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Abstract

Motivated by the need of finding optimal configuration in the high-performance
computing (HPC) system, this work proposes an adaptive-region sequential design
(ARSD) for optimization of computer experiments with qualitative and quantitative
factors. Experiments with both qualitative and quantitative factors are also encoun-
tered in other applications. The proposed ARSD method considers a sequential de-
sign criterion under the additive Gaussian process to deal with both qualitative and
quantitative factors. Moreover, the adaptiveness of the proposed sequential procedure
allows the selection of next design point from the adaptive design region, achieving a
meaningful balance between exploitation and exploration for optimization. Theoret-
ical justification of the adaptive design region is provided. The performance of the
proposed method is evaluated by several numerical examples in simulations. The case
study of HPC performance optimization further elaborates the merits of the proposed
method.
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1 Introduction

In many areas of the fourth industrial revolution, high-performance computing (HPC) pro-
vides important infrastructures for enabling large-scale data analytics. Reliable computing
performance is vital for cloud computing, data storage and management, and optimization
(Sakellariou et al., 2018). Thus, the investigation of performance variability of HPC has
drawn great attention in recent research (Cameron et al., 2019). The variability of HPC
performance exists in several aspects, of which the input/output (I0) variability is of great
interest. The 10 performance is usually measured by the IO throughput (i.e., data transfer
speed), which can vary from run to run. The variability of IO throughput can be affected by
various system factors such as CPU frequency, the number of threads, IO operation mode,
and 10 scheduler, through a complicated relationship (Cameron et al., 2019).

To configure an HPC system with reliable IO performance, one important task is to find
an optimal configuration (i.e., a certain level combination of system factors) that optimizes
the 10 performance measure. The search for the optimized configuration is a challenging
task since the functional relationship between IO performance measure and system factors is
unknown and complicated, especially for the HPC system containing both quantitative and
qualitative inputs. To address this challenge, sequential designs in computer experiments
(Sacks et al. 1989; Santner et al. 2003; Fang et al. 2005) can be used. It is a novel
application of sequential designs of experiments for the HPC performance optimization.

The execution of computer experiments of HPC is time consuming. For example, it
can take hours or days to collect the HPC IO performance in a single run under certain
system configurations. Therefore, statistical surrogates are often adopted for statistical
analysis and uncertainty quantification (Sacks et al. 1989; Bingham et al. 2014). One
fundamental issue is the design of experiments, i.e., how to choose the settings of input
variables to run computer experiments to obtain the output responses for the objectives
of interest. The commonly used designs are space-filling designs (Joseph 2016; Wang et
al. 2018). To entertain both qualitative and quantitative inputs, space-filling designs such
as sliced Latin hypercube designs and marginally coupled designs have been introduced

(Qian 2012; Deng et al. 2015; He et al. 2019). However, these designs are proposed



with the aim of building an accurate emulator and thus they are not designed for other
objectives such as the optimization we consider here. An objective-oriented design approach
is to use sequential designs which find the new input setting sequentially for the objective
of interest (Picheny et al. 2016; Sauer et al. 2020). There are also works on adaptive
design region by zooming the design region efficiently around the target regions (Picheny
et al. 2010; Cortes et al., 2020). The sequential approach has appeared being efficient and
advantageous as indicated in many applications (Gramacy 2020). For example, Bingham et
al. (2014) adopted sequential designs for choosing input settings of a computer simulator for
the maximization of the tidal power in the Bay of Fundy, Nova Scotia, Canada (Ranjan et
al. 2011). One popular approach in the sequential design framework is to use an expected
improvement (EI) criterion (Jones et al. 1998; Ponweiser et al. 2008). An EI criterion was
initially introduced for the global optimization of black box functions (computer simulators)
by Jones et al. (1998). Since then, various EI criteria have been proposed for other objectives
such as contour estimation (Ranjan et al. 2008), quantile estimation (Roy 2008), estimating
the probability of rare events and system failure (Bichon et al. 2009), and prediction (Yang
et al. 2020). Other criteria in the sequential design framework include the upper confidence
bound (Srinivas et al. 2012), the knowledge gradient method (Frazier et al. 2008; Scott
et al. 2011), and hierarchical expected improvement (Chen et al. 2019). However, to
the best of our knowledge, these sequential design approaches including those using EI
criteria have exclusively focused on computer experiments with only quantitative inputs.
These approaches may not be directly applicable to computer experiments, such as the HPC
experiment, with both qualitative and quantitative factors.

