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Abstract

Precise hardware performance models play a crucial role in code optimizations.
They can assist compilers in making heuristic decisions or aid autotuners in identi-
fying the optimal configuration for a given program. For example, the autotuner for
XLA, a machine learning compiler, discovered 10–20% speedup on state-of-the-art
models serving substantial production traffic at Google. Although there exist a few
datasets for program performance prediction, they target small sub-programs such
as basic blocks or kernels. This paper introduces TPUGRAPHS, a performance
prediction dataset on full tensor programs, represented as computational graphs,
running on Tensor Processing Units (TPUs). Each graph in the dataset represents
the main computation of a machine learning workload, e.g., a training epoch or
an inference step. Each data sample contains a computational graph, a compila-
tion configuration, and the execution time of the graph when compiled with the
configuration. The graphs in the dataset are collected from open-source machine
learning programs, featuring popular model architectures, e.g., ResNet, Efficient-
Net, Mask R-CNN, and Transformer. TPUGRAPHS provides 25x more graphs
than the largest graph property prediction dataset (with comparable graph sizes),
and 770x larger graphs on average compared to existing performance prediction
datasets on machine learning programs. This graph-level prediction task on large
graphs introduces new challenges in learning, ranging from scalability, training
efficiency, to model quality.

1 Introduction

Compilers often use performance models to solve optimization problems [28, 48], as collecting per-
formance measurements from real hardware can be expensive, limited, or infeasible. A performance
model can also be used by a compiler autotuner to evaluate candidate configurations in a search space
[2, 14, 37, 53, 56]. However, developing an accurate analytical model of program performance on a
modern processor is challenging and time-consuming because the underlying processor architecture,
the compiler, and their interactions are complex and difficult to model analytically.

Many recent methods [2, 14, 41, 51, 66, 65, 5, 79, 45, 3, 24, 37] apply machine learning (ML) to learn
performance prediction models. However, there exist only a few datasets for program performance
prediction, and they all target small sub-programs. BHive [15] targets small basic blocks of assembly
instructions. TenSet [81] targets ML kernels consisting of a small number of tensor operations. The
database-query dataset [31] contains larger query programs, but they are still relatively small, most
with fewer than 100 nodes.

⇤Work partially done during internship/visiting researcher term at Google.
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Unlike prior datasets, TPUGRAPHS is a performance prediction dataset on full tensor programs,
represented as computational graphs. Each graph represents the main computation of an ML program,
which is usually one or many training steps or one inference step. The graphs in the dataset are
collected from open-source ML programs, featuring popular models (e.g., ResNet, EfficientNet, Mask
R-CNN, and a large variety of Transformer) for a wide range of tasks, e.g., vision, NLP, speech,
audio, recommendation, and generative AI. Each data sample contains a computational graph, a
compilation configuration, and the execution time when executing the graph when compiled with the
given configuration on a Tensor Processing Unit (TPU) v3 [39], an accelerator for ML workloads. A
compilation configuration controls how the XLA compiler [70] transforms the graph for a specific
optimization pass. In particular, the TPUGRAPHS dataset consists of two collections: (i) layout and
(ii) tile. Layout configurations control how tensors are laid out in the physical memory, by specifying
the dimension order of each input and output of an operation node. A tile configuration controls
the tile size of each fused subgraph. We primarily focus on layout and tile configurations because
tuning them offers the highest performance gain on average, compared to tuning other compiler
optimizations.

Figure 1: Scale of TPUGRAPHS compared to other
graph property prediction datasets.

The layout collection contains 31 million pairs
of graphs and configurations, averaging over
7,700 nodes per graph. The tile collection con-
tains 13 millions pairs of kernels and configura-
tions, averaging 40 nodes per kernel subgraph.
The layout collection is unique among existing
graph datasets, in that it provides data for graph-
level predictions on very large graphs. In con-
trast, most of the existing graph datasets fall
into two categories: graph-level prediction on
small graphs [11, 72, 32, 4, 32, 14, 81, 67, 83],
and node-level or edge-level prediction on large
graphs [29, 12, 34, 77, 86, 9, 49]. TPUGRAPHS
provides 25x more graphs than MalNet [27]
— the largest graph property prediction dataset
with comparable graph sizes — and 770x larger
graphs on average compared to TenSet [80] —
the only existing large-sclae ML program per-
formance dataset — as depicted in Figure 1.
The scale of TPUGRAPHS poses several new
research challenges:

• How to train a neural network model that can perform graph-level predictions when the
memory required to train the model on a single graph may not fit on a single device?

• How to make a model generalize well to unseen graphs when they are diverse, and the
training data may be imbalanced?

• How to improve the efficiency of a training pipeline when multiple data points contain a
large amount of redundant data (same core graph but different graph configurations)?

We provide baseline model code2 based on a Graph Neural Network (GNN) [11], following the
techniques from the most recent works on TPU learned cost models [41, 10]. The baseline models
achieve moderate performance on both layout and tile collections. For competitive baselines, we
encourage the reader to follow the Kaggle competition3 [54].

2 Background & Challenges

ML compilers solve multiple optimization problems to translate an ML program, typically represented
as a tensor computation graph, to an efficient executable for a hardware target. Recent works have
demonstrated that search-based autotuning techniques can be used to generate code with close to
optimal performance [13, 82, 2, 3, 71, 36, 65, 56]. However, autotuning requires a relatively large

2https://github.com/google-research-datasets/tpu_graphs
3https://www.kaggle.com/competitions/predict-ai-model-runtime
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Figure 2: Important optimizations in ML compilers include graph-level and kernel-level optimizations.
A graph-level optimization requires the context of the entire graph to make optimal decisions and
transforms the entire graph accordingly. A kernel-level optimization transforms each kernel (a fused
subgraph) at a time, independently of other kernels.

amount of resources to find quality candidates compared to traditional heuristics-based compilers.
Therefore, many methods develop a learned cost model to accelerate autotuning [14, 41, 65, 79, 45, 3].

