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Abstract8

In this paper we introduce and formally study the problem of k-clustering with faulty centers.9

Specifically, we study the faulty versions of k-center, k-median, and k-means clustering, where10

centers have some probability of not existing, as opposed to prior work where clients had some11

probability of not existing. For all three problems we provide fixed parameter tractable algorithms, in12

the parameters k, d, and ε, that (1 + ε)-approximate the minimum expected cost solutions for points13

in d dimensional Euclidean space. For Faulty k-center we additionally provide a 5-approximation for14

general metrics. Significantly, all of our algorithms have only a linear dependence on n.15
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1 Introduction23

There is a vast body of computational geometry literature which considers input points that24

are certain, that is they always exist and their location is known. However, uncertainty25

naturally arises when we are dealing with real world inputs. To model uncertain inputs,26

several works have considered the notion of probabilistic points. Two models for probabilistic27

points are commonly used: (i) the existential model [18, 20, 21], and (ii) the locational28

model [7, 11]. In the existential model, each probabilistic point has a certain fixed location29

if it exists, but it has a given probability of not existing. In the locational model, each30

probabilistic point always exists but its location is uncertain, and is instead specified by a31

probability density function over some region.32

In this paper, we consider variants of the k-clustering problem under the existential33

model for the cluster centers. Specifically, we consider the k-center, k-median, and k-means34

problems, where the input points that must be covered are certain to exist, but each one35

of the k selected centers has an independent probability of existing, i.e. of being open to36

cover points. Our goal is then to select centers so as to minimize the expected furthest37

distance, sum of distances, or sum of squared distances, that points must travel to their38

nearest open center. We denote this as the Faulty k-Clustering problem. Prior papers have39

considered k-clustering in probabilistic input models, but where the centers are certain and40

the points needing to be covered are probabilistic (see for example [7]). To the best of our41

knowledge we are the first to consider probabilistic k-clustering, where the uncertainty is on42

the cluster centers. Our variant of k-clustering is quite natural, as real world facilities can43

often have some probability of failure. Indeed, this real world motivation of faulty centers44
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40:2 Clustering with Faulty Centers

has inspired other previous work, though not in our probabilistic setting. Specifically, in the45

Fault Tolerant Clustering Problem (see for example [23]), the centers are certain to exist,46

though each point must travel to its l-th closest center. This objective attempts to provide47

robustness (i.e. failure tolerance) in the chosen centers. However, it less faithfully models the48

case where individual centers fail with some probability, since for example while one point’s49

closest center may be closed, a different point’s closest center may be open.50

Related Work51

The k-clustering problem with certain (i.e. non-probabilistic) input points is a classic and52

fundamental topic in computational geometry. The three most common variants are k-center,53

k-median, and k-means clustering. All three problems are known to be NP-hard. k-center54

is NP-hard to approximate within any factor less than 2 in general metric spaces [17] and55

hard to approximate within a factor of roughly 1.82 in the plane [8]. k-means is known to be56

NP-hard even when k = 2 [2], while k-median is known to be hard to approximate within a57

factor of (1 + 2/e) [19]. Despite the hardness of these problems, there are many well known58

approximation algorithms. The standard greedy algorithm for k-center by Gonzalez [10]59

achieves an optimal 2-approximation to the optimal radius ropt. By an alternative method,60

Hochbaum and Shmoys [16] also achieved a 2-approximation for k-center. For k-median and61

k-means it is known that local search achieves a constant factor approximation in polynomial62

time. (See discussion in [12] and references therein.) In Euclidean space, PTAS’s exists for63

these problems when k, d, and ε are bounded. Specifically, Agarwal and Procopiuc [1] achieve64

a (1 + ε)-approximation for k-center in O(n log k) + (k/ε)O(k1−1/d) time. For k-median and65

k-means a number of corset based (1 + ε)-approximation algorithms have been given which66

run in linear time in n, including Har-Peled and Mazumdar [14], and subsequent papers67

improving the time dependency on k, d, and ε [5, 9].68

A number of prior works have considered variants of k-clustering where the client points69

that need to be covered are probabilistic, as opposed to our model where the centers are70

probabilistic. Perhaps most notably is the work of Cormode and McGregor [7]. They consider71

client points under the locational model, though as they also allow clients to have non-zero72

probability to not exist, their model also captures the existential model. For k-median and73

k-means they achieve (1 + ε)-approximations to the minimum expected cost solution in74

Euclidean space, and a constant factor approximation for k-median in general metrics. Their75

main focus, however, is on the more challenging case of k-center, for which they provide76

bi-criteria approximations for general metrics. That is, in addition to approximating the77

radius, they are allowed to exceed the requested number centers, and they provide different78

tradeoffs between the two kinds of approximation. Guha and Munagala [11] subsequently79

provided a non-bi-criteria approximation for k-center, obtaining an O(1)-approximation on80

only the expected radius. For points in Rd, Huang and Li [18] later achieved the first PTAS81

for k-center, when k, d are fixed constants.82

There have been a number of other follow up results to [7], again for the case of probabilistic83

clients not centers. For k-center on the real line, R1, Wang and Zhang [27] showed that84

the problem can be solved exactly in polynomial time. Munteanu et al. [25] considered the85

special case where k = 1 for both the k-center and the k-median objectives, and achieved86

polynomial time (1 + ε)-approximations. Moreover, in the data mining community, previous87

works have considered variations of probabilistic k-median [24] and k-means clustering [3,26].88

