1 Low-loss contacts on textured substrates for inverted perovskite solar cells

- 2 So Min Park, 1,4† Mingyang Wei,2† Nikolaos Lempesis,3† Wenjin Yu,5 Tareq Hossain,6 Lorenzo
- 3 Agosta,³ Virginia Carnevali,³ Harindi R. Atapattu,⁶ Peter Serles,⁷ Felix T. Eickemeyer,² Heejong
- 4 Shin, Maral Vafaie, Deokjae Choi, Kasra Darabi, Eui Dae Jung, Yi Yang, Da Bin Kim, Shaik
- 5 M. Zakeeruddin, Bin Chen, Aram Amassian, Tobin Filleter, Mercouri G. Kanatzidis, Kenneth
- 6 R. Graham, Lixin Xiao, Ursula Rothlisberger, Michael Grätzel^{2*} & Edward H. Sargent^{1,4,9*}
- ¹Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- 8 ²Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
- 9 1015, Switzerland
- ³Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de
- 11 Lausanne, Lausanne, 1015, Switzerland
- ⁴Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario,
- 13 M5S 3G4, Canada
- ⁵State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of
- 15 Physics, Peking University, Beijing 100871, P. R. China
- ⁶Department of Chemistry, University of Kentucky, Lexington, KY, 40506, United States
- ⁷Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario,
- 18 M5S 3G8, Canada
- 19 ⁸Department of Materials Science and Engineering, and Organic and Carbon Electronics
- Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, United States
- ⁹Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois
- 22 60208, United States
- † These authors contributed equally to this work.
- * Corresponding authors: <u>ted.sargent@northwestern.edu</u>; <u>michael.graetzel@epfl.ch</u>

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts¹⁻³. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses^{4,5}. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, thereby minimizing interfacial recombination and improving electronic structures. We report a lab-measured power-conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65°C and 50% relative humidity following >1000 hours of maximum power point tracking under 1-sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing - achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

- Perovskite solar cells (PSCs) have recently attained a certified efficiency of 26.1%⁶; however, the
- very highest PCE devices have yet to meet operating stability under accelerated ageing tests⁵. The
- limited device stability is attributed to the presence of mobile and hygroscopic p-type dopants in
- 46 hole-transporting layers, which undermine moisture and thermal stability⁷. Inverted PSCs present
- a solution by utilizing undoped hole-selective contacts⁸. Recent studies have shown PCEs
- 48 surpassing 25% for inverted PSCs². However, when adhering to the stringent quasi-steady-state
- 49 (QSS) protocol, their certified efficiency (~24%) requires further improvement^{3,9}.
- 50 Efforts to improve inverted PSC efficiency have focused on interface passivation^{2,9,10}. This
- 51 approach suppresses non-radiative recombination and thus improves fill factors and
- 52 photovoltages¹¹. Nevertheless, higher photocurrents are needed for efficiency gains. In normal-
- 53 structure PSCs, this has been realized using textured fluorine-doped tin oxides (FTO) as the
- transparent conductive oxides (TCO)^{4,5}. The pyramidal grains on FTO minimize reflection losses
- and extend the length of the average optical path⁴. By contrast, inverted PSCs, often built on
- smooth indium tin oxides (ITO)^{9,10}, face substantial optical losses due to the lack of light
- 57 management.
- The discrepancy is ascribed to differences in transporting materials and deposition techniques. In
- 59 normal-structure PSCs, inorganic hole-blocking layers are conformally deposited on textured
- substrates using spray pyrolysis and chemical bath deposition^{4,5}. However, inverted PSCs typically
- employ ultra-thin (<5 nm) organic hole-selective contacts on substrates^{2,3}, which can be
- challenging to deposit uniformly using solution processing¹². Inhomogeneity leads to energy losses
- and insufficient carrier extraction¹³.
- 64 Self-assembled monolayers (SAMs), particularly those composed of phosphonic acid molecules
- with hole-selective tail groups, have shown promise in addressing this issue¹⁴. Phosphonic acids
- establish coordinative/covalent bonds with TCOs, allowing for sufficient SAM coverage on rough
- surfaces¹⁵. This could provide a low-loss interface, uniting light management with interface
- passivation. Indeed, photocurrent improvements have been observed when replacing SAM-
- 69 modified ITO with FTO substrates in inverted PSCs¹⁶.
- 70 Despite the promise, achieving a high-density, closely packed SAM remains challenging, which
- leads to erratic interfacial properties¹⁷. For example, M. Liu et al. revealed that phosphonic acids
- failed to fully cover textured wafers, which affected the performance of tandem solar cells¹⁸. Even

- on flat substrates, the formation of SAMs tends to be non-uniform, a problem usually attributed to
- the limited solubility of phosphonic acids¹⁹ and their insufficient chemical bond formation with
- 75 metal oxides 20 .

82

- 76 Several strategies have been proposed to ensure conformal SAM coverage, such as utilizing more
- 77 reactive oxide surfaces (e.g., nickel oxides) to promote hetero condensation¹⁸, employing thermal
- evaporation for SAM deposition²¹, and designing highly soluble phosphonic acid molecules¹⁹.
- 79 However, these methods can be laborious, requiring time-intensive molecule design, synthesis,
- 80 and vacuum-based layer deposition. Additionally, the use of highly reactive oxides could
- compromise device stability due to redox reactions with ammonium halides²².

Molecular dynamics simulations

- We sought to deepen understanding of how phosphonic acids interact with textured TCOs. We
- began by looking at the case of 2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz), an organic
- molecule (Fig. 1a) capable of forming SAMs on TCOs¹⁴, and investigated its interactions with
- 86 FTO. 2PACz has found extensive applications as a hole-selective contact in PSCs in view of its
- excellent defect passivation and deep highest occupied molecular orbital (HOMO) level²¹. The
- surface properties of FTO were approximated using tin oxides (SnO₂), given that commercial FTO
- has a fluorine-doping level under 0.5% (atomic percentage)²³. Flat vs. corrugated SnO₂ were
- analysed to understand the effects of surface morphology (Supplementary Fig. 1).
- 91 Molecular dynamics (MD) simulations suggest that 2PACz molecules can agglomerate, forming
- 92 dimers, trimers, and tetramers (Fig. 1b and Supplementary Fig. 2). Within the initial 1 nanoseconds
- of simulations, 90% of the final number of clusters has been reached (Fig. 1b), and dimers were
- 94 the most prevalent among clusters (Fig. 1c). Compared to flat surfaces, textured surfaces led to
- more clusters (e.g., 7 vs. 0 for 20 2PACz molecules on 6-nm-wide SnO₂) (Supplementary Note 1;
- 96 Supplementary Figs. 3 and 4). The cluster formation is closely linked to the inhomogeneity of
- 97 SAMs on FTO. For instance, when 162 2PACz molecules are positioned on top of textured SnO₂
- 98 surfaces, despite their initial random distribution (Supplementary Video 1), the finial equilibrated
- structures exhibit clear phase segregation (Fig. 1d), where almost 85% of the SnO₂ surface remains
- uncovered by any 2PACz molecules (Supplementary Fig. 5). These observations were also verified
- in a larger system (22-nm width; 1134 2PACz molecules) (Supplementary Fig. 6).

