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Accurately measuring the translations of objects between images is essential in many fields, including biol-

ogy, medicine, chemistry, and physics. One important application is tracking one or more particles by measuring

their apparent displacements in a series of images. Popular methods, such as the center-of-mass, often require

idealized scenarios to reach the shot noise limit of particle tracking and are, therefore, not generally applicable

to multiple image types. More general methods, like maximum likelihood estimation, reliably approach the shot

noise limit, but are too computationally intense for use in real-time applications. These limitations are signifi-

cant, as real-time, shot-noise-limited particle tracking is of paramount importance for feedback control systems.

To fill this gap, we introduce a new cross-correlation-based algorithm that approaches shot-noise-limited dis-

placement detection and a GPU-based implementation for real-time image analysis of a single particle.

I. INTRODUCTION

Tracking the motion of particles in a sequence of images

over time is a common practice in multiple research fields,

from biology [1–5] to chemistry [6–8], medicine [9, 10], and

physics [11–18]. The methods employed can be divided into

those suitable for real-time [9, 11–13] and offline (not real-

time) use [1–8, 14–19]. They can be further divided into those

that measure the particle displacement with shot-noise-limited

precision [1] and those that do not [2–9, 11–19].

Existing offline tracking techniques for single particles in-

clude the nonlinear least-squares fit for shot-noise-limited lo-

calization using a particle’s point spread function [1] and

Lorenz-Mie scattering theory for sub-pixel resolution [19].

Other sub-pixel precision methods include nonlinear least

squares for fitting single fluorophores’ intensity distributions

to two-dimensional Gaussian profiles [3, 4], employing the

center-of-mass method (also known as the moment method)

to track single particles in dusty plasma [15–18], and a non-

iterative fit for determining the optimal center of radial sym-

metry of an imaged particle [2].

Alternatively, the azimuthal symmetry of a particle’s im-

age and the shift property of the Fourier transform can be ex-

ploited to track the position of the particle [20, 21]. In ad-

dition, a convolutional neural network is employed for noise

tolerance in environments with varying signal-to-noise ratios,

consistently tracking particle positions across a spectrum from

low (∼1) to high (up to ∼40) signal-to-noise ratios [7].

Fewer methods are available for real-time analysis, and

these are typically application dependent. In medicine and

biotechnology, for example, a technique leveraging artificial

intelligence performs real-time tracking and feedback control

of multiple particles to determine their size and location for

in vitro diagnostics [9]. In physics, applications often em-

ploy the center-of-mass algorithm to perform real-time feed-

back control of a single particle based on its position. This

is a computationally inexpensive technique that performs well

when the input images consist of a bright (or dark) spot against

a relatively featureless dark (or bright) background [11, 12].

While the center-of-mass algorithm can reach the shot noise

limit of particle tracking under ideal conditions, this method

is susceptible to biases when background noise or light is

present [5, 13, 14].

Besides the center-of-mass algorithm, the cross-correlation

(CC) method is a popular choice for offline image registra-

tion [12, 22–26]. This method measures the apparent dis-

placement between two images via the position of the max-

ima of the CC between them, and can be modified to yield

sub-pixel displacements [27] at the cost of increased compu-

tational complexity. Several open-source implementations of

the CC method exist, but these are typically not designed with

real-time analysis in mind and generally demand enormous

computational resources to achieve the necessary processing

speed. Further, the CC method does not generally target shot-

noise-limited accuracy, which is crucial for feedback systems

where quantum-limited control is desirable [28, 29].

While many particle tracking applications use camera-

based detection, quadrant photodetectors, discrete photodi-

odes, and balanced detectors are commonly used in levitated

optomechanics [30–37] and approach shot-noise limited de-

tection in real time, but only with small displacements [28].