The idea of modeling faulty centers in clustering problems has also been considered in89

previous works under the setting of fault tolerant k-clustering [4, 22, 23]. In fault tolerant90

clustering centers are certain rather than probabilistic, and one assigns each point to its l91
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nearest center for some integer l ≥ 1. This is unlike our probabilistic model where each point92

is assigned to its nearest center that happens to be open.93

1.1 Preliminaries94

In the standard k-clustering problem, we are given a set P of n points in a metric space,95

called clients, and an integer parameter k > 0. The task is to select k points from P , called96

centers, so as to minimize some cost function of the distances of the client points in P to97

their nearest centers. In k-center clustering one minimizes the maximum distance from a98

client to its nearest center. In k-median clustering one minimizes the sum of distances from99

each client to their nearest center. Finally, in k-means clustering, one minimizes the sum100

of squared distances from each client to their nearest center. Note that for a given set of101

centers, the distances from the clients to their nearest centers, defines a vector of length n.102

The goal of k-center, k-median, or k-means, is then to minimize the ℓ∞, ℓ1, or ℓ2 norm of103

this vector, respectively.104

For these three problems we now formally define their respective cost functions for any105

given subset C ⊆ P . Specifically, for k-center, k-median, and k-means we respectively define106

the functions f , g, and h, as follows.107

fP (C) = max
p∈P

||p − C|| = max
p∈P

min
c∈C

||p − c||, gP (C) =
∑
p∈P

||p − C|| =
∑
p∈P

min
c∈C

||p − c||,108

hP (C) =
∑
p∈P

||p − C||2 =
∑
p∈P

min
c∈C

||p − c||2.109

The goal of k-center, k-median, or k-means is then to select the subset C ⊆ P of size k that110

minimizes fP , gP , or hP respectively. Note that for k-center clustering specifically, we often111

refer to r = fP (C) as the radius of the solution C, as r can be viewed as the radius of k112

equal radius balls covering the points in P .113

Here we consider a variation of the standard k-clustering problem where there is uncer-114

tainty on whether any one of the chosen centers will be open, i.e. uncertainty on whether115

points in P can be covered by that center. Specifically, in addition to the point set P , as part116

of the input we are also given a vector V whose ith entry vi is the probability that pi will be117

open if it is chosen as a center. For any point pi, when convenient we use prob(pi) = vi to118

denote its associated probability.119

▶ Definition 1. Let P be a set of n points in a metric space, V ∈ [0, 1]n be a corresponding120

vector of probabilities, and C ⊆ P be any subset. Any subset R ⊆ C is called a realization of121

C, and let Real(C) denote the set of all realizations (i.e. the power set of C). For a given122

realization R, a center p ∈ C is said to be open (resp. closed) is p ∈ R (resp. p ̸∈ R). Each123

center p ∈ C is open independently with probability prob(p), thus the probability R ∈ Real(C)124

occurs (i.e. is the set of open centers) is Prob(R) = (Πp∈R prob(p))(Πp∈C\R (1 − prob(p))).125

For this probabilistic version of k-clustering, our cost functions fP,V (C), gP,V (C), and126

hP,V (C) are now random variables, which for a given realization R ⊆ C are equal to fP (R),127

gP (R), and hP (R), respectively. (Note that throughout we use the single subscript fP to128

denote the non-probabilistic cost function, and the double subscript fP,V to denote the129

corresponding random variable version.) Our goal is now to find the subset C minimizing130

the expected value E[fP,V (C)], E[gP,V (C)], or E[hP,V (C)], where the expectation is taken131

over the distribution of Real(C) determined by V .132
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40:4 Clustering with Faulty Centers

▶ Problem 2 (Faulty k-Center Clustering). As input you are given a set P of n points in a133

metric space, a corresponding vector V ∈ [0, 1]n of independent probabilities, and a positive134

integer parameter k. Find the subset Copt of k centers which minimizes E[fP,V (C)]. That is,135

Copt = arg minC⊆P,|C|=k E[fP,V (C)].136

▶ Problem 3 (Faulty k-Median Clustering). As input you are given a set P of n points in a137

metric space, a corresponding vector V ∈ [0, 1]n of independent probabilities, and a positive138

integer parameter k. Find the subset Copt of k centers which minimizes E[gP,V (C)]. That is,139

Copt = arg minC⊆P,|C|=k E[gP,V (C)].140

▶ Problem 4 (Faulty k-Means Clustering). As input you are given a set P of n points in a141

metric space, a corresponding vector V ∈ [0, 1]n of independent probabilities, and a positive142

integer parameter k. Find the subset Copt of k centers which minimizes E[hP,V (C)]. That is,143

Copt = arg minC⊆P,|C|=k E[hP,V (C)].144

▶ Remark 5. It is possible that all selected centers are closed, i.e. R = ∅. Thus to make sure145

the problem is well defined, we set fP (∅), gP (∅), and hP (∅) equal to different specified values.146

Natural choices for these would depend on the input set P . For example, setting them equal147

to the optimal (non-probabilistic) 1-center, 1-median, or 1-mean solution, respectively. An148

alternative, though related approach, is to fix some center which is open with probability 1149

and always included in the solution (i.e. not a part of the k selected centers).150

