Check for
Updates

GitKit: Learning Free and Open Source Collaboration in Context

Grant Braught

Dickinson College

Carlisle, PA, USA
braught@dickinson.edu

Lori Postner

Nassau Community College
Garden City, NY, USA
lori.postner@ncc.edu

ABSTRACT

Modern version control tools and workflow practices are required
skills for nearly all production software development, making them
essential for students and in high demand among employers. Since
these tools and processes were created for distributed, asynchro-
nous collaboration on large scale projects, teaching them in an
authentic context that makes clear their utility and design presents
myriad challenges for both faculty and students. The GitKit is a
snapshot of the FarmData2 Humanitarian Free and Open Source
(HFOSS) project’s artifacts (code, issues, documentation, etc.) frozen
at a particular point in time and packaged with learning activities,
an instructor guide, and a choice of containerized development en-
vironments. The GitKit thus provides students with the authentic
context of a real-world project in which to learn and practice key
Git and GitHub skills and workflows, while mitigating many of
the challenges of doing so in an educational setting. The GitKit,
including its learning activities and development environments
are described in sufficient detail to encourage instructor adoption
and feedback. A pilot study of student experiences with the GitKit
is promising, suggesting that students gained an understanding
of FOSS concepts and key skills, noticed automated guidance and
feedback built into the development environment, and found it
helpful in their learning. Future plans for the GitKit based on these
surveys and instructor experiences with pilot uses are described
along with plans for the development of HFOSS Kits for teaching
and learning of other software development and aligned skills in
authentic contexts.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; « Software and its engineering — Open source model.

KEYWORDS

Git, GitHub, Workflow, Curricula, Open Source, Humanitarian

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03...$15.00
https://doi.org/10.1145/3626252.3630864

Stoney Jackson
Western New England University
Springfield, MA, USA
hjackson@wne.edu

Wesley Shumar
Drexel University
Philadelphia, PA, USA
shumarw@drexel.edu

144

Cam Macdonell
MacEwan University
Edmonton, AB, Canada
macdonellc4@macewan.ca

Karl R. Wurst
Worcester State University
Worcester, MA, USA
kwurst@worcester.edu

ACM Reference Format:

Grant Braught, Stoney Jackson, Cam Macdonell, Lori Postner, Wesley Shu-
mar, and Karl R. Wurst. 2024. GitKit: Learning Free and Open Source Col-
laboration in Context. In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1 (SIGCSE 2024), March 20-23, 2024, Port-
land, OR, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3626252.3630864

1 INTRODUCTION

Modern software development requires developers to know and
understand version control tools and workflow practices. Many
of these tools (e.g. Git/Mercurial, GitHub/GitLab) and workflows
(forking/branching) were developed to facilitate collaboration in
free and open source software (FOSS) communities [1, 15, 23, 28].
The usefulness of these tools and processes has now made them
required skills for nearly all software development whether it be
proprietary, FOSS, or research code. As a result these skills are in
high demand [11] and are seen as essential for students [24].

However, because these tools and processes were created to
facilitate large scale, asynchronous, distributed collaboration, un-
derstanding their utility and rationale can be challenging for stu-
dents learning from small individual assignments. The alternative
of learning these topics in a more authentic context, such as that
of a live FOSS project, presents a wide range of challenges. For
students, the complexity of the project can be overwhelming, ob-
scuring key skills and concepts. Requiring students to interact with
an unknown FOSS community can add unnecessary stress and anx-
iety to assignments, result in delays in receiving feedback, and can
be frustrating or discouraging when communications are not at
an appropriate level for students. Students may get “scooped” by
another contributor who completes the task they are working on
more quickly. While getting “scooped” does not negate the learn-
ing that happens, it can be quite demotivating. Similarly students
wanting to repeat an activity for more practice may find it difficult
to find opportunities at an appropriate level in a live project. For
faculty, the constant evolution of a FOSS project quickly renders
assignments obsolete, making it difficult to amortize the costs of
creating high quality assignments across semesters. Additionally,
having a class of students suddenly and/or repeatedly use a partic-
ular FOSS project for an assignment may place an unreasonable
burden on its community.

The GitKit is an instance of a more general idea that we call FOSS
Kits [18], which provide a general approach to teaching software
development skills and concepts in more authentic contexts while

https://doi.org/10.1145/3626252.3630864
https://doi.org/10.1145/3626252.3630864
https://doi.org/10.1145/3626252.3630864
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630864&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

mitigating many of the challenges just described. A FOSS kit is a
snapshot of an existing FOSS project’s artifacts (code, issues, docu-
mentation, etc.) “frozen” at a particular point in time and packaged
with learning activities, an instructor guide, and a containerized
development environment. For example, the GitKit freezes the code,
documentation and parts of the issue tracker from the FarmData2
project [9].

