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—— Abstract

In this paper we introduce and formally study the problem of k-clustering with faulty centers.
Specifically, we study the faulty versions of k-center, k-median, and k-means clustering, where
centers have some probability of not existing, as opposed to prior work where clients had some
probability of not existing. For all three problems we provide fixed parameter tractable algorithms, in
the parameters k, d, and ¢, that (14 ¢)-approximate the minimum expected cost solutions for points
in d dimensional Euclidean space. For Faulty k-center we additionally provide a 5-approximation for
general metrics. Significantly, all of our algorithms have only a linear dependence on n.
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1 Introduction

There is a vast body of computational geometry literature which considers input points that
are certain, that is they always exist and their location is known. However, uncertainty
naturally arises when we are dealing with real world inputs. To model uncertain inputs,
several works have considered the notion of probabilistic points. Two models for probabilistic
points are commonly used: (i) the existential model [18,20,21], and (ii) the locational
model [7,11]. In the existential model, each probabilistic point has a certain fixed location
if it exists, but it has a given probability of not existing. In the locational model, each
probabilistic point always exists but its location is uncertain, and is instead specified by a
probability density function over some region.

In this paper, we consider variants of the k-clustering problem under the existential
model for the cluster centers. Specifically, we consider the k-center, k-median, and k-means
problems, where the input points that must be covered are certain to exist, but each one
of the k selected centers has an independent probability of existing, i.e. of being open to
cover points. Our goal is then to select centers so as to minimize the expected furthest
distance, sum of distances, or sum of squared distances, that points must travel to their
nearest open center. We denote this as the Faulty k-Clustering problem. Prior papers have
considered k-clustering in probabilistic input models, but where the centers are certain and
the points needing to be covered are probabilistic (see for example [7]). To the best of our
knowledge we are the first to consider probabilistic k-clustering, where the uncertainty is on
the cluster centers. Our variant of k-clustering is quite natural, as real world facilities can
often have some probability of failure. Indeed, this real world motivation of faulty centers
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Clustering with Faulty Centers

has inspired other previous work, though not in our probabilistic setting. Specifically, in the
Fault Tolerant Clustering Problem (see for example [23]), the centers are certain to exist,
though each point must travel to its [-th closest center. This objective attempts to provide
robustness (i.e. failure tolerance) in the chosen centers. However, it less faithfully models the
case where individual centers fail with some probability, since for example while one point’s
closest center may be closed, a different point’s closest center may be open.

Related Work

The k-clustering problem with certain (i.e. non-probabilistic) input points is a classic and
fundamental topic in computational geometry. The three most common variants are k-center,
k-median, and k-means clustering. All three problems are known to be NP-hard. k-center
is NP-hard to approximate within any factor less than 2 in general metric spaces [17] and
hard to approximate within a factor of roughly 1.82 in the plane [8]. k-means is known to be
NP-hard even when k = 2 [2], while k-median is known to be hard to approximate within a
factor of (1 +2/e) [19]. Despite the hardness of these problems, there are many well known
approximation algorithms. The standard greedy algorithm for k-center by Gonzalez [10]
achieves an optimal 2-approximation to the optimal radius r,,:. By an alternative method,
Hochbaum and Shmoys [16] also achieved a 2-approximation for k-center. For k-median and
k-means it is known that local search achieves a constant factor approximation in polynomial
time. (See discussion in [12] and references therein.) In Euclidean space, PTAS’s exists for
these problems when k, d, and € are bounded. Specifically, Agarwal and Procopiuc [1] achieve
a (1 + ¢)-approximation for k-center in O(nlogk) + (k/2)°% ™" time. For k-median and
k-means a number of corset based (1 + ¢)-approximation algorithms have been given which
run in linear time in n, including Har-Peled and Mazumdar [14], and subsequent papers
improving the time dependency on k, d, and € [5,9].

A number of prior works have considered variants of k-clustering where the client points
that need to be covered are probabilistic, as opposed to our model where the centers are
probabilistic. Perhaps most notably is the work of Cormode and McGregor [7]. They consider
client points under the locational model, though as they also allow clients to have non-zero
probability to not exist, their model also captures the existential model. For k-median and
k-means they achieve (1 4 ¢)-approximations to the minimum expected cost solution in
Euclidean space, and a constant factor approximation for k-median in general metrics. Their
main focus, however, is on the more challenging case of k-center, for which they provide
bi-criteria approximations for general metrics. That is, in addition to approximating the
radius, they are allowed to exceed the requested number centers, and they provide different
tradeoffs between the two kinds of approximation. Guha and Munagala [11] subsequently
provided a non-bi-criteria approximation for k-center, obtaining an O(1)-approximation on
only the expected radius. For points in R?, Huang and Li [18] later achieved the first PTAS
for k-center, when k, d are fixed constants.