Note that if all entries in V are the same then the probability that R = ∅ is the same,151

regardless of which subset C of size k is chosen, and thus the choice of fP (∅) (resp. gP (∅) and152

hP (∅)) does not affect the relative ordering of E[fP,V (C)] for different C. Furthermore, even153

in the case when the entries in V differ, for the solution our algorithm returns (as described154

below) the probability that R = ∅ is less than or equal to that for the optimal solution.155

1.2 Our Contribution156

To the best of our knowledge, we are the first to formally study the faulty k-clustering157

problem, where the probabilities are on the centers rather than the clients. As stated above,158

this is a natural setting, as centers may have some probability of failure.159

For the three most common k-clustering variants, k-center, k-median, and k-means,160

we provide fixed parameter tractable approximation algorithms for their faulty versions.161

Specifically, for Faulty k-Center we provide an O(8kkn) time 5-approximation in general162

metrics. All remaining results are (1 + ε)-approximations for the Euclidean metric Rd, where163

we always assume d is a constant. For Faulty k-Center we provide an O(n log k)+2O(k)/εd(k+1)
164

time (1 + ε)-approximation in the Euclidean case. For Faulty k-Median we provide an165

O(kn) + (2O(k log k)/εd(k+1))no(1) time (1 + ε)-approximation in the Euclidean case. Finally,166

for Faulty k-Means we provide an O(kn)+(2O(k log k)/ε(2d+1)k)no(1) time (1+ε)-approximation167

in the Euclidean case.168

It is important to note that all of our algorithms have only a linear dependence on169

n. Moreover, for all three problems, in the Euclidean case we are providing a (1 + ε)-170

approximation, that is an EPTAS for fixed k and d.171

Recall that the standard (non-faulty) versions of these problems are NP-hard, even in172

Euclidean settings, with additional results on hardness of approximation or for special cases,173

depending on which one of the three problems is considered. As the non-faulty versions are174

a special case of the faulty versions (where probabilities are all 1), these hardness results175

immediately apply to our problems. Moreover, our problems have the additional challenge176

that each choice of centers has an exponential number of possible realizations.177
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2 FPT Approximation Algorithms for k-Center178

In this section we develop fixed parameter tractable (in the parameter k) approximation179

algorithms for Faulty k-Center Clustering. Specifically, for general metric spaces we achieve180

a 5-approximation to the optimal radius and in fixed dimensional Euclidean space we achieve181

a (1 + ε)-approximation, i.e. a PTAS. For comparison, recall that for the standard non-182

probabilistic version of k-center clustering it is hard to approximate the radius within any183

constant factor less than 2 in general metric spaces [17], and there is a PTAS in Euclidean184

space. First, we present definitions and a core lemma, which are common to both algorithms.185

Consider any instance P, k of Faulty k-Center, and let ρ = {ρ1, . . . , ρm} be a partition of186

P into m disjoint subsets. Define the diameter of ρ as,187

diam(ρ) = max
i

diam(ρi) = max
i

max
p,q∈ρi

||p − q||.188

For any subset Z ⊆ P , let ρ(Z) = {ρ1(Z), . . . , ρm(Z)}, where ρi(Z) = Z ∩ ρi, denote the189

partition of Z induced by ρ. We then define the characteristic vector of Z with respect to ρ,190

denoted char(Z, ρ) as the m dimensional integer vector whose ith entry is |ρi(Z)|. Define the191

canonical subset, Canon(char(Z, ρ)), of a characteristic vector char(Z, ρ) = (w1, . . . , wm), as192

the subset S ⊆ P consisting of the wi points with highest probability from ρi, for all i.1193

The following key lemma intuitively states that for any set of centers Q, if we replace each194

subset ρi(Q) with an equal number of higher probability points from ρi, then the expected195

cost of the solution increases by at most the diameter of ρ. Roughly speaking, this holds as196

each center is moved distance at most ρ, and its probability of being open does not decrease.197

▶ Lemma 6. Let ρ = {ρ1, . . . , ρm} be a partition of P into m subsets. Let Q ⊆ P be any198

subset, and let S = Canon(char(Q, ρ)). Then we have,199

E[fP,V (S)] ≤ diam(ρ) + E[fP,V (Q)].200

Proof. Observe that for all i, |ρi(S)| = |ρi(Q)|, since S and Q have the same characteristic201

vector. For any i, label the points in ρi(S) = {si
1, . . . , si

wi
} and similarly in ρi(Q) =202

{qi
1, . . . , qi

wi
} in decreasing order of their probability. We define a bijection b : S → Q,203

such that b(si
j) = qi

j . Observe that the bijection b defines a bijection between Real(S) and204

Real(Q). Abusing notation slightly, for any realization RS of S we use b(RS) to denote the205

corresponding realization in Q. Observe that by construction, char(RS , ρ) = char(b(RS), ρ).206

Let RS ∈ Real(S) be any realization of S. Consider any point p ∈ P . Let s be the closest207

point in RS to p, and let q be the closest point in b(RS) to p. Let i be the index such that208

q ∈ ρi. Since char(RS , ρ) = char(b(RS), ρ), there must be some point s′ ∈ RS such that209

s′ ∈ ρi(S) ⊆ ρi. Therefore, by the triangle inequality,210

||p − s|| ≤ ||p − s′|| ≤ ||p − q|| + ||q − s′|| ≤ ||p − q|| + diam(ρ).211

This implies fP (RS) = maxp∈P ||p − RS || ≤ maxp∈P ||p − b(RS)|| + diam(ρ) = fP (b(RS)) +212

diam(ρ).213

For two vectors u, v of the same dimension, let u ≤ v denote that u is coordinate-wise214

smaller than v, i.e. ui ≤ vi for all i. So let V ′ be a probability vector such that V ′ ≤ V .215

