Cross-correlation image analysis for real-time single particle tracking
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Accurately measuring the translations of objects between images is essential in many fields, including biol-
ogy, medicine, chemistry, and physics. One important application is tracking one or more particles by measuring
their apparent displacements in a series of images. Popular methods, such as the center-of-mass, often require
idealized scenarios to reach the shot noise limit of particle tracking and are, therefore, not generally applicable
to multiple image types. More general methods, like maximum likelihood estimation, reliably approach the shot
noise limit, but are too computationally intense for use in real-time applications. These limitations are signifi-
cant, as real-time, shot-noise-limited particle tracking is of paramount importance for feedback control systems.
To fill this gap, we introduce a new cross-correlation-based algorithm that approaches shot-noise-limited dis-
placement detection and a GPU-based implementation for real-time image analysis of a single particle.

I. INTRODUCTION

Tracking the motion of particles in a sequence of images
over time is a common practice in multiple research fields,
from biology [1-5] to chemistry [6—8], medicine [9, 10], and
physics [11-18]. The methods employed can be divided into
those suitable for real-time [9, 11-13] and offline (not real-
time) use [1-8, 14-19]. They can be further divided into those
that measure the particle displacement with shot-noise-limited
precision [1] and those that do not [2-9, 11-19].

Existing offline tracking techniques for single particles in-
clude the nonlinear least-squares fit for shot-noise-limited lo-
calization using a particle’s point spread function [1] and
Lorenz-Mie scattering theory for sub-pixel resolution [19].
Other sub-pixel precision methods include nonlinear least
squares for fitting single fluorophores’ intensity distributions
to two-dimensional Gaussian profiles [3, 4], employing the
center-of-mass method (also known as the moment method)
to track single particles in dusty plasma [15-18], and a non-
iterative fit for determining the optimal center of radial sym-
metry of an imaged particle [2].

Alternatively, the azimuthal symmetry of a particle’s im-
age and the shift property of the Fourier transform can be ex-
ploited to track the position of the particle [20, 21]. In ad-
dition, a convolutional neural network is employed for noise
tolerance in environments with varying signal-to-noise ratios,
consistently tracking particle positions across a spectrum from
low (~1) to high (up to ~40) signal-to-noise ratios [7].

Fewer methods are available for real-time analysis, and
these are typically application dependent. In medicine and
biotechnology, for example, a technique leveraging artificial
intelligence performs real-time tracking and feedback control
of multiple particles to determine their size and location for
in vitro diagnostics [9]. In physics, applications often em-
ploy the center-of-mass algorithm to perform real-time feed-

back control of a single particle based on its position. This
is a computationally inexpensive technique that performs well
when the input images consist of a bright (or dark) spot against
a relatively featureless dark (or bright) background [11, 12].
While the center-of-mass algorithm can reach the shot noise
limit of particle tracking under ideal conditions, this method
is susceptible to biases when background noise or light is
present [5, 13, 14].

Besides the center-of-mass algorithm, the cross-correlation
(CC) method is a popular choice for offline image registra-
tion [12, 22-26]. This method measures the apparent dis-
placement between two images via the position of the max-
ima of the CC between them, and can be modified to yield
sub-pixel displacements [27] at the cost of increased compu-
tational complexity. Several open-source implementations of
the CC method exist, but these are typically not designed with
real-time analysis in mind and generally demand enormous
computational resources to achieve the necessary processing
speed. Further, the CC method does not generally target shot-
noise-limited accuracy, which is crucial for feedback systems
where quantum-limited control is desirable [28, 29].