There have been a number of other follow up results to [7], again for the case of probabilistic
clients not centers. For k-center on the real line, R, Wang and Zhang [27] showed that
the problem can be solved exactly in polynomial time. Munteanu et al. [25] considered the
special case where k = 1 for both the k-center and the k-median objectives, and achieved
polynomial time (1 + &)-approximations. Moreover, in the data mining community, previous
works have considered variations of probabilistic k-median [24] and k-means clustering [3, 26].

The idea of modeling faulty centers in clustering problems has also been considered in
previous works under the setting of fault tolerant k-clustering [4,22,23]. In fault tolerant
clustering centers are certain rather than probabilistic, and one assigns each point to its [
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nearest center for some integer [ > 1. This is unlike our probabilistic model where each point
is assigned to its nearest center that happens to be open.

1.1 Preliminaries

In the standard k-clustering problem, we are given a set P of n points in a metric space,
called clients, and an integer parameter k > 0. The task is to select k points from P, called
centers, so as to minimize some cost function of the distances of the client points in P to
their nearest centers. In k-center clustering one minimizes the maximum distance from a
client to its nearest center. In k-median clustering one minimizes the sum of distances from
each client to their nearest center. Finally, in k-means clustering, one minimizes the sum
of squared distances from each client to their nearest center. Note that for a given set of
centers, the distances from the clients to their nearest centers, defines a vector of length n.
The goal of k-center, k-median, or k-means, is then to minimize the £, ¢1, or 5 norm of
this vector, respectively.

For these three problems we now formally define their respective cost functions for any
given subset C' C P. Specifically, for k-center, k-median, and k-means we respectively define
the functions f, g, and h, as follows.

fp(C) = max||p — C|| = maxmin|lp— [, grp(C) =3 [lp=Cll =3 minlp—c,
peEP pEP
hp(C) = 3 llp— I = 3 minp — .
peEP pEP

The goal of k-center, k-median, or k-means is then to select the subset C' C P of size k that
minimizes fp, gp, or hp respectively. Note that for k-center clustering specifically, we often
refer to r = fp(C) as the radius of the solution C, as r can be viewed as the radius of k
equal radius balls covering the points in P.

Here we consider a variation of the standard k-clustering problem where there is uncer-
tainty on whether any one of the chosen centers will be open, i.e. uncertainty on whether
points in P can be covered by that center. Specifically, in addition to the point set P, as part
of the input we are also given a vector V' whose ith entry v; is the probability that p; will be
open if it is chosen as a center. For any point p;, when convenient we use prob(p;) = v; to
denote its associated probability.

» Definition 1. Let P be a set of n points in a metric space, V € [0,1]™ be a corresponding
vector of probabilities, and C C P be any subset. Any subset R C C is called a realization of
C, and let Real(C) denote the set of all realizations (i.e. the power set of C'). For a given
realization R, a center p € C' is said to be open (resp. closed) is p € R (resp. p & R). Each
center p € C is open independently with probability prob(p), thus the probability R € Real(C)
occurs (i.e. is the set of open centers) is Prob(R) = (Il,cg prob(p))(Il,ec\r (1 — prob(p))).

For this probabilistic version of k-clustering, our cost functions fpy (C), gp,v(C), and
hpy(C) are now random variables, which for a given realization R C C' are equal to fp(R),
gp(R), and hp(R), respectively. (Note that throughout we use the single subscript fp to
denote the non-probabilistic cost function, and the double subscript fpy to denote the
corresponding random variable version.) Our goal is now to find the subset C' minimizing
the expected value E[fp v (C)], E[gp,v(C)], or Elhpy(C)], where the expectation is taken
over the distribution of Real(C) determined by V.
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Clustering with Faulty Centers

» Problem 2 (Faulty k-Center Clustering). As input you are given a set P of n points in a
metric space, a corresponding vector V € [0,1]™ of independent probabilities, and a positive
integer parameter k. Find the subset Cope of k centers which minimizes E[fpy (C)]. That is,

Copt = argmingc pci=k E[fp,v(C)].

» Problem 3 (Faulty k-Median Clustering). As input you are given a set P of n points in a
metric space, a corresponding vector V € [0,1]™ of independent probabilities, and a positive
integer parameter k. Find the subset Copy of k centers which minimizes Elgp,v (C)]. That is,
Copt = argmingc pci=k Elgr,v (C)].

» Problem 4 (Faulty k-Means Clustering). As input you are given a set P of n points in a
metric space, a corresponding vector V € [0,1]™ of independent probabilities, and a positive
integer parameter k. Find the subset Cop of k centers which minimizes E[hpy (C)]. That is,
Copt = argmingc p,c|=k Elhpv(C)].

» Remark 5. It is possible that all selected centers are closed, i.e. R = (). Thus to make sure
the problem is well defined, we set fp (@), gp(P), and hp(@) equal to different specified values.
Natural choices for these would depend on the input set P. For example, setting them equal
to the optimal (non-probabilistic) 1-center, 1-median, or 1-mean solution, respectively. An
alternative, though related approach, is to fix some center which is open with probability 1
and always included in the solution (i.e. not a part of the k selected centers).