2.1 XLA and Autotuner

XLA [70] is a production-grade heuristics-based compiler for ML programs, capable of generating
code for various hardware targets, including CPUs, GPUs, and notably TPUs [38, 39]. Figure 2
depicts important optimizations that are featured in XLA and most ML compilers. Graph-level
optimizations require the context of the entire program graph to make good decisions, while kernel-
level optimizations can be done independently within each kernel. A tensor computation graph is
represented as High Level Operations (HLO) in XLA. Each optimization pass transforms an HLO
graph into a functionally-equivalent one. The output of graph-level optimizations are a collection
of kernels (represented as fused subgraphs). XLA has an accompanying autotuner [56] that can
tune both graph-level and kernel-level configurations for TPUs, unlike most search-based compilers
[13, 14, 79, 82, 2, 3, 71, 45, 3], which focus on kernel-level optimizations.

Kernel-Level Optimizations. Each node in a tensor computation graph represents a tensor opera-
tion, such as matrix multiplication, convolution, element-wise addition, etc. A kernel, represented as a
fused subgraph, is then a fusion of multiple tensor operations. For example, Convolution-BatchNorm
is a common fused kernel that appears in Convolutional Neural Networks. The most important
optimization at the kernel level is tile size selection: selecting the shape of a tile of the output tensor
to maximize compute efficiency of the hardware, while the required regions of input, output, and
intermediate data fit in the local cache or scratchpad memory. The XLA tile size autotuner has been
deployed in production to optimize the most heavily executed kernels on Google TPU fleet on a daily
basis, saving approximately 2% of the total TPU compute time overall [55]. The learned cost model
based on a GNN is used to select the top K most promising tile sizes to execute on real hardware
[41], reducing the autotuning search time by approximately 20x.

Graph-Level Optimizations. At the graph level, the XLA autotuner supports tuning layout assign-
ment, fusion, and memory space assignment passes, as well as compiler flags that control multiple
optimization passes. The XLA graph-level autotuner has delivered 10–20% speedup state-of-the-art
models serving substantial production traffic at Google. However, it often takes at least a few hours
for the autotuner to converge when tuning one optimization pass of a single graph, and much longer
for larger computation graphs. Therefore, a learned cost model would significantly reduce the search
time. This motivates us to release the dataset collected from the autotuning process to advance
research in developing learned performance prediction models, by addressing challenges outlined in
Section 2.2, and ultimately accelerate the autotuning process for production ML workloads.

We focus on layout tuning because it offers the most speedup in general. The layout assignment pass
chooses the physical layouts of the input and output tensors of each node that satisfy constraints,
while minimizing program’s execution time. A layout determines the order of (minor-to-major) tensor
dimensions. Figure 3 displays valid input layouts in blue and the chosen layout in red. If an edge
connects an output to an input with a different layout, the compiler inserts a copy (transpose) operator
to convert the layout. In Figure 3 (left), layout of {1, 0, 2} is assigned to the output of add but {0, 1, 2}
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Figure 3: A node represents a tensor operator, annotated with its output tensor shape [n0, n1, ...],
where ni is the size of dimension i. Layout {d0, d1, ...} represents minor-to-major ordering in
memory. Applied configurations are highlighted in red, and other valid configurations are highlighted
in blue. A layout configuration specifies the layouts of inputs and outputs of influential operators (i.e.,
convolution, dot, and reshape). A copy operator is inserted when there is a layout mismatch.

to the first input of conv, causing a layout mismatch, unless a copy operator is inserted. The compiler
must trade off between selecting the best layouts for each specific operator and the overhead of copy
operators. The autotuner tunes the input-output layouts of the most layout-performance-critical nodes
— i.e., convolution, dot (einsum), and reshape because they are common operations and have the most
constrained implementations for TPUs — and propagates layouts from these nodes to others. The
autotuner picks one input-output layout combination from the valid options for each configurable
node.

2.2 Learning Challenges

TPUGRAPHS is non-trivial because training a neural network model to make an accurate prediction
on a large graph comes with multiple challenges, as follows.

Scalability. Existing efforts to scale GNNs have mostly focused on node-level and edge-level
prediction using sampled subgraphs [29, 12, 34, 77, 86, 49, 26, 1] or graph transformations followed
by local models [8, 9]. However, there is a lack of research on how to train scalable models for
property prediction of large graphs. Training on sampled subgraphs alone is insufficient as they may
not contain all the necessary information for accurate predictions. Aggregating information from the
entire graph is essential for graph property prediction, but it poses challenges due to memory limits
on a training device, as the memory required scales at least linearly with the size of the graph [78].
Our layout collection contains graphs of up to 44,000 nodes, so training a GNN model on an entire
graph (or a batch of thereof) using a single GPU may run out of memory.

Diversity and Imbalance of Graphs. We want to learn a model that generalizes well to unseen
graphs. However, this is non-trivial because the model must be trained on diverse types of graphs
with enough samples for each type. TPUGRAPHS consists of graphs for all kinds of important ML
workloads, including both inference and training, from past to present. While the dataset may be
imbalanced — containing graphs from some types of architectures more than others — each graph
has at least 10,000 samples of data from different configurations on average.

