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ABSTRACT: The development of reusable polymeric materials inspires an
attempt to combine renewable biomass with upcycling to form a
biorenewable closed system. It has been reported that 2,5-furandicarboxylic
acid (FDCA) can be recovered for recycling when incorporated as monomers
into photodegradable polymeric systems. Here, we develop a procedure to
better understand the photodegradation reactions combining density
functional theory (DFT) based time-dependent excited-state molecular
dynamics (TDESMD) studies with machine learning-based quantitative
structure−activity relationships (QSAR) methodology. This procedure allows
for the unveiling of hidden structural features between active orbitals that
a!ect the rate of photodegradation and is coined InfoTDESMD. Findings
show that electrotopological features are influential factors a!ecting the rate of photodegradation in di!ering environments.
Additionally, statistical validations and knowledge-based analysis of descriptors are conducted to further understand the structural
features’ influence on the rate of photodegradation of polymeric materials.

1. INTRODUCTION
The application of green chemistry principles is practiced to
ensure the responsible use of polymeric materials during the
product life cycle and disposal after expected use due to the
large amount of polymeric waste accumulating globally.1,2 To
reduce the pollution of such polymeric wastes, a combination
of green chemistry principles and investigative methodologies
is necessary.3,4 One such combination of green chemistry
principles and methodologies is the use of upcycling of
renewable biobased compounds where further analysis and
experimentation are executed through in-silico methods.5−8

Specifically, in-silico approaches can be applied to better
determine trends and analyze underutilized data for explan-
ation and guidance for future experimental investigations. This
trend analysis can assist in the future processing of polymers
throughout, and after, their life cycle in e!ectively reducing
plastic pollutants and benefiting global polymeric waste
reduction.
Studies show that the fructose-based compound, 2,5-

furandicarboxylic acid (FDCA), has been incorporated as a
building block into a photodegradable polymeric system.5 This
fructose-based building block was able to be degraded via UV-
irradiation, later recovered, and finally reused in new polymeric
systems after original use.5 Recently, the application of in-
silico, time-dependent excited-state molecular dynamics
(TDESMD), methodology was executed to investigate the

photodegradation process of the FDCA compound in both
vacuum and aqueous environments.6,9 This allowed for a
further understanding of the photodegradation pathways of
polymeric chains containing FDCA via interactions with
solvent systems. One finds the recovery of biobased building
blocks, which corroborated with experimental findings.5,6
To further enhance the understanding of the photoreactions,

here, we focus on relationships between electronic structures
and structural properties of the polymeric chains. Various
electronic structural information is linked to the photoactivity
of compounds and polymers, such as oscillator strength,
transition energy, and electron density distribution.10,11
Previous studies suggested that UV irradiation influenced
electron transfer by changing the electron density distribution
from the nitrogen center of diethylenetriamine penta-
(methylenephosphonic acid). This e!ectively increased radical
attack during UV irradiation and increased the rate of
photodegradation.12 Brouard et al. have experimentally
shown the spin-forbidden dissociation channel following
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absorption of a 193 nm photon,13 where velocity-map imaging
has been used to measure spatial anisotropy parameters,
photofragmentation velocity distributions, and angular mo-
mentum alignment parameters for spin−orbit states of
fragments. Their findings show that the electron density
distribution peaked perpendicular to the direction of bond
breaking. Their findings suggest connections between electron
energy distributions and photodegradation channels of N2O.
Many other groups have used the maximum-entropy

method (MEMS) in analyzing the placement of the electron
density distribution along paths between atoms.14−16 MEM
utilizes the electron density information from di!raction data
by maximizing the entropy information where it can be used to
analyze polymeric systems.17−19 In one case, the electron
density was distributed closer to the atoms versus the center of
the bond. This suggested more ionic behavior and reduced the
bond length.14 The locality of the electron density along the
bond lengths, and the information it describes, suggest an
influence on factors such as fluorescence e"ciency and
photocatalytic activity. Both, fluorescence e"ciency and
photocatalytic activity, relate to the ability of compounds to
interact with light and in later stages further degrade due to
this perturbation and interaction with light.15,16 Although this
is a powerful methodology, the analysis is based on electron
density distribution between atoms of small molecules where
long-range di!erences in electron density distribution are not
able to be accounted for. By using computational methods, it is
possible to account for such long-range distributions.
Computational analysis of the electron density distribution

of compounds and polymeric systems relating to photo activity
has focused primarily on using ab initio methodologies.20−24