Note that if all entries in V are the same then the probability that R = (} is the same,
regardless of which subset C' of size k is chosen, and thus the choice of fp (@) (resp. gp(#) and
hp(0)) does not affect the relative ordering of E[fpy (C)] for different C. Furthermore, even
in the case when the entries in V' differ, for the solution our algorithm returns (as described
below) the probability that R = () is less than or equal to that for the optimal solution.

1.2 Qur Contribution

To the best of our knowledge, we are the first to formally study the faulty k-clustering
problem, where the probabilities are on the centers rather than the clients. As stated above,
this is a natural setting, as centers may have some probability of failure.

For the three most common k-clustering variants, k-center, k-median, and k-means,
we provide fixed parameter tractable approximation algorithms for their faulty versions.
Specifically, for Faulty k-Center we provide an O(8%kn) time 5-approximation in general
metrics. All remaining results are (1 + ¢)-approximations for the Euclidean metric R?, where
we always assume d is a constant. For Faulty k-Center we provide an O(n log k)4-20%) /gd(k+1)
time (1 + &)-approximation in the Euclidean case. For Faulty k-Median we provide an
O(kn) + (20(klogk) /2d(k+1)ypo(l) time (1 4 ¢)-approximation in the Euclidean case. Finally,
for Faulty k-Means we provide an O(kn)+4(20(#108k) /2(2d+1)k)p0(1) time (14-¢)-approximation
in the Euclidean case.

It is important to note that all of our algorithms have only a linear dependence on
n. Moreover, for all three problems, in the Euclidean case we are providing a (1 + ¢)-
approximation, that is an EPTAS for fixed k and d.

Recall that the standard (non-faulty) versions of these problems are NP-hard, even in
Euclidean settings, with additional results on hardness of approximation or for special cases,
depending on which one of the three problems is considered. As the non-faulty versions are
a special case of the faulty versions (where probabilities are all 1), these hardness results
immediately apply to our problems. Moreover, our problems have the additional challenge
that each choice of centers has an exponential number of possible realizations.
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2 FPT Approximation Algorithms for k-Center

In this section we develop fixed parameter tractable (in the parameter k) approximation
algorithms for Faulty k-Center Clustering. Specifically, for general metric spaces we achieve
a b-approximation to the optimal radius and in fixed dimensional Euclidean space we achieve
a (1 + e)-approximation, i.e. a PTAS. For comparison, recall that for the standard non-
probabilistic version of k-center clustering it is hard to approximate the radius within any
constant factor less than 2 in general metric spaces [17], and there is a PTAS in Euclidean
space. First, we present definitions and a core lemma, which are common to both algorithms.

Consider any instance P,k of Faulty k-Center, and let p = {p1,..., pm} be a partition of
P into m disjoint subsets. Define the diameter of p as,

diam(p) = max diam(p;) = max max ||p — q||-
i i P.gEp;

For any subset Z C P, let p(Z) = {p1(2),...,pm(Z)}, where p;(Z) = Z N p;, denote the
partition of Z induced by p. We then define the characteristic vector of Z with respect to p,
denoted char(Z, p) as the m dimensional integer vector whose ith entry is |p;(Z)|. Define the
canonical subset, Canon(char(Z, p)), of a characteristic vector char(Z, p) = (wy,...,Wn), as
the subset S C P consisting of the w; points with highest probability from p;, for all .*
The following key lemma intuitively states that for any set of centers @, if we replace each
subset p;(Q) with an equal number of higher probability points from p;, then the expected
cost of the solution increases by at most the diameter of p. Roughly speaking, this holds as
each center is moved distance at most p, and its probability of being open does not decrease.

» Lemma 6. Let p = {p1,...,pm} be a partition of P into m subsets. Let Q C P be any
subset, and let S = Canon(char(Q, p)). Then we have,

Elfpy ()] < diam(p) + E[fpv(Q)]-

Proof. Observe that for all 4, |p;(S)| = |p:(Q)], since S and @ have the same characteristic
vector. For any i, label the points in p;(S) = {si,...,s%, } and similarly in p;(Q) =
{qi,.. ,q}ﬂ} in decreasing order of their probability. We define a bijection b : S — Q,
such that b(s}) = ¢}. Observe that the bijection b defines a bijection between Real(S) and
Real(Q). Abusing notation slightly, for any realization Rg of S we use b(Rg) to denote the
corresponding realization in Q). Observe that by construction, char(Rsg, p) = char(b(Rs), p).

Let Rs € Real(S) be any realization of S. Consider any point p € P. Let s be the closest
point in Rg to p, and let ¢ be the closest point in b(Rgs) to p. Let i be the index such that
q € p;. Since char(Rg, p) = char(b(Rs), p), there must be some point s’ € Rg such that
s" € p;(S) C p;. Therefore, by the triangle inequality,

lp=sll < llp =5l < llp—all + [la = Sl < lp — qll + diam(p).