By freezing project artifacts a Kit can be repeatedly deployed
in the same initial state. This insulates the Kit from the evolution
of the live project, creating a stable instance of the project and
allowing learning activities to be revised and reused over many
semesters. Because the Kit is deployed separate from the live project,
actions by the students do not disrupt or distract the live project.
Similarly, instructors and students are able to take on project roles
that may not be available to them in the live project (e.g. main-
tainers). Instructors are able to provide timely responses to the
questions, issues, and pull requests at a level appropriate to the
students’ backgrounds. In the GitKit, for example, the instructor
acts as a maintainer demonstrating to students how changes are
merged upstream, ensuring that students are not “scooped”, and
introducing merge conflicts for students to resolve. The container-
ized development environments provided, called KitClients, include
a virtual assistant, called the Kit-tty, that gives students immediate
context-sensitive guidance and feedback in response to common
missteps. Other automations built into the kit simulate commu-
nity interaction as students complete hands-on activities, providing
more immediate responses than may be possible by the instructor.

Also, we have made the philosophical decision to base our FOSS
Kits on humanitarian FOSS (or HFOSS) projects that have at their
core a mission that broadly aims at the betterment of the human
condition (e.g. medical care, disaster relief, etc) [7, 20, 25]. We refer
to this subset of Kits as HFOSS Kits. These projects provide the
same opportunities for technical learning as FOSS projects, but
also bring the potential to broaden participation in computing.
These projects provide an opportunity to motivate students by
presenting computing, not just as technology, but as a powerful
means for students to positively impact causes and communities
that they care about [2, 8] and can help counter the “computing-is-
coding myth” [19, 30]. Many of these projects connect to on-campus
community engagement initiatives [13, 22, 29, 31] and to more
general efforts on computing for social good [14]. There is growing
empirical evidence that given the choice, most students prefer to
work on projects with a human focus, and this preference is stronger
among women and possibly also among underrepresented groups
in the discipline [4, 16, 27].

The remainder of this article describes the GitKit in detail (Sec-
tion 2), presents a pilot study of students’ experiences with the
GitKit (Section 3) and outlines our future plans (Section 4).

2 THE GITKIT

The GitKit is an HFOSS Kit that introduces students to fundamental
skills and concepts used in collaborative software development. Its
learning materials are organized into a four-topic sequence that
guides students through a complete FOSS development workflow
[1]. Each topic is described in Section 2.1.1. It has been used by
students with varying levels of experience which we will elaborate

145

Grant Braught et al.

on in Section 2.2.1 Students complete hands-on activities in one of
the KitClient containerized development environments provided
with the GitKit. To support students, these environments are pre-
installed and configured with all required software and include
the Kit-tty virtual assistant. In addition to hands-on activities for
students, the GitKit supports faculty with slides and discussion
activities for each topic, an instructor guide, and instructions for
deploying the kit for use.

The authentic context for GitKit is based on a snapshot of the
FarmData2 project. FarmData2 supports farmers in day-to-day op-
eration and record keeping needs of their small organic diversified
vegetable farms. However, no farming knowledge is necessary for
completing GitKit. FarmData2 simply provides the authentic con-
text of a full FOSS project while subtly highlighting a humanitarian
application of software development. The snapshot of FarmData2
includes the full code base and documentation, as well as an issue
tracker seeded with tickets captured from the project and tickets
specifically created for GitKit. Issues described by the tickets that
students address in GitKit require only small edits to Markdown
documentation located in the root of the project. This allows stu-
dents to work authentically in the project, but also to focus on
the concepts, tools and processes, without being overwhelmed by
technical details. Relatedly, FarmData2 was created as an Education-
Oriented HFOSS project [3]. These are real-world FOSS projects that
are intentionally designed to engage undergraduate students in
their development.

2.1 Student Experience

This section gives an overview of the GitKit from the students’
perspective. It describes each of the four GitKit topics, the available
KitClients, illustrates how the Kit-tty assists students, and provides
examples of the way GitKit simulates project community.

2.1.1 The GitKit Topics. The GitKit covers a sequence of four top-
ics that begin by introducing students to FOSS communities and
then guides them through the essential concepts, tools, and skills
necessary to contribute to an existing FOSS project using a forking
workflow. Each topic includes classroom materials and a hands-on
student learning activity. The classroom materials introduce the im-
portant terminology, ideas, and concepts and provide opportunities
for the instructor to round out the experience by illustrating some
of the actions performed by project maintainers. The classroom
materials focus on concepts and are largely tool and platform neu-
tral. However, the hands-on activities are currently based on Git
and GitHub and use VS Code/Codium. We are currently working
to allow GitKit to also work on GitLab. Nominal use of the GitKit
requires four 75-minute class periods, one for each topic, with stu-
dents spending 2-3 hours between each period completing hands-on
activities. However, as described in Section 2.2.1, instructors have
found the materials adaptable to other deliveries.