Redundancy. Another unique property of our dataset is that many samples share the same graph,
which represents a large amount of redundant data. An efficient training pipeline should leverage
this knowledge and reduce the redundant computation when possible. Additionally, there is another
aspect of redundancy within each graph. A tensor computation graph, representing an ML workload,
often consists of repeated blocks of neural network layers. The repeated blocks appear as repeated
subgraphs. One may leverage this knowledge to improve the learning algorithm.

The baselines accompanying this dataset attempt to address some of these challenges, but are not
close to fully solving them.

3 The TpuGraphs Dataset

The TPUGRAPHS dataset contains execution time data points, where each data point contains an
HLO graph, its configuration, and its execution time on a single core of TPU v3. The HLO graph in
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each data point is a partially optimized graph before being fed into the corresponding optimization
pass. For example, in the layout collection, an HLO graph is the input graph to the layout assignment
pass. The layout configuration of a graph is a collection of per-node layout decisions on configurable
nodes (i.e., convolution, dot, and reshape). For the tile collection, an HLO graph in each data point is
a fused subgraph representing a kernel. The tile configuration of a subgraph is a configuration for the
entire subgraph, not specific to any particular node.

3.1 Data Generation

Within our dataset, there are multiple collections of data, differing in terms of (1) the compiler
optimization (i.e., layout and tile), (2) the source of graphs, and (3) the search strategy.

Graphs Collection. We collect HLO graphs from two sources. The first source, called XLA, is the
combination of the XLA regression benchmark — from where we collect all open-source models
— and the MLPerf benchmark [50, 35]. The XLA graphs span diverse types of popular ML training
and inference models, such as vision, NLP, speech, audio, and recommendation. The second source,
called NLP, contains a variety of BERT for training and inference, with varying number of layers,
attention heads, and hidden sizes. For each model, we run the program — written in TensorFlow,
PyTorch, or JAX — and collect the largest HLO graph compiled by XLA, which represents the
model’s main computation. Note that a typical way that XLA handles a graph with dynamic shapes
is to bucketize the graph into multiple static-shape graphs. During execution, the runtime will pad
the input to match the static-shape graph with the larger closet shape. Our dataset includes graphs
— for varying sequence length, batch size, model size, etc. — some of which are used for dynamic
shape workloads. The TPUGRAPHS dataset is similar to the internal datasets used for prior TPU
learned cost models [41, 10], but it exclusively contains graphs from open source-programs, while
the internal datasets also include production models that cannot be released publicly.

Configurations Generation. Once we have the graphs, we use the XLA autotuner to generate
data samples. The set of configurations being generated depends on how the autotuner explores the
search space. For the layout collections, we ran the autotuner in two modes. The first mode explores
the search space using a genetic algorithm starting from the default configuration, chosen by the
compiler’s heuristic. Data collected from this mode is labeled default. The second mode explores the
search space by picking random candidates. Data collected from this mode is labeled random. We
keep data collected in different modes in separate collections; the default collection tends to contain
configurations that are not too different from the default, and have similar execution times, while the
random collection includes very different configurations with very different execution times.

For the tile size tuning, the autotuner first invokes the compiler to run the graph-level optimizations
and obtain fused subgraphs (kernels). For each subgraph, the autotuner enumerates all possible tile
sizes for the kernel in a random order, limited by a timeout. Note that the tile size search space is
much smaller than the layout search space, so we can enumerate all possible tile sizes. Therefore,
there is one data collection for tile sizes. We use only the XLA source for graphs in this collection.

Appendix A.2 describes how we measure the execution time of a given graph and configuration.

3.2 Dataset Statistics and Related Datasets

Table 1 summarizes the details of the different data collections, where the collection name follows the
pattern optimization:source:search. Table 3 in Appendix A.1 compares properties of the TPUGRAPHS
dataset (all collections) against existing graph property prediction datasets.

ML Program Performance. The TPUGRAPHS layout collections provide more than 770x larger
graphs on average compared to TenSet [80], the only existing large-scale dataset on ML program
performance. Our tile collection is similar to TenSet as the configuration controls the optimization at
the kernel (fused subgraph) level. However, it compliments TenSet nicely as it provides data points
on different hardware. Halide Auto-scheduler [2] releases their evaluation dataset of Halide programs
mainly consisting of image processing benchmarks with a few ML benchmarks.

Other Program Performance. Beyond ML programs, the performance prediction dataset with
largest graphs is on database queries [31], whose graphs are still more than a few orders of magnitudes
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Table 1: Statistics of TPUGRAPHS collections. The collection name follows the pattern optimiza-

tion:source:search. The search may explore the same configuration multiple times, so the same pair
of graph and configuration may appear multiple times with slightly different execution time from
multiple measurements. The total number of samples is thus higher than the number of unique pairs.