A hybrid detection scheme using photodiodes for rotation de-

tection with subsequent analysis of high-speed CMOS cam-

era images to measure translational motion has been used to

study the coupled rotation and translation of levitated birefrin-

gent particles [35–37]. Alternatively, event-based imaging has

been demonstrated for tracking silica microspheres in a Paul

trap over displacements exceeding 100 µm with 30 nm/
√

Hz

sensitivity at 1 kHz acquisition rates [38]. This technique uses

pixel arrays with contrast detectors that trigger upon intensity
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changes beyond a preset threshold. The changed pixels feed

into a tracking algorithm that analyzes each frame to detect

object motion. Acquisition rates could surpass 1 GHz [39],

potentially enabling real-time feedback control [38]. How-

ever, event-based imaging requires specialized hardware and

further development of tracking algorithms [38, 39].

In this paper we address the gap in established techniques

by introducing real-time, CC-based image analysis methods

that approach the shot noise limit of accuracy for single par-

ticle tracking. We demonstrate a real-time adaptation of the

uniformly-weighted CC (CC-U) method of [12], as well as

the new real-time shot-noise-weighted CC (CC-SN) method.

We also provide an open-source implementation of these al-

gorithms, demonstrating their real-time analysis capabilities

by tracking a microsphere levitated in a magneto-gravitational

trap [29], which is our primary application of interest. Our im-

plementation is suitable for commercial off-the-shelf graphics

processing units (GPUs) and can analyze hundreds of images

per second.

The remainder of this paper is organized as follows. Sec-

tion II introduces our novel cross-correlation-based image

analysis method. In Sec. III, we detail the numerical imple-

mentation of this method and discuss its variations for both

real-time and offline analyses. Section IV presents our re-

sults. First, we apply the method to various types of synthetic

particle data, comparing its performance against other widely

used methods in the literature and showing that it reliably ap-

proaches the shot noise limit. Then we use our method on

experimental data, tracking a magnetically levitated particle

using both the real-time and offline versions of the algorithm.

Finally, in Sec. V, we conclude and discuss future research

directions.

II. BASIC APPROACH

A common method to find the location R⃗ of a bright spot

on a dark background is the center-of-mass (CM) calculation,

R⃗ = ∑⃗r r⃗ I(⃗r)/ ∑⃗r I(⃗r), with r⃗ denoting the location of a pixel

in an image I(⃗r). In the ideal case of a nearly featureless back-

ground, this method can approach the shot noise limit [28].

However, it is highly affected by background light and image

boundaries [13]. A more statistically robust approach, max-

imum likelihood estimation (MLE), adjusts parameters in a

fit distribution to maximize the likelihood that the data comes

from the distribution, assuming Poisson statistics. If Gaussian

statistics are used as an approximation, we can instead mini-

mize χ
2 relative to the displacement r⃗0 between two images,

as expressed in the following equation:

χ
2 = ∑

r⃗

[

I(⃗r− r⃗0)−E (⃗r)

σ (⃗r,⃗r0)

]2

, (1)

where I(⃗r − r⃗0) is the image I(⃗r) translated by r⃗0 (assuming

periodic boundary conditions), E (⃗r) is the reference image

(RI; see Sec. III), and σ (⃗r,⃗r0) models the noise in the im-

ages. Minimizing χ
2 directly is computationally intensive, so

more efficient strategies, such as cross-correlation (CC), are

generally preferred.

The uniformly-weighted CC (CC-U) method, for example,

assumes that σ (⃗r,⃗r0) has a constant value σ . Under this as-

sumption, Eq. (1) simplifies to:

χ
2 =

1

σ2 ∑
r⃗

[

I(⃗r− r⃗0)
2 −2I(⃗r− r⃗0)E (⃗r)+E (⃗r)2

]

. (2)

Since the sums over I(⃗r− r⃗0)
2 and E (⃗r)2 span the entire im-

ages, they are independent of r⃗0. We may then write

χ
2 =C−

2

σ2 ∑
r⃗

I(⃗r− r⃗0)E (⃗r) , (3)

where C is some constant independent of r⃗0. The displace-

ment r⃗0 is then obtained by finding the value of r⃗0 that mini-

mizes the right-hand side of Eq. (3), which coincides with the

position of the maximum of the CC between the shifted image

I(⃗r− r⃗0) and the RI E (⃗r), i.e.,

∑
r⃗

I(⃗r− r⃗0)E (⃗r) = F
−1
[

F
[

I
]

⊗F
[

E
]

]

, (4)

where F is the Fourier transform, F−1 its inverse, ⊗ denotes

element-wise multiplication, and the overline denotes com-

plex conjugation.