This implies fp(Rs) = maxyep||p — Rs|| < maxyep |[p — b(Rs)|| + diam(p) = fp(b(Rs)) +
diam(p).

For two vectors u, v of the same dimension, let u < v denote that u is coordinate-wise
smaller than v, i.e. u; < v; for all i. So let V'’ be a probability vector such that V' < V.
Then observe that E[fp v (X)] < E[fp,y/(X)] for any subset X C P. In other words, if each

1 For points of equal probability, let there be an arbitrary but fixed ordering.
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27 center in X has a smaller or equal probability to be open under V', then the expected cost
28 cannot decrease when replacing V' with V.

210 For any point p € P, let proby (p) denote the corresponding probability from the vector
20 V. We define a new probability vector V' such that for any p € P, if p € S then proby.(p) =
o proby (b(p)), and if p € S then proby. (p) = proby (p). Observe that since p;(S) consists of
22 the w; points with highest probability in p;, we have that proby (S;) > probv(qé) for any ¢, j.
23 Therefore V' <V, and so by the above discussion, E[fpv(S)] < E[fp,v/(5)].

224 Let proby (Rgs) and proby(Rg) denote the probability that Rg is realized under V' and
25 V', respectively. Observe that proby (Rgs) = proby (b(Rg)). Therefore, we have the following,

m Elfpv(S) < Elfev(S)]= Y probvi(Rs) - fr(Rs)
Rs€Real(S)
21 = Y probu(b(Rs)) - fr(Rs)
b(Rs)€Real(Q)
228 < Z proby (b(Rs)) - (fp(b(Rs)) + diam(p))
b(Rs)€EReal(Q)
229 = E[fRV(Q)] + dzam(p) <
230 We remark that given an optimal subset of centers C,,; and the canonical subset S of any

a1 arbitrary characteristic vector, it is not necessarily the case that E[fp v (Canon(char(Copt, p)))] <
= E[fpyv(S)]. However, the fact that canonical subsets have approximately the same cost as

23 the best subset of the same characteristic vector is sufficient for proving our algorithms’

234 correctness.

= 2.1  General Metrics

26 Here we develop a fixed parameter tractable algorithm for Faulty k-Center Clustering in
27 general metric spaces, which achieves a 5-approximation to the optimal radius.

238 Consider a subset C' = {cy,...,c} of k centers from P. For any other subset Z C P, let
20 Vor;(Z,C) denote the subset of points in Z whose nearest center in C' is ¢;, e.g. when P
20 is a point set in Euclidean space then this is the subset of points of Z in the Voronoi
an cell of ¢;. Observe that Vor(Z,C) = {Vori(Z,C),...,Vory(Z,C)} defines a partition
w p(Z)={p1(Z),...,pr(Z)} of Z where p;(Z) = Vor;(Z,C). Thus the definitions of charac-
23 teristic vectors and canonical subsets from above apply, where to simplify notation we write
aue char(Z,C) = char(Z,Vor(P,C)). Moreover, by the triangle inequality

245 diam(Vor(P,C)) =max  max ||[p—g¢|| <2max max ||p— ¢l
i p,qeVor;(P,C) i peVor;(P,C)

26 :2r;1€a;,<|\p*0||:2fp(0)7
27 and thus we immediately have the following corollary of Lemma 6.

23 B Corollary 7. Let C = {cy,...,cr} be a subset of k centers from P. Let @ C P be any
2o subset, and let S = Canon(char(Q,C)). Then we have,

250 Elfpv(9)] <2fp(C)+ E[fpv(Q)].

251 Observe that for two different subsets Z,Z’ C P such that |Z| = |Z’| it is possible to
2 have char(Z,C) = char(Z',C), however, we have the following bound on the total number
»3  of characteristic vectors for subsets of size k.
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» Observation 8. Let C C P be a subset of k points. Then there are O(4F) possible
characteristic vectors for all subsets of size k with respect to C. That is,

U  char(C’,0)| = 0(4").
C'CP,|C|=k

Proof. Recall char(C’,C) is a vector of length k whose (non-negative) entries sum to k. Any
such vector can be represented as a binary vector of length 2k — 1 by writing each entry from
the original vector in unary, and then separating entries with a single zero. The number of
binary vectors of length 2k — 1 is 22— = O(4%).2 <

Before we present our algorithm, we make one more simple observation.

» Observation 9. Given a point set P, probability vector V, and a subset C of k centers,
E[fpv(C)] can be computed in O(2%kn) time. Specifically, enumerate all possible O(2")
realizations in Real(C). Then for a given realization R, the probability of R occurring is
(Hp,er vi)(y,conr (1 —v;)), and thus is computable in O(k) time. Moreover, fp(R) can be
computed in O(kn) time, by checking for each point of P what is the closest point in R.