102 Reasoning that a thiol group (-SH) could interact with phosphonic acids, and a carboxyl group (-COOH) attached to FTO, we introduced 3-mercaptopropionic acid (3-MPA) (Fig. 1a) in 103 104 simulations to break apart 2PACz clusters particularly on textured substrates. The approach is akin to the co-adsorbent strategy used in dye-sensitized solar cells to reduce dye aggregation on 105 titanium oxides²⁴. Similar strategies have been employed to improve the quality of hole-selective 106 SAMs^{25,26}. With 3-MPA at a molar ratio of 1:9 with 2PACz, we saw a relative 15% decrease in 107 the number of clusters on textured surfaces (Fig. 1b), and a slower formation rate (20 ns⁻¹ vs. 28 108 ns⁻¹) (Supplementary Fig. 7). In particular, the higher-order clusters (trimers and tetramers) 109 decreased by 53% (Fig. 1c). As a result, the mixed system shows less phase segregation (Fig. 1e 110 and Supplementary Video 2), leading to extended surface coverage (67% vs. 15%) by 2PACz 111 molecules (Supplementary Fig. 5). Ab initio MD (AIMD) simulations (Supplementary Note 2 and 112 Supplementary Fig. 8) indicate that the presence of 3-MPA hinders the free movement of 113 individual 2PACz molecules by forming a supramolecular structure (Fig. 1f). This reduces 114 agglomeration with already-formed dimers, suppressing the formation of higher-order clusters 115 (Supplementary Video 3). Density functional theory (DFT) calculations revealed surface binding 116 energies of -3.2 eV and -2.6 eV for 2PACz and 3-MPA, respectively, which are much stronger 117 than the interaction energies of 2PACz clusters (-0.3 to -0.1 eV per molecule). This indicates 118 119 robust anchoring of 2PACz and 3-MPA molecules upon contact with substrate surfaces.

Characterization of organic contacts

- We deposited both 2PACz and a mixture of 2PACz:3-MPA on FTO substrates using solution processing, followed by annealing the film at 100°C and solvent washing (Methods). Micelles
- were detected in the processing solutions through dynamic light scattering (DLS) (Supplementary
- Fig. 9). However, due to their limited proportion in the volume distribution compared to 2PACz
- monomers, film formation primarily resulted from molecular diffusion rather than direct micellar
- adsorption²⁷.

- The film composition and its interaction with FTO substrates were investigated using X-ray
- photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared
- spectroscopy (ATR-FTIR), respectively. For the film comprising solely 2PACz molecules (the
- control), the presence of 2PACz was evidenced by the appearance of the phosphine (P) doublet
- peak (Fig. 2a) and the characteristic C-N peak and C-C/C-H peak (Supplementary Fig. 10) in the

XPS spectra²¹. In the case of mixed film, 3-MPA was indicated by the sulfur (S) 2p doublet peak 132 at around 163.8 eV (i.e., the thiol group) (Fig. 2a)²⁸. From ATR-FTIR, bidentate or tridentate 133 134 binding was identified as the mode of 2PACz-FTO interactions, given the appearance of the symmetric PO₃²⁻ stretching (at 996 cm⁻¹ for the control sample)^{29,30} and the disappearance of P-135 OH vibrations¹⁴. These also indicated that solvent washing removed unbound molecules¹⁴. With 136 3-MPA addition, a redshift of approximately 5 cm⁻¹ was observed for the PO₃²⁻ vibrational mode, 137 indicating the enhanced surface binding of 2PACz – as confirmed by AIMD simulations 138 (Supplementary Note 3; Supplementary Figs. 11 and 12). ATR-FTIR of the FTO/3-MPA sample 139 (Fig. 2b) further showed carboxylate-related peaks and a reduction in the intensity of the C=O 140 peak, which correspond to the bidentate chelation of 3-MPA with FTO surfaces³¹. Combining the 141 results from XPS and ATR-FTIR, we reasoned that 3-MPA functioned as a co-adsorbent, 142 modulating the interaction of 2PACz with FTO substrates. 143 The resultant SAM uniformity was characterized by Kelvin probe force microscopy (KPFM). 144 145 Topography images revealed that, despite varying SAM modifications, the surface morphology of FTO substrates was retained due to the ultra-thin nature of SAMs (Supplementary Fig. 13). From 146 the respective contact potential difference (CPD) maps (Fig. 2c), we recorded surface potential 147 variations on 2PACz-modified surfaces within a range of 120 mV. A Gaussian fit of the single 148 149 peak in the CPD distribution yielded the full-width half-maximum (FWHM) of 37 mV (Supplementary Fig. 14). Introducing 3-MPA enhanced the homogeneity of electronic properties 150 on SAM-modified surfaces, as reflected by a narrower CPD distribution with the FWHM of 22 151 mV. 152 To directly visualize the distribution of SAMs on FTO substrates, we performed high-angle 153 annular dark-field (HAADF) scanning transmission electron microscopy (STEM) measurements. 154 155 Fig. 2d shows cross-sectional HAADF-STEM images of both control and mixed samples. Because of the contrast in the atomic number², SAM was discernible as a dark layer sandwiched between 156 the brighter FTO and protective molybdenum oxide (MoO_x) layers. For the control SAM, we 157 observed thickness variations across the same FTO facet, with certain regions showing thicknesses 158 less than 1 nm. This suggests a low-density coverage and inhomogeneous distribution of 2PACz 159 molecules³². The mixed sample exhibited significant improvements in terms of SAM uniformity 160 and coverage: A consistent thickness was recorded for the mixed SAM on the same facet, albeit 161

with variations between 1 and 2 nm across different facets. Correspondingly, mixed SAM-modified FTO substrates exhibited higher hydrophobicity than control SAM-modified counterparts (Supplementary Fig. 15). Cyclic voltammetry (CV) measurements further determined the areal density of 2PACz in the mixed SAM to be 3.9×10^{13} molecules cm⁻², a 70% increase from the 2.3×10^{13} molecules cm⁻² in the control SAM (Supplementary Fig. 16)^{16,27}.

Characterization of perovskite films

162

163

164

165

166

167

190

- 168 To investigate the impact of SAMs on the structural and optoelectronic properties of perovskites, 169 we fabricated triple-cation Cs_{0.05}MA_{0.10}FA_{0.85}PbI₃ perovskite thin films on different FTO/SAM substrates. From scanning electron microscopy (SEM), we observed no notable change in the 170 171 perovskite surface morphology when 3-MPA was incorporated into the SAM (Fig. 3a, b). Grazing 172 incidence wide-angle x-ray scattering (GIWAXS) measurements showed nearly identical crystal structures for perovskites deposited on both the control and mixed SAMs (Fig. 3c). Here, the main 173 constituent was photoactive α -phase perovskites, with traces of the 4H hexagonal phase detected 174 at $q = 0.82 \text{ Å}^{-1}$ and 0.92 Å^{-1} as well as PbI₂ at $q = 0.90 \text{ Å}^{-1}$, respectively (Supplementary Fig. 14)³³. 175 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) further confirmed that both 3-MPA 176 and 2PACz molecules, due to their chemisorption on FTO surfaces, remained localized at the 177 perovskite/FTO interfaces (Fig. 3d, e). These findings suggest that 3-MPA is not likely to change 178 the perovskite formation process or contribute to the grain boundary or top surface passivation. 179 We conducted photoluminescence (PL) characterization by exciting perovskite thin films at a 1-180 sun-equivalent photon flux. We saw an average photoluminescence quantum yield (PLQY) of 0.13% 181 ± 0.02% for perovskites directly deposited onto FTO substrates, corresponding to a quasi-Fermi 182 level splitting (QFLS) of 1.105 eV (Supplementary Table 1)³⁴. 2PACz can passivate defects on 183 metal oxide surfaces and effectively block electron injection³⁵, resulting in an approximately 50-184 fold increase in the PL intensity (Fig. 3f). We noted an average PLQY of $7\% \pm 2\%$ for the 185 perovskite/2PACz/FTO stacks (Fig. 3g), corresponding to a QFLS of 1.207 eV. The incorporation 186 of 3-MPA further improved the average PLQY to $10\% \pm 1\%$. This we ascribed to better SAM 187 188 coverage rather than 3-MPA passivation since the thiol group of 3-MPA was embedded within the SAM (Fig. 1f). 189
 - We used ultraviolet and inverse photoelectron spectroscopy (UPS and IPES) to determine the work function and transport energy levels of perovskites and SAMs. The secondary electron cutoff in