While many particle tracking applications use camera-
based detection, quadrant photodetectors, discrete photodi-
odes, and balanced detectors are commonly used in levitated
optomechanics [30-37] and approach shot-noise limited de-
tection in real time, but only with small displacements [28].
A hybrid detection scheme using photodiodes for rotation de-
tection with subsequent analysis of high-speed CMOS cam-
era images to measure translational motion has been used to
study the coupled rotation and translation of levitated birefrin-
gent particles [35-37]. Alternatively, event-based imaging has
been demonstrated for tracking silica microspheres in a Paul
trap over displacements exceeding 100 um with 30 nm/+v/Hz
sensitivity at 1 kHz acquisition rates [38]. This technique uses
pixel arrays with contrast detectors that trigger upon intensity
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changes beyond a preset threshold. The changed pixels feed
into a tracking algorithm that analyzes each frame to detect
object motion. Acquisition rates could surpass 1 GHz [39],
potentially enabling real-time feedback control [38]. How-
ever, event-based imaging requires specialized hardware and
further development of tracking algorithms [38, 39].

In this paper we address the gap in established techniques
by introducing real-time, CC-based image analysis methods
that approach the shot noise limit of accuracy for single par-
ticle tracking. We demonstrate a real-time adaptation of the
uniformly-weighted CC (CC-U) method of [12], as well as
the new real-time shot-noise-weighted CC (CC-SN) method.
We also provide an open-source implementation of these al-
gorithms, demonstrating their real-time analysis capabilities
by tracking a microsphere levitated in a magneto-gravitational
trap [29], which is our primary application of interest. Our im-
plementation is suitable for commercial off-the-shelf graphics
processing units (GPUs) and can analyze hundreds of images
per second.

The remainder of this paper is organized as follows. Sec-
tion II introduces our novel cross-correlation-based image
analysis method. In Sec. III, we detail the numerical imple-
mentation of this method and discuss its variations for both
real-time and offline analyses. Section IV presents our re-
sults. First, we apply the method to various types of synthetic
particle data, comparing its performance against other widely
used methods in the literature and showing that it reliably ap-
proaches the shot noise limit. Then we use our method on
experimental data, tracking a magnetically levitated particle
using both the real-time and offline versions of the algorithm.
Finally, in Sec. V, we conclude and discuss future research
directions.

II. BASIC APPROACH

A common method to find the location R of a bright spot
on a dark background is the center-of-mass (CM) calculation,
R=Y;7I(7)/ X71(7), with 7 denoting the location of a pixel
in an image /(7). In the ideal case of a nearly featureless back-
ground, this method can approach the shot noise limit [28].
However, it is highly affected by background light and image
boundaries [13]. A more statistically robust approach, max-
imum likelihood estimation (MLE), adjusts parameters in a
fit distribution to maximize the likelihood that the data comes
from the distribution, assuming Poisson statistics. If Gaussian
statistics are used as an approximation, we can instead mini-
mize x? relative to the displacement 7, between two images,
as expressed in the following equation:
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where I(F —7¥y) is the image I(7) translated by 7y (assuming
periodic boundary conditions), E(7) is the reference image
(RL; see Sec. III), and o(7,7) models the noise in the im-
ages. Minimizing y? directly is computationally intensive, so
more efficient strategies, such as cross-correlation (CC), are
generally preferred.

The uniformly-weighted CC (CC-U) method, for example,
assumes that o (7,7)) has a constant value 6. Under this as-
sumption, Eq. (1) simplifies to:

1
xzzgz[z(?—?o)z—21(7—70)E(7)+E(?)2 O

Since the sums over I(7 —7y)? and E(7)? span the entire im-
ages, they are independent of 7). We may then write

2
X =C—— Y IF-F)E(), (3)

where C is some constant independent of 7). The displace-
ment 7 is then obtained by finding the value of 7y that mini-
mizes the right-hand side of Eq. (3), which coincides with the
position of the maximum of the CC between the shifted image
I(#—7p) and the RL E(7), i.e.,

YIF—F)ER) =7 [9 1] @32[E]] . @

where % is the Fourier transform, % ~! its inverse, ® denotes
element-wise multiplication, and the overline denotes com-
plex conjugation.