In this article, our scope is to develop a sequential design approach for efficient optimiza-
tion of computer experiments with both qualitative and quantitative (QQ) factors. In the
HPC application, the IO operation mode is a qualitative variable, while the CPU frequency
is a quantitative variable. We propose an adapative-region sequential design (ARSD) method
for the global optimization for computer experiments with QQ factors. The proposed ARSD
method considers the additive Gaussian process (AGP) (Deng et al. 2017) as the surro-

gate model for searching follow-up design points. Similar to the EI and other criteria, the



proposed sequential design criterion aims to achieve the balance between exploitation and
exploration when searching for the next input setting. What is fundamentally different and
makes this criterion novel is that the search design region at each stage via the new criterion
is adaptive in the sense that the design region changes with the data collected. Theoretical
justifications are provided to support the choice of the adaptive design region. In addi-
tion, the proposed ARSD criterion has a simple expression with meaningful interpretation
to choose the next design point sequentially based on the AGP as the surrogate. The se-
quential design procedure with the proposed criterion appears to be efficient in finding the
optimal setting, i.e., the setting of optimizing the response output.

The remainder of this paper is organized as follows. Section 2 briefly reviews the additive
Gaussian process model. Section 3 presents the details of the proposed ARSD method and its
theoretical justification on the choice of adaptive design region. In Section 4, several numer-
ical examples are conducted to illustrate the effectiveness of the proposed method. Section
5 presents the case study of HPC experiments, where the proposed method is demonstrated
to efficiently find the optimal setting for HPC performance optimization. We conclude this

work with some discussion in Section 6.

2 Brief Review of Additive Gaussian Process Model

Consider a computer experiment with p quantitative factors @ = (xy,--- ,2,)T € X C RP
and ¢ qualitative factors z = (21, ,2,)7 € Z with the jth qualitative factor having
m; levels, 7 = 1,---,¢q, and the corresponding output is denoted by Y, where Z contains
M = H?:l m; elements. Suppose that the observed data are (w},y,),t = 1,---,n, where
wy = (xf, 21T = (v, , %, 201, » 2t4)" - To model the relationship between output Y

and input w, the AGP model assumes
Y(x, 21, ,2g) = p+ Gi(x, 21) + - + Gy, 2), (1)

where p is the overall mean, and the G;’s are independent Gaussian processes with mean zero

and covariance function ¢;. For two inputs wy = (a1, 21)" = (@11, ,21p, 211, , 219)7



and wy = (1, 23)" = (va1, -+, wap, 221, -+ , 224)7, the covariance function ¢; is given by

0;(Gj(x1, 215), G(®2, 225)) = 0370) . R(x1, 22|0Y), (2)

J o R1j,%2j

2

where % is the variance component associated with Gj, 71) is the correlation of the rth

level and the sth level of the qualitative factor z;,7 = 1,---,¢. That is, 7¥) is the (r, s)th

)

element in correlation matrix TV = (Tr(f's))mjxmj, 7 = 1,...,q. Note that matrix TV
needs to be a valid correlation matrix, i.e., TV = (Tr(f;))mjxmj needs to be a positive def-
inite matrix with unit diagonal elements. To satisfy this requirement, the hypersphere
parameterization approach in Zhou et al. (2011) is adopted here to parameterize )
for j = 1,...,q. The details of the hypersphere parameterization are given in the ap-
pendix. A common choice of the correlation function is the Gaussian correlation function
R(wl,xz\e(j)) = exp{— b, QZ@(J:M — xm‘)z} for any two quantitative inputs x; and s,

where 1) = (99), e ,H;j))T (Deng et al. 2017). Then, the response Y follows a Gaussian

process with mean zero and the covariance function ¢ specified by

oY (wy), Y (wq)) = cov(Y (@1, 21), Y (22, 22))

q .
Za 7‘ sz R(xy, 25|0Y)
7j=1
q
:ZOlezQJeXp{ Ze xl’L_ng’L } (3)
7j=1

We denote Yy = Y (wyg) as the prediction of Y at a new setting wy = (zl,21)". Let

Y, = (Y1, -+ ,yn)" be n outputs from the input (w?,- - w?)T. Based on the AGP, it is

n

easy to obtain that Yy|y,, follows a normal distribution with

E(Yoly,) = o = p+ 7587 (y, — pln), (4)
Var(Yoly,,) Uo\n Za —rl® g, (5)
where ® is the covariance matrix of y,,, and 7o = (¢o1,- - , don)? with ¢o; given by ¢o; =

S(Y (wo), Y (wy)) = LIy 027 exp {= X0, 0 (wor — )?} t = 1,2, ,m
Clearly the mean and variance of Yyly,,, i.e., popn and ag‘n, involve the parameters pu,

2 2, T = (TW,... T9W) and 8 = (8Y,... 09). There are 1 + ¢ +

o :(U%,“‘, q
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Yi_1mj(m; — 1)/2 + pq parameters. To estimate these parameters, Deng et al. (2017)

considered the maximum likelihood estimation as

A A

o 1 1 )
{:U’7 0-27T7 0} = argmax _5 IOg |¢| - §(yn - /‘Lln)T(I) l(yn - :U’]-n) : (6>

wo2T.0

With the estimates obtained from (6), one can calculate fig|, 6§|n and subsequently compute
the predictive distribution of Yp|y,,. The details of the maximum likelihood estimation can

be found in the appendix.