Collection Core Avg. Nodes Configs per Graph Total Graphs Samples(Sub) Graphs + Configs

Layout:XLA:Default 78 14,105 (372–43,615) 10,147 (681–71,574) 771,496 1,272,538
Layout:XLA:Random 11,648 (109–99,783) 908,561 1,115,709
Layout:NLP:Default 244 5,659 (876–21,919) 56,534 (9032–90,985) 13,285,415 15,479,038
Layout:NLP:Random 66,089 (8,843–100,001) 16,125,781 16,135,731
Tile:XLA 6,988 40 1,842 12,870,077 12,870,077

smaller than ours. Another popular performance prediction dataset is BHive [15], consisting of x86
basic blocks sourced from multiple open source programs, with runtime measurements on different
Intel hardware platforms. However, the basic blocks are quite small, including four instructions on
average. CompilerGym [18] releases a collection of LLVM IR code datasets that can be evaluated in
their environment. The largest datasets in their collection includes AnghaBench [19] and CSmith [75].
AnghaBench provides a large number of relatively small real-world programs. CSmith programs are
large (comparable to ours), but they are randomly generated programs. Additionally, CompilerGym’s
datasets do not come with performance measurements, so one would have to execute the programs
and configurations in the CompilerGym’s environment themselves to obtain program execution time.

Program Analysis. Other closely related datasets are on programming tasks. CodeNet [57] is
a large dataset to teach AI to code, in which each code sample is a solution to one of the coding
problems. OBGB-CODE2 [33] is for code summarization, containing Abstract Syntax Trees obtained
from Python functions. TBCNN [52] releases its dataset on program classification from a pedagogical
programming open judge system. CuBERT [40] uses Python files extracted from the ETH Py150
dataset [59] for fine-tuning and uses github_repos dataset under BigQuery’s public-data project for
pre-training. CodeBERT [25] releases its multi-programming-lingual dataset used for pre-training.
Works such as inst2vec [7] and ProGraML [17] uses datasets of code in LLVM compiler intermediate
representation to learn generic code representation for various program analyses and optimizations.

Other. Apart from code datasets, there are many other graph datasets. Open Graph Benchmark [33]
suite presents graphs that are used for machine learning tasks such as GNN inference and training.
GAP [6] and Graph Based Benchmark Suite (GBBS) [21] provide large-scale curated sets of graphs,
primarily for evaluating traditional graph problems. SuiteSparse [43] consists of a wide variety
of sparse matrices, which can be viewed as graphs. Most of these datasets are for node-level or
edge-level prediction tasks. TPUGRAPHS is by far one of the largest graph property prediction
datasets. TPUGRAPHS’ average graph size is comparable to that of MalNet [27] — the largest scale
graph property prediction dataset to date — while offering 25x more combinations of graphs and
configurations. Other popular graph property prediction datasets include small molecule [58, 61],
bioinformatic [22, 33], and social network datasets [62, 74].

3.3 Dataset Split

We split the data using 80-10-10 ratio by graphs in each collection. Splitting data by graphs ensures
that graphs in the validation and test sets do not appear in the training set to evaluate the generalization
of the model on unseen graphs. The validate and test graphs stay the same across different XLA
collections; the same applies to NLP collections. We deliberately holdout the target labels of samples
in the test set for competition purposes.

We report test and validation metrics for the tile collection by considering all configurations. For the
layout collections, we report final metrics only on 1,000 configurations to reduce the computational
demand for the model evaluation. We select these 1,000 configurations by sorting all configurations
based on their execution times and extracting the [0,m, 2m, . . . , length� 1]th configurations. The
dataset includes the indices of the selected configurations4.

4https://github.com/google-research-datasets/tpu_graphs/tree/main/tpu_graphs/
evals

6

https://github.com/google-research-datasets/tpu_graphs/tree/main/tpu_graphs/evals
https://github.com/google-research-datasets/tpu_graphs/tree/main/tpu_graphs/evals


4 Learning a Performance Prediction Model

The goal of a learned cost model is to rank the performance of different configurations of a given
graph. This section explains the baseline models we provide and how we train them, primarily based
on the TPU learned cost model papers [41, 10].

4.1 Feature Extraction

TPUGRAPHS provides data in two formats: raw protobuf format and numpy arrays similar to the
OGBG format [33]. The autotuner produces output results in protobuf format. A data pre-processing
script converts data from the protobuf format to the numpy format. The main function of the data
pre-processor is feature extraction. Node features describe the node’s properties, such as output tensor
shape, tensor layout, striding, padding, and operation-specific parameters. Our feature extraction
is minimal. To extract a node feature vector, we either copy values from various fields in an HLO
instruction (a node in an HLO graph) as they are, or convert categorical values using one-hot encoding.
To convert an unbounded list of numbers (e.g., tensor shape) to a fixed-size vector, we truncate the
list to six elements and include the summation and/or product of all elements in the list (e.g., the
product of dimension sizes represents the volume of the tensor) because the tensors appearing our
dataset do not contain more than six dimensions. A per-node layout configuration and tile size can be
represented as a nested list with some unbounded dimensions. Similarly, we truncate these unbounded
dimensions to six elements. The detailed description of node and configuration features can be found
in the GitHub repo.

We provide code for training a variety of models over the numpy format. Nonetheless, the raw format
can allow researchers to experiment with different feature extractions and measure impacts on the
quality of a learned model.

4.2 Model Architecture

GNN

embed 
opcode

opcode
ids

opcode 
embeddings

node feats

node 
embeddings

||

||

reduction ∑

feedforward

graph 
embedding

runtime 
prediction
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adjacency 
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Please keep red, blue, yellow colors 
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config feats
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graph 
config feats
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Figure 4: Model architecture.

Figure 4 shows the model architecture we use for
our baseline models, which are based on a GNN
since the input program is represented as a graph.
Node features consist of two parts. The first part
is an opcode id, i.e., type of tensor operation
(such as convolution). Our baseline models map
an opcode id to an opcode embedding via an em-
bedding lookup table. The opcode embedding is
then concatenated with the rest of the node fea-
tures as inputs to a GNN. We combine the node
embeddings produced by the GNN to create the
embedding of the graph using a simple pooling
reduction. The resulting graph embedding is
then linearly transformed into the final scalar
output by a feedforward layer. Prior work [41]
has studied alternative models, including LSTM
and Transformer, and shown that GNNs offer the
best performance. We provide baseline models
with GCN [42] and GraphSAGE [30].