Then observe that E[fP,V (X)] ≤ E[fP,V ′(X)] for any subset X ⊆ P . In other words, if each216

1 For points of equal probability, let there be an arbitrary but fixed ordering.
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40:6 Clustering with Faulty Centers

center in X has a smaller or equal probability to be open under V ′, then the expected cost217

cannot decrease when replacing V with V ′.218

For any point p ∈ P , let probV (p) denote the corresponding probability from the vector219

V . We define a new probability vector V ′ such that for any p ∈ P , if p ∈ S then probV ′(p) =220

probV (b(p)), and if p ̸∈ S then probV ′(p) = probV (p). Observe that since ρi(S) consists of221

the wi points with highest probability in ρi, we have that probV (si
j) ≥ probV (qi

j) for any i, j.222

Therefore V ′ ≤ V , and so by the above discussion, E[fP,V (S)] ≤ E[fP,V ′(S)].223

Let probV (RS) and probV ′(RS) denote the probability that RS is realized under V and224

V ′, respectively. Observe that probV ′(RS) = probV (b(RS)). Therefore, we have the following,225

E[fP,V (S)] ≤ E[fP,V ′(S)] =
∑

RS∈Real(S)

probV ′(RS) · fP (RS)226

=
∑

b(RS)∈Real(Q)

probV (b(RS)) · fP (RS)227

≤
∑

b(RS)∈Real(Q)

probV (b(RS)) · (fP (b(RS)) + diam(ρ))228

= E[fP,V (Q)] + diam(ρ) ◀229

We remark that given an optimal subset of centers Copt and the canonical subset S of any230

arbitrary characteristic vector, it is not necessarily the case that E[fP,V (Canon(char(Copt, ρ)))] ≤231

E[fP,V (S)]. However, the fact that canonical subsets have approximately the same cost as232

the best subset of the same characteristic vector is sufficient for proving our algorithms’233

correctness.234

2.1 General Metrics235

Here we develop a fixed parameter tractable algorithm for Faulty k-Center Clustering in236

general metric spaces, which achieves a 5-approximation to the optimal radius.237

Consider a subset C = {c1, . . . , ck} of k centers from P . For any other subset Z ⊆ P , let238

Vori(Z, C) denote the subset of points in Z whose nearest center in C is ci, e.g. when P239

is a point set in Euclidean space then this is the subset of points of Z in the Voronoi240

cell of ci. Observe that Vor(Z, C) = {Vor1(Z, C), . . . , Vork(Z, C)} defines a partition241

ρ(Z) = {ρ1(Z), . . . , ρk(Z)} of Z where ρi(Z) = Vori(Z, C). Thus the definitions of charac-242

teristic vectors and canonical subsets from above apply, where to simplify notation we write243

char(Z, C) = char(Z, Vor(P, C)). Moreover, by the triangle inequality244

diam(Vor(P, C)) = max
i

max
p,q∈Vori(P,C)

||p − q|| ≤ 2 max
i

max
p∈Vori(P,C)

||p − ci||245

= 2 max
p∈P

||p − C|| = 2fP (C),246

and thus we immediately have the following corollary of Lemma 6.247

▶ Corollary 7. Let C = {c1, . . . , ck} be a subset of k centers from P . Let Q ⊆ P be any248

subset, and let S = Canon(char(Q, C)). Then we have,249

E[fP,V (S)] ≤ 2fP (C) + E[fP,V (Q)].250

Observe that for two different subsets Z, Z ′ ⊆ P such that |Z| = |Z ′| it is possible to251

have char(Z, C) = char(Z ′, C), however, we have the following bound on the total number252

of characteristic vectors for subsets of size k.253
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▶ Observation 8. Let C ⊆ P be a subset of k points. Then there are O(4k) possible254

characteristic vectors for all subsets of size k with respect to C. That is,255 ∣∣∣∣∣∣
⋃

C′⊆P,|C′|=k

char(C ′, C)

∣∣∣∣∣∣ = O(4k).256

Proof. Recall char(C ′, C) is a vector of length k whose (non-negative) entries sum to k. Any257

such vector can be represented as a binary vector of length 2k − 1 by writing each entry from258

the original vector in unary, and then separating entries with a single zero. The number of259

binary vectors of length 2k − 1 is 22k−1 = O(4k).2 ◀260

Before we present our algorithm, we make one more simple observation.261

▶ Observation 9. Given a point set P , probability vector V , and a subset C of k centers,262

E[fP,V (C)] can be computed in O(2kkn) time. Specifically, enumerate all possible O(2k)263

realizations in Real(C). Then for a given realization R, the probability of R occurring is264

(Πpi∈R vi)(Πpi∈C\R (1 − vi)), and thus is computable in O(k) time. Moreover, fP (R) can be265

computed in O(kn) time, by checking for each point of P what is the closest point in R.266

▶ Theorem 10. Let Copt denote an optimal solution to Faulty k-Center. Then in O(8kkn)267

time one can compute a set C ⊆ P of k centers such that E[fP,V (C)] ≤ 5E[fP,V (Copt)].268