Community and Collaboration. The first topic begins by intro-
ducing students to what Open Source communities are and how
they collaborate to build software. Students begin by watching
"Open Source Basics" (a.k.a. the “Cookie” video) [21]. This video
introduces key vocabulary (e.g. upstreaming, branch, fork), roles
(e.g. contributor, maintainer), and the overall collaborative process

GitKit: Learning Free and Open Source Collaboration in Context

of Open Source in a very approachable way. Additional in-class
activities aim to further develop students’ understanding of FOSS
communities via exploration of the principles on which they operate
(e.g. transparency, inclusivity, meritocracy) [17], and the additional
roles that individuals may take on (e.g. user, requester, leader). The
classroom materials then map the concepts of the Open Source con-
tribution process to the technical terms that are used in the forking
workflow (upstream, fork, origin, clone, edit, push, pull request). Di-
agrams like the example shown in Figure 1 are used throughout
the materials to connect terminology and concepts to the tools and
practices.

Your
OV‘I'gfn .
Repository Your Main ™
4 Remote Project Upstr:am
Copy | Repository

Remote On GitHub (Browser)

Local On Your Machine (git/CLI)

\(ouf
Local

Repositom

Figure 1: Vocabulary and steps in the basic forking workflow

Local bopy
Of Your

Copy

In the hands-on learning activity students take their conceptual
understanding and turn it into practice. They learn to use GitHub
and Git to fork and clone the FarmData2 GitKit repository that has
been deployed for their use (See 2.2.2). This first topic concludes
with each student visiting the issue tracker and claiming an issue
that is labeled with “Round 1”. Each “Round 1” issue requires a
small edit to one of the Markdown files in the root of the repository
and have been engineered not to create merge conflicts.

Working Local and Upstreaming. The second topic focuses on
making changes to a local copy of the project and offering them
back to the upstream project. The classroom materials focus on con-
cepts such as creating feature branches, and staging and committing
changes to them. In the hands-on activities, students learn the git
commands that realize these concepts and practice them to fix their
“Round 1” issue. Lastly they carry out the push and pull request steps
of the workflow. After completing the second topic, each student
has made a pull request that fixes their “Round 1” issue.

Staying Synchronized. The third topic begins with the instructor
demonstrating how a project maintainer reviews and merges pull
requests into the upstream. As students’ pull requests are merged it
becomes evident that students’ local and origin repositories are now
“out of synch” with the upstream. The process of pulling the main
branch from upstream and pushing it to origin is introduced as the
means of “synchronizing” with upstream. In the hands-on activities
students learn and use the git commands for synchronizing their
repositories with upstream. The activity concludes with students
practicing the skills and concepts from the first two topics by claim-
ing a “Round 2” issue and creating a pull request to fix it. Contrary

146

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

to the “Round 1” issues, the “Round 2” issues are engineered so that
merge conflicts can be introduced.

Merge Conflicts. The final topic focuses on the causes and resolu-
tions of merge conflicts. Prior to this activity, the instructor creates a
pull request for a feature branch included in the GitKit that contains
changes specifically designed to cause a merge conflict with each
of the “Round 2” issues. Reviewing this pull request with students
illustrates how the changes in their pull request might conflict with
a pull request from another contributor. After this pull request is
merged, GitHub indicates that the students’ Round 2 pull requests
can no longer be merged automatically. The classroom materials
show how conflicting changes are detected and differentiated from
non-conflicting changes and how a merge tool can be used to re-
solve the conflicts. In the hands-on activities, students use what
they learned in the previous topic to synchronize their main branch
with the upstream repository. They learn the git commands to
merge those changes into their feature branch, creating the merge
conflict. They then use a merge tool to resolve the conflict, stage
and commit the changes, and push them to update their pull request.
Students complete this topic by observing that they have resolved
the merge conflict as evidenced by GitHub indicating that their pull
request can again be merged automatically.

2.1.2 The KitClients. A KitClient is a containerized development
environment for FOSS Kits, including the GitKit, in which students
complete the learning activities. There are currently two KitClients
that can be used with GitKit. They are functionally equivalent.
An instructor can choose which to use based on their class and
students. One KitClient is a Linux system with its own GUI desktop
that runs in a container and that students interact with in a window
on their machine. The other KitClient runs within Visual Studio
Code as a Dev Container and students interact with it through VS
Code on their machine. Whichever KitClient is chosen, students
complete all of the GitKit activities within the KitClient, ensuring
that they have the necessary tools and configuration. The use of
a KitClient is also what allows the GitKit to install the Kit-tty to
assist students in completing their assignments (see Section 2.1.3).
To run the KitClient, students themselves need only install Docker
and either a VNC Client (recommended for the Linux KitClient), or
VSCode and Git (required for the VSCode KitClient). Instructions
for these installations and starting the KitClients are relatively short
and are provided with GitKit.