Alekseyev et al. investigated the control of the I−* quantum

yields of CH3I via transition moments and vibrational states.20
Their work suggests that the electron density distribution at
various molecular geometries influences a more e"cient
excitation of specific fragmentation channels. Li et al. suggested
that polymeric systems containing photochromic compounds
of 1,4-dikeot-3, 6-diarylpyrrolo[3, 4-c] pyrroles diketopyrrolo-
pytroles (DPPs) had varying electron density distributions
before and after excitation. This varying distribution showed
movement from the monomer system to other portions of the
compounds a!ecting the photostability of the material.22,23
The electronic structural information on compounds is

dependent on the topological structure, which can be
expressed through numerical values by cheminformatics
using descriptors.25−28 Specifically the application of quanti-
tative structure−activity relationships (QSAR) has been used
to investigate the influence that topological and electronic
structural information has on photoactivity.29−32

Xiao et al. applied the QSAR methodology to iodinated
trihalomethanes with the response variable being the first-order
rate constant of photodegradation.30 In their work a three-
descriptor regression model was found where the bond
strength of carbon−halogen is influential in the rate-
determining step. Again, Xiao et al. investigated the photolysis
rates of iodoacids where electronic and steric e!ects of all
substituents were used as descriptors and developed a
reasonable predictive model with a small data set.31 The data
correlated well even with fewer than five compounds in the
training set. Recently, Wan et al. used QSAR to determine
properties that a!ected the photodegradation of halogenated
parabens under simulated sunlight.32 In their work, it was
found that C−X bond dissociation energies as well as both
electronic and steric e!ects of halogen substituents. In all cases,

Figure 1. InfoTDESMD flowchart. Section 1 represents preprocessing and data collection. Section 2 represents cheminformatics. Section 3
represents machine learning.
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the use of structural information combined with electronic
structural information had combinatorial e!ects on describing
the properties that describe the photodegradation of various
compounds. Though none of these studies had computational
response values of photodegradation, it is hypothesized that
regression models can be developed to explain the connections
between electronic and structural information toward the rate
of photodegradation.
Here, we combine TDESMD and QSAR (InfoTDESMD)

toward the investigation of the photodegradation of FDCA-
based polymeric chains. This allows for understanding the
relationships between electronic structures and topological
information. Specifically, TDESMD calculations were carried
out to simulate the photodegration.33 Further analysis was
conducted using cheminformatics techniques where molecular
substructures between the expectation value of the position of
active orbitals were captured and used to develop machine
learning-based regression models in determining topological
factors influencing the rate of photodegradation. The
substructures, known as paths, were captured using RDKit,
and molecular descriptors were generated using Ochem.eu
capabilities with a partnership with alvaDesc.34−36 Regression
models were developed and analyzed using QSARINS
cheminformatics modeling software and package to determine
specific properties influencing the photodegradation rate of
polymers.37 The analysis of the regression models is
interpreted via global interpretation and validated via both
statistical and knowledge-based processes.38 Additionally, the
increase in mechanistic interoperability of QSAR models, in
this case, due to the linearity of MLR methodology, allows for
the description and application of information found via model
development.
The content throughout this work is organized as follows.

The Methods section showcases the computational details via
AIMD, DFT, TDESMD, cheminformatics, and regression
modeling methodology. The Results section displays the
computational findings relating to path development and
influential relationships. Regression model development is
highlighted, and influential properties are described. In the
discussion section, influential properties are compared and
discussed compared to other works in detail. Additionally, the
similarities and di!erences between the aqueous and vacuum
environment trajectories and their connection with exper-
imental findings are further analyzed. The Conclusions section
summarizes findings and highlights the impact on under-
standing relationships influencing polymer deconstruction and
upcycling.

2. METHODS
To illustrate the process implemented, the flowchart shown in
Figure 1 is presented. There are three categories including
preprocessing and data collection, cheminformatics, and
machine learning. Within preprocessing and data collection,
computational simulations following TDESMD methodology
are recorded. Cheminformatics uses a variety of tools to gather
pertinent information to further analyze electronic and
topological structural information. The third category of
tools is the application of machine learning where regression
models are developed and used to give further insight into the
photodegradation of polymeric systems.