3 The Proposed Adaptive-Region Sequential Design

In this section, we describe the proposed ARSD based on the additive Gaussian process model
for computer experiments with quantitative and qualitative factors. The proposed ARSD
focuses on the efficient global optimization, i.e., efficiently finding the optimum through
the sequential design procedure. Without loss of generality, we consider the minimization
problem. That is, given n collected data points (w?!,y;),t = 1,--- ,n, the key interest is to
find the next design point w,,; € A for the computer experiment such that we can promptly
find the optimal setting of w* to reach the smallest value of output y(w). Here A is the
whole design region of w, i.e., A= {(x,2)|lx € X,z € Z}.

Specifically, Section 3.1 presents the proposed ARSD method. Section 3.2 provides
some theoretical justification on the adaptiveness regarding the design region for the ARSD

method.

3.1 The Adaptive-Region Sequential Design Criterion

For a computer experiment with quantitative and qualitative factors, suppose that the col-
lected data are (w?,y;),t = 1,---,n. We can use the AGP to fit the data and obtain the
predictive normal distribution of Yy|y,, for any input w, with mean p),(wo) and variance
h,(wo) as described in (4) and (5). To find the design point for minimizing the response
output, one would encourage local exploitation as well as the flexibility of exploration to

other regions. Following Auer (2002), the exploitation is to makes decisions (i.e., design



points) to maximize its current estimated rewards (i.e., responses) based on limited knowl-
edge, while the exploration is to improve the knowledge about the reward generating process,
but not necessarily maximize the current rewards. In our content, the design point with a
small value of pg),(wo) will support local exploitation. But there is only limited knowledge
about the minimization. One might decide to do exploration in a wider area. The design
point with a large value of ogp,(wy) will encourage the exploration. Thus the idea of con-
sidering both figp,(wo) and Jg‘n(wo) is natural thinking for choosing the next design point.
Intuitively, we would like to sequentially choose the next point wy when the mean i), (wo)
is small and the standard deviation ao‘n(wo) is large, which is to encourage balance between
exploitation and exploration. Under this consideration, it would be reasonable to consider a
criterion of choosing the next point w1 as min, [floj.(Wo) — p&ojn(wo)], where p > 0 is a
tuning parameter. Note that if p is chosen to be 24/, the /2 upper quantile of the standard
normal distribution, then fig,(wo) — p&ojn(wo) = flopm(Wo) — Za/200/m (W) is the lower confi-
dence limit of [Yp|y,,] with the confidence level 1 — a. It implies that, instead of minimizing
the mean of [Yp|y,,], it is to minimize the lower confidence limit of [Yy|y,] when searching
for the input of achieving the minimum of the response surface. Note that such a criterion
can be easily modified for the maximization problem as maxaw, [0}, (wo) + poom(wo)], and
is closely related to upper confidence bound in the literature (Wang et al., 2021).

However, the optimization requires the search over the whole design space A = {(x, z)|x €
X,z € Z} in each iteration of the sequential design procedure. When the inputs of ex-
periments contain both quantitative factors and qualitative factors, the design space A is
discontinuous in nature due to the qualitative factors. The optimization will be compli-
cated to obtain the global optimum especially when there are a large number of qualitative
factors with many levels. Moreover, as the sequential design procedure is conducted with
more collected data points, there should be more information on the design region where the
minimum is located. Therefore, we propose an adaptive-region sequential design (ARSD)
criterion for finding the next design point where the design region is adaptive in each iteration
of the sequential procedure. The proposed ARSD criterion borrows the intuition from LCB