For CMOS cameras with adequate light levels, photon shot

noise is often the dominant noise source. The noise in each

pixel then follows a Poisson distribution, which can be ap-

proximated by a Gaussian distribution with a standard devia-

tion equal to the square root of the photon count in the pixel.

In this case, a shot-noise-weighted version of the CC method

(CC-SN) is more appropriate. This method assumes the RI

provides an estimate for the average pixel values of the im-

ages in a dataset, i.e.,

σ (⃗r,⃗r0) =
√

E (⃗r) . (5)

For nearly zero pixel values, the square root poorly approxi-

mates the uncertainty of the Poisson distribution. Also, nega-

tive pixel values may arise when subtracting the average back-

ground from images. To compensate, we add a constant offset

ε to the new images (see Sec. III for how this affects the RI),

with larger offset values de-emphasizing darker pixels.

Adding the offset to the new image and using Eq. (5) in

Eq. (1), we find

χ
2 = ∑

r⃗

{

E (⃗r)−2I′(⃗r− r⃗0)+
[

I′(⃗r− r⃗0)
]2
/E (⃗r)

}

, (6)

where I′ ≡ I+ε . As with Eq. (2), the first two sums in Eq. (6)

are independent of r⃗0, and the minimization of the right-hand

side of Eq. (6) only depends on the CC between I′2 and the

reciprocal of E. Therefore, the displacement r⃗0 that minimizes

Eq. (6) is determined by the position of the maximum of

∑
r⃗

[

I′(⃗r− r⃗0)
]2
/E (⃗r) = F

−1
[

F
[

I′2
]

⊗F
[

1/E
]

]

. (7)
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III. NUMERICAL METHODS

The position of the maximum of the CC provides an integer

pixel estimate of the displacement between two images. Fol-

lowing [22, 27], we define a 1.5-pixel square region centered

on the maximum of the CC and sample it with 1.5u points

in both the horizontal and vertical directions, where u is the

upsampling factor. When u = 256, for example, the 1.5-pixel

square region is sampled with resolution 384×384. Looking

at just this small region produces massive efficiency gains, as

the effective resolution around the square is the same as if the

original image had 2562×2562 pixels. Data from the element-

wise product on the right-hand sides of Eq. (4) or (7) (depend-

ing on the method) is then interpolated into the upsampled

region, followed by an inverse discrete Fourier transform to

generate an upsampled CC. The position of the maximum of

the upsampled CC yields a sub-pixel estimate of the displace-

ment.

The CC-U and CC-SN methods can be used to analyze im-

ages both in real-time and with an iterative method that uses

past and future images, with different approaches for updat-

ing the RI in each case. The following discussion focuses on

the CC-U method, but it can be easily adapted for the CC-SN

method by replacing Ii → I′2i and En → 1/En.

A. Offline Analysis

In the offline case [12], we iteratively update the RI as

the average in Fourier space of all images within a dataset
{

I0, I1, . . . , IN−1

}

. For each complete pass through the images,

the Fourier transform of the RI at the n-th iteration, F [En], is

computed using

F [En] =
1

N

N−1

∑
i=0

F
[

Ii(⃗r− r⃗0)
]

, (8)

where F [E0] = F [I0]. For a given iteration, computing the

displacement of each image in the dataset with respect to the

constant RI is an embarrassingly parallel operation. Thus, the

dataset can be split across multiple processing units for signif-

icant speed-up.