2.1. Computational Modeling. We consider polymeric
chains in vacuum and aqueous systems. The vacuum system
has two FDCA-nitrobenzyl units (C28H18N2O14), as shown in
Figure 2A. The lattice parameters are x = 18.544, y = 14.149,
and z = 17.768 Å. The aqueous system contains one FDCA-
nitrobenzyl unit (C14H9N1O7) surrounded by 27 H2O
molecules, as shown in Figure 2B. The lattice parameters are
x = 9.580, y = 9.887, and z = 9.030 Å. Figure 2 was generated
using Visual Molecular Dynamics (VMD) software.39

2.2. Ground State Calculations and TDESMD. First-
principles calculations were carried out using DFT with
Perdew−Burke−Ernzerhof (PBE)40 functional and projected
augmented wave (PAW)41 potentials under periodic boundary

conditions. The Kohn−Sham (KS) orbitals,42,43 φi
KS(r , {RI}),

and energies, εi({RI}), for each nuclear configuration {RI}
were provided by VASP software.44−48 Oscillator strengths, f ij,

transition dipoles, Dij, and absorption spectra are computed on
the basis of the orbitals and energies adopting the independent
orbital approximations (IOAs). The optimized ground state
geometries of the models were used as the starting point for
TDESMD calculations.
The initial conditions for TDESMD calculations involving

KS orbital pairs, HO-m and LU + n, are selected based on
oscillator strengths, which show the probability of absorption
of electromagnetic radiation in transitioning between energy
levels in molecules.
Previous work describes the TDESMD procedure in detail.49

Briefly, periodic excitations and de-excitations of the model are
executed to simulate light-matter interaction and allow
photoreactions to occur through the TDESMD process. This
interaction is expressed in Fock matrix F̂ and the total energy
in eq 1,

Figure 2. View of the atomistic structures of polymeric chains in (A.) Vacuum system and (B.) Aqueous environment under periodic boundary
conditions. The shaded areas indicate the simulation cells. The spheres represent atoms where H (white), C (cyan), N (blue), and O (red).
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= + ·F F V t M t( ) ( )KS NA
(1)

where F̂KS is Fock matrix in KS orbitals, Ω is the laser field

frequency, M stands for transition dipole operator, (t) = ·
cos (Ωt) is the electric field of laser, and V̂NA(t) represents
nonadiabatic couplings.50,51

Throughout the TDESMD methodology |VNA| < | M · | is
assumed. The density operator ρ̂ is used to express that the
electronic degrees of freedom obey the equation of motion. ρ̂,
shown in eq 2, is in the terms of the Redfield superoperator R
and Liouville−von Neumann superoperator L ,

+ = = [ ] +
i
kjjjjjj

y
{zzzzzz( )L R

t
i F

t
d
d

,
d

d
ij

diss (2)

where( )tdd
diss

ij is the electronic dissipative transition.52,53

Following the Kohn−Sham self-consistent procedure, the
total density is computed, which is then used to determine the
energy gradient and forces imposed on the nuclei in eq 3.

=
t
R t

F t
M

d
d

( )
( )2

2 I
I

I (3)

2.3. Rate of Photodegradation: Response Variable.
The rate (k) of photodegradation is calculated by taking the
inverse of the time (t) at which the first covalent bond
breakage occurs without recombination within the trajectory,
as eq 4.54,55 Bond breakage can be defined as covalently
bonded interatomic distances exceeding |RI(t) − RI(t)| ≥ 1.7
(Å) to one another where the atoms do not return to an
interatomic distance of <1.7 (Å).

=k
t
1

(4)

2.4. Path Development. Steps for the topological
structural path development process are listed in sequential
order.
1. Molecular partial charges of the polymers were calculated

from the TDESMD process where electron density distribu-
tions were calculated and visualized.6
2. To help simplify the analysis process, the expectation

value of positions of the active orbitals (EVPAOs) were
calculated from the electron density distributions. Active
orbitals indicate that two orbitals, one HO-m and one LU + n,
are involved in the excitation and deexcitation of the electrons.
These calculations were conducted using eqs 5−7, where i
represents the index of orbital φi

KS(r,⃗ {R⃗I}), of interest and
corresponding partial charge density ρi(x,y,z) = |φi