2.1.3 The Kit-tty. The Kit-ttylis a virtual assistant that a FOSS
Kit, like the GitKit, customizes and adds into the KitClient when a
student begins using it to work on the Kit. Each kit customizes the
Kit-tty to catch common student errors and provide hints on how
to perform activity steps correctly. For example, in early uses of the
GitKit (pre Kit-tty) we observed students frequently committing
changes to the main branch rather than to their feature branch,
an action that should not happen in the forking workflow. This
error was typically not discovered until students had progressed
several steps further into the activity, and requires more advanced
Git skills to undo. Now when a student attempts to commit to the
main branch the Kit-tty prevents the commit and responds with a
helpful message as shown in Figure 2. The GitKit adds other Kit-tty
interventions that occur when students attempt to: merge a feature

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

branch into main (instead of vice versa); set the upstream remote
to the origin (instead of the upstream); clone the upstream (rather
than their fork); and clone one repository inside of another.

commit -m "Fixes spelling of init

ok ok e ok ok ok ok ke ok

You should no
You should be

=] ‘rtmg to the main branch,
ommitting to a feature branch

Here's how:

1. Create a feature branch, if you don't already have one.
git branch <branchname>
. Switch to that branch.
git switch <branchname>

. Retry your commit.

Figure 2: The Kit-tty preventing a commit to the main branch.

2.1.4 Community Automations. When working on a FOSS project,
contributors regularly interact with maintainers and other commu-
nity members through comments on tickets in the issue tracker and
pull requests. The GitKit, and FOSS kits more generally, can include
automations (e.g. GitHub Actions [12]) that simulate this type of
interaction for some common scenarios encountered in learning
activities. For example, when completing the first GitKit activity
students request to be assigned an issue by adding a comment to
its ticket in the issue tracker. An automation notices this comment,
assigns the issue to the student (if it hasn’t already been assigned
to someone else) and responds personally as a maintainer might:
“Great! I assigned you (@TheirUsername) to the issue. Have fun
working on it!” Several additional automations are planned for
future development (See Section 4).

2.2 Faculty Experience

This section provides additional information relevant to an instruc-
tor considering using the GitKit.

2.2.1 Delivering the GitKit. The instructor guide for the GitKit out-
lines a typical use case for the GitKit using the classroom materials
and the hands-on activity for each of the four topics. This use case
assumes that the GitKit is the students’ first formal exposure to
FOSS and the use of Git/GitHub. It requires four 75-minute class
periods and 2-3 hours outside of each class for students to com-
plete the hands-on activities. However, instructors have found the
GitKit to be adaptable to different educational settings, student ex-
perience levels and learning objectives. For example, an instructor
with students who have had prior exposure to Git fundamentals
(but not GitHub or the forking workflow) have skipped most of
the class materials and used the hands-on activities as in-class lab
activities rather than homework. Another organization delivered
the GitKit as a one-day workshop for students from low-income,
first-generation, underrepresented minority backgrounds. Another

IKit-tty is pronounced “kitty” and is a play on kit and tty, as the kit-tty output appears
in the tty ;) .

147

Grant Braught et al.

instructor is currently developing a set of Process Oriented Guided
Inquiry (POGIL) [26] activities to be used in place of GitKit’s more
traditional classroom materials. In lower level courses, or with less
experienced students, the first two topics could be spread over a
longer time and be used as a cohesive unit without continuing onto
the final two topics. It is worth mentioning that all of the work on
GitKit, and FOSS kits more broadly, is being conducted under open
licenses and welcomes participation, contribution and derivative
work. See Section 2.2.3 for more information and pointers to the
project resources.

2.2.2 Deploying GitKit. A faculty member wanting to use GitKit in
a class must deploy one or more instances of the Kit. Each deployed
instance contains a repository based on the “frozen” FarmData2
and a populated issue tracker that will support up to 32 students
(limited by the number of “Round 1” issues). To deploy an instance
of the GitKit, the faculty member runs a single docker command
providing it with the name of a GitHub organization where the kit
should be deployed and a GitHub personal access token (PAT). That
command creates the repository, populates the issue tracker, and
provides the branch used to introduce the merge conflicts at the
start of the fourth topic. The students in the class are then given
the URL of the deployed GitKit to use as their upstream repository
for the hands-on activities. To support more than 32 students, an
instructor can deploy multiple instances of the GitKit as shown in
Figure 3. Complete instructions for deploying the GitKit are given
in the instructor guide.

Frozen
Project X

Learning
Materials

Project X Freeze

/ Dep/oy

| Doy -

_
Deployed Kit 3
uses

_‘ A "
DeployadKllZ

Dsployed Kit 1

uses

=

Figure 3: A FOSS Kit with multiple Deployments

2.2.3 Licensing. All of the classroom materials, hands-on student
activities and instructor materials for the GitKit are provided for
use and adaptation under a Creative Commons CC-BY-NC-SA li-
cense [5] at: https://gitlab.com/hfossedu/kits/GitKit. The documen-
tation in the “frozen” FarmData2 repository is used under a CC-BY-
SA license [6] and its code is used under the GNU Public Licence v3
(GPL3) [10]. In addition, the KitClients and the tools used for creat-
ing and deploying FOSS kits (including the GitKit) are also openly
available under the GPL3 license at https://gitlab.com/hfossedu/kits.