» Theorem 10. Let C,,; denote an optimal solution to Faulty k-Center. Then in O(8%kn)
time one can compute a set C C P of k centers such that E[fpyv(C)] < 5E[fp,v(Copt)].

Proof. The first step of our algorithm is to compute a set of k centers D C P, which is
a 2-approximation to the optimal solution to the standard k-center instance on P, that is
fp(D) < 2mingicpcrj=k fr(C'). Note that D can be computed in O(kn) time using the
standard k-center algorithm of Gonzalez [10]. Next we guess the characteristic vector of Copt
with respect to D, char(Copt, D). This is done by enumerating all binary vectors of length
2k — 1 which have k 1’s, as discussed in Observation 8. Let W = (wy, ..., wy) denote the
current guess for char(Copt, D). We construct the canonical subset Canon(W), by taking the
w; points with highest probability from Vor;(P, D) for all i. Next we compute the expected
cost of this subset E[fp,v(Canon(W))]. After computing this value for all possible guesses
of W, we then return as our solution C' = Canon(W') with minimum expected cost. (Note
if W is not realizable, i.e. if there are fewer than w; points in Vor;(P, D), then we simply
record E[fpy (Canon(W))] = cc.)

For the running time, computing D takes O(kn) time. Next, for each guess W =
(w,...,wg) of char(Copt, D), computing Canon(W) takes O(kn) time, since finding the
w; points with highest probability from Vor;(P, D) can easily be done in O(w;n) time,
and hence O(kn) time over all ¢ since Y w; = k. (Note this step can be performed faster
by preprocessing the points, though ultimately it does not affect the asymptotic running
time.) Next we must compute E[fpy (Canon(W))], which can be done in O(2¥kn) time by
Observation 9. Thus since there are O(4F) possible guesses by Observation 8, the total time
is O(4%(2kkn + kn) + kn) = O(8%kn)

As for correctness, first observe that

fp(D) <2 fp(C') <2 Elfpv(C")] = 2E[fpv(Copt)]-

min min
C'CP,|C'|=k C'CP,|C'|=k

2 Further using the fact that there are exactly k entries which are 1 in this vector of length 2k — 1, gives
the more precise bound on the number of such vectors, (Qkk_l) = 0(4*/VEk).
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Clustering with Faulty Centers

Next, for C' = Canon(char(Cop, D)), by Corollary 7 we have E[fpy(C)] < 2fp(D) +
E[fpv(Copt)]. Combining these inequalities thus gives,

Elfpv(C)] < 2fp(DRE[fpv (Copt)] < AE[fpv (Copt)HE[fpv (Copt)] = SE[fpv (Copt)]. <

2.2 Euclidean PTAS

In this section we provide a fixed parameter tractable (1 + ¢)-approximation to the optimal
radius for instances of Faulty k-Center Clustering where P C R?, and where for simplicity
we assume d is a constant. To achieve this we consider the axis aligned regular grid of cell
side length A, which is a value to be determined shortly. Specifically, for any point p € P,
where p = (p!,...,p%), its cell is given by cella(p) = (|p*/A], ..., |p?/A]). Assuming this
limited use of the floor function takes O(1) time, in O(n) time we can compute the cell of
every point in P. Moreover, as these cells are given by integer vectors, using hashing in the
same time we can also compute the set of non-empty grid cells and the corresponding points
in each cell. Let Grida(P) denote this partition of P into the non-empty grid cells. We have
the following standard observation (see for example [15]).

» Observation 11. Let B(c,r) denote the ball of radius v and center ¢, for any point ¢ and
radius r > 0. Consider the reqular grid of cell side length A. Then the number of grid cells
intersecting B(c,r) is at most (2 + [2r/A])<.

The following theorem uses similar observations about grids and k-center as [1]. In
particular, as a starting point, we similarly make use of the algorithm of Feder and Greene [8],
which achieves a 2-approximation for k-center clustering in O(nlog k) time.

» Theorem 12. Let P C R? be an instance of Faulty k-Center Clustering in d-dimensional
Euclidean space, and let Cope denote an optimal solution to this instance. Then for any
e >0, in O(nlogk) + 200) /cd(k+1) time3 one can compute a set C C P of k centers such
that E[fp,v(C)] < (1 +€)E[fpv(Copt)]-

Proof. First, use the algorithm of [8] to compute a set of k centers C’ which covers all of P
within radius r = fp(C’) < 2mingcpz)—k fr(Z) < 2E[fpv (Copt)]. Now set A = er/(4V/d),
and compute Grida(P). Let x denote the number of entries in Grida(P), where by
Observation 11,

© < k(2 + [2r/AT) = k(2 + [8Vd/e]) = O(k(1/)7).