For CMOS cameras with adequate light levels, photon shot
noise is often the dominant noise source. The noise in each
pixel then follows a Poisson distribution, which can be ap-
proximated by a Gaussian distribution with a standard devia-
tion equal to the square root of the photon count in the pixel.
In this case, a shot-noise-weighted version of the CC method
(CC-SN) is more appropriate. This method assumes the RI
provides an estimate for the average pixel values of the im-
ages in a dataset, i.e.,

o(7,70) = VE(F) . (5)

For nearly zero pixel values, the square root poorly approxi-
mates the uncertainty of the Poisson distribution. Also, nega-
tive pixel values may arise when subtracting the average back-
ground from images. To compensate, we add a constant offset
€ to the new images (see Sec. III for how this affects the RI),
with larger offset values de-emphasizing darker pixels.

Adding the offset to the new image and using Eq. (5) in
Eq. (1), we find

=L E@ -2 =70+ [ G-7)] /ER ), ©)

where I’ = I + €. As with Eq. (2), the first two sums in Eq. (6)
are independent of 7, and the minimization of the right-hand
side of Eq. (6) only depends on the CC between I’> and the
reciprocal of E. Therefore, the displacement 7 that minimizes
Eq. (6) is determined by the position of the maximum of
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III. NUMERICAL METHODS

The position of the maximum of the CC provides an integer
pixel estimate of the displacement between two images. Fol-
lowing [22, 27], we define a 1.5-pixel square region centered
on the maximum of the CC and sample it with 1.5u points
in both the horizontal and vertical directions, where u is the
upsampling factor. When u = 256, for example, the 1.5-pixel
square region is sampled with resolution 384 x 384. Looking
at just this small region produces massive efficiency gains, as
the effective resolution around the square is the same as if the
original image had 2562 x 2567 pixels. Data from the element-
wise product on the right-hand sides of Eq. (4) or (7) (depend-
ing on the method) is then interpolated into the upsampled
region, followed by an inverse discrete Fourier transform to
generate an upsampled CC. The position of the maximum of
the upsampled CC yields a sub-pixel estimate of the displace-
ment.

The CC-U and CC-SN methods can be used to analyze im-
ages both in real-time and with an iterative method that uses
past and future images, with different approaches for updat-
ing the RI in each case. The following discussion focuses on
the CC-U method, but it can be easily adapted for the CC-SN
method by replacing I; — 11(2 and E, — 1/E,.

A. Offline Analysis

In the offline case [12], we iteratively update the RI as
the average in Fourier space of all images within a dataset
{Io, Ii,...,Iy—1 } For each complete pass through the images,
the Fourier transform of the RI at the n-th iteration, % [E,], is
computed using

1 N—1
FE)=<Y F[LF-F)], ®)

where .ZEy] = F[lp]. For a given iteration, computing the
displacement of each image in the dataset with respect to the
constant RI is an embarrassingly parallel operation. Thus, the
dataset can be split across multiple processing units for signif-
icant speed-up.

B. Real-time Analysis

Real-time analysis is inherently a sequential process that
requires continuously updating the RI as each new image is
processed. The computational expense is large, as both the
displacement and the RI must be updated at least at the cam-
era’s frame rate. As each new image is processed, the Rl is
updated using a low-pass filter,

FE| = agF [L(F—7))] + 1.7 [Ei1] 9)
where .Z[Eg] = .Z[I), ap=1—e" /%, by = T/, T is the

inverse of the camera’s frame rate, and 7 is the filter time con-
stant (typically, 7> T).

This method may experience drift over time as a result of
the gradual accumulation of numerical errors, which can dis-
place the particle in the RI from its initial position. Similarly,
drift in the particle’s actual position can occur over time due
to changes in its equilibrium position. Although these drifts
usually have no significant consequences, they can be incon-
venient, and it is often desirable to eliminate them from the
detected motion, retaining only the faster particle oscillations.

A natural solution is to subtract the (possibly drifting) equi-
librium position, as determined by a low-pass filter. Given the
n-th raw displacement 7,,, we calculate the filtered displace-
ment value 7, =7, — R,,, where R, is the subtracted offset cal-
culated by passing the raw data through a low-pass filter,

R, = aofy+b1R,_1 (10)

and I_éo = ao?().