3 METHODS & RESULTS

To evaluate the GitKit as an intervention, a pre-post survey was
designed to measure two things: the change in students’ under-
standing of and confidence in using FOSS tools due to the GitKit
intervention and students’ experiences using the GitKit as a tool.

GitKit: Learning Free and Open Source Collaboration in Context

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 1: Pre-Post Survey Averages >

Pre- Post- Pre- Post- Pre- Post-
Survey Questions Avg Avg Avg Avg Avg Avg
All Al Women Women Men Men
I can explain what it means for software to be Free and Open Source (FOSS). 3.96 434 3.88 4.20 4.00 438
I want to contribute to FOSS in the future. 3.90 4.09 4.00 4.30 3.82 3.94
Software developers can use their skills with FOSS to make society better. 439 446 455 4.40 430 444
I can use version control software (e.g. git). 3.81 434 388 4.30 3.73 4.44
I can use version control software to resolve code conflicts (e.g. merge changes). 3.45 4.15 3.55 4.30 334 4.16
I can explain the purpose of pull/merge requests. 3.63 443 344 4.20 3.82 455
Software development is collaborative. 454 465 477 4.70 443 4.66
Table 2: Post Survey Averages >

. Avg Avg Avg

Survey Questions Al Women Men

the Kit was easy to set up on my computer 3.84 4.20 3.77

the Kit set up instructions were easy to follow 421 430 4.38

the Kit activities helped me understand the concepts of version control 418 4.20 4.33

the Kit activities helped me learn the mechanics of version control 415 4.20 4.27

I completed the Kit activities 4.25 4.60 4.05

the Kit activities were difficult 2.78 3.10 2.72

the Kit helped me understand how software development is collaborative 4.12 4.30 4.27

the Kit activities required a reasonable amount of in-class time 3.65 3.90 3.66

the Kit activities required a reasonable amount of out-of-class time 35 3.60 3.27

I was motivated by using a project with real world clients 3.28 3.60 3.05

I was motivated by using a project that will help other people 3.34 3.70 3.11

I was motivated by using a project/tools I will see in the future 3.78 3.80 3.77

A pilot survey was conducted after students used the GitKit
during the fall 2022 semester. Upon review of the data it appeared
that students misunderstood several of the questions. The survey
was revised into a pre-post survey, carefully rewording questions
to be both clearer and more specific. The revised pre-post survey
was IRB approved and administered to students at two institutions
in spring 2023. These students used the GitKit in 2nd year courses
required for Computer Science majors. A total of 33 pre-surveys
and 32 post-surveys were analyzed.

3.1 Instruments

The goal of the pre-survey was to gather information about stu-
dents’ perceptions of their knowledge of skills and concepts that
would be covered in the GitKit prior to the intervention. The goal
of the post-survey was to measure any change in students’ per-
ceptions of their knowledge of the skills and concepts and also
to learn about students’ experiences using the GitKit. The seven
questions shown in Table 1 were included in both the pre- and
post-surveys, allowing an analysis of how their perceptions of their
knowledge was changed by the intervention. The twelve statements
shown in Table 2 were added to the post-survey to gain insights

2 Some Avg All columns are less than averages for men and for women because a
small number of students were excluded from the gender analysis, see section 3.2

148

into students’ experiences using the GitKit. On both the pre- and
post-survey, students were asked to rate their agreement with each
of the statements using a 5-point Likert scale: Strongly Disagree
(1), Disagree (2), Neutral (3), Agree (4), Strongly Agree (5). The
demographic questions about age, gender identity and race/ethnic
origin were included at the end of each survey.

3.2 Data Analysis

The pre-survey respondents were 9 women, 23 men and 1 non-
binary. The post-survey respondents were 10 women, 18 men, 1
non-binary and 3 students who chose not to specify a gender. A
gender analysis for women and men was completed to see if there
were any gender differences. The non-binary and the students who
did not answer the gender identity question were eliminated from
this analysis to reduce the risk of deanonymization due to small
sub-group samples. Race-ethnicity data was collected but not used
in the analysis as the sample groups were not large enough. Since
the number of surveys is small, the analysis is descriptive and does
not focus on statistical significance.

3.2.1 Pre-Post Survey Results. There were seven questions asked
in both the pre and post surveys about students’ understanding of
FOSS and FOSS tools. Table 1 demonstrates that the average student
rating on all the questions were higher on the post-survey than

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

on the pre-survey. The two questions regarding merge conflicts
and pull requests showed the largest gains. Table 1 also contains
the results for the same questions disaggregated by gender identity
and shows similar gains for both women and men in the questions
about merge conflicts and pull requests. However, men also had
a large gain in reported agreement with version control in gen-
eral. There are two questions where the averages for women went
down between the pre and post surveys. Each of these were heavily
influenced by a single student selecting Disagree.