Proof. The first step of our algorithm is to compute a set of k centers D ⊆ P , which is269

a 2-approximation to the optimal solution to the standard k-center instance on P , that is270

fP (D) ≤ 2 minC′⊆P,|C′|=k fP (C ′). Note that D can be computed in O(kn) time using the271

standard k-center algorithm of Gonzalez [10]. Next we guess the characteristic vector of Copt272

with respect to D, char(Copt, D). This is done by enumerating all binary vectors of length273

2k − 1 which have k 1’s, as discussed in Observation 8. Let W = (w1, . . . , wk) denote the274

current guess for char(Copt, D). We construct the canonical subset Canon(W ), by taking the275

wi points with highest probability from Vori(P, D) for all i. Next we compute the expected276

cost of this subset E[fP,V (Canon(W ))]. After computing this value for all possible guesses277

of W , we then return as our solution C = Canon(W ) with minimum expected cost. (Note278

if W is not realizable, i.e. if there are fewer than wi points in Vori(P, D), then we simply279

record E[fP,V (Canon(W ))] = ∞.)280

For the running time, computing D takes O(kn) time. Next, for each guess W =281

(w1, . . . , wk) of char(Copt, D), computing Canon(W ) takes O(kn) time, since finding the282

wi points with highest probability from Vori(P, D) can easily be done in O(win) time,283

and hence O(kn) time over all i since
∑

wi = k. (Note this step can be performed faster284

by preprocessing the points, though ultimately it does not affect the asymptotic running285

time.) Next we must compute E[fP,V (Canon(W ))], which can be done in O(2kkn) time by286

Observation 9. Thus since there are O(4k) possible guesses by Observation 8, the total time287

is O(4k(2kkn + kn) + kn) = O(8kkn)288

As for correctness, first observe that289

fP (D) ≤ 2 min
C′⊆P,|C′|=k

fP (C ′) ≤ 2 min
C′⊆P,|C′|=k

E[fP,V (C ′)] = 2E[fP,V (Copt)].290

2 Further using the fact that there are exactly k entries which are 1 in this vector of length 2k − 1, gives
the more precise bound on the number of such vectors,

(2k−1
k

)
= O(4k/

√
k).
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Next, for C = Canon(char(Copt, D)), by Corollary 7 we have E[fP,V (C)] ≤ 2fP (D) +291

E[fP,V (Copt)]. Combining these inequalities thus gives,292

E[fP,V (C)] ≤ 2fP (D)+E[fP,V (Copt)] ≤ 4E[fP,V (Copt)]+E[fP,V (Copt)] = 5E[fP,V (Copt)]. ◀293

2.2 Euclidean PTAS294

In this section we provide a fixed parameter tractable (1 + ε)-approximation to the optimal295

radius for instances of Faulty k-Center Clustering where P ⊆ Rd, and where for simplicity296

we assume d is a constant. To achieve this we consider the axis aligned regular grid of cell297

side length ∆, which is a value to be determined shortly. Specifically, for any point p ∈ P ,298

where p = (p1, . . . , pd), its cell is given by cell∆(p) = (⌊p1/∆⌋, . . . , ⌊pd/∆⌋). Assuming this299

limited use of the floor function takes O(1) time, in O(n) time we can compute the cell of300

every point in P . Moreover, as these cells are given by integer vectors, using hashing in the301

same time we can also compute the set of non-empty grid cells and the corresponding points302

in each cell. Let Grid∆(P ) denote this partition of P into the non-empty grid cells. We have303

the following standard observation (see for example [15]).304

▶ Observation 11. Let B(c, r) denote the ball of radius r and center c, for any point c and305

radius r > 0. Consider the regular grid of cell side length ∆. Then the number of grid cells306

intersecting B(c, r) is at most (2 + ⌈2r/∆⌉)d.307

The following theorem uses similar observations about grids and k-center as [1]. In308

particular, as a starting point, we similarly make use of the algorithm of Feder and Greene [8],309

which achieves a 2-approximation for k-center clustering in O(n log k) time.310

▶ Theorem 12. Let P ⊂ Rd be an instance of Faulty k-Center Clustering in d-dimensional311

Euclidean space, and let Copt denote an optimal solution to this instance. Then for any312

ε > 0, in O(n log k) + 2O(k)/εd(k+1) time3 one can compute a set C ⊆ P of k centers such313

that E[fP,V (C)] ≤ (1 + ε)E[fP,V (Copt)].314

Proof. First, use the algorithm of [8] to compute a set of k centers C ′ which covers all of P315

within radius r = fP (C ′) ≤ 2 minZ⊆P,|Z|=k fP (Z) ≤ 2E[fP,V (Copt)]. Now set ∆ = εr/(4
√

d),316

and compute Grid∆(P ). Let x denote the number of entries in Grid∆(P ), where by317

Observation 11,318

x ≤ k(2 + ⌈2r/∆⌉)d = k(2 + ⌈8
√

d/ε⌉)d = O(k(1/ε)d).319

Observe that Grid∆(P ) is a partition of P , with diameter diam(Grid∆(P )) ≤ ∆
√

d = εr/4.320

Let S = Canon(char(Copt, Grid∆(P ))). By Lemma 6 we have,321

E[fP,V (S)] ≤ εr

4 +E[fP,V (Copt)] ≤ ε

2E[fP,V (Copt)]+E[fP,V (Copt)] = (1+ε/2)E[fP,V (Copt)].322

Therefore in order to compute a (1 + ε/2)-approximation, it suffices to compute all possible323

characteristic vectors for char(Copt, Grid∆(P )), evaluate the expected cost of their corre-324

sponding canonical subsets, and take the minimum. To speed up the time to evaluate the325

expected cost of a canonical subset, we instead compute additive εr/4 ≤ (ε/2)E[fP,V (Copt)]326

approximations to these values, thus in total achieving a relative (1 + ε)-approximation.327