If there is a concern that Eq. (10) may be too aggressive in
correcting drift and could inadvertently remove an important
signal, the shift in the offset can be limited to a fraction ¢ of
the resolution of the CC analysis (the inverse of the upsam-
pling factor u~!). In this case, the drift correction effectively
biases the round-off error in the CC toward a zero average
displacement, and the change in the correction offset can be
written as

dR, = (aoFu+b1Ry—1) —Ru_t = aofy+ (b1 —1)Ru—y, (11)

and

n=

= = . (12)
R,_1+dR, otherwise ,

3 {ﬁn] +(a/u)dR, if |dR,| > a/u,

where dR, = dR, / |d13,,}. A typical choice of parameter is
a =0.5, ensuring that drift corrections are smaller than the
expected displacement resolution.

IV. RESULTS

We perform tests with synthetic data, where each synthetic
image comprises a Gaussian function integrated over each
pixel, representing either a bright or dark particle on a dark or
bright background, with Poisson shot noise added (see Fig. 1).
To ensure that these synthetic images are experimentally rel-
evant, we match their maximum pixel intensity to the satu-
ration capacity of the CMOS sensor used in our experiments
(10,700 electrons for a Sony IMX250). When adding dark
noise to the images, we also match it to the dark noise of the
sensor (2.4 electrons). For each method and choice of param-
eters, we analyze data sets consisting of 1,000 images of size
512x512, whose displacements are randomly distributed but
exactly known. For the CC-U and CC-SN methods, we fix the
upsampling factor to u = 512.

For the bright spot on a dark background, we consider both
the case without and with dark noise, where a constant value
is added to the entire image before the Poisson noise is in-
troduced. This means that subtracting the mean background
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(c) Dark spot, with dark noise.

FIG. 1. Gaussian particle tracking study: comparison of various image analysis methods in the presence and absence of dark noise. The legend
indicates the particular method used: center-of-mass (CM), CM subtracting the mean background (CM — BG), uniform cross-correlation
(CC-U), shot-noise-weighted cross-correlation (CC-SN), and maximum likelihood estimation (MLE). The Gaussian width as a fraction of the
image width (wy/N) and the noise gain are used as comparison metrics on the center and right columns, respectively. The left column shows
samples of the analyzed images: the top half of each panel presents the original, and the bottom half adjusts the pixel values (through rescaling,
offsetting, and saturating) to highlight the presence or absence of background noise.

value from the image with dark noise does not yield the im-
age without dark noise. For the dark spot on the bright back-
ground, we only consider the case with added dark noise.

We compare the uniformly-weighted (CC-U) and shot-
noise-weighted (CC-SN) cross-correlation methods described
in Sec. II with the standard center-of-mass (CM) and max-
imum likelihood estimation (MLE) methods, using the real-
time approach described in Sec. III. When using the MLE
method, we provide the exact displacement as the initial value
for the iterative optimization algorithm. By doing so, the MLE
method produces results that represent the best achievable out-
comes from numerical methods, offering a benchmark against
which other methods can be compared.

The performance of each method in recovering displace-

ments for a bright spot in the absence of dark noise is shown
in the center column of Fig. 1(a). In this case, all methods
exhibit roughly the same performance as MLE, effectively
reaching the shot noise limit for the standard deviation of the
position error, wo/(2,/Ny), where Ny is the total number of
photons detected in the Gaussian [28]. This is valid as long as
the particle size (proportional to the Gaussian width wy) does
not constitute a large fraction of the image. In this idealized
context, the CM algorithm is the preferred choice, given its
simplicity and low computational cost.