3.2.2 Post Survey results. The post-survey contained questions
about the GitKit use. Table 2 shows the average rating for each
question for all students as well as the breakdown by gender iden-
tity. The set up questions about the GitKit received high ratings
with a mean of over 4.2. Students rated the questions about learn-
ing version control and understanding the collaborative nature of
software development with high ratings of over 4.0 on average.
Students did not indicate that the GitKit activities were difficult
and most students reported completing them. Students seemed to
find the amount of time dedicated to the activities both in and out
of class to be reasonable. Men and women rated most of the state-
ments similarly except for two of the motivation questions. Women
found the real-world context and the ability to help others as more
motivating than their male counterparts.

Of the 32 students who completed the post-survey, 18 reported
seeing at least one Kit-tty message. Of those, 13 stated that they
found the Kit-tty message helpful. Sample comments are,

o Yes because it explains exactly what you were doing wrong so
you can correct it in the future.

o Yes, Kit-tty cleared some confusion for me when I was having
a git issue.

o Yes the Kit-tty messages were helpful because they prevented
you from moving forward with any potentially dangerous
commands. They also provided you with hints or tips on what
[t]o do before you commit a command.

When asked if there was anything else the student would want to
provide feedback about one student stated,

o First thing is Kit-tty is very helpful in preventing many mis-
takes. Secondly, KitClient is useful when I don’t want those file
to stay or stuck in my local machine. Also KitClient has many
configuration set up already, so it’s convenient. One [of] the
bad but not worst thing about KitClient is about its setting up,
which many people encountered some kinds of errors during
the set up.

3.3

The data collected indicates that students gained an understanding
of FOSS concepts and tools through their use of the GitKit. This
documents that the GitKit does cover the intended concepts in a
way that students can comprehend. The built-in support of Kit-tty
was noticed by students and many found it helpful in their learning.
This data is being used to inform improvements to the GitKit and
students will be asked to complete the pre-post survey in future.

Discussion

149

Grant Braught et al.

4 FUTURE WORK

Encouraged by the results of the pilot study, we have many plans
for improving GitKit and developing other Kits.

Student-side improvements planned for GitKit include: adding
additional simulations of community interaction, such as checking
issue linking in student pull requests; adding the ability for students
to check their work at predefined points; adding the ability to reset
the GitKit back to a previous point; translating activities into a free
interactive e-book platform allowing asynchronous learning.

Instructor-side improvements planned for GitKit include: allow-
ing deployment to GitLab (not just GitHub); adding tools to make
it easier to capture project artifacts and create Kits from those
artifacts; instrumenting GitKit to capture student data for future
research into student learning and refinement of the GitKit and
activities; and translating activities into team-based, POGIL-style
in-class activities.

In addition to GitKit, the following FOSS Kits are currently
under development: Microservices; Issue Tracker/Ticket Writing;
Education-oriented HFOSS project-specific Kits for on-boarding
students; Sprint Planning; and Scrum Team Development Workflow.

We are also interested in developing the following FOSS Kits: a
CI/CD Kit; a Testing Kit (e.g. unit or e2e testing); Kits for assign-
ments to be paired with specific textbooks (e.g. refactoring, design
patterns, data structures, algorithms, etc.).

5 CONCLUSION

In this paper, we introduced GitKit which contains learning activi-
ties, an instructor guide, and a snapshot of the FarmData2 project.
When deployed, GitKit provides a repeatable, authentic, and isolated
development environment with simulated community responses,
under the control of instructors and their students, for learning
modern, distributed version control systems with a minimum of
software dependencies. It includes a four-topic lesson that is typi-
cally delivered over four 75-minute sessions and four homework
assignments. To interact with the learning environment, instructors
and students choose between one of two KitClients: a complete
Linux development environment in a container including a GUI,
or a VS Code Dev Container. These clients provide a consistent
interface for lessons and enable Kit-tty which acts as an automated
personal assistant, providing students with instant, useful, context
sensitive feedback as students work through the lessons.

This paper also described a pilot study that administered a pre-
post survey, before and after using GitKit, to 2nd year computer
science majors at two institutions. The data collected indicates
that students gained an understanding of FOSS concepts and tools
through their use of GitKit, and that the built-in support of Kit-tty
was noticed and many found it helpful in their learning.

If you would like to use GitKit, find other Kits, or help improve
or develop them, please join us at https://gitlab.com/hfossedu/kits.