3 Technically the 2O(k)/εd(k+1) term assumes ε < 1. If ε ≥ 1 this term becomes 2O(k). That said, it is
standard practice to write the bound in this simplified manner.
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As for the running time, similar to Observation 8 one can argue that the number of328

possible characteristic vectors is at most329 (
x + k − 1

k

)
≤
(

(x + k)e
k

)k

= 2O(k)/εdk.330

For each characteristic vector we need to compute the corresponding canonical subset.331

Observe that within a given cell of Grid∆(P ), the canonical subset consists of the m highest332

probability points for some value m ≤ k. Therefore, as a preprocessing step, we can throw333

out all but the k highest probability points in each cell, and then sort the remaining points334

in each cell by their probability. Throwing out all but the k highest probability points takes335

O(n) time in total by using linear time median selection in each cell. All the sorting can be336

done in O(x · k log k) time total. After preprocessing, for a specific characteristic vector, it337

takes O(x + k) time to compute the canonical subset. Suppose that for this canonical subset,338

we can compute an additive εr/4-approximation to its expected cost in O(2kkx) time. Then339

the total time is340

O(n log k + n + xk log k) + (x + k + 2kkx)2O(k)/εdk = O(n log k) + 2O(k)/εd(k+1).341

So let S be any given canonical subset. What remains is to show an additive εr/4-342

approximation to its expected cost can be computed in O(2kkx) time. Let R be any343

realization of S. Consider the set of points X in some cell of the grid partition Grid∆(P ).344

Consider any two points p, q ∈ X, and let rp, rq be the nearest center in R to p and q345

respectively. By the triangle inequality we have346

||p − rp|| ≤ ||p − rq|| ≤ ||p − q|| + ||q − rq|| ≤
√

d∆ + ||q − rq|| = εr/4 + ||q − rq||.347

Therefore, ||q − rq|| ≤ maxp∈X ||p − R|| ≤ εr/4 + ||q − rq||, that is the distance from q to its348

nearest center in R is an additive εr/4 approximation to the maximum distance of a point in349

the cell to its nearest center in R. Thus to get an O(kx) time additive εr/4-approximation350

to fP (R), it suffices to pick an arbitrary representative q in each cell, compute its nearest351

center in R, and take the maximum. As there are O(2k) possible realizations R of S, the352

claim now follows in a similar fashion to Observation 9. ◀353

3 k-Median and k-Means354

In this section, we develop a fixed parameter tractable approximation scheme for Faulty355

k-Median Clustering of a collection of points P ⊂ Rd in d-dimensional Euclidean space. As356

in our approximation scheme for Faulty k-Center, we begin by finding a constant-factor357

approximate solution to k-Median without faulty centers and then partition the points of P358

into disjoint subsets based on their location in appropriately sized regions of space. Unlike the359

algorithm for Faulty k-Center, however, these subsets may have different diameters depending360

on how far away each subset is from the nearest member of the non-faulty k-Median solution.361

At the end of this section, we describe the minor changes necessary for our algorithm to362

apply to Faulty k-Means instead of k-Median. For simplicity, throughout this section we363

assume 0 < ε ≤ 1.364

We now turn to our algorithm description. Let C ′
opt denote an optimal solution for365

non-faulty k-Median. We compute a set of centers D = {d1, . . . , dk} such that gP (C ′
opt) ≤366

gP (D) ≤ 2gP (C ′
opt). The set D can be computed in O(n) + kO(1) logO(1) n time [14].4367

4 The algorithms in [14] are randomized, though they achieve this time with high probability. There are
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As in Section 2.1, we partition P into a collection of k subsets defined by the distance368

from each point to its nearest member of D. For any subset Z ⊆ P and any i ∈ {1, . . . , k},369

let Vori(Z, D) denote the subset of points of Z whose nearest center in D is di.370

We proceed to refine the above partition as follows. Fix any i ∈ {1, . . . , k}. Let371

t =
⌈
log(1+ε) 2n

⌉
= O((1/ε) log n). For each j ∈ {0, . . . , t}, let rj = (gP (D)/(2n)) · (1 + ε)j ,372

and let Bi,j = B(di, rj), the ball of radius rj centered at di. We partition the points of373

Vori(P, D) ∩ Bi,0 into O(1/εd) batches each of diameter εr0/4. For each j ∈ {1, . . . , t},374

partition the points of Vori(P, D) ∩ (Bi,j \ Bi,j−1) into O(1/εd−1) batches each of diameter375

εrj/8. These batches can be computed in time linear in their number and the size of376

Vori(P, D) by partitioning points according to their locations in a sufficiently fine grid. (See377

the discussion before Observation 11 and Observation 11 itself.)378

We perform the above assignment to batches for each i ∈ {1, . . . , k}. Observe that no379

point p ∈ P can lie further than gP (D) from its nearest center in D, implying all points are380

assigned to exactly one batch. Let ρ = {ρ1, . . . , ρm} denote the partition of P into batches.381

