pp. 234-259, 2021.

N. Lahn, D. Mulchandani, and S. Raghvendra, “A graph theoretic
additive approximation of optimal transport,” in Proc 32nd Adv. Neur.
Info. Proces. Sys., 2019, pp. 13 813-13 823.

Y. T. Lee and A. Sidford, “Path finding methods for linear programming:
Solving linear programs in 6(vrank) iterations and faster algorithms for
maximum flow,” in Proc. 55th IEEE Ann. Symp. Found. Comput. Sci.,
2014, pp. 424-433.

J. Li, “Faster parallel algorithm for approximate shortest path,” in Proc.
52nd Ann. ACM SIGACT Symp. Theory of Comput., 2020, pp. 308-321.
J. B. Orlin, “A faster strongly polynomial minimum cost flow algorithm,”
Operations Research, vol. 41, no. 2, pp. 338-350, 1993.

G. Peyré and M. Cuturi, “Computational optimal transport: With appli-
cations to data science,” Foundations and Trends in Machine Learning,
vol. 11, no. 5-6, pp. 355-607, 2019.

S. Raghvendra and P. K. Agarwal, “A near-linear time e-approximation
algorithm for geometric bipartite matching,” Journal of the ACM
(JACM), vol. 67, no. 3, p. Article No. 18, 2020.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” Intern. J. Comput. Vision, vol. 40, no. 2,
pp- 99-121, 2000.

R. Sharathkumar and P. K. Agarwal, “Algorithms for the transportation
problem in geometric settings,” in Proc. 23rd Ann. ACM-SIAM Symp.
Discrete Algorithms, 2012, pp. 306-317.

, “A near-linear time e-approximation algorithm for geometric
bipartite matching,” in Proc. 44th Symp. Theory Comput., 2012, p.
385-394.

J. Sherman, “Generalized preconditioning and undirected minimum-cost
flow,” in Proc. 28th Ann. ACM-SIAM Symp. Discrete Algorithms, 2017,
pp. 772-780.

D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,” J.
Comput. Syst. Sci., vol. 26, no. 3, pp. 362-391, 1983.

J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen,
T. Du, and L. Guibas, “Convolutional Wasserstein distances: Efficient
optimal transportation on geometric domains,” ACM Trans. Graph.,
vol. 34, no. 4, 2015.

J. Solomon, R. M. Rustamov, L. J. Guibas, and A. Butscher, “Earth
mover’s distances on discrete surfaces,” ACM Trans. Graph., vol. 33,
no. 4, pp. 67:1-67:12, 2014.

C. Villani, Optimal Transport: Old and New.
Business Media, 2008, vol. 338.

Springer Science &

	Introduction
	Our results
	Technical overview
	Organization

	Reduction to minimum cost flow in a sparse spanner graph
	A data structure for avoiding moats
	Warped quadtree
	Properties of warped quadtrees
	Constructing the spanner
	Reduction to minimum cost flow

	Preconditioning for minimum cost flow
	Legal shifts, blobs, and probabilities
	The preconditioner

	Recovering a transportation map from a flow
	Simplifying the algorithm for low spread cases
	Uncapacitated minimum-cost flow in general graphs
	References