4.3 Loss Functions

The primary use case of the model is to rank configurations within a given graph and select top
candidates to evaluate on real hardware. Thus, we can train the model using regression losses (e.g.,
Mean Square Error (MSE)) or ranking losses (e.g., pairwise hinge loss and ListMLE [73]). A ranking
loss is computed among sample pairs within the same graph in the same batch, and the losses from
different graphs in the batch are reduced to get the total loss. We use Ordered Pair Accuracy (OPA)
as a validation metric to select the best model checkpoint.
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4.4 Implementation

Layout model. Our baseline model is a 3-layer GraphSAGE with residual connections. We
concatenate node features and per-node configuration features as inputs to the GNN. If a node is
non-configurable (having no layout configuration), we use a zero vector as configuration features. Our
baseline code allows both a typical full graph training and a graph segment training [10]. One may
improve the compute efficiency further by using historical embeddings of subgraphs and segment
dropout, as in the Graph Segment Training paper.

Tile size model. For the tile collection, we implement three baselines: an MLP model and two
GNNs (GraphSAGE and GCN with residual connections). The MLP model embeds all opcodes, con-
catenates with node features, sums across all nodes, and then concatenates with kernel configuration
features, feeding into a 3-layer MLP. We experiment with two options to combine the graph-level
kernel configuration features with the node-level information (yellow in Figure 4): either late-join

or early-join. The first runs the GNN only on node features, reduces the node embeddings, and
then concatenates with the graph (configuration) features. The second replicates the graph features
onto every node. The early-join GraphSAGE model closely resembles the original TPU learned cost
model [41].

For both models, we experiment with two objective functions: MSE and ListMLE. We find that
ListMLE gives better empirical performance. Our baseline models are available at https://github.
com/google-research-datasets/tpu_graphs. They are implemented using TensorFlow-2 and
TF-GNN. The details of hyperparameters can be found in Appendix B.

5 Evaluation

5.1 Evaluation Metrics

To evaluate a model, we use two metrics. (1) Kendall’s Tau assesses how well a model’s ranking of
configurations correlates with their corresponding runtimes. (2) Top-K error (or slowdown error@K)
measures the slowdown of the chosen K configurations as:

top-K error =
The best runtime of the top-K predictions

The best runtime of all configurations
� 1 =

mini2K yi
mini2A yi

� 1 (1)

where K is the top-K predictions, A is all configurations of the given graph from the dataset collection,
and y is the measured execution time.

The choice of metrics is justified as follows. For the tile collection, since the number of configurations
per graph is relatively small, one can apply the model to obtain the predictions of all configurations,
choose top-K candidates according to the model to measure on real hardware, and finally select the
best one according to the real measurements. On the other hand, for the layout collections, the search
space is quite large. Therefore, common search strategies, such as Genetic Algorithm and Simulated
Annealing, need access to a fitness function (which can be the model). Therefore, it is important that
the model can well-preserve the order of the configurations (from fastest to slowest) as reflected by
the correlation score.

5.2 Experimental Setup

Layout model. For each model variant, we train the model once with only a few set of hyperpa-
rameters, and select the checkpoint with the highest OPA on the validation set to evaluate its ranking
correlation and top-K prediction errors. Table 5 in Appendix B reports attempted hyperparameters
for modeling layout. We report the performance of the best model based on the validation score.

Tile size model. For each model variant, we perform hyperparameter search on opcode embedding
size, hidden size, network depth, and learning rate, considering values specified in Table 5. Unlike
in the layout collections where the accuracy of each model is quite stable across multiple training
runs, the accuracy of a model in the tile collection fluctuates dramatically. Therefore, we train each
model variant three times. For each run, we select the model checkpoint with the highest OPA on
the validation set. We report the top-K errors of the run that achieves the median top-1 error on
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Table 2: Kendall’s Tau correlation and prediction errors (Eq. 1) of our best baseline model on different
dataset collections. The values of (K1, K2, K3) are (1, 10, 100) for the layout collections, and (1, 5,
10) for the tile collection.

Collection Kendall ⌧ Top-K1 E % Top-K2 E % Top-K3 E %
Val Test Val Test Val Test Val Test

Layout:XLA:Random 0.19 0.34 19.8 10.9 12.3 5.7 9.7 1.6
Layout:XLA:Default 0.12 0.21 3.8 14.1 1.9 0.6 0.3 0.2
Layout:NLP:Random 0.58 0.53 2.1 4.6 2.0 1.0 0.6 0.09
Layout:NLP:Default 0.30 0.28 4.0 4.0 3.7 3.1 3.5 0.13
Tile:XLA – – 10.5 9.1 3.0 4.2 1.8 2.8

Figure 5: Prediction errors (%) of different model variants on the Tile:XLA collection. Early and
Late refer to early-join and late-join options.

the validation set. An aggregated top-K error is an average across all kernels in the graphs in the
validation/test set. Note that the number of kernels varies across graphs.