KS(r,⃗ {R⃗I)|2,
⟨X⟩ is the center of the orbital for the x-Cartesian projection,
⟨Y⟩ is the center of the orbital for the y-Cartesian projection,
and ⟨Z⟩ is the center of the orbital for the z-Cartesian
projection.
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The EVPAOs act as singular points to which XYZ
coordinate information is retained from the electronic density
distributions. A 2D structure is shown in Figure 3 to represent

the EVPAO location, closest atoms, and path development.
The blue and red circles with patterns in the center represent
the HOMO-m and LUMO + n EVPAOs locations,
respectively. The black arrows point toward the closest atom
of the EVPAOs, determined by Euclidean distances. The pink
bonds represent the path between the two closest atoms of the
EVPAOs and are the structures analyzed in this work.
3. The closest non-hydrogen atoms of the FDCA-nitro-

benzyl compound to the EVPAOs are selected as the two
atoms at which electron densities would be most likely located
in the XYZ coordinate space. The determination of the closest
atoms to EVPAO was executed with geometry-optimized
ground state systems at time zero. The two atoms closest to
the EVPAOs are used as the terminal atoms of the structure of
interest.
4. Between the two atoms, the shortest path is found using

RDKit’s shortest path determination functions.34 These
shortest paths are discussed from now on as “paths.”
5. The paths are then extracted as separate molecular

fragments, which represent chemical compounds. The paths
retain both electronic structural information and allow for
topological structural information to be generated in a
numerical fashion. If both EVPAOs were found to be closest
to the same indexed atom, then the singular atom was used as
the path for that pair of electron orbitals.

2.5. Descriptor Generation. The paths, shown in Tables
1 and 2, were generated as conventional molecule files, and
then converted to *.mol files using OpenBabel,51 where the
optimization of the paths occurred during conversion from
XYZ coordinates to *.mol files and using the software

Figure 3. Example of EVPAO atom distance and path determination.

Table 1. Path and Photodegradation Related Information in
the Aqueous Environment

initial excitation Dij (Å) walk distance rate, k (ps−1)
HO-30→LU 2.37 5 0.728
HO-21→LU 1.70 1 0.663
HO-13→LU + 1 1.47 1 0.000
HO-12→LU 2.90 5 0.488
HO-6→LU 2.97 6 0.389
HO-2→LU 2.56 5 0.446
HO-2→LU + 2 1.24 4 0.723
HO-1→LU 1.87 1 0.000
HO-1→LU + 3 0.22 0 0.691
HO-1→LU + 4 0.50 0 0.698
HO→LU 2.08 1 0.000
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optimization options.51 the structural information from the
paths was encoded as numerical values, by means of the
molecular descriptors, in the ochem.eu online platform where
the descriptors were generated with alvaDesc.34,35 AlvaDesc
generated approximately 3800 descriptors per path with
di!erent categories that include among others: 2D and 3D
matrix-based descriptors, 2D autocorrelations, constitutional
indices, charge-based descriptors, 0D, 2D, and 3D descriptors,
molecular properties, and topological descriptors. The
molecular descriptors with high correlation and noninforma-
tive information were discarded based on constant value, near
constant, and pair correlation criteria higher than 0.95.
Additionally, data gathered from the previous source including
transition energy and oscillator strength were added to the data
set as electronic structural descriptors.6
2.6. QSAR: Regression Model Development and

Validation. A data set of all path descriptors, electronic
structural information, and photodegradation rate values was
developed where the quantitative structure−activity relation-
ship (QSAR) methodology was applied. QSAR is generally
used as a tool for determining the structural factors that allow
for prediction of investigated response value.28,56−59 Due to
the computational response values and the complexity of both
electronic and topological structural information, the QSAR
methodology is used to highlight correlations that influence
the rate of photodegradation rather than developing
predictions.
In this work, genetic algorithm (GA) and multilinear

regression (MLR) analysis methods were used to develop

the multilinear regression (MLR) models.60 This algorithm
was emphasized since the descriptors chosen by GA can be
discussed as influential in a linear fashion to the rate of
photodegradation.52 GA has been used to address numerous
problems relating to computation processing time as well as
reduce to number of descriptors in final models.53,54 MLR
models were developed using QSARINS software.37
In this work, several QSAR models were developed having

the range of 1−2 descriptors. These developing model
techniques were followed by statistical analysis. The evaluation
specified the comparison of the squared correlation coe"cient
for training and test sets, Rtrain

2 and Rext
2 respectively. The

calculation of R2 is presented in eq 8.