We then perform the same analysis for the more realistic
case of a bright spot with dark noise, and the results are dis-
played in the center column of Fig. 1(b). In this scenario,
the CM algorithm is used to analyze both the original images



and the images with the exact mean background subtracted
(CM — BG). While subtracting the mean background sub-
stantially enhances the CM method’s performance, it still falls
short of reaching the shot noise limit, except for a small range
of wg, a feature which is used in [13]. On the other hand, both
the CC-U and CC-SN methods yield results comparable to
those obtained using the MLE method and are therefore pre-
ferred due to their significantly lower computational cost. As
in the previous case, the error for the CC-U method is slightly
larger than those for the CC-SN and MLE methods. Ignoring
the largest two values of wy /N, we find that the MLE method
produces results that are, on average, within 31 % of the shot-
noise limit, while the same average for the CC-SN and CC-U
are 57 % and 97 %, respectively.

Finally, the center column of Fig. 1(c) contains results from
analysing images consisting of a dark spot in the presence of
dark noise. When using the CM method, we subtract the im-
age from the exact mean background value to approximate a
bright spot on a dark background. Nevertheless, the displace-
ment errors for the CM method are still about an order of mag-
nitude above the shot noise limit. While the CC-U method
exhibits larger errors than the MLE method, they are still no-
tably smaller than those associated with the CM method. The
errors for the CC-SN method remain comparable to those for
the MLE method.

To evaluate how well the methods perform under varying
signal-to-noise ratios, we have repeated our analysis by fixing
wo = 32—the central point of the curves in the center column
of Fig. 1—and varying the noise gain of the images. The re-
sults are shown in the right column of Fig. 1. We observe that
the MLE method outperforms the others, followed closely by
the CC-SN and CC-U methods, even at lower signal-to-noise
ratios. We have empirically determined that setting the con-
stant offset € (see Sec. II) to 200 times the noise gain yields
optimal results when using the CC-SN method. Smaller val-
ues of € lead to worse displacement errors, while for larger
values the CC-SN method’s results approaches those of the
CC-U method.

The processing speed of different algorithms is critically
important for real-time particle tracking. To assess it, we con-
ducted performance benchmarks of our CC-SN algorithm on
a high-end personal computer equipped with an AMD Ryzen
9 5950X 16-core CPU and an NVIDIA RTX 3080 GPU. As
shown in Table I, we analyzed the processing speed for var-
ious image sizes and observed a consistent drop as the up-
sampling factor u increased. This decline is expected, as the
upsampling algorithm is the most computationally intensive
component of the code. Unsurprisingly, the fastest implemen-
tation is the CUDA one.

The difference in processing speed between the CC-U and
CC-SN algorithms is negligible. However, the MLE method
is significantly slower, taking, on average, more than 10s to
analyze a 512x512 image. To highlight this contrast, consider
the slowest analysis (upscale factor u = 1024) for the same im-
age size in our CUDA implementation: 31.1 images per second,
which is more than 300 times faster than MLE.

Even our Python implementation—which is unsuitable for
real-time analysis since it can only process 8.8 images per

second—is about 90 times faster than MLE in the worst-case
scenario. These comparisons underscore the superior effi-
ciency of the CUDA implementation over the MLE method.

TABLE I. Benchmark results for different CC-SN algorithm imple-
mentations on an AMD Ryzen 9 5950X CPU (Python & C) and
NVIDIA RTX 3080 GPU (CUDA).

Image Size Upsampling Implementation Images/s

256x128 1024 Python 15.5
1024 C 19.5
1024 CUDA 91.9
512 CUDA 325
256 CUDA 811
128 CUDA 1636
256x256 1024 Python 133
1024 C 14.1
1024 CUDA 67.0
512 CUDA 189
256 CUDA 432
128 CUDA 981
512x256 1024 Python 11.7
1024 C 12.2
1024 CUDA 58.6
512 CUDA 168
256 CUDA 322
128 CUDA 670
512x512 1024 Python 8.8
1024 C 9.8
1024 CUDA 31.1
512 CUDA 93
256 CUDA 169
128 CUDA 348
1024 <128 1024 Python 9.8
1024 C 13.2
1024 CUDA 85.3
512 CUDA 227
256 CUDA 360
128 CUDA 717

A. Experimental data

We show the CC-SN method can be used for real-time
analysis by tracking a borosilicate glass microsphere levi-
tated in a magneto-gravitational trap in high vacuum. The
microsphere is back-illuminated with collimated light from a
pulsed 660 nm LED and imaged on a CMOS camera (Basler
acA2440-75 pm), giving the particle the appearance of a dark
disk on a bright background with a bright spot in the center
(see Fig. 2; see also [12, 29]).