192 the UPS spectra indicated an increase in the work function (WF) from 4.56 to 4.93 eV upon depositing the control SAM on the FTO substrate (Supplementary Fig. 18). 3-MPA led to an 193 194 additional WF shift of +100 meV. The ionization energy (IE) was 5.51 and 5.64 eV for the control and mixed SAMs, respectively. In contrast, perovskites exhibited similar conduction band 195 minimum (CBM) and valance band maximum (VBM) on different substrates (Fig. 3h). The 196 resultant energy level diagrams of perovskites and SAMs are depicted in Fig. 3i, j. A vacuum level 197 (VL) shift of 0.17 eV was recorded between the perovskite and the 2PACz bilayer, which further 198 increased to 0.32 eV for the perovskite/mixed-SAM bilayer³⁶. A higher VL shift indicates an 199 enlarged built-in field³⁷, which in PSCs can lead to enhanced carrier extraction³⁸. Meanwhile, the 200 IE offset between the bilayer remained consistent for the control and mixed SAMs (referenced to 201 the Fermi level (E_F)). 202

Solar cell efficiency and stability

- We fabricated PSCs having the inverted structure: FTO/SAM/perovskites/3,4,5-trifluoroanilinium 204 (345FAn)/fullerene (C₆₀)/bathocuproine (BCP)/Ag (Fig. 4a and Supplementary Fig. 19). 345FAn 205 was selected for interface engineering due to its thermal stability¹. 2PACz (control) and 2PACz:3-206 MPA (mixed) were employed as the SAMs for hole-selective contact. The corresponding solar 207 cell parameters are summarized in Fig. 4b. We found that compared to control devices, the mixed 208 209 SAM led to improved performance (average PCE 25.0% compared with 24.1%). This came from open-circuit voltage (Voc, from 1.141 V to 1.159 V) and fill factor (FF, from 82.3% to 84.1%) 210 (Supplementary Note 4). We noted that device reproducibility was comparable for both control 211 and mixed SAMs, likely due to SAM inhomogeneity occurring at the nanoscale^{18,27}. The champion 212 device with the mixed SAM exhibited a PCE of 25.3% from the reverse J-V scan, which agrees 213 with the PCE obtained from the steady-state power output (Supplementary Fig. 20). The integrated 214 short-circuit current density (J_{sc}) of 25.8 mA cm⁻² derived from the external quantum efficiency 215 (EQE) measurement matches well with that from the *J-V* sweep (Fig. 4c). 216
- One mixed-SAM-based FTO device was characterized at Newport (Montana, USA); and produced a QSS-certified PCE of 24.8%, with a $V_{\rm oc}$ of 1.150 V, a $J_{\rm sc}$ of 25.5 mA cm⁻², and an FF of 84.5% (Fig. 4d and Supplementary Fig. 21). Although there have been reports of inverted PSCs with efficiencies surpassing 25%^{2,3}, the certified PCEs measured under stabilized conditions (including maximum power point (MPP) and QSS tracking) have yet to reach the same level (Supplementary

- Table 2). The QSS efficiency reported herein represents a new record for inverted PSCs, improving
- upon the previous record QSS efficiency of 24.09% in literature (Fig. 4e).
- For comparison, inverted PSCs were fabricated on smooth ITO substrates. We obtained an average
- PCE of 23.4% for control ITO devices, which was lower than that of control FTO devices, despite
- their higher average $V_{\rm oc}$ and FF (Supplementary Fig. 22). This emphasizes the need to augment $J_{\rm sc}$
- for inverted PSCs. The limited J_{sc} is ascribed to the smoothness of ITO substrates (Supplementary
- Fig. 23), leading to reduced light-scattering and thus insufficient light absorption in the full device
- 229 (Supplementary Fig. 24). Interestingly, the performance of mixed-SAM-based ITO devices was
- only slightly improved, possibly due to the weak interactions of 3-MPA with ITO surfaces
- 231 (Supplementary Note 5; Supplementary Fig. 25).
- We evaluated the operating stability of PSCs using International Summit on Organic Photovoltaic
- 233 Stability (ISOS)-L-3 protocols, in which the encapsulated device was subjected to continuous 1-
- sun equivalent, white-LED illumination (Supplementary Fig. 26) at 50% relative humidity and
- 235 heatsink temperature of 65°C. To impede ion and moisture diffusion, we replaced BCP with
- 236 atomic-layer-deposited SnO₂ as a buffer layer⁹. The resultant device delivered a PCE of 24.6% at
- room temperature (Supplementary Fig. 27). During the ISOS-L-3 testing, the device initially
- demonstrated a PCE of 22.6%, which increased to 23.1% after 1.6 hours of MPP tracking (Fig. 4f).
- The lower PCE at 65°C, compared to room temperature, is ascribed to the negative temperature
- coefficient of PSCs (-0.15% /°C)³⁹. The PCE stabilized at 21.9% (95% of the peak PCE) until the
- 241 end of the test (1075 h), with the main degradation in the photocurrent (Supplementary Fig. 28).
- The initial performance and operating stability reported herein are compared with other PSCs
- subjected to ISOS-L-3 tests (Supplementary Table 3).

References

- 245 1. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of
- stable perovskite solar cells. *Science* **381**, 209–215 (2023).
- 247 2. Zhang, S. *et al.* Minimizing buried interfacial defects for efficient inverted perovskite solar
- 248 cells. *Science* **380**, 404–409 (2023).
- 3. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells.
- 250 *Nature* **611**, 278–283 (2022).
- 4. Kim, M. et al. Conformal quantum dot–SnO₂ layers as electron transporters for efficient
- 252 perovskite solar cells. *Science* **375**, 302–306 (2022).

- 253 5. Park, J. *et al.* Controlled growth of perovskite layers with volatile alkylammonium chlorides. *Nature* **616**, 724–730 (2023).
- Best Research-Cell Efficiency Chart. *NREL* https://www.nrel.gov/pv/cell-efficiency.html (2023).
- You, S. *et al.* Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. *Science* **379**, 288–294 (2023).
- 259 8. Zheng, X. *et al.* Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. *Nat. Energy* **5**, 131–140 (2020).
- 261 9. Chen, H. *et al.* Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. *Nat. Photonics* **16**, 352–358 (2022).
- 10. Li, Z. *et al.* Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. *Science* **376**, 416–420 (2022).
- Peng, W. *et al.* Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. *Science* **379**, 683–690 (2023).
- Camaioni, N. *et al.* Polymer solar cells with active layer thickness compatible with scalable fabrication processes: a meta-analysis. *Adv. Mater.* **35**, 2210146 (2023).
- Sahli, F. *et al.* Fully textured monolithic perovskite/silicon tandem solar cells with 25.2%
 power conversion efficiency. *Nat. Mater.* 17, 820–826 (2018).
- 14. Al-Ashouri, A. *et al.* Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. *Energy. Environ. Sci.* **12**, 3356–3369 (2019).
- Paniagua, S. A. *et al.* Phosphonic acids for interfacial engineering of transparent conductive oxides. *Chem. Rev.* **116**, 7117–7158 (2016).
- Truong, M. A. *et al.* Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells. *J. Am. Chem. Soc.* **145**, 7528–7539 (2023).
- 17. Isikgor, F. H. *et al.* Molecular engineering of contact interfaces for high-performance perovskite solar cells. *Nat. Rev. Mater.* **8**, 89–108 (2022).
- Mao, L. *et al.* Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. *Adv. Mater.* **34**, 1–12 (2022).
- He, R. *et al.* Improving interface quality for 1-cm² all-perovskite tandem solar cells. *Nature* **618**, 80–86 (2023).
- 285 20. Phung, N. *et al.* Enhanced self-assembled monolayer surface coverage by ALD NiO in p-in perovskite solar cells. *ACS Appl. Mater. Interfaces* **14**, 2166–2176 (2022).
- 21. Farag, A. *et al.* Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells. *Adv. Energy Mater.* **13**, 2203982 (2023).