= =

=
R

y y

y y

( )

( )
i
n

i i

i
n

i

2 1
obs pred 2

1
obs obs 2

(8)

The variables for eq 8 are as follows: yjobs is the experimental
(observed) value of the property for the ith/jth compound;
yjpred is the predicted value for the ith/jth compound; y is the
mean experimental value of the property in the training set
while ŷ is the mean experimental value of the validation set.
A training set of 10 and 26 paths for aqueous and vacuum

environments, respectively, was used for training the regression
models. A test set of 3 and 1 for vacuum and aqueous
environments, respectively. A test set is used for validation
purposes, where a training set may hold unforeseen biases that
can be expressed on a test set. Due to some paths having the
same chemical structure, it was necessary to have nonrepetitive
compounds in the test set for more robust predictive measures.
Several one and two descriptor regression models were
developed. The applicability domain (AD) was calculated by
the leverage approach. This method allows to verify the
models’ predictive reliability.58,59
To visualize the AD of the models, the Williams plot was

used. The Williams plot axes are the standardized cross-
validated residuals (Std. Resid.), Y- axis, versus leverage (Hat i/
i) values, X-axis. Std. Resid. clearly depict the response outliers,
Y-outliers, and HAT depicts the structurally influential
compound outliers, X-outliers, in a model. Once regression
models were developed, the selection was based on their
statistical performance: (1) highest R2

train value and highest
R2

ext value. This was to show the highest correlation between
structural information descriptors and photodegradation rate.
(2) A low correlation, < 0.6, between descriptors was
presented. (3) Williams plot analysis, to make sure the data
set was robust enough to incorporate all paths, all paths needed
to be within the AD of the presented Williams plots.
An example of a two-descriptor regression model is

presented in eq 9, where the d1 and d2 are the first and
second descriptors selected from the GA, respectively. C1 and
C2 are the coe"cients of the descriptors determined by MLR.
C3 is the intercept and y is the response variable, in this case,
the rate of photodegradation.

= ◊ + ◊ +y C d C d C1 1 2 2 3 (9)

3. RESULTS
The initial excitation of active orbital pairs, the Euclidean
distance in Angstrom (Å), the walk distance, and the rate of
photodegradation k (ps−1), are shown in Tables 1 and 2 for
both aqueous and vacuum environments, respectively. The
atoms that were found to be in the structural path can be

Table 2. Paths and Photodegradation Related Information
in the Vacuum Environment

initial excitation Dij (Å) walk distance rate, k (ps−1)
HO-21→LU + 2 4.96 9 0.000
HO-21→LU + 8 4.39 9 0.674
HO-20→LU + 3 2.57 6 0.000
HO-19→LU + 5 1.03 2 0.000
HO-18→LU + 6 1.15 0 0.000
HO-17→LU 6.85 15 0.000
HO-15→LU + 8 1.36 2 0.000
HO-14→LU + 1 1.52 1 0.000
HO-13→LU 5.31 6 0.000
HO-13→LU + 2 0.89 2 0.766
HO-13→LU + 8 0.69 2 0.000
HO-11→LU + 25 4.10 8 0.000
HO-10→LU + 2 1.93 7 0.000
HO-9→LU 4.39 4 0.000
HO-8→LU + 7 1.52 0 0.000
HO-8→LU + 24 1.91 2 0.000
HO-7→LU + 3 3.64 7 0.729
HO-3→LU + 4 2.95 2 0.000
HO-3→LU + 8 3.78 4 0.597
HO-2→LU + 3 3.34 7 0.742
HO-2→LU + 6 1.61 2 0.000
HO-2→LU + 9 3.74 7 0.683
HO-1→LU + 1 4.58 7 1.157
HO-1→LU + 3 6.23 11 0.000
HO-1→LU + 9 6.76 11 0.755
HO→LU 12.2 18 0.000
HO→LU + 2 6.41 10 0.000
HO→LU + 3 1.47 0 0.604
HO→LU + 9 0.91 0 0.736
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simplified to a path length where the number of atoms is
shown as walk distance. For discussion purposes, the rate of
photodegradation, which was previously reported, is shown.
Some entries have a path distance of 0 atoms where both
expectation values of orbitals were nearest to the same exact
indexed atom. The developed structural paths between active
orbitals are shown in Tables S1 and S2 for the aqueous and
vacuum environments, respectively. Chemical equations are
shown for representative paths in Schemes S1 and S2.
The information presented shows that similar paths may