Observe that Grida(P) is a partition of P, with diameter diam(Grida(P)) < AvVd = er/4.
Let S = Canon(char(Copt, Grida(P))). By Lemma 6 we have,

E[fpv(9)] < %+E[fP,V(Copt)] < SE[fpv(Cop) |+ E[frv(Copt)] = (1+€/2) E[fp,v (Copt)]-

DO | ™

Therefore in order to compute a (1 + €/2)-approximation, it suffices to compute all possible
characteristic vectors for char(Copt, Grida(P)), evaluate the expected cost of their corre-
sponding canonical subsets, and take the minimum. To speed up the time to evaluate the
expected cost of a canonical subset, we instead compute additive er/4 < (¢/2)E[fp,v (Copt)]
approximations to these values, thus in total achieving a relative (1 4 ¢)-approximation.

3 Technically the 20<k>/5d(k+1) term assumes ¢ < 1. If & > 1 this term becomes 2°). That said, it is
standard practice to write the bound in this simplified manner.
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As for the running time, similar to Observation 8 one can argue that the number of
possible characteristic vectors is at most

For each characteristic vector we need to compute the corresponding canonical subset.
Observe that within a given cell of Grida (P), the canonical subset consists of the m highest
probability points for some value m < k. Therefore, as a preprocessing step, we can throw
out all but the k£ highest probability points in each cell, and then sort the remaining points
in each cell by their probability. Throwing out all but the k highest probability points takes
O(n) time in total by using linear time median selection in each cell. All the sorting can be
done in O(z - klog k) time total. After preprocessing, for a specific characteristic vector, it
takes O(z 4 k) time to compute the canonical subset. Suppose that for this canonical subset,
we can compute an additive er /4-approximation to its expected cost in O(2¥kz) time. Then
the total time is

O(nlogk +n + zklogk) + (z + k 4 2Fkx)2°%) /e — O(nlog k) + 200 Jed(k+1)

So let S be any given canonical subset. What remains is to show an additive er/4-
approximation to its expected cost can be computed in O(2Fkx) time. Let R be any
realization of S. Consider the set of points X in some cell of the grid partition Grida(P).
Consider any two points p,q € X, and let r,, 7, be the nearest center in R to p and ¢
respectively. By the triangle inequality we have

llp = 7ol < 1o =7l < [lp = all +lla = rgll < VAA + |lg = rqll = er/4 + [lg = 7],

Therefore, ||g — r4|| < maxpex ||p — R|| < er/4+ ||q — 4|, that is the distance from ¢ to its
nearest center in R is an additive er/4 approximation to the maximum distance of a point in
the cell to its nearest center in R. Thus to get an O(kx) time additive er/4-approximation
to fp(R), it suffices to pick an arbitrary representative ¢ in each cell, compute its nearest
center in R, and take the maximum. As there are O(2%) possible realizations R of S, the
claim now follows in a similar fashion to Observation 9. <

3 k-Median and k-Means

In this section, we develop a fixed parameter tractable approximation scheme for Faulty
k-Median Clustering of a collection of points P C R? in d-dimensional Euclidean space. As
in our approximation scheme for Faulty k-Center, we begin by finding a constant-factor
approximate solution to k-Median without faulty centers and then partition the points of P
into disjoint subsets based on their location in appropriately sized regions of space. Unlike the
algorithm for Faulty k-Center, however, these subsets may have different diameters depending
on how far away each subset is from the nearest member of the non-faulty k-Median solution.
At the end of this section, we describe the minor changes necessary for our algorithm to
apply to Faulty k-Means instead of k-Median. For simplicity, throughout this section we
assume 0 < e < 1.

We now turn to our algorithm description. Let C(’)pt denote an optimal solution for
) <

non-faulty k-Median. We compute a set of centers D = {d,...,d} such that gp(C,,

gp(D) < 2gp(Cl,,). The set D can be computed in O(n) 4 kM) log®™M n, time [14].4

4 The algorithms in [14] are randomized, though they achieve this time with high probability. There are
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Clustering with Faulty Centers

As in Section 2.1, we partition P into a collection of k subsets defined by the distance
from each point to its nearest member of D. For any subset Z C P and any ¢ € {1,...,k},
let Vor;(Z, D) denote the subset of points of Z whose nearest center in D is d;.

We proceed to refine the above partition as follows. Fix any ¢ € {1,...,k}. Let
t= [log(lﬂ) 2n—‘ = O((1/e)logn). For each j € {0,...,t}, let r; = (gp(D)/(2n)) - (1 +¢)7,
and let B; ; = B(d;,rj), the ball of radius r; centered at d;. We partition the points of
Vor;(P, D) N B; o into O(1/e?) batches each of diameter erg/4. For each j € {1,...,t},
partition the points of Vor;(P, D) N (B, ; \ B;j—1) into O(1/e4~1) batches each of diameter
er;/8. These batches can be computed in time linear in their number and the size of
Vor;(P, D) by partitioning points according to their locations in a sufficiently fine grid. (See
the discussion before Observation 11 and Observation 11 itself.)