- 289 22. Boyd, C. C. *et al.* Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. *Joule* **4**, 1759–1775 (2020).
- Fukano, T. Low-temperature growth of highly crystallized transparent conductive fluorinedoped tin oxide films by intermittent spray pyrolysis deposition. *Sol. Energy Mater Sol.* Cells **82**, 567–575 (2004).
- 24. Neale, N. R., Kopidakis, N., van de Lagemaat, J., Grätzel, M. & Frank, A. J. Effect of a coadsorbent on the performance of dye-sensitized tio₂ solar cells: shielding versus bandedge movement. *J. Phys. Chem. B* **109**, 23183–23189 (2005).
- 297 25. Deng, X. *et al.* Co-assembled monolayers as hole-selective contact for high-performance 298 inverted perovskite solar cells with optimized recombination loss and long-term stability. 299 *Angew. Chem. Int. Ed.* **134**, (2022).
- 300 26. Al-Ashouri, A. *et al.* Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. *ACS Energy Lett.* **8**, 898–900 (2023).
- Liu, M. *et al.* Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. *Adv. Mater.* (2023) doi:10.1002/adma.202304415.
- Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. *Chem. Rev.* **105**, 1103–1170 (2005).
- Paniagua, S. A. *et al.* Phosphonic acid modification of indium—tin oxide electrodes: combined XPS/UPS/contact angle studies. *J. Phys. Chem. C* **112**, 7809–7817 (2008).
- 30. Hotchkiss, P. J., Malicki, M., Giordano, A. J., Armstrong, N. R. & Marder, S. R. Characterization of phosphonic acid binding to zinc oxide. *J. Mater. Chem.* **21**, 3107 (2011).
- 31. Nazeeruddin, M. K., Humphry-Baker, R., Liska, P. & Grätzel, M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO₂ solar cell. *J. Phys. Chem. B* **107**, 8981–8987 (2003).
- 315 32. Bunker, B. C. *et al.* The impact of solution agglomeration on the deposition of self-assembled monolayers. *Langmuir* **16**, 7742–7751 (2000).
- 31. Dang, H. X. *et al.* Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. *Joule* **3**, 1746–1764 (2019).
- 34. Caprioglio, P. *et al.* On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells. *Adv. Energy Mater.* **9**, 1901631 (2019).
- 35. Al-Ashouri, A. *et al.* Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. *Science* **370**, 1300–1309 (2020).
- 323 36. Li, X. *et al.* Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. *Nat. Commun.* **13**, 2046 (2022).
- 37. Lami, V. *et al.* Visualizing the vertical energetic landscape in organic photovoltaics. *Joule* 3, 2513–2534 (2019).

- 327 38. Sandberg, O. J. *et al.* On the question of the need for a built-in potential in perovskite solar cells. *Adv. Mater. Interfaces* 7, 2000041 (2020).
- 39. Moot, T. *et al.* Temperature coefficients of perovskite photovoltaics for energy yield calculations. *ACS Energy Lett.* **6**, 2038–2047 (2021).

Figure Legends

- Fig.1|MD simulations of phosphonic acid adsorption with and without molecular additives.
- a, Chemical structures of the phosphonic acid 2PACz and the bifunctional compound 3-MPA. b,
- Total number of 2PACz clusters formed over a set period, in the absence (control) and presence
- 335 (mixed) of 3-MPA. c, Types of 2PACz clusters formed at equilibrium. d, e, Top views of
- equilibrated molecular representations of control (d) and mixed (e) systems. 2PACz and 3-MPA
- (where applicable) are shown in pink and blue, respectively; Sn and O atoms, shown in the
- background, are depicted in yellow and red, respectively. f, Successive steps along an AIMD
- 339 trajectory showcasing the role of 3-MPA as a co-adsorbent. Large, encircled areas are
- 340 magnifications of small ones.
- Fig.2|Homogeneity of self-assembled monolayers formed on FTO substrates. a, XPS P 2p (left)
- and S 2p (right) spectra for the control and mixed samples. The peaks were fitted using one S 2p
- or P 2p doublet with a 2:1 peak area ratio. b, 2PACz (left) and 3-MPA (right) transmission FTIR
- spectra, compared with ATR-FTIR spectra for the SAM (left) and 3-MPA (right) coated FTO
- substrates. The FTIR peaks identified at 947 and 1021 cm⁻¹ for 2PACz powders correspond to the
- symmetric and asymmetric stretching of P–OH, respectively. Cz = carbazole. c, KPFM images of
- control (left) and mixed (right) SAM-coated FTO substrates. d, Cross-sectional HAADF-STEM
- images of control (top) and mixed (bottom) SAMs sandwiched between MoO_x and FTO.
- Fig.3|Materials properties of perovskite films on different FTO/SAM substrates. a, b, Top-
- view SEM images of perovskite films deposited on control (a) and mixed (b) SAMs. c, GIWAXS
- images for perovskite films on control (left) and mixed (right) SAMs. The color bar shows the
- diffraction intensity collected from the GIWAXS detector. q_{xy} and q_z represent in-plane and near
- out-of-plane scattering vectors, respectively. d, e, TOF-SIMS profiles of perovskites on
- FTO/control SAM (d) and FTO/mixed SAM (e) substrates measured in negative polarity. Traces
- of SH⁻ were identified at the perovskite/control SAM interface, possibly due to contamination of
- precursor materials. **f**, Absolute intensity PL spectra of perovskite films on bare FTO (no SAM)
- and control and mixed SAMs. g, PLOYs of perovskite films on control and mixed SAMs (5
- samples for each condition). Statistical distribution represented in box plots (line within the box:
- mean, box limit: standard deviation). h, UPS and IPES spectra of perovskite films on control and
- mixed SAMs. Gaussian fit (grey line) was used to determine the conduction and valence bands. i,
- i, Schematic energy level diagrams of the perovskite/control SAM (i) and perovskite/mixed SAM
- 362 bilayer (j), respectively.
- Fig.4|Photovoltaic performance of perovskites solar cells. a, Schematic illustration of the
- device architecture with textured FTO substrate. **b**, Solar cell parameters for the control (16 devices)
- and mixed (32 devices) SAM devices. Statistical distribution represented in box-and-whisker plots
- 366 (line within box: median, box limit: standard deviation, whiskers: 1.5 outliers). c, EOE and
- integrated J_{sc} (grey dashed line) curves of the mixed SAM device. **d**, QSS J-V curve of one
- representative mixed SAM device certified at Newport. Inset: PV parameters of the device. e,
- 369 Certified performance of inverted PSCs measured under the QSS condition. **f**, MPP tracking of the
- encapsulated mixed SAM device at heatsink temperature of 65°C with a relative humidity of ~50%
- under 1-sun illumination. The device configuration is FTO/SAM/Perovskite/345FAn/C₆₀/ALD-
- 372 SnO₂/Ag, having a PCE of 24.6% at room temperature.