5.3 Results on Layout Collections

Table 2 reports the top-K slowdown errors and Kendall’s Tau correlation of the best model across
all graphs (programs) in the validation and test sets for each dataset collection. According to the
correlation scores, the layout collections on the default search space are more difficult than those
on the random search space. This result matches our intuition because the default search space
contains many similar configurations near the default, so it is difficult to rank them; whereas, the
random search space contains more diverse configurations. The XLA layout collections are also
noticeably more difficult than the NLP layout collections. This is also expected because the XLA
collections contain more diverse graphs, while the NLP collections contain only graphs with the
Transformer architecture. In terms of top-K errors, the model struggles to identify fast candidates on
Layout:XLA:Random. If we use the learned cost model to select the top configuration, we will be
on average 10–20% slower than the known optimal configuration. Even if we consider the top 10
candidates, we will still be on average 5–13% off. We hypothesize that this is due to the combination
of the diversity of both graphs and configurations in this collection. The correlation and top-K errors
vary wildly across graphs (programs) as shown in Table 7 in Appendix C.

5.4 Results on Tile Collection

Table 2 also reports the average top-K errors on the tile collection. The average top-1 error of the
best model is comparable to the original TPU learned cost model paper’s [41]. Figure 5 compares
alternative choices. Similar to the original paper, our results show that combining configuration
features with node features early (early-join) is superior to combining configuration features with a
reduced graph embedding later (late-join). Using a ranking loss (ListMLE) is much more effective
than using MSE. Additionally, we compare the choice of a GNN between GraphSAGE and GCN,
and find they are comparable. We also provide an MLP baseline without a GNN, and confirm that a
GNN is essential to achieve good accuracy.

9



Appendix C reports additional results including per-graph evaluation metrics, an additional ablation
study, and model’s prediction overhead. Note that our dataset is not exactly the same as the internal
dataset used in the original papers [41, 10], but they share a large number of overlapping graphs.

6 Discussion and Future Directions

There are many potential improvements to be made on top of the baseline models we provide. First,
we observe that a tensor computation graph typically contains repeated subgraphs, representing
repeated blocks of neural network layers. One direction is to leverage this repeated structure to devise
a more compact representation that is easier to learn. Second, as mentioned earlier, the dataset may
contain some types of graphs, e.g., ResNet, significantly more than others. This skew may make the
learned model perform well on common types of graphs, but poorly on uncommon types. One may
investigate how to address this data imbalance problem to improve the quality of the learned model.
Finally, while we know that developing a purely analytical cost model is extremely difficult, training
an accurate learned cost model is not easy either, especially when graphs are large. One idea is to
combine the best of both worlds, using analytical modeling when easy to do and letting the learned
model make corrections to the analytical estimates.

We plan to continue improving our dataset in multiple aspects. First, we would like to include
more diverse graphs. Prior approaches generate random programs for training data [2, 14, 5]. We
deliberately avoid randomly generated programs in our dataset because we would like a model trained
on the dataset to achieve high performance on realistic programs used in production, instead of
achieving moderate performance on both real-word and randomly generated programs. However, we
acknowledge that the diversity of graphs in the dataset is extremely important for the generalization
of the model. One way to generate more realistic tensor programs is to leverage Neural Architecture
Search [84, 68, 69, 85, 47, 46, 60, 64, 76, 23]. We leave this as future work, potentially the next
version of the dataset. Second, we would like to include data measured on other hardware platforms
beyond TPUs, such as CPUs and GPUs. Nonetheless, we believe that the general techniques of
training an accurate learned performance model (e.g., improvements on GNNs, Graph Segment
Training method, etc.) are applicable to other hardware targets; therefore, the improvements coming
out from experimenting with the current version of the dataset should also benefit other hardware
platforms as well. Many compiler optimizations are also common across multiple hardware backends.
For example, the tile size selection has shown to be one of the most important optimizations across
all widely used hardware (i.e., CPUs, GPUs, and TPUs) and even custom accelerators. Layout
optimizations are also applicable on CPUs and GPUs, but the layout options on CPUs and GPUs may
be limited if the compiler depends on pre-optimized library kernels.

We hope that TPUGRAPHS will propel advances in compilers. In particular, researchers may be able
to extract insights on how to improve code generation for tensor programs. For example, which
information in a tensor computation graph is important to make various optimization decisions? How
can we build an accurate cost model for an important class of hardware architectures? Can a learned
representation for tensor programs guide various tensor compiler optimizations?
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A Additional Dataset Information

Documentation. The documentation of the dataset can be found at https://github.com/

google-research-datasets/tpu_graphs. The github repo contains instructions and code on
how to download and use the dataset.

License. The dataset is licensed under the Creative Commons Attribution 4.0 International License
(CC-BY). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.
0/. All code is licensed under the Apache License, Version 2.0 (Apache 2.0); You may obtain a copy
of the Apache 2.0 license at: https://www.apache.org/licenses/LICENSE-2.0.

Author Statement. The authors bear all responsibility in case of violation of rights. The authors
will monitor the issues and provide necessary maintenance to ensure the access to the data.

A.1 Dataset Comparison

Table 3: Comparison of TPUGRAPHS properties with other large-scale graph property prediction
datasets. * provide only programs, but one may use them in CompilerGym [18] environment to
obtain performance measurements when compiling with specific configurations. † provides randomly
generated programs.