We perform the above assignment to batches for each ¢ € {1,...,k}. Observe that no
point p € P can lie further than gp(D) from its nearest center in D, implying all points are
assigned to exactly one batch. Let p = {p1,..., pm} denote the partition of P into batches.

» Observation 13. For the partition p = {p1,..., pm}, we have m = O((k/e?)logn).

Recall the definitions of canonical subsets given in Section 2. As in our algorithm for
Faulty k-Center, we will enumerate characteristic vectors for subsets of size k with respect
to p, taking the best canonical subset for these vectors as our solution. We adapt Lemma 6
for the current setting.

» Lemma 14. Let p = {p1,...,pm} denote the partition of P as described above. Let Q C P
be any subset such that |Q| < k, and let S = Canon(char(Q, p)). Then we have,

Elgpv(S)] < (1+3¢/4)Elgrv(Q)]-

Proof. Our proof follows the one for Lemma 6 except when comparing costs between two
realizations Rg € Real(S) and Rg € Real(QQ) with the same characteristic vector. Consider
any point p € P. Let s be the closest point in Rg to p, and let g be the closest point in Rg
to p. Let iy be such that ¢ € Vor; (P, D), and let £ be the index such that g € py. Given Rg
and Rg have the same characteristic vector, there must be some point s’ € Rg such that
s’ € pg. We have

lp = sl <lp—$'ll < llp —all + |la = &||.
Suppose g € B, 0. Recall, B;_ o is the ball of radius ro = gp(D)/(2n) centered at d;,. Then,

egp(D)
8n

ETo

1 llp —ql| +

lp=sll <llp—dll+llg =5l <llp—all +

. Now, suppose ¢q € (Biqyj \ Bi“_l) for some j > 0. Centers d;, and d;, are the closest
members of D for p and g respectively, and ||¢ — D|| > r;_;. By triangle inequality,

ri-1 < |l¢ = DI| < |lg = pl| + [|p — DIl
Therefore,

e(l+e)rj_1
8

ETi—1
<llp—qll + ——

llp=sll <llp—qll+lg = s'[| < |lp —qll + 1

deterministic constant factor approximations, though with higher polynomial dependence on n.
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ellp — ellp—D
llp ql\jL [lp— DI

< —
<|lp—qll + 1 1

Finally, summing over all p and observing gp(D) < 2gp(Rg).

egp(D ellp—R ellp—D
or(s) = X llo= Rell < 3 (I Aol + 2220 1 A= Fell , el =211
peEP peP

29r(Rq) | sgr(D) , 2gr(D)

< gpr(Rq) + 1 3 1
< (1+3e/4)gp(Rq)-

The rest of the proof proceeds as in the one for Lemma 6, with “(1+¢)E[gpv (Q) | eq(w)]”
appearing in place of “E[fp v (Q) | eq(u)] + diam(p)” alongside analogous substitutions. <

We conclude with our main theorem for Faulty k-Median.

» Theorem 15. Let P C R? be an instance of Faulty k-Median in d-dimensional Euclidean
space, and let Cope denote an optimal solution to this instance. Then for any € > 0, in
O(kn) + (20(k1ogk) /d(k+1)ypo(1) time one can compute a set C C P of k centers such that
Elgpv(C)] < (1 +€)E[gp,v(Copt)]-

Proof. As stated above, our algorithm begins by computing the set D C P of k centers in
O(n) +k°M 10g®Y 1 time [14]. We then find the closest center in D for each point in P, and
then refine this partition into batches as described above. This produces a partition p into
O((k/e?) logn) batches by Observation 13, and thus p is computed in O(kn + (k/c%)logn)
time.

We now pick an approximately best characteristic vector. In order to do so quickly, we
first compute a (k,e/8)-coreset S of P. Coreset S is a weighted set of points such that for
any set C' of centers, (1 —¢/8)gp(C) <> cgmincecw(s)||s —c|| < (1 +¢/8)gp(C) where
w(s) denotes the weight of point s. A coreset of size O((klogn)/e?) can be computed in
O(nlogk) time [14].° Next, we enumerate all O((k/c?)logn)¥) possible characteristic vectors
W for char(Copt, p). We estimate the expected cost of each canonical subset Canon(W)
within a (1+¢/8) factor in O((2¥k%logn)/e? time by using computing the cost of individual
realizations with regard to S. Finally, we return the solution C' with the minimum estimated
expected cost. Lemma 14 and the definition of S implies our solution has the correct expected
cost.

It has been observed that logk n = 20(klogk),o(1) [6]: If n < 2k2, then 1ogk n <
K2k = 20(klogh) and if n > 2%°, then loghn < 9V/lognloglogn _ po(1). Therefore, for
the (20(klogk) /cdk)po() characteristic vectors, in (20(k10gk) /cd(k+1))po(1) time total we com-
pute the expected costs of their canonical subsets. Adding in other operations yields the
promised running time. <

3.1 k-Means

We now discuss how to modify our algorithm for Faulty k-Median to instead find a (1 + ¢)-
approximate solution to Faulty k-Means. As before, we start by computing a 2-approximate
solution D to non-faulty k-Means in O(n 4 kF+2e=Rd+Dk ogk 41 5 10g%(1/¢)) time [14]. Then,
we partition the points of P into the k subsets Vor;(P, D) and refine the partition.