Methods

373

374

375

376

377

378

379

380

381

382

383

384 385

386 387

388 389

390

391 392

393

394

395

396

397

398

399

400 401

402

403

404

405

406

407

408

409

410

411

412

413 414

415

416

417

Molecular dynamics simulations

Static DFT calculation and AIMD were performed with the CP2K⁴⁰ package utilizing a mixed Gaussian/plane wave (GPW) basis. The PBE exchange-correlation functional⁴¹, DFT-D3 dispersion corrections⁴², and dipole corrections⁴³ necessary for periodic boundary conditions along the perpendicular direction to the surface were included. Valence electron wave functions were expanded in a double-ζ Gaussian basis set with polarization functions (DZVP)⁴⁴. The energy cutoff for the electron density expansion in the GPW method was 400 Ry. Born-Oppenheimer AIMD simulations were run with an integration time step of 0.5 fs and the system was kept at 300 K using the thermostat of Bussi et al.⁴⁵ in a canonical isothermal-isochoric (NVT) ensemble, where the total number of atoms N, the volume V and the temperature T of the system were held constant. All AIMD simulations were performed at Γ point. Being the most stable surface, the SnO₂ (110) was chosen as the substrate surface. The systems were equilibrated over 5 ps in the NVT ensemble and the remaining 40 ps were used for the production run. To investigate the interactions between the 2PACz and 3-MPA molecules, as well as molecules and the SnO₂ substrate, 5 scenarios were simulated: (1) a single molecule (2PCAz or 3-MPA) on SnO₂ (110), (2) one 2PACz and one 3-MPA concurrently on SnO₂ (110), (3) two 2PACz and one 3-MPA on SnO₂(110), (4) four 2PACz and one 3-MPA on SnO₂(110), and (5) six 2PACz and one 3-MPA on SnO₂ (110). In all the scenarios, an in-plane SnO₂ (110) simulation cell of 22.690 Å × 27.756 Å with 45 Å of vacuum between the slab repetitions was used. AIMD was also used to estimate the interaction energy of 2PACz and 3-MPA with the SnO₂ (110) surface. The final AIMD configurations were relaxed with DFT to extract the interaction energies of the molecules. Binding energies were calculated as $\Delta E_b = E_{\text{tot}} - E_{\text{S}} - E_{\text{mol}}$, where E_{tot} is the energy of the final relaxed configuration (molecule on SnO_2 (110)); E_S is the energy of the final configuration of the slab; E_{mol} is the energy of the final configuration of the isolated molecule. The interaction energies of 2PACz clusters were computed after DFT relaxations of isolated clusters. Dimers, trimers, and tetramers were considered. Interaction energies per molecule were calculated as $\Delta E_i = (E_{\text{tot}} - nE_{\text{mol}})/n$, where E_{tot} is the energy of the final relaxed cluster; n is the number of molecules forming the cluster; E_{mol} is the energy of a single relaxed molecule assumed isolated. Vibrational power spectra were computed as the Fourier transform of the autocorrelation function of the atomic velocities.

Classical MD simulations with full atomic resolution were realized with the help of the LAMMPS MD simulator⁴⁶. The equations of motion were integrated using the Velocity-Verlet method⁴⁷, with a 1 fs time step, while bond stretching was not constrained for any bonds. To maintain isothermal conditions, the deterministic Nosé – Hoover thermostat^{48,49}, with a time constant equal to 0.1 ps, was utilized. This ensured that thermostating was applied to both translational and rotational degrees of freedom, crucial for the asymmetric 2PACz and 3-MPA molecules. All classical MD simulations were realized in the canonical NVT ensemble at T = 300K comprising a V-shaped SnO₂ (110) model system with dimensions 60 Å × 105 Å × 40 Å. Periodic boundary conditions were used in x- and y-directions, whereas reflective boundary conditions were employed in the z-direction. The two considered systems, control and mixed, comprised a total of 18498 and 18714 atoms, respectively, whereas the experimental molar ratio (2PACz/3-MPA= 9/1) was retained in the simulated mixed system. The systems were equilibrated for 1 ns followed by a 10ns production simulation, where sampling took place every 500 fs for the calculation of ensemble averages. A snapshot of the system was taken every 1000 fs for visualization purposes. The calculation of the number distributions of formed 2PACz clusters was performed through an in-house code utilizing

- a threshold distance of 8 Å among the centre of masses of adjacent 2PACz molecules in accordance 418
- 419 with the nearest neighbour shell of the corresponding radial distribution function as clustering
- criterion. 420
- To accurately capture the interactions of SnO₂, the thoroughly validated classical force field 421
- developed by Bandura et al.⁵⁰ was used. The all-atom OPLS force field was utilized for 3-MPA, 422
- wherein the corresponding interaction parameters were obtained with the help of the LigParGen 423
- server⁵¹. For 2PACz, containing the phosphonic functional group, the specially designed force field 424
- developed by Meltzer et al.⁵² based on the Generalized Amber Force Field⁵³ was utilized. The van 425
- der Waals and electrostatic non-bonded interactions were calculated using a real-space cutoff 426
- radius of 10 Å and 8 Å, respectively, whereas the particle-particle-particle-mesh (PPPM) scheme⁵⁴ 427
- 428 with an accuracy of 0.0001 (kcal/mol)/Å was used for the consideration of long-range electrostatic
- interactions. Because the SnO₂ force field uses a Buckingham potential for the van der Waals 429
- 430 interactions, its combination with the Lennard-Jones potential used for the compounds was
- realized by fitting the Buckingham parameters of SnO₂ to a suitable set of Lennard-Jones 431
- parameters⁵⁵ and geometric mixing rules were applied for all dissimilar non-bonded interactions. 432

Materials

433

445

454

- All materials were used as received without further purification. Organic halide salts, including 434
- methylammonium iodide (MAI), formamidinium iodide (FAI), methylammonium chloride 435
- 436 (MACI), were purchased from Great Cell Solar. Cesium iodide (CsI), 3-mercaptopropionic acid
- (3-MPA), 3,4,5-trifluoroaniline (98%), and guanidinium thiocyanate (GuaSCN) were purchased 437
- 438 from Sigma-Aldrich. 3,4,5-trifluoroaniline was converted to its ammonium form following the
- published procedure. [2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid (2PACz), lead iodide (PbI₂, 439
- 99.99%), and bathocuproine (BCP) were purchased from TCI. Anhydrous solvents including N, 440
- N-dimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.9%), 2-propanol (IPA, 441
- 99.5%), chloroform (CF, 99.8%), and anisole (99.7%) were purchased from Sigma-Aldrich. C₆₀ 442
- was purchased from Xi'an Polymer Light Technology Corp. ITO and FTO (TEC 10) substrates 443
- 444 were purchased from Thin Film Devices Inc. and Ossila, respectively.