Applying a voltage across the vertical gap of the trapping
region creates an electric field that exerts additional force to
suspend the microsphere, which has a diameter of approxi-
mately 68 um [12]. The recorded data consists of 256 x 128
pixel images of the microsphere, corresponding to a field of
view of approximately 310 x 150um, with 12 bits per pixel
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for ten minutes at a rate of 470 Hz, which is near the maxi-
mum frame rate supported by the camera’s USB3 interface.
The CM algorithm proves unsuitable for tracking the par-
ticle due to the complex structure of the microsphere’s im-
age, characterized by non-Gaussian features such as diffrac-
tion rings along the edges and a prominent bright spot at the
center. These features demand a more sophisticated approach
for accurate tracking, such as CC-SN. Although CC-SN is sig-
nificantly more computationally demanding than CM, our im-
plementation makes it GPU-compatible. This enables us to
measure the displacement of the particle at high resolutions
and framerates in real-time using a GeForce RTX 3080 Ti
GPU, while simultaneously recording the images. For com-
parison, we perform an offline analysis using the CC-SN al-
gorithm and our iterative method described in Sec. III up to
the fifth RI. In both cases, the upsampling factor is set to 256.
We find excellent agreement between the real-time CC-SN
method and the previously demonstrated offline CC-U
method, with differences of less than 0.15 pixels for the en-
tire data set, as shown in Fig. 3. We note that, for the purposes
of this comparison, we disable the slow drift correction algo-
rithm described in Sec. III for both methods. The small drift

in the residual of the displacements calculated by these meth-
ods, observed in the bottom panels of Fig. 3, is expected and
attributed to the fact that the real-time algorithm drifts numer-
ically.

FIG. 2. Experimental data: backlit, levitated borosilicate glass mi-
crosphere. Artifacts in the image background are from dust on the
optics and window of the vacuum chamber.

V.  CONCLUSIONS

In this paper, we introduced a shot-noise-weighted cross-
correlation (CC-SN) method for determining image displace-
ments near the shot noise limit. The method was tested on
several different images, including a bright spot on a dark
background, both with and without dark noise, a dark spot

on a bright background with shot noise, and on complex ex-
perimental data. We found that the CC-SN method is superior
to the uniformly weighted cross-correlation (CC-U) method,
with errors comparable to those obtained using the maximum
likelihood (MLE) method, while being significantly more
computationally efficient than MLE.

Since CC-SN can be used for real-time image analysis, it
can be implemented in feedback control systems [29, 40, 41].
To this end, we have implemented the CC-SN method to
track the position of a microsphere levitated in a magneto-
gravitational trap in high vacuum, in real-time. Looking
ahead, we plan to apply the method for feedback cooling of
the motion of a particle with shot-noise-limited precision, as
well as for state preparation and tracking for a new measure-
ment of the gravitational constant G with a levitated parti-
cle [41].

Using this method for real-time analysis requires an im-
plementation of the algorithms discussed in this paper that is
capable of processing images at a rate at least equal to the
camera’s frame rate. To this end, we provide an open-source
toolkit for real-time image analysis called RETINAS [42]. The
toolkit contains the methods described in Sec. II implemented
in C and Python—as well as a GPU-capable implementation
written in CUDA—all of which can be accessed via a user-
friendly Python interface. Reference [42] contains both the
code and documentation on how to use the code and repro-
duce all the results shown in this paper.

The real-time CC-SN method described in this paper rep-
resents a significant advancement in real-time image analysis,
bridging a critical gap in current particle tracking algorithms.
With shot-noise-limited accuracy, the technique is particu-
larly well-suited to levitated optomechanics, where quantum-
limited detection and feedback based on particle motion are
targeted.
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