5 A newer result shows existence of a coreset of size O(k?/e%) [13]. However, the construction time for
this smaller coreset is unclear, and an extra logn factor does not qualitatively affect our result.
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We need to modify the refined partition somewhat to work with k-Means. We set
the parameter ¢ that determines the number of concentric balls to ﬂogl +€(\/ﬁ)], and
let 7; = \/hp(D)/(2n) - (1 +€)?. We now partition the points of Vor;(P, D) N B; into
O(1/&%) batches each of diameter er(/8, and for each j € {1,...,t}, partition the points of
Vor;(P,D) N (B, ; \ B;j—1) into O(1/£%71) batches each of diameter er;/16.

The rest of the algorithm itself remains the same, but for the analysis we need to revise
Lemma 14 to account for the different objective in k-Means.

» Lemma 16. Let p = {p1,...,pm} denote the partition of P for Faulty k-Means. Let
Q@ C P be any subset such that |Q| < k, and let S = Canon(char(Q, p)). Then we have,

Elhpyv(9)] < (1+3e/4)Elhpv(Q)].

Proof. We recall the notation from Lemma 6 and Lemma 14 that is used in the novel part
of the proof. Let Rs € Real(S) and Ry € Real(Q) have the same characteristic vector.
Consider any point p € P. Let s be the closest point in Rg to p, and let g be the closest
point in Rq to p. Let i, be such that ¢ € Vory (P, D), and let £ be the index such that
q € pe. Given Rg and Rg have the same characteristic vector, there must be some point
s’ € Rg such that s’ € p,. We have

lp=sll < llp =5l < llp—all +llg — 5|l

The remainder of the proof will rely on the fact that for any x,y > 0, xy < x2/2+%2%/2. This
fact is a special case of both Young’s [28] inequality for products and the AM-GM inequality.

Suppose q € B;, . Recall, B;, ¢ is the ball of radius 7o = \/hp(D)/(2n) centered at d;, .
Then,

ex/ho(D) ) ?

2 N2 ero\2
—slP<(lp—qll +]lg—s g( - +—) = —q||+ ==
llp— sl < (llp = qll + llg = 5] llp — ql| 3 <||P ql| W)

w2 € o Vhe(D) | €hp(D)

= llp = all* + 7 llp — dll Ton 198

o2, e [ehp(D) | €*hp(D)

= llp—alP + [l al -/ ) 4 e
—q||*>  9ehp(D)

<y o2 o Ellp —dll P

<llp=dl" + =5+ 155,

Now, suppose ¢ € (B;,; \ Bi, j—1) for some j > 0. Again, r;_1 < [|p — q|| + [[p — D]|.
Therefore,

6(1 + 6)7’]',1 2
16

2

erj—1)2 5 ellp — D|]

< — J ) < (1 7) — LS

_(Ilp dl +—¢ _< +g)llp—dl+——

e &2 e &2 ?||lp — DI

=14+ 24+ g2+ —dgll-llp=D b Lt L
< +4+64>|p qll” + (8+64)|Ip qll-llp = DIl + ——¢7

17 9e 9e ellp— D||?
< (14— —qlP+2v/=lp—dq|| -1/ =|lp - D|| + ———
< + 64>|Ip dl” + 2/ g llp —dll -\ g llp = DIl + =

13¢||p — q|? L Bellp = DI|?
32 32

llp—sl*> < (llp—dqll +lg — §l|)* < <||PQ| +

<|lp—qll*+
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Finally, summing over all p and observing hp(D) < 2hp(Rg).

13 — Roll?  9ehp(D 5 — D|)?
(#s)= 3 I~ Asl < 3 (I~ ol + AR Tl S D), Sl D

pep ~ 32 128n 32
138hp(RQ) 9€hP(D) 5EhP(D)
< hp(He) + 32 128 32

< (1+¢e)hp(Rg).

The rest of the proof proceeds as in the one for Lemma 6, with “(1+¢)E[hpv(Q) | eq(u)]”
appearing in place of “E[fp v (Q) | eq(u)] + diam(p)” alongside analogous substitutions. <

The running time analysis for Faulty k-Means is virtually the same as that for Faulty

k-Median, except for the larger time needed to find the initial non-faulty 2-approximate
solution. We thus conclude with our final theorem.

» Theorem 17. Let P C R? be an instance of Faulty k-Means in d-dimensional Euclidean
space, and let Cope denote an optimal solution to this instance. Then for any € > 0, in
O(kn) + (20(klogk) /o d+DkYpo(D) time  one can compute a set C C P of k centers such that
Elhpyv(C)] < (1 +e)E[hpy(Copt)]-
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