Perovskite film fabrication

- 1.5 M of Cs_{0.05}MA_{0.1}FA_{0.85}PbI₃ perovskite precursor was fully dissolved in mixed solvents of DMF 446
- and DMSO (4:1, v/v) with the molar ratio for FAI/MAI/CsI was 0.85:0.1:0.05. 10 mg mL⁻¹ MACl 447
- 448 and 8 mg mL⁻¹ GuaSCN were added in the solution to improve the film morphology. The precursor
- solution was filtered through a 0.22 µm polytetrafluoroethylene (PTFE) membrane before use. 60 449
- μL of perovskite solution was deposited on the substrate and spun cast at 1000 rpm for 10 s 450
- followed by 6000 rpm for 30 s. 150 µL anisole was dropped onto the substrate during the last 5 s 451
- of the spinning, resulting in the formation of dark brown films that were then annealed on a hot 452
- plate at 100°C for ITO and 120°C for FTO for 20 min. 453

Device fabrication

- FTO glasses were sequentially sonicated in aqueous detergent, deionized water, acetone, and IPA 455
- each for 10 min. After drying with nitrogen, the substrates were exposed to UV-ozone treatment 456
- for 15 min to remove organic contaminants and then transferred into a nitrogen-filled glovebox 457
- 458 maintaining less than 0.1 ppm of O₂ and H₂O. 100 µL of 2PACz or a mixture of 2PACz:3-MPA (in
- a molar ratio of either 9:1 in characterization and device fabrication, or 8:2 in XPS measurements) 459

in anhydrous ethanol (1 mM) solution was uniformly spread on the substrates and allowed to rest 460 for 15 s, followed by spinning the films at 3000 rpm for 30s. The films were then annealed at 461 100°C for 10 min and washed by dropping 500 μL ethanol during the film spinning at 3000 rpm. 462 463 Perovskites solution was deposited on the SAM-modified substrate as detailed above. 200 µL of 345FAn solution (1 mg/mL) in CF with an additional 3% of IPA was then drop cast within 2-3 s 464 on the perovskite film spinning at 4000 rpm (i.e., dynamic spinning) and annealed at 100°C for 5 465 min. Both control and mixed SAM films were then transferred to the thermal evaporator 466 (Angstrom engineering). C₆₀ (30 nm) and BCP (7 nm) were deposited sequentially with a rate of 467 0.3 Å s⁻¹ and 0.5 Å s⁻¹, respectively, at a pressure of ca. 2 x 10⁻⁶ mbar. Finally, Ag contact (140 468 nm) was deposited on top of BCP through a shadow mask with the desired aperture area. For the 469 stability testing, ALD-SnO₂ were used as the barrier layer. The deposition of ALD-SnO₂ was 470 carried out in the PICOSUN R-200 Advanced ALD system. H₂O and TDMASn were used as 471 oxygen and tin precursors. Precursor and substrate temperature were set to 75°C and 85°C, 472 respectively. 90 SCCM N₂ was used as carrier gas. Pulse and purge times for H₂O were 1 s and 5 473 s, and 1.6 s and 5 s for TDMASn. The total deposition cycle is 120, corresponding to 20 nm of 474 475 SnO₂.

Solar cell characterization

476

486

496

The current-voltage (I-V) characteristics of solar cells were measured using a Keithley 2400 477 sourcemeter under the illumination of solar simulator (Newport, Class AAA) at the light intensity 478 479 of 100 mW cm⁻² as checked with a calibrated reference solar cell (Newport). The stabilized PCE was measured by setting the bias voltage to the $V_{\rm MPP}$ and then tracing the current density. The $V_{\rm MPP}$ 480 was determined from the reverse I-V curve. The active area was determined by the aperture shade 481 mask (0.049 cm²) placed in front of the solar cell to avoid overestimation of the photocurrent 482 density. EQE spectra were recorded with a commercial system (Arkeo-Ariadne, Cicci Research 483 s.r.l.) based on a 300 W xenon light source and a holographic grating monochromator (Cornerstone, 484 Newport). 485

Stability tests of solar cells

487 Devices were placed in a homemade stability tracking station. The illumination source is a white light LED with intensity calibrated to match the 1-sun condition. For the ISOS-L-3 ageing protocol 488 (65 or 85°C; 50% relative humidity; MPP)⁵⁶, the device chamber was left open in a room with 489 50±10% humidity and solar cell was mounted on a metal plate kept at 65°C by a heating element. 490 A thermal couple attached to the metal plate was used to monitor and provide feedback control to 491 the heating element to ensure temperature consistency. MPP was tracked using a home-build 492 493 MATLAB-based MPP tracking system using a 'perturb and observe' method. The MPP was updated every 1000 minutes. Encapsulation was done by capping the device with a glass slide, 494 using UV-adhesive (Lumtec LT-U001) as a sealant. 495

XPS measurements

XPS measurements were performed with a Thermo Scientific K-Alpha system with 180° doublefocusing, hemispherical analyser. The system is equipped with a 128-channel detector and monochromatic small spot XPS. An Al Kα source (1486.6 eV) was used for excitation and a pass energy of 50 eV was used for XPS acquisition. Samples mounted on a metal specimen holder. All data were analysed with CasaXPS and Thermo Avantage software.

KPFM measurements

502

509

531

- 503 KPFM measurements were performed using an Asylum Research Cypher S atomic force
- microscope (Oxford Instruments, Santa Barbara, USA) with an ASYELEC.01-R2 Ti-Ir coated
- cantilever (Asylum Research). Scans were performed over 2 μ m at 512 pixels and 0.5 Hz using a
- two-pass method where the first pass is a tapping mode topography scan and the second in KPFM
- mode with a tip potential of 3 V and a surface clearance of 5 nm. Cantilever calibration was
- 508 performed using the Thermal method from the Asylum Research GetReal database.

HAADF-TEM measurements

- 510 HAADF-TEM images were acquired at an aberration corrected FEI (Titan Cubed Themis G2)
- operated at 300 kV equipped with an XFEG gun and Bruker Super-X EDS detectors. The SAM
- samples had a structure of glass/FTO/SAM/MoO_x (50 nm), where the MoO_x layer was deposited
- through thermal evaporation with a low rate of 0.1 Å s⁻¹ at a pressure below 2×10^{-4} Pa. The cross-
- sectional samples were prepared by using a focused ion beam system (FIB, Helios G4 UX).
- Another protective layer of carbon was thermally evaporated before ion-beam cutting and etching.

516 CV measurements

- 517 CV measurements were conducted using a three-electrode configuration with a potentiostat
- 518 (PGSTAT204, Autolab). The working electrodes were prepared using a spin coating method on
- an FTO electrode. The exposed area of the working electrode to the electrolyte measures 8 mm ×
- 520 21.4 mm. A platinum plate and an Ag/AgCl electrode (in a 3.0 M KCl solution) were employed
- as the counter and reference electrodes, respectively. The measurements were performed in an Ar-
- 522 saturated solution of 1,2-dichlorobenzene (o-DCB) with 0.1 M tetrabutylammonium
- hexafluorophosphate (TBA+PF6-) serving as the supporting electrolyte. All potentials are
- referenced against the ferrocene redox couple, serving as an internal standard. The effective
- 525 coverage of the self-assembled monolayers on the FTO surface is measured by the slope of a linear
- dependency of the oxidative peak intensity against the scan rate as follows:

$$i_{p,o} = \frac{n^2 F^2}{4RTN_A} A \Gamma^* v$$

- $i_{p,o}$ is the oxidative peak current, v is the voltage scan rate, n is the number of electrons transferred,
- F is the Faraday constant (96,485 C mol⁻¹), R is the universal gas constant (8.314 J K⁻¹ mol⁻¹), T
- is the temperature, N_A is the Avogadro constant, A is the electrode area, and Γ^* is the areal density.