(Wang et al., 2021) and theorizes the intuition by defining the adaptive region. We provide



a theoretical justification that our strategy is to minimize an LCB criterion but restrict to
a region where the optimal solution should lie in with a high probability. Specifically, the
proposed ARSD criterion is to choose the next point w, 1 as

wy, 41 = argmin { i, (wo) — pbopa(wo) } (7)
WoeA,

where A, C A is the adaptive design region as

A, = {wo € At fion(wo) — 1/ FojGoi(wo) < minlfiop(wo) + 50|n60n(w0)]}, (8)

where [, = 2log(m*n*M /6a) with M = |Z| = [[}_, m; being the size of Z, and jip,(wo)
and oo, (wy) are given in (4) and (5). Note that Sy, is a very complicated function of n, M
and a. When the sample size n or the size M is large, the value of Sy, can be large, which
may over-emphasize the role of the predictive standard deviation. Thus a relatively simple
number p is used in (7). Regarding to the stopping criterion, we follows Jones et al. (1998)
to stop searching the next design point when the objective value in (7) is less than 1% of
the current objective value.
For the adaptive region A, in (8), it is easy to see that the lower bound fig,(wo) —
BomOopn(wo) is always smaller than the upper bound fig,(wo) + 1/BojnGon(wo) for every
wy € A. In (8), the design region \A,, consists of the points figj, (wo) — \/Bojnom(wo) is less
than the minimum of fig,(wo) + 1/BomGon(wo). It implies that the inequality in Eq. (8)
would eliminate regions where the function value is suboptimal with a high probability. One
can see that design region 4, as a subset of the whole region A, varies with the data points
collected sequentially. In the numerical example in Section 4, we illustrate how A,, changes
as the data arrives. Solving the optimization with the ARSD criterion will be more efficient
because the search for next input setting in each iteration is confined in A, rather than the

whole design region A.

3.2 Theoretical Justification for the Adaptive Design Region

For notation convenience, we use i, and o), rather than their estimates in the presentation

of theoretical investigation and technical proofs. These theoretical results still hold when



the estimates are used. The technical proofs can be found in the appendix. Now we focus
on finding the adaptive region A,, based on the properties of the predictive mean figp, (wo).

First, we present Lemma 1 below.

Lemma 1. For a given quantitative factors ¢y € X from a design point wy = (x}, 2T €

A, let y(wg) be a sample from the Gaussian process in (1). For all o € (0,1), we have
P (|y(w0) — popn(wo)| < \/Bopmoom(wo), V2o € Z,Yn > 1) >1-—a, 9)

where fop, = 2log(m*n*M/6) with M = |Z| = [[i_, m; being the size of Z, and pop,(wo)
and oo, (wo) are given in (4) and (5).

Lemma 1 is based on Lemma 1 in Jala et al. (2016), which established similar results
for a finite space. Because Z is a finite discrete space and xy € X is fixed, the design space
in Lemma 1 is finite. We can easily extend their proof to ensure that Lemma 1 holds, and
thus we skip the proof of Lemma 1.

Lemma 1 gives the lower bound and upper bound for the prediction of y(wg). Let denote

the lower bound pé‘n(wo) and the upper bound M([)J\n(wo) as follows:

1181, (o) = o (wo) — 1/ BomOop(wo), o), (wo) = o (wo) + 1/ Bomoom (wo), (10)

Then Lemma 1 implies that given @y € X, y(wo) belongs to the interval [, (wo), 1, (wo)]
with the probability greater than 1—a. Moreover, Lemma 2 below shows that mingy,e4 y(wo)
belongs to the interval [minqey,e4 uéln(wo), min,eA pJOUm('wO)] with the probability greater

than 1 — . Let us define Yumin, fiminns Ain s Aipin 5 follows:

Ymin = ’l,lr)réierlAy(wO)’ lamin,n = ,urjréienAH’O‘n(wO)v

ﬂéimn = ’lg(l]ien.A M(l)]n(wo)7 :ar[l]qin,n = 'tgéienA M(I{\n(wo) (11)

Lemma 2. Let Ymin, il s finin.n b€ the quantifies as defined in (11). Then for all o« € (0,1),
P (Ymin € [[lsn 0 fibin), Y0 > 1) > 1= 20 (12)

The proof of Lemma 2 can be found in the appendix. Now we can obtain the bound for
the discrepancy between of the minimum of the response Yy and its estimate fiyiny, in a

probabilistic manner.



Theorem 1. Let jufj,,(Wo), Ymins fminns fiminn b€ the quantitie as defined in (10) and (11).
Then for all o € (0,1), we have

P (',amin,n - ymin| S \/ 60|n ’LUSlé]i)Ll
0

where A,, = {wo e A: M(ﬁn(’wo) < ﬂgnn,n}-

n

O'Q‘n('lU()),\V/TL > 1) >1- 40-/7 (13)

Clearly, the definition of A, here is the same as in (8). It is easy to see that the lower
bound M0L|n(w0) is smaller than the upper bound ,ugm(wo) for every wy € A. In Theorem
1, the design region A,, consists of the points whose the lower bound u(ﬁn('wo) is less than
the minimum of its upper bound lar[{ﬁn,n‘ Thus A, can have a smaller size than the whole
design region A. Note that A,, does not always cover A,,_; because of the stochastic nature of
estimates. When n is large enough, this region converges in an asymptotic fashion. Theorem
1 provides a bound for the difference between i, and its estimate fiyin,n, Which depends
on A,. It implies that fiy,, Will be in a small neighborhood of Yy, with a relatively high
probability. Furthermore, Corollary 1 states that the adaptive design region A, will cover
the true optimal setting w* = arg mingy y(w) with a high probability.