ACKNOWLEDGMENTS

This work was supported under National Science Foundation Grants
DUE- 1225738, 1225688, 1225708, 2012966, 2013069, 2012979, 2012999,
and 2012990. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF.

https://gitlab.com/hfossedu/kits

GitKit: Learning Free and Open Source Collaboration in Context

REFERENCES

(1]

[2

—

= 9
R

=
X0,

[10

[11]

[12

[13]

=
it

[15]

[16]

Atlassian. Unspecified. Forking Workflow. Atlassian. https://www.atlassian.com/
git/tutorials/comparing- workflows/forking- workflow

S. Beyer. 2008. Predictors of Female and Male Computer Science Students’ Grades.
Journal of Women and Minorities in Science and Engineering 14 (2008), 377-409.
https://doi.org/10.1615/JWomenMinorScienEng.v14.i4.30

Grant Braught, Steven Huss-Lederman, Stoney Jackson, Wes Turner, and Karl R.
Wurst. 2023. Engagement Models in Education-Oriented H/FOSS Projects. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 409-415. https://doi.org/10.1145/3545945.3569835

Grant Braught and Farhan Siddiqui. 2022. Factors Affecting Project Selection in an
Open Source Capstone. In Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education Vol. 1 (Dublin, Ireland) (ITiCSE "22).
ACM, New York, NY, USA, 358-364. https://doi.org/10.1145/3502718.3524760
Creative Commons. Unspecified. Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0). Creative Commons. https://creativecommons.
org/licenses/by-nc-sa/4.0/

Creative Commons. Unspecified. Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-SA 4.0). Creative Commons. https://creativecommons.org/
licenses/by-sa/4.0/

Heidi J. C. Ellis. 2022. Humanitarian FOSS. TeachingOpenSource.
teachingopensource.org/hfoss/

Heidi J. C. Ellis, Ralph A. Morelli, Trishan R. de Lanerolle, Jonathan Damon, and
Jonathan Raye. 2007. Can Humanitarian Open-source Software Development
Draw New Students to CS?. In Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education (Covington, Kentucky, USA) (SIGCSE "07). ACM,
New York, NY, USA, 551-555. https://doi.org/10.1145/1227310.1227495
FarmData2. 2022. The FarmData2 Project. FarmData2. https://github.com/
DickinsonCollege/FarmData2

Free Software Foundation. 2007. GNU GENERAL PUBLIC LICENSE. Free Software
Foundation. https://www.gnu.org/licenses/gpl-3.0.txt

The Linux Foundation. 2022. The 10th Annual Open Source Jobs Report: Critical
Skills, Hiring Trends, and Education. https://linuxfoundation.org/tools/the-
10th-annual-open-source- jobs-report/

GitHub. 2023. GitHub Actions documentation. GitHub. https://docs.github.com/
en/actions

Mark H. Goadrich, Michael Goldweber, Matthew C. Jadud, Sarah Monisha
Pulimood, and Samuel A. Rebelsky. 2019. Civic Engagement Across the Com-
puting Curriculum. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, SIGCSE 2019, Minneapolis, MN, USA, February 27
- March 02, 2019, Elizabeth K. Hawthorne, Manuel A. Pérez-Quifiones, Sarah
Heckman, and Jian Zhang (Eds.). ACM, New York, NY, USA, 649-650. https:
//doi.org/10.1145/3287324.3287335

Mikey Goldweber, Lisa Kaczmarczyk, and Richard Blumenthal. 2019. Computing
for the Social Good in Education. ACM Inroads 10, 4 (nov 2019), 24-29. https:
//doi.org/10.1145/3368206

Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-Based Software Development Model. In Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 345-355.
https://doi.org/10.1145/2568225.2568260

Pawel Grabarczyk, Alma Freiesleben, Amanda Bastrup, and Claus Brabrand. 2022.
Computing Educational Programmes with More Women Are More about People

http://

150

[17

(18

[20

[21

[22

[23

[24

[28

[29

@
=

(31]

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

& Less about Things. In Proceedings of the 27th ACM Conference on on Innovation
and Technology in Computer Science Education Vol. 1 (Dublin, Ireland) (ITiCSE °22).
ACM, New York, NY, USA, 172-178. https://doi.org/10.1145/3502718.3524784
Red Hat. 2023. The Open Source Way. Red Hat. https://opensource.com/open-
source-way

Stoney Jackson, Karl R. Wurst, Grant Braught, and Cam Macdonell. 2023.
Kits: Creating Repeatable Learning Experiences Using Real HFOSS Projects.
In Proceedings of the 54th ACM Technical Symposium on Computer Science Ed-
ucation. Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3545945.3569835

Ralph Morelli, Allen Tucker, Norman Danner, Trishan R. De Lanerolle, Heidi
J. C. Ellis, Ozgur Izmirli, Danny Krizanc, and Gary Parker. 2009. Revitalizing
Computing Education Through Free and Open Source Software for Humanity.
Commun. ACM 52, 8 (Aug. 2009), 67-75. https://doi.org/10.1145/1536616.1536635
R. A. Morelli, Heidi J. C. Ellis, Trishan de Lanerolle, Jonathan Damon, and Christo-
pher Walti. 2007. Can student-written software help sustain humanitarian FOSS?.
In The 4th International Conference on ISCRAM. 41-44.