▶ Observation 13. For the partition ρ = {ρ1, . . . , ρm}, we have m = O((k/εd) log n).382

Recall the definitions of canonical subsets given in Section 2. As in our algorithm for383

Faulty k-Center, we will enumerate characteristic vectors for subsets of size k with respect384

to ρ, taking the best canonical subset for these vectors as our solution. We adapt Lemma 6385

for the current setting.386

▶ Lemma 14. Let ρ = {ρ1, . . . , ρm} denote the partition of P as described above. Let Q ⊆ P387

be any subset such that |Q| ≤ k, and let S = Canon(char(Q, ρ)). Then we have,388

E[gP,V (S)] ≤ (1 + 3ε/4)E[gP,V (Q)].389

Proof. Our proof follows the one for Lemma 6 except when comparing costs between two390

realizations RS ∈ Real(S) and RQ ∈ Real(Q) with the same characteristic vector. Consider391

any point p ∈ P . Let s be the closest point in RS to p, and let q be the closest point in RQ392

to p. Let iq be such that q ∈ Voriq
(P, D), and let ℓ be the index such that q ∈ ρℓ. Given RS393

and RQ have the same characteristic vector, there must be some point s′ ∈ RS such that394

s′ ∈ ρℓ. We have395

||p − s|| ≤ ||p − s′|| ≤ ||p − q|| + ||q − s′||.396

Suppose q ∈ Biq,0. Recall, Biq,0 is the ball of radius r0 = gP (D)/(2n) centered at diq
. Then,397

||p − s|| ≤ ||p − q|| + ||q − s′|| ≤ ||p − q|| + εr0

4 = ||p − q|| + εgP (D)
8n

.398

. Now, suppose q ∈ (Biq,j \ Biq,j−1) for some j > 0. Centers dip
and diq

are the closest399

members of D for p and q respectively, and ||q − D|| ≥ rj−1. By triangle inequality,400

rj−1 ≤ ||q − D|| ≤ ||q − p|| + ||p − D||.401

Therefore,402

||p − s|| ≤ ||p − q|| + ||q − s′|| ≤ ||p − q|| + ε(1 + ε)rj−1

8 ≤ ||p − q|| + εrj−1

4403

deterministic constant factor approximations, though with higher polynomial dependence on n.
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≤ ||p − q|| + ε||p − q||
4 + ε||p − D||

4 .404

Finally, summing over all p and observing gP (D) ≤ 2gP (RQ).405

gP (RS) =
∑
p∈P

||p − RS || ≤
∑
p∈P

(
||p − RQ|| + εgP (D)

8n
+ ε||p − RQ||

4 + ε||p − D||
4

)
406

≤ gP (RQ) + εgP (RQ)
4 + εgP (D)

8 + εgP (D)
4407

≤ (1 + 3ε/4)gP (RQ).408

The rest of the proof proceeds as in the one for Lemma 6, with “(1+ε)E[gP,V (Q) | eQ(u)]”409

appearing in place of “E[fP,V (Q) | eQ(u)] + diam(ρ)” alongside analogous substitutions. ◀410

We conclude with our main theorem for Faulty k-Median.411

▶ Theorem 15. Let P ⊂ Rd be an instance of Faulty k-Median in d-dimensional Euclidean412

space, and let Copt denote an optimal solution to this instance. Then for any ε > 0, in413

O(kn) + (2O(k log k)/εd(k+1))no(1) time, one can compute a set C ⊆ P of k centers such that414

E[gP,V (C)] ≤ (1 + ε)E[gP,V (Copt)].415

Proof. As stated above, our algorithm begins by computing the set D ⊆ P of k centers in416

O(n)+kO(1) logO(1) n time [14]. We then find the closest center in D for each point in P , and417

then refine this partition into batches as described above. This produces a partition ρ into418

O((k/εd) log n) batches by Observation 13, and thus ρ is computed in O(kn + (k/εd) log n)419

time.420

We now pick an approximately best characteristic vector. In order to do so quickly, we421

first compute a (k, ε/8)-coreset S of P . Coreset S is a weighted set of points such that for422

any set C of centers, (1 − ε/8)gP (C) ≤
∑

s∈S minc∈C w(s)||s − c|| ≤ (1 + ε/8)gP (C) where423

w(s) denotes the weight of point s. A coreset of size O((k log n)/εd) can be computed in424

O(n log k) time [14].5 Next, we enumerate all O((k/εd) log n)k) possible characteristic vectors425

W for char(Copt, ρ). We estimate the expected cost of each canonical subset Canon(W )426

within a (1 + ε/8) factor in O((2kk2 log n)/εd time by using computing the cost of individual427

realizations with regard to S. Finally, we return the solution C with the minimum estimated428

expected cost. Lemma 14 and the definition of S implies our solution has the correct expected429

cost.430

It has been observed that logk n = 2O(k log k)no(1) [6]: If n ≤ 2k2 , then logk n ≤431

k2k = 2O(k log k), and if n > 2k2 , then logk n ≤ 2
√

log n log log n = no(1). Therefore, for432

the (2O(k log k)/εdk)no(1) characteristic vectors, in (2O(k log k)/εd(k+1))no(1) time total we com-433

pute the expected costs of their canonical subsets. Adding in other operations yields the434

promised running time. ◀435

3.1 k-Means436

We now discuss how to modify our algorithm for Faulty k-Median to instead find a (1 + ε)-437

approximate solution to Faulty k-Means. As before, we start by computing a 2-approximate438

solution D to non-faulty k-Means in O(n+kk+2ε−(2d+1)k logk+1 n logk(1/ε)) time [14]. Then,439

we partition the points of P into the k subsets Vori(P, D) and refine the partition.440