UPS and IPES measurements

- UPS measurements were taken with an Excitech H Lyman-α photon source (10.2 eV) with a
- 533 nitrogen-filled beam path coupled with a PHI 5600 UHV and analyser system. A sample bias of -
- 5 V was applied and a pass energy of 5.85 eV was used for UPS acquisition. IPES measurements
- were performed in the Bremsstrahlung isochromatic mode with electron kinetic energies below 5
- eV and an electron gun emission current of 2 μA was used to minimize sample damage. A Kimball
- Physics ELG-2 electron gun with a BaO cathode was used to generate the electron beam. Emitted
- 538 photons were collected with a bandpass photon detector consisting of an optical bandpass filter
- 539 (254 nm, Semrock) and a photomultiplier tube (R585, Hamamatsu Photonics). Samples were held
- at a -20 V bias during all IPES measurements and the UHV chamber was completely dark.

Other characterizations

541

Particle size distributions in solutions were determined by the DLS technique using a Malvern 542 Zetasizer Nano ZS. Contact angles were measured using VCA-Optima XE. The image was taken 543 with CCD camera within 1 s after water droplet. GIWAXS measurements were performed at CMS 544 beamline, NSLS II. The monochromatic X-ray with the energy of 13.5 keV shone upon the 545 samples at different grazing incident angles of 1°, 0.5°, and 0.08° with an exposure time of 10 s. 546 A Pilatus800K detector was placed 259 mm away from the sample to capture the 2D diffraction 547 548 pattern. Absolute intensity photoluminescence spectra were measured using an integrating sphere, and Andor Kymera 193i spectrograph, and a 660 nm continuous-wave laser set at 1-sun equivalent 549 photon flux (1.1 µm beam full-width half-maximum, 632 µW); photoluminescence was collected 550 551 at normal incidence using a 0.1 NA, 110 µm-diameter optical fiber. TOF-SIMS was conducted on the IONTOF M6 instrument with a Bi³⁺ (30 keV) primary ion beam for analysis and an Cs-cluster 552 gun (2 keV) for sputtering. Data was acquired in positive mode with an analysis area of 49 × 49 553 μm² centred and a raster area of 200 × 200 μm². IR spectra were obtained in the attenuated total 554 reflectance mode using a Fourier-transform IR spectrometer (Thermo Scientific iS50). Samples 555 were prepared on the FTO substrate and scanned in the spectral range of 4000 to 550 cm⁻¹ with a 556 minimum number of 500 scans and a resolution of 4 cm⁻¹. The triangular apodization function was 557 used to improve the signal-to-noise ratio. High-resolution SEM images were obtained using the 558 Hitachi S5200 microscope with an accelerating voltage of 1.5 kV. A low accelerating voltage and 559 a low beam current were deployed to reduce surface damage of perovskite films under electron 560 beam bombardment. The diffuse and specular light reflected from the substrate surface was 561 measured using a Cary 5000 UV-Vis-NIR double-beam spectrophotometer in diffuse reflectance 562 563 mode. Pure BaSO₄ was used for the baseline collection.

Additional References

- 565 40. Kühne, T. D. *et al.* CP2K: An electronic structure and molecular dynamics software package
 566 Quickstep: Efficient and accurate electronic structure calculations. *J. Chem. Phys.* **152**,
 567 194103 (2020).
- Van Setten, M. J. *et al.* The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. *Comput. Phys. Commun.* **226**, 39–54 (2018).
- 570 42. Grimme, S. Density functional theory with London dispersion corrections. *Wiley Interdiscip.* 571 *Rev. Comput. Mol. Sci.* 1, 211–228 (2011).
- 572 43. Bengtsson, L. Dipole correction for surface supercell calculations. *Phys. Rev. B* **59**, 12301–12304 (1999).
- 574 44. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. *J. Chem. Phys.* **127**, 114105 (2007).
- 576 45. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. *J. Chem. Phys.* **126**, 014101 (2007).
- Kryuchkov, N. P., Yurchenko, S. O., Fomin, Y. D., Tsiok, E. N. & Ryzhov, V. N. Complex crystalline structures in a two-dimensional core-softened system. *Soft Matter.* **14**, 2152–2162 (2018).

- 581 47. Swope, W. C., Andersen, H. C., Berens, P. H. & Wilson, K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. *J. Chem. Phys.* **76**, 637–649 (1982).
- 584 48. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. *J. Chem. Phys.* **81**, 511–519 (1984).
- 586 49. Kassir, Y., Kupiec, M., Shalom, A. & Simchen, G. Cloning and mapping of CDC40, a Saccharomyces cerevisiae gene with a role in DNA repair. *Curr. Genet.* **9**, 253–257 (1985).
- 50. Bandura, A. V., Sofo, J. O. & Kubicki, J. D. derivation of force field parameters for SnO₂

 -H₂O surface systems from plane-wave density functional theory calculations. *J. Phys.*Chem. B 110, 8386–8397 (2006).
- 591 51. Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web 592 server: an automatic OPLS-AA parameter generator for organic ligands. *Nucleic Acids Res.* 593 **45**, W331–W336 (2017).
- 594 52. Meltzer, C. *et al.* indentation and self-healing mechanisms of a self-assembled monolayer—a combined experimental and modeling study. *J. Am. Chem. Soc.* **136**, 10718–10727 (2014).
- 53. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. *J. Comput. Chem.* **25**, 1157–1174 (2004).
- 598 54. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles. (CRC Press,
 599 2021). doi:10.1201/9780367806934.
- 55. Lim, T.-C. Alignment of Buckingham parameters to generalized Lennard-Jones potential functions. *Zeitschrift für Naturforschung A* **64**, 200–204 (2009).
- Khenkin, M. V. *et al.* Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. *Nat. Energy* **5**, 35–49 (2020).

Acknowledgements

604

- This research was made possible by the U.S. Department of the Navy, Office of Naval Research
- 607 Grant (N00014-20-1-2572). This work was supported in part by Ontario Research Fund-Research
- 608 Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-
- Research Excellence Round 7). This work was also supported under award number OSR-
- 610 CRG2020-4350.2. M.W. acknowledges funding from the European Union's Horizon 2020
- Research and Innovation program under the Marie Skłodowska-Curie Grant Agreement No.
- 612 101026353. T.H., H.R.A., and K.R.G. gratefully acknowledge funding from the National Science
- Foundation under award no. DMR-2102257. L.X. acknowledges support by National Natural
- Science Foundation of China (no. 61935016, 52173153) and the Electron Microscopy Laboratory
- of Peking University for the use of electron microscopes. M.G.K. acknowledges support by the