Sarah Moyle. 2014. Open Source Basics. Sarah Moyle. https://www.youtube.com/
watch?v=upxUAI-fAtE

Christian Murphy, Kevin Buffardi, Josh Dehlinger, Lynn Lambert, and Nanette
Veilleux. 2017. Community Engagement with Free and Open Source Software. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education (Seattle, Washington, USA) (SIGCSE °17). ACM, New York, NY, USA,
669-670. https://doi.org/10.1145/3017680.3017682

Dirkjan Ochtman. 2011. Mercurial. In The Architecture of Open Source Applications,
Greg Wilson Amy Brown (Ed.). Vol. 1. lulu, Chapter 12.

The Joint Task Force on Computing Curricula. 2023. Software Engineering
(SE). In Computer Science Curricula 2023. 314-336. https://csed.acm.org/wp-
content/uploads/2023/03/Version-Beta-v2.pdf

Esteban Parra, Sonia Haiduc, and Rebecca James. 2016. Making a Difference: An
Overview of Humanitarian Free Open Source Systems. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C). 731-733.
POGIL. 2023. What is POGIL? POGIL. https://pogil.org/what-is-pogil

Lori Postner, Gregory W Hislop, and Heidi J.C. Ellis. 2023. Humanitarian Applica-
tions Increase Interest and Motivation of Women in Computing. In Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto
ON, Canada) (SIGCSE 2023). Association for Computing Machinery, New York,
NY, USA, 416-422. https://doi.org/10.1145/3545945.3569832

Susan Potter. 2011. Git. In The Architecture of Open Source Applications, Greg Wil-
son Amy Brown (Ed.). Vol. 2. lulu, Chapter 6.

Sarah Monisha Pulimood, Kim Pearson, and Diane C. Bates. 2020. Encouraging CS
students to compute for social good through collaborative, community-engaged
projects. SIGCAS Comput. Soc. 49, 1 (2020), 21-22. https://doi.org/10.1145/
3447892.3447900

Allen Tucker, Ralph Morelli, and Trishan de Lanerolle. 2011. The humanitarian
FOSS project: Goals, activities, and outcomes. In Global Humanitarian Technology
Conference (GHTC), 2011 IEEE. IEEE, IEEE, Champaign, IL, USA, 98-101.

Karl R. Wurst, Christopher Radkowski, Stoney Jackson, Heidi J. C. Ellis, Darci Bur-
dge, and Lori Postner. 2020. LibreFoodPantry: Developing a Multi-Institutional,
Faculty-Led, Humanitarian Free and Open Source Software Community. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 441-447. https://doi.org/10.1145/3328778.3366929

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://doi.org/10.1615/JWomenMinorScienEng.v14.i4.30
https://doi.org/10.1145/3545945.3569835
https://doi.org/10.1145/3502718.3524760
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://teachingopensource.org/hfoss/
http://teachingopensource.org/hfoss/
https://doi.org/10.1145/1227310.1227495
https://github.com/DickinsonCollege/FarmData2
https://github.com/DickinsonCollege/FarmData2
https://www.gnu.org/licenses/gpl-3.0.txt
https://linuxfoundation.org/tools/the-10th-annual-open-source-jobs-report/
https://linuxfoundation.org/tools/the-10th-annual-open-source-jobs-report/
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://doi.org/10.1145/3287324.3287335
https://doi.org/10.1145/3287324.3287335
https://doi.org/10.1145/3368206
https://doi.org/10.1145/3368206
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/3502718.3524784
https://opensource.com/open-source-way
https://opensource.com/open-source-way
https://doi.org/10.1145/3545945.3569835
https://doi.org/10.1145/3545945.3569835
https://doi.org/10.1145/1536616.1536635
https://www.youtube.com/watch?v=upxUAI-fAtE
https://www.youtube.com/watch?v=upxUAI-fAtE
https://doi.org/10.1145/3017680.3017682
https://csed.acm.org/wp-content/uploads/2023/03/Version-Beta-v2.pdf
https://csed.acm.org/wp-content/uploads/2023/03/Version-Beta-v2.pdf
https://pogil.org/what-is-pogil
https://doi.org/10.1145/3545945.3569832
https://doi.org/10.1145/3447892.3447900
https://doi.org/10.1145/3447892.3447900
https://doi.org/10.1145/3328778.3366929

	Abstract
	1 Introduction
	2 The GitKit
	2.1 Student Experience
	2.2 Faculty Experience

	3 Methods & Results
	3.1 Instruments
	3.2 Data Analysis
	3.3 Discussion

	4 Future Work
	5 Conclusion
	Acknowledgments
	References