B. Real-time Analysis

Real-time analysis is inherently a sequential process that

requires continuously updating the RI as each new image is

processed. The computational expense is large, as both the

displacement and the RI must be updated at least at the cam-

era’s frame rate. As each new image is processed, the RI is

updated using a low-pass filter,

F [Ei] = a0F
[

Ii(⃗r− r⃗0)
]

+b1F
[

Ei−1

]

, (9)

where F [E0] = F [I0], a0 = 1− e−T/τ , b1 = e−T/τ , T is the

inverse of the camera’s frame rate, and τ is the filter time con-

stant (typically, τ ≫ T ).

This method may experience drift over time as a result of

the gradual accumulation of numerical errors, which can dis-

place the particle in the RI from its initial position. Similarly,

drift in the particle’s actual position can occur over time due

to changes in its equilibrium position. Although these drifts

usually have no significant consequences, they can be incon-

venient, and it is often desirable to eliminate them from the

detected motion, retaining only the faster particle oscillations.

A natural solution is to subtract the (possibly drifting) equi-

librium position, as determined by a low-pass filter. Given the

n-th raw displacement r⃗n, we calculate the filtered displace-

ment value r⃗′n = r⃗n − R⃗n, where R⃗n is the subtracted offset cal-

culated by passing the raw data through a low-pass filter,

R⃗n = a0⃗rn +b1R⃗n−1 , (10)

and R⃗0 = a0⃗r0.

If there is a concern that Eq. (10) may be too aggressive in

correcting drift and could inadvertently remove an important

signal, the shift in the offset can be limited to a fraction α of

the resolution of the CC analysis (the inverse of the upsam-

pling factor u−1). In this case, the drift correction effectively

biases the round-off error in the CC toward a zero average

displacement, and the change in the correction offset can be

written as

dR⃗n =
(

a0⃗rn+b1R⃗n−1

)

− R⃗n−1 = a0⃗rn+
(

b1−1
)

R⃗n−1 , (11)

and

R⃗n =

{

R⃗n−1 +(α/u)dR̂n if
∣

∣dR⃗n

∣

∣> α/u ,

R⃗n−1 +dR⃗n otherwise ,
(12)

where dR̂n = dR⃗n/
∣

∣dR⃗n

∣

∣. A typical choice of parameter is

α = 0.5, ensuring that drift corrections are smaller than the

expected displacement resolution.

IV. RESULTS

We perform tests with synthetic data, where each synthetic

image comprises a Gaussian function integrated over each

pixel, representing either a bright or dark particle on a dark or

bright background, with Poisson shot noise added (see Fig. 1).

To ensure that these synthetic images are experimentally rel-

evant, we match their maximum pixel intensity to the satu-

ration capacity of the CMOS sensor used in our experiments

(10,700 electrons for a Sony IMX250). When adding dark

noise to the images, we also match it to the dark noise of the

sensor (2.4 electrons). For each method and choice of param-

eters, we analyze data sets consisting of 1,000 images of size

512×512, whose displacements are randomly distributed but

exactly known. For the CC-U and CC-SN methods, we fix the

upsampling factor to u = 512.

For the bright spot on a dark background, we consider both

the case without and with dark noise, where a constant value

is added to the entire image before the Poisson noise is in-

troduced. This means that subtracting the mean background
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and the images with the exact mean background subtracted

(CM − BG). While subtracting the mean background sub-

stantially enhances the CM method’s performance, it still falls

short of reaching the shot noise limit, except for a small range

of w0, a feature which is used in [13]. On the other hand, both

the CC-U and CC-SN methods yield results comparable to

those obtained using the MLE method and are therefore pre-

ferred due to their significantly lower computational cost. As

in the previous case, the error for the CC-U method is slightly

larger than those for the CC-SN and MLE methods. Ignoring

the largest two values of w0/N, we find that the MLE method

produces results that are, on average, within 31 % of the shot-

noise limit, while the same average for the CC-SN and CC-U

are 57 % and 97 %, respectively.