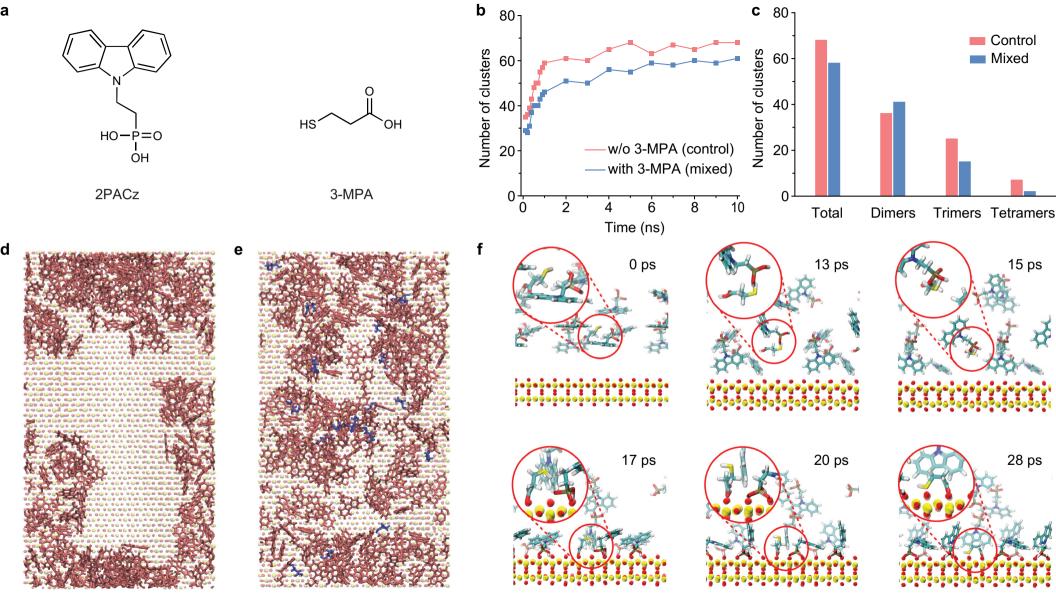
- Office of Naval Research under award number N00014-20-1-2725. A.A. acknowledges support
- by the Office of Naval Research under award number N00014-20-1-2573. P.S. acknowledges the
- support of the Vanier Canada Graduate Scholarship. This work made use of the NUFAB and Keck-
- 619 II facilities of Northwestern University's NUANCE Center, which has received support from the
- 620 SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern's MRSEC program (NSF
- DMR-1720139). We thank Damir Kopilovic for providing the LED spectrum and Jing Gao for
- assisting with the SEM measurements.

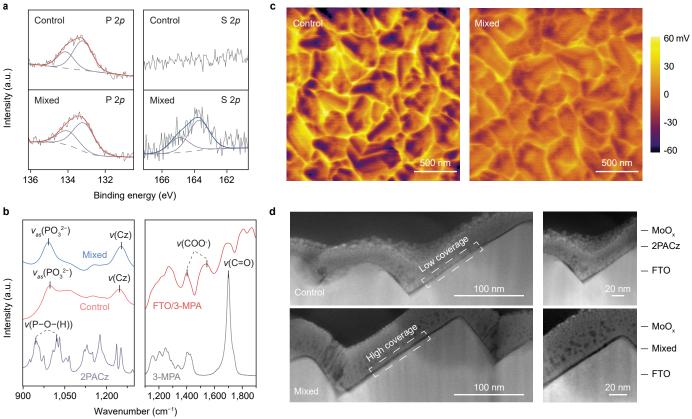
623 Author contributions

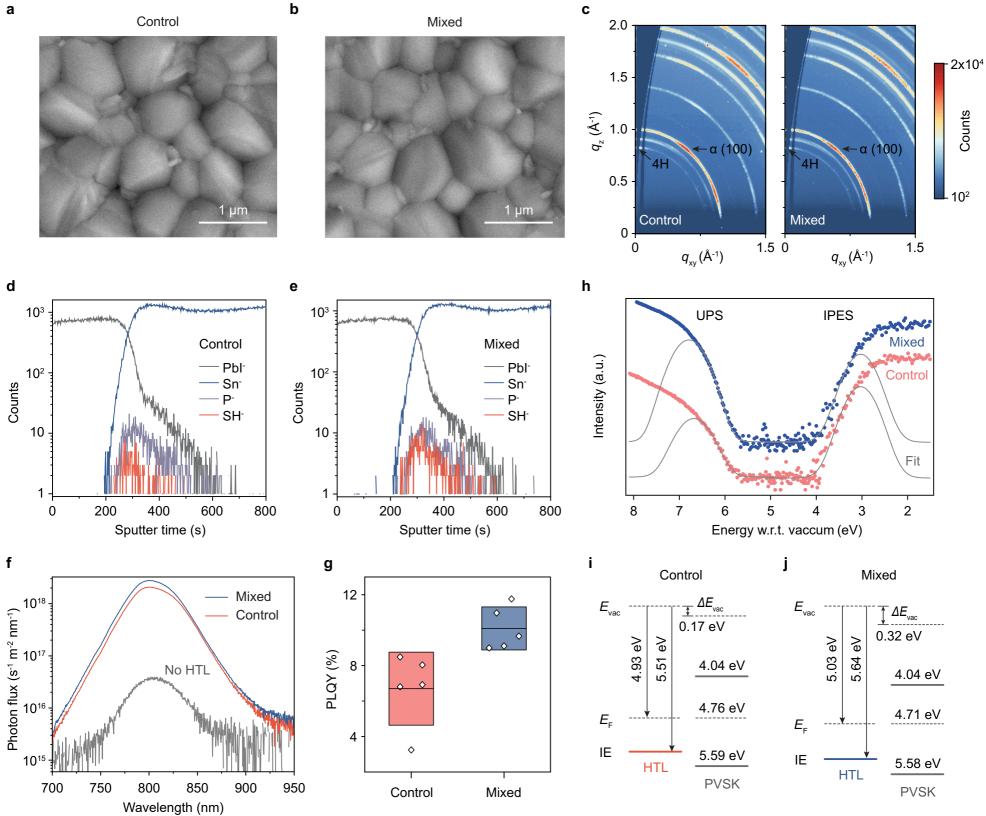
- 624 S.M.P., M.W., M.G., and E.H.S. conceived the idea and proposed the experimental and modelling
- design. N.L., L.A., V.C., and U.R. carried out the MD simulation. S.M.P. fabricated all the devices
- and conducted the characterization. T.H., H.R.A and K.R.G performed XPS, UPS, and IPES
- characterization and data analysis. W.Y. and L.X. carried out the HAADF-STEM measurements.
- 628 F.T.E., M.W., S.M.Z., and M.G. conducted the PL and EQE characterization and data analysis.
- 629 M.W. measured DLS. H.S. conducted CV measurements and data analysis. D.C. performed UV-
- Vis spectroscopy characterization. Y.Y. and M.G.K. measured TOF-SIMS. K.D. and A.A.
- performed the GIWAXS measurements. M.V., E.D.J. and D.B.K. helped with the device
- fabrication and material characterization. P.S. and T.F. performed the KPFM measurements. M.W.,
- 633 S.M.P., N.L., M.G., and E.H.S. co-wrote the manuscript. All authors contributed to data analysis,
- read, and commented on the manuscript.

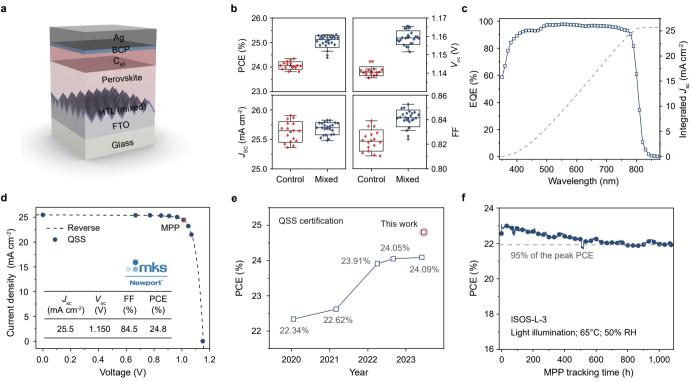
Competing interests

The authors declare no competing interests.


637 Data availability


635


- 638 All data are available in the main text or the supplementary materials. Further data are available
- from the corresponding author on reasonable request.


640 Code availability

- The codes and post-analysis tools for MD simulations are available in the following repository:
- 642 https://doi.org/10.5281/zenodo.8393081.
- 643 Correspondence and requests for materials should be addressed to M.G. or E.H.S.