5 A newer result shows existence of a coreset of size O(k2/εd) [13]. However, the construction time for
this smaller coreset is unclear, and an extra log n factor does not qualitatively affect our result.
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We need to modify the refined partition somewhat to work with k-Means. We set441

the parameter t that determines the number of concentric balls to
⌈
log1+ε(

√
2n)
⌉
, and442

let rj =
√

hP (D)/(2n) · (1 + ε)j . We now partition the points of Vori(P, D) ∩ Bi,0 into443

O(1/εd) batches each of diameter εr0/8, and for each j ∈ {1, . . . , t}, partition the points of444

Vori(P, D) ∩ (Bi,j \ Bi,j−1) into O(1/εd−1) batches each of diameter εrj/16.445

The rest of the algorithm itself remains the same, but for the analysis we need to revise446

Lemma 14 to account for the different objective in k-Means.447

▶ Lemma 16. Let ρ = {ρ1, . . . , ρm} denote the partition of P for Faulty k-Means. Let448

Q ⊆ P be any subset such that |Q| ≤ k, and let S = Canon(char(Q, ρ)). Then we have,449

E[hP,V (S)] ≤ (1 + 3ε/4)E[hP,V (Q)].450

Proof. We recall the notation from Lemma 6 and Lemma 14 that is used in the novel part451

of the proof. Let RS ∈ Real(S) and RQ ∈ Real(Q) have the same characteristic vector.452

Consider any point p ∈ P . Let s be the closest point in RS to p, and let q be the closest453

point in RQ to p. Let iq be such that q ∈ Voriq
(P, D), and let ℓ be the index such that454

q ∈ ρℓ. Given RS and RQ have the same characteristic vector, there must be some point455

s′ ∈ RS such that s′ ∈ ρℓ. We have456

||p − s|| ≤ ||p − s′|| ≤ ||p − q|| + ||q − s′||.457

The remainder of the proof will rely on the fact that for any x, y ≥ 0, xy ≤ x2/2 + y2/2. This458

fact is a special case of both Young’s [28] inequality for products and the AM-GM inequality.459

Suppose q ∈ Biq,0. Recall, Biq,0 is the ball of radius r0 =
√

hP (D)/(2n) centered at diq
.460

Then,461

||p − s||2 ≤ (||p − q|| + ||q − s′||)2 ≤
(

||p − q|| + εr0

8

)2
=
(

||p − q|| +
ε
√

hP (D)
8
√

2n

)2

462

= ||p − q||2 + ε

4 ||p − q|| ·
√

hP (D)√
2n

+ ε2hP (D)
128n

463

= ||p − q||2 +
√

ε

4 ||p − q|| ·
√

εhP (D)
8n

+ ε2hP (D)
128n

464

≤ ||p − q||2 + ε||p − q||2

8 + 9εhP (D)
128n

465

Now, suppose q ∈ (Biq,j \ Biq,j−1) for some j > 0. Again, rj−1 ≤ ||p − q|| + ||p − D||.466

Therefore,467

||p − s||2 ≤ (||p − q|| + ||q − s′||)2 ≤
(

||p − q|| + ε(1 + ε)rj−1

16

)2
468

≤
(

||p − q|| + εrj−1

8

)2
≤
((

1 + ε

8

)
||p − q|| + ε||p − D||

8

)2
469

=
(

1 + ε

4 + ε2

64

)
||p − q||2 + 2

(
ε

8 + ε2

64

)
||p − q|| · ||p − D|| + ε2||p − D||2

64470

≤
(

1 + 17ε

64

)
||p − q||2 + 2

√
9ε

64 ||p − q|| ·
√

9ε

64 ||p − D|| + ε||p − D||2

64471

≤ ||p − q||2 + 13ε||p − q||2

32 + 5ε||p − D||2

32472
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Finally, summing over all p and observing hP (D) ≤ 2hP (RQ).473

hP (RS) =
∑
p∈P

||p − RS ||2 ≤
∑
p∈P

(
||p − RQ||2 + 13ε||p − RQ||2

32 + 9εhP (D)
128n

+ 5ε||p − D||2

32

)
474

≤ hP (RQ) + 13εhP (RQ)
32 + 9εhP (D)

128 + 5εhP (D)
32475

≤ (1 + ε)hP (RQ).476

The rest of the proof proceeds as in the one for Lemma 6, with “(1 + ε)E[hP,V (Q) | eQ(u)]”477

appearing in place of “E[fP,V (Q) | eQ(u)] + diam(ρ)” alongside analogous substitutions. ◀478

The running time analysis for Faulty k-Means is virtually the same as that for Faulty479

k-Median, except for the larger time needed to find the initial non-faulty 2-approximate480

solution. We thus conclude with our final theorem.481

▶ Theorem 17. Let P ⊂ Rd be an instance of Faulty k-Means in d-dimensional Euclidean482

space, and let Copt denote an optimal solution to this instance. Then for any ε > 0, in483

O(kn) + (2O(k log k)/ε(2d+1)k)no(1) time, one can compute a set C ⊆ P of k centers such that484

E[hP,V (C)] ≤ (1 + ε)E[hP,V (Copt)].485
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