have di!ering rates of degradation. For example, three orbital
pairs, HO-30 → LU, HO-12 → LU, and HO-2 → LU have the
same path but di!er in rates. A rare situation when the same
paths provide di!erent rates prompts a necessity for the
inclusion of an additional descriptor in the model. One
hypothesizes that such descriptor may include the value of
computed transition energy and or higher order spatial features
of the involved orbitals, such as second-order momenta, related
width spatial delocalization of the involved orbitals, for
example, ⟨(X − ⟨X⟩i)2⟩i or inverse participation ratio. Orbital
pairs were generally present in regions near the center of the
system as presented in Figure S1, where yellow spheres are
representative of the expectation values of orbitals.
3.1. Model Development and Validation. The data set

was used to develop models for both environments. The best
models are shown in eqs 10 and 11 for aqueous and vacuum
environments, respectively.

= ◊ _ +K ChiA Coulomb( 0 .816) 0 .889Aqueous (10)

Model parameters were R2 = 0.667; R = 0.817; for Aqueous
system

= ◊ +K MATS s( 0 .150) 7 0 .298Vacuum (11)

Model parameters were R2 = 0.687; R = 0.829; for vacuum
system. The descriptors and their definitions are listed in Table
3.

The statistical analysis was conducted where model
parameters were reported above, showing statistical signifi-
cance and reasonable levels of error. R2 is reported since it
indicates the variation in data explained by the relationship
between the independent variable, descriptors, and the
dependent variable, rate of photodegradation. For ease of
discussion, it is the statistical value used to measure the
predictability of the independent variable onto the dependent
variable. R2, the squared correlation coe"cient, represents the
correlation between the independent variables and the
dependent variable. Both are used to discuss predictability
and correlation.
The models were analyzed further by investigating the

correlation plot between the computationally determined rate
of degradation and the predicted values of the rate of
degradation. Figure 4A shows the correlation plot for the
aqueous environment. Orbital pairs are shown as individual

dots in both the training and test sets. Further validation of our
model, to make sure the structures were within reason to
include in our data set, the use of applicability domain of the
Williams plot. This plot statistically determined that structures
were within a prescribed structural domain for model
development. The applicability domain, blue region of Figure
4B, is bounded by standard deviations of the structural
di!erences determined by QSARINS software.37 If beyond the
3-standard deviation, the structure would be outside of the
applicability domain and not representative to be used in our
data set. The X-axis of Figure 4B is the measure of the potential
contribution a compound has on the fitted compounds
collectively labeled as (Hat i/i). It is useful in determining if
compounds are outliers regarding their descriptor values,
which therefore may be excessively influencing the regression
results. It can be seen here that all compounds are within the
applicability domain. The training set refers to the paths that
were used to develop the model presented in eq 10. While
prediction set refers to chosen paths that were used as “test
compounds” to test the developed model for application
outside of the training paths.
Similarly, for the vacuum environment, the correlation plot

was developed and is shown in Figure 2A. The Williams plot
for the vacuum environment is shown in Figure 2B where there
were no compounds outside of the 3 standard residual
thresholds. The training set for Figure 2 refers to the paths that
were used to develop the model presented in eq 11.

4. DISCUSSION
4.1. Aqueous System Model Performance and

Descriptor Analysis. It can be seen that the correlation

Table 3. Descriptors Information in Models (10) and (11)

environment descriptor definition descriptor group
aqueous ChiA_Coulomb average Randic-like

index from
Coulomb matrix

3D matrix-based
descriptors

vacuum MATS7s Moran coe"cient of
lag 7 weighted by
intrinsic state

2D
autocorrelations

Figure 4. Aqueous environment model: correlation plot (A) and
Williams plot (B).
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plot of Figure 4A shows all compounds within relative
agreement being close to the line y = x. No visual outliers
were present indicating the statistical aqueous environment
model predicts compounds’ rate of photodegradation relatively
well. The Williams Plot of the model based on aqueous
environment calculations in Figure 4A shows no outliers, and
all compounds are within the applicability domain. The R2