Finally, the center column of Fig. 1(c) contains results from

analysing images consisting of a dark spot in the presence of

dark noise. When using the CM method, we subtract the im-

age from the exact mean background value to approximate a

bright spot on a dark background. Nevertheless, the displace-

ment errors for the CM method are still about an order of mag-

nitude above the shot noise limit. While the CC-U method

exhibits larger errors than the MLE method, they are still no-

tably smaller than those associated with the CM method. The

errors for the CC-SN method remain comparable to those for

the MLE method.

To evaluate how well the methods perform under varying

signal-to-noise ratios, we have repeated our analysis by fixing

w0 = 32—the central point of the curves in the center column

of Fig. 1—and varying the noise gain of the images. The re-

sults are shown in the right column of Fig. 1. We observe that

the MLE method outperforms the others, followed closely by

the CC-SN and CC-U methods, even at lower signal-to-noise

ratios. We have empirically determined that setting the con-

stant offset ε (see Sec. II) to 200 times the noise gain yields

optimal results when using the CC-SN method. Smaller val-

ues of ε lead to worse displacement errors, while for larger

values the CC-SN method’s results approaches those of the

CC-U method.

The processing speed of different algorithms is critically

important for real-time particle tracking. To assess it, we con-

ducted performance benchmarks of our CC-SN algorithm on

a high-end personal computer equipped with an AMD Ryzen

9 5950X 16-core CPU and an NVIDIA RTX 3080 GPU. As

shown in Table I, we analyzed the processing speed for var-

ious image sizes and observed a consistent drop as the up-

sampling factor u increased. This decline is expected, as the

upsampling algorithm is the most computationally intensive

component of the code. Unsurprisingly, the fastest implemen-

tation is the CUDA one.

The difference in processing speed between the CC-U and

CC-SN algorithms is negligible. However, the MLE method

is significantly slower, taking, on average, more than 10 s to

analyze a 512×512 image. To highlight this contrast, consider

the slowest analysis (upscale factor u= 1024) for the same im-

age size in our CUDA implementation: 31.1 images per second,

which is more than 300 times faster than MLE.

Even our Python implementation—which is unsuitable for

real-time analysis since it can only process 8.8 images per

second—is about 90 times faster than MLE in the worst-case

scenario. These comparisons underscore the superior effi-

ciency of the CUDA implementation over the MLE method.

TABLE I. Benchmark results for different CC-SN algorithm imple-

mentations on an AMD Ryzen 9 5950X CPU (Python & C) and

NVIDIA RTX 3080 GPU (CUDA).

Image Size Upsampling Implementation Images/s

256×128 1024 Python 15.5

1024 C 19.5

1024 CUDA 91.9

512 CUDA 325

256 CUDA 811

128 CUDA 1636

256×256 1024 Python 13.3

1024 C 14.1

1024 CUDA 67.0

512 CUDA 189

256 CUDA 432

128 CUDA 981

512×256 1024 Python 11.7

1024 C 12.2

1024 CUDA 58.6

512 CUDA 168

256 CUDA 322

128 CUDA 670

512×512 1024 Python 8.8

1024 C 9.8

1024 CUDA 31.1

512 CUDA 93

256 CUDA 169

128 CUDA 348

1024×128 1024 Python 9.8

1024 C 13.2

1024 CUDA 85.3

512 CUDA 227

256 CUDA 360

128 CUDA 717

A. Experimental data

We show the CC-SN method can be used for real-time

analysis by tracking a borosilicate glass microsphere levi-

tated in a magneto-gravitational trap in high vacuum. The

microsphere is back-illuminated with collimated light from a

pulsed 660 nm LED and imaged on a CMOS camera (Basler

acA2440-75 µm), giving the particle the appearance of a dark

disk on a bright background with a bright spot in the center

(see Fig. 2; see also [12, 29]).

Applying a voltage across the vertical gap of the trapping

region creates an electric field that exerts additional force to

suspend the microsphere, which has a diameter of approxi-

mately 68 µm [12]. The recorded data consists of 256× 128

pixel images of the microsphere, corresponding to a field of

view of approximately 310× 150µm, with 12 bits per pixel
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