Application Dataset Graphs (+ Configs) Avg. Nodes
ML Program Perf TPUGRAPHS (Layout) 31,091,253 7,705

TPUGRAPHS (Tile) 12,870,077 40
TenSet [80] 51,577,248 5–10

Other Program Perf Database [31] 300,000 < 100
BHive [15] 330,018 4
AnghaBench* [19] 1,041,333 62
CSmith*† [75] 530,000 5,845

Program Analysis CodeNet [25] 13,916,868 200–500
OGBG-CODE2 [33] 452,741 125
TBCNN [52] 52,000 190

Cybersecurity MalNet [27] 1,262,024 15,378
Molecule PCBA [58] 437,929 26

MUV [61] 93,087 24
Bioinfomatic DD [22] 1,178 284

OGBG-PPA [33] 158,100 243
Social Network Reddit-T [62] 203,088 24

REDDIT-12K [74] 11,929 391
REDDIT-5K [74] 4,999 509

A.2 Execution Time Measurement

We measure the execution of a compiled binary on a single TPU chip using random input data. Note
that some of the graphs in the layout collection must be run on multiple TPU chips. However, doing
so is not economically viable for autotuning a large number of models and generating the dataset.
Therefore, the autotuner modifies the final optimized graph (after all graph-level optimizations) to
make it runnable on a single TPU chip in two ways. First, we replace each collective communication
operation (e.g., all-reduce and all-gather) with a no-op that simply allocates the right amount of output
buffer (with undefined values). This means the measured execution time ignores the time taken by
collective operations. We think this is reasonable because layout decisions rarely affect the execution
time of collective operations, and we care about the ranking of execution time rather than the absolute
time. The second modification we perform is to replace dynamic loop bounds with fixed loop bounds.
Without such replacement, a dynamic loop bound may depend on random input data, resulting in an
extremely large loop bound, making the program run unrealistically slowly. The use of random or
undefined data, however, does not affect the execution time of a compute operation (e.g., convolution)
because the timing does not depend on the input data. Because of these modifications, our absolute
execution time measurement may be inaccurate in some cases, but this estimation approach has been
used in production to tune graph-level optimizations and deliver large speedups on many important
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models. Therefore, we believe it is reasonable to use the execution time measured by the approach
outlined here as a prediction target.

A.3 Graphs in Dataset

XLA Collection. Graphs in the XLA collection are collected from open-source models from the
following sources:

• https://github.com/tensorflow/models

• https://github.com/tensorflow/tensorflow

• https://github.com/tensorflow/tensor2tensor

• https://github.com/tensorflow/tpu

• https://github.com/google/brax

• MLPerf [50, 35]

NLP Collection. Graphs in the NLP collection are all collected from TensorFlow Hub. Table 4
reports the architectures and hyperparameters of the models used to generate graphs in this collection.

Table 4: Architectures and hyperparameters of models in the NLP collection.

Model Name Source Layers Hidden Size Attention Heads

bert_en_uncased Devlin et al. [20] 12, 24 768, 1024 12, 16
bert_en_wwm_uncased Devlin et al. [20] 24 1024 16
bert_en_cased Devlin et al. [20] 12, 24 768, 1024 12, 16
bert_en_wwm_cased Devlin et al. [20] 24 1024 16
bert_multi_cased Devlin et al. [20] 12 768 12
small_bert Devlin et al. [20] 2, 4, 6, 8, 10, 12 128, 256, 512, 768 2, 4, 8, 12
albert_en Lan et al. [44] 12, 24 768, 1024, 2048, 4096 12, 16, 32, 64
electra Clark et al. [16] 12, 24 256, 768, 1024 4, 12, 16
experts_pubmed TensorFlow Hub 12, 24 768, 1024 12, 16
experts_wiki_books TensorFlow Hub 12, 24 768, 1024 12, 16
talking_heads Shazeer et al. [63] 12, 24 768, 1024 12, 16

B Hyperparameters

Table 5: Hyperparameters of our baseline models. We report the result of the best version of each
baseline variant by tuning opcode embedding size, hidden size, and number of GNN layers from the
values specified.

Parameter Considered Values
Layout Models Tile Size Models

Opcode embedding size 64, 128 64, 128, 256
Hidden size 100, 200 64, 128
GNN layers 2, 3, 4 2, 3
Batch size 20 100
Learning rate 0.001 0.01, 0.001
Training iterations 200 500
Loss MSE, ListMLE MSE, ListMLE
Optimizer Adam Adam

C Additional Results

C.1 Prediction Accuracy

Layout Collections. Table 6 compares alternative choices in terms of the model architecture and
the training method on the Layout:XLA:Random collection. GST implements the Graph Segment
Training method [10] without historical embedding and segment dropout. Unlike in the original
paper, we partition a graph based on a topological order of nodes. At training time, we randomly pick
a segment — covering nodes 2 [i, i+ segment length), where i is drawn at random — for backward
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Table 6: Kendall’s Tau correlation and prediction errors (%) of different model variants and training
methods on the Layout:XLA:Random collection.

Model Kendall ⌧ Top-1 E % Top-10 E % Top-100 E %

Val Test Val Test Val Test Val Test

GST 0.13 0.32 29.2 8.1 12.6 6.2 6.0 2.3
Full Graph 0.19 0.37 33.3 12.2 14.5 4.8 6.8 3.3
MSE loss 0.03 0.31 24.5 8.1 17.7 5.4 6.0 1.3
Random 0.002 0.007 24.3 97.1 4.7 10.0 0.1 1.9

Table 7: Per-program Kendall’s Tau correlation and prediction errors (%) on the validation set of the
Layout:XLA collections of a few selected models.