value of 0.667 gives a moderate level of predictability. In
statistical terms, converting R2 to R gives a value of 0.817
which suggests a high level of correlation between the
ChiA_Coulomb descriptor and the rate of photodegradation,
where the descriptor of ChiA_Coulomb, has pertinent
information regarding the electronic and structural aspects
a!ecting the photodegradation rate of the polymer system. To
understand the connection between the ChiA_Coulomb
descriptor and the rate of photodegradation, a descriptive
analysis of the descriptor and a knowledge-based validation are
conducted.
The Coulomb matrix is a global representation of the

electrostatic forces between the nuclei. It is calculated using eq
12 and has been used in determining the atomic charges of
molecules.61,62
O!-diagonal elements correspond to the Coulomb repulsion

between atoms i and j, while diagonal elements encode a
polynomial fit of atomic energies to nuclear charge, where the
nuclear charge of di!ering atoms is Zi and Zj, the nuclear
positions via Cartesian coordinates between two nuclear
charges is Rij.

=
=lmoooooo

noooooo
M

Z i j

ZZ
R

i j

0.5 for

forij

i

i j

ij

Coulomb

2.4

(12)

Although electrostatic e!ects have not been directly linked
to influencing the photodegradation rate via intramolecular
interactions, it is known that intermolecular interactions a!ect
the stability of polymers during photodegradation. This
descriptor attempts to describe the influence of the solvent
system on the photodegradation of the polymer material.
From our previous work, we suggested that proton transfer

of the solvent system onto the polymer material influenced the
photodegradation process to develop degradation products
that matched wet lab experiments.6 With this in mind, we can
expand on the pertinent information on the descriptor by
highlighting electrostatic e!ects and proton transfer on the rate
of photodegradation. It is important to mention that the
intrinsic state has been used previously to successfully model
the rate of hydrogen abstraction process which is another form
of proton transfer.63
The electrostatic e!ect, also known as the dipole−dipole

interaction, between the H2O molecules and the polymer
material has a large influence on the photodegradation rate.
The influence is believed to lead to changes in the electronic
structural localization during the photodegradation process
following TDESMD methodology. This interaction, combined
with energy inputted via photoluminescence during the
photodegradation process, allows proton transfer to occur.
The proton transfer then exacerbates the interaction due to
chemical bonding, debonding, and nuclear motion throughout
the trajectory. The ChiA_Coulomb descriptor, and its insight
relating to the electrostatic interaction, aligns with our previous

works’ explanation of solvent proton transfer influencing the
photodegradation rate.

4.2. Vacuum System Model Performance and
Descriptor Analysis. When viewing the correlation plot of
the vacuum environment, Figure 5A, it is shown that the model

adequately predicts the compound rate of photodegradation
relative to the computational-experimentally found values. The
data set used to train and test the model falls within the AD of
the Williams plot shown in Figure 5B. Since all compounds,
except for one, are within the AD we can say our model can
adequately predict compounds that are structurally similar.
The one compound that is beyond the 0.500 HATS i/i
threshold is still within the 3 Std deviations (3σ). The residual
threshold indicates minor structural di!erences that do not
influence the predictability of the model to a great extent.
These two figures combined highlight the validation tools used
to adequately critique the model for gathering unseen
knowledge via statistical methods.
The R2 value of 0.687 is a moderate level of predictability. In

statistical terms, converting R2 to R gives a value of 0.829
which suggests a high level of correlation between the MATS7s
descriptor and the rate of photodegradation. To understand
the connection between the MATS7s descriptor and the rate of
photodegradation, a descriptive analysis of the descriptor and a
knowledge-based validation is conducted.
For the descriptor in the vacuum model, MAT7S, the S

standing for “weighted by intrinsic state” can be described and
interpreted. The intrinsic state is calculated by eq 13.64

Figure 5. Vacuum environment model: correlation plot (A) and
Williams plot (B).
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=
◊ +( )

Intrinsic State
1

N i

i

2 2 v

(13)

N = principal quantum number (2 for C, N, and O atoms),
δi is the connectivity vertex degree of a graph (number of σ
bonds), and δiv= valence vertex degree of ith atom (number of
valence electrons).
To describe the equation in a di!ering manner, the intrinsic

state of an atom can be thought of as the ratio of lone pair
electrons and π bonds to σ bonds for the considered atom.
More available lone pair electrons and π bonds suggest the
possible availability of electrons for intramolecular interactions
along the specified path.64 To connect to our work, this
intramolecular availability allows for the movement of
electrons needed for excitation and deexcitation assuming
the electron moves across the shortest path of the compound.
This aligns with our work well due to the general assumptions
made during path development.
The intrinsic state includes information about the electronic

structural properties of compounds while also including the
connectivity ratio of links to nodes, following the graph theory.
Others have suggested that molecular connectivity descriptors
generally have a dominant nature even in single-descriptor
statistical models.63 This dominance is highlighted in our work,
where it can describe topological information (paths) and
electronic properties (electron density distribution), which
relate heavily to the excitation and deexcitation process for
photodegradation to occur.
An interesting finding is, shown in Table 4, that when the