Layout:XLA:Random Layout:XLA:Default

Program GST Full Graph MSE loss GST

Kendall Top-1 Kendall Top-1 Kendall Top-1 Kendall Top-1

bert_pretraining.4x4.fp16 0.23 8.9 0.65 0.0 0.04 3.2 0.25 8.9
inception_v3_batch_128_train -0.34 70.3 -0.49 63.8 -0.48 63.4 0.27 3.0
mlperf_bert_batch_24_2x2 0.39 0.5 0.24 0.5 -0.01 21.1 0.21 7.2
resnet50.4x4.fp16 0.13 53.6 0.10 69.0 0.12 53.6 0.15 9.6
resnet_v1_50_official_batch_128_bf16 0.10 17.1 0.07 17.1 0.09 66.6 -0.05 0.7
tf2_bert_pretrain_dynamic_batch_size 0.52 5.5 0.66 5.9 0.01 19.5 0.18 1.4
unet_3d.4x4.bf16 0.23 1.6 0.19 1.6 0.30 1.6 -0.03 0.0

propagation. Note that all nodes and edges are used in a forward pass. We use a segment length of
5,000. Results in the main paper (Table 2) are from the GST model. Full Graph uses the entire graph
for forward and backward passes during training (a typical method). Unlike all other models, MSE
loss uses Mean Squared Error loss function: it aims to model the exact runtime of every configuration,
rather than the ranking of configurations.

Table 7 further reports per-program ranking correlation and top-K errors of a few selected baseline
models on the programs (graphs) in the validation set. As shown in the table, the evaluation scores
vary widely across different graphs. We show the scores only on the validation set because we do not
want to reveal the details about the test set for competition purposes.

Tile Collection. Table 8 summarizes the overall average prediction errors of all the baseline models.
Table 9 further reports per-program average prediction errors across each program’s kernel subgraphs
of a few selected model variants with their best hyperparameter values.

C.2 Prediction Overhead

Table 10 reports the evaluation time of a configuration when using the real evaluation (compiling
using a CPU and executing on a TPU) and using the model prediction (on a CPU) for graphs in the
validation set. The real evaluation takes 94–2400x longer than the model prediction. This confirms
that it is significantly cheaper to run a learned cost model to estimate the execution time, than to
measure the actual execution time (which would require a long compilation). Also note that the graph
feature extraction time can be amortized across multiple configurations of the same graph, so the
model prediction will be even faster in practice.
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Table 8: Prediction errors (%) on the Tile:XLA collection of different models, where Early and Late

refer to the early-join and late-join options of the configuration features. Each line trains three times
(with the best hyperparameter configuration per architecture), and chooses the model with the median
performance (according to the top-1 error on the entire validation set).

Model / Training Top-1 Error % Top-5 Error % Top-10 Error %

Loss Type Val Test Val Test Val Test

ListMLE EarlySAGE 10.5 9.1 3.0 4.2 1.8 2.8
EarlyGCN 11.5 11.4 3.6 4.7 2.4 3.3
LateSAGE 124.8 71.8 53.8 31.7 30.3 19.2
LateGCN 17.2 17.4 6.7 7.3 4.4 4.9
MLP 84.5 52.9 39.7 28.7 25.6 17.0

MSE EarlySAGE 19.0 22.0 8.2 10.3 5.6 6.5
EarlyGCN 19.4 21.0 8.7 9.9 6.4 7.1
LateSAGE 117.0 67.4 55.2 29.5 33.4 18.6
LateGCN 87.7 67.0 40.0 29.2 27.3 20.6
MLP 117.5 65.3 69.0 32.8 48.7 22.3

Table 9: Per-program prediction errors (%) on the validation set of the Tile:XLA. Each line trains
three times (with the best hyperparameter configuration per architecture), and chooses the model with
the median performance (according to the top-1 error on the entire validation set). These models are
trained with ListMLE. A top-K error of a program is an average of top-K errors of all kernels in the
program. The number of kernels per program is in paranethesis.

Program (number of kernels) MLP EarlyGCN EarlySAGE LateGCN LateSAGE

Error at top: 1 5 1 5 1 5 1 5 1 5

bert_pretraining.4x4.fp16 (56) 60 25 7 2 6 1 19 5 118 43
inception_v3_batch_128_train (264) 119 53 8 2 6 1 10 3 170 77
mlperf_bert_batch_24_2x2 (75) 34 14 13 5 15 4 23 10 105 33
resnet50.4x4.fp16 (103) 78 33 16 3 15 4 21 8 97 33
resnet_v1_50_official_batch_128_bf16 (108) 75 49 15 6 13 4 23 11 91 50
tf2_bert_pretrain_dynamic_batch_size (60) 37 13 8 2 5 2 18 7 60 19
unet_3d.4x4.bf16 (10) 110 53 30 3 48 6 17 0 124 69

Table 10: Real evaluation time vs model prediction time. The ‘Batch Inference’ column reports
time to perform batch inference on 100 configurations divided by 100, while the ‘Inference’ column
reports time to perform inference on a single configuration. The real evaluation takes 94–2400x
longer than the model prediction.

Program Real Evaluation Time (s) Model Prediction Time (s)

Compilation Execution Feature Extraction Batch Inference Inference

bert_pretraining.4x4.fp16 45 2.8 0.2 0.02 0.1
inception_v3_batch_128_train 135 3.6 0.3 0.01 0.09
mlperf_bert_batch_24_2x2 104 22 0.6 0.02 0.1
resnet50.4x4.fp16 126 0.9 0.2 0.006 0.08
resnet_v1_50_official_batch_128_bf16 99 1.7 0.1 0.07 0.08
tf2_bert_pretrain_dynamic_batch_size 44 2.8 0.4 0.02 0.1
unet_3d.4x4.bf16 475 1.4 0.1 0.004 0.08
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