MATS7s descriptor has a value above 0, the photodegradation
rate is heavily correlated 0.942, where the higher the

descriptor, the higher the photodegradation rate. This suggests
that the more lone pair or π bond electrons allow for a higher
rate of photodegradation. Additionally, the higher magnitude
of either positive or negative MATS7s values relates back to a
higher correlation of the photodegradation rate. This finding is
only found in compounds that have 7 atoms or larger due to
the 7-atom minimum requirement of the descriptor.
The availability of lone pair electrons and π bond electrons

is believed to allow for the movement of electrons across the
molecule to and from the active orbitals. This information is
insightful and aligns with the theory that electrons move across
the molecule from deexcited states to excited states and back.

5. CONCLUSIONS
In summary, the relation of the expectation value of position
for active orbitals to the photodegradation rate of FDCA
polymeric chains was analyzed by a novel process (In-
foTDESMD) combining DFT-based TDESMD calculations
with cheminformatics techniques. By analyzing the paths
between the expectation value of charge density localization for
orbital pairs involved in TDESMD calculations, one identifies a
data set with several fragments and over 3000 descriptors per
fragment. These paths containing both electronic structural
and topological information are collected and analyzed by
applying various software packages. The applied InfoTDESMD
procedure suggests that the molecular structures’ paths
involved in an excitation between HO-m to LU + n had an
influence on the rate of photodegradation. The values of
various descriptors depend on the systems. The descriptor
used to model the rate of photodegradation for an aqueous
environment suggested a strong influence by neighboring
solvent factors including electrostatic e!ects. In the vacuum

Table 4. Connection between MATS7s and Photodegradation Rate−Vacuum

HOMO − LUMO Pair(s) SMILES photodegradation rate MATS7s correlation
HO-22→LU + 2, HO-22→LU + 8 ONCCCOCCOC 0.335 −0.8226 −0.362
HO-0→LU + 2 CCOCCCCCOCC 0 −0.776
HO-1→LU + 3, HO-1→LU + 9 OCCOCCCCCOCC 0.375 −0.4345
HO-11→LU + 25 NCCCOCCOC 0 −0.3838
HO-17→LU + 0 ONCCCOCCOCCOCCCN 0 −0.02167
HO-8→LU + 7 C 0.335 0 N/A
HO-0→LU + 3
HO-0→LU + 9
HO-18→LU + 6
HO-14→LU + 1 ON 0 0
HO-3→LU + 4 OCC 0 0
HO-19→LU + 5
HO-15→LU + 8 COC 0.256667 0
HO-13→LU + 2
HO-13→LU + 8
HO-8→LU + 24 CNO 0 0
HO-2→LU + 6
HO-9→LU + 0 OCCCN 0 0
HO-3→LU + 8 OCCOC 0.6 0
HO-20→LU + 3 NCCCOCC 0 0
HO-13→LU + 0
HO-0→LU + 0 CCOCCCCCOCCOCCOCCCN 0 0.04669 0.942
HO-10→LU + 2 ONCCCOCC 0.5375 2.112
HO-7→LU + 3
HO-2→LU + 3
HO-2→LU + 9
HO-1→LU + 1 OCCOCCCN 1.16 2.743
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environment, it was found that the rate of photodegradation
was influenced heavily by the intrinsic state of paths with 7 or
more atoms. This suggests that available lone pair electrons
and π bonds allow for the enhanced rate of photodegradation.
The application of InfoTDESMD allowed for insight into

the connection between topological information and the rate
of photodegradation. InfoTDESMD provides opportunities to
investigate photoreactions for polymeric systems with various
computational techniques faster than original TDESMD
simulations, keeping similar precision of predicting power.
Our calculations will further provide insights and knowledge of
uninvestigated properties of TDESMD photodegraded systems
to find correlations and predictions between the photoactivity
and structure of compounds.
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