Corollary 1. Denote w* be one of the optimal points that minimize y(w), i.e., y(w*) =

minge 4 y(w). Then for all a € (0,1), we have
P(A,>w" Vn>1)>1-3q,

where A,, is the design region defined in Theorem 1.

4 Numerical Examples

In this section, we investigate the performance of the proposed ARSD method in compari-
son with the four benchmark methods defined as follows: (1) LCB: the method sequentially
minimizes figj, (wo) — \/BomGon(w). (2) EL: the method sequentially maximizes the ex-
pected improvement as the acquisition function, where the corresponding EI criterion is
E[l(w)] =

yer L(w) f(y|lw, y,)dy with f(y|lw,y,) to the predictive density and I(w) =

max {Yminn — Y (w),0}. Here Ymin, to be the minimum value of the obtained responses

10



among the n runs. (3) MU: the method sequentially minimizes the prediction mean as the
acquisition function, i.e., wy,41 = argming, [, (wo); (4) SI: the method sequentially max-
imizes the prediction variance as the acquisition function, i.e., w, 1 = argmaxyy, Gom(wo).

Note that these four benchmark approaches are sequential designs, each of which chooses
the next design point by the given method, gets its response and updates the model es-
timation, and then continues to choose the next design point until the stopping criterion
is met. Here we consider the methods in comparison have the same number of runs. In
each numerical example, we will report the minimal values found by the five methods in

comparison.

4.1 An Illustrative Example with one Qualitative Factor and one

Quantitative Factor

Example 1. Consider the simple case that there is only one quantitative factor x € [0,1]
and one qualitative factor z of three levels. The underlying function for the output response

y is expressed as
2 + cos(bmzx), if z =1,
y=19 1—cos(4rx), if z=2, (14)
cos(2mz), if z=3.

It is easy to see that the minimum of the function in (14) is obtained exactly at z = 3 and

x = 0.5.

To start the proposed ARSD method, we obtain an initial training data of three points,
where a three-level full factorial design (Wu and Hamada 2009) is used for the qualitative
factor and a random Latin hypercube design (McKay et al. 1979) is used for the quantitative
factor. In each iteration of the sequential design, the corresponding output value of the
chosen design point is calculated by (14), and the minimum of the obtained output values
is regarded as the minimum of (14). For the proposed ARSD method, we choose p =
2. We have compared the proposed method with different values of p = 0.5,1,2,3. The

results appear to have similar performance. When we choose p = 2, fig,,(wo) — pGon(wo) =

11



fuopn (wo) — 260 (wo) can be viewed as the lower confidence limit of Yy|y,, with confidence
level around 0.95. In order to obtain the minimum of the response, the proposed method is
to minimize the lower confidence limit of Yy|y,,. Thus it is more reasonable than minimizing

the mean of Yy|y,,. Hereafter, we choose p = 2 in the simulation.
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Figure 1: Results of the ARSD method in one simulation trial, (a) the ARSD value, (b)
the obtained minimum of response, where 15 points are selected sequentially based on three

initial runs.

Figure 1 shows the results of the ARSD sequential design in one simulation, where
the three initial points and 15 sequentially added points are on the left and right of the
red vertical line respectively. Here the ARSD value in Figure 1(a) represents the value of
fiojn (Wr41) — pGon (Wn41) in each iteration. It is seen that the ARSD value converges quickly
within 10 iterations of the sequential runs. From Figure 1(b), it is clear that the estimated
minimum of the responses drops sharply as the points are added sequentially by the proposed
ARSD method.

Note that the true minimum of the function in (14) is —1. The proposed ARSD method
achieves the minimum with four iterations of the sequential procedure. Moreover, when the
minimum is achieved, the sequential inputs converge at the minimum point. Figure 2 marks

the selected design points corresponding to the simulation in Figure 1. In Figure 2, the

12



— z=1
<« — z=2
z=3
o -
o -
>
o -
4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Illustration of the ARSD sequential inputs with three initial points and six se-

quentially added points.

small solid dots are the initial three points, and the points which are labeled “4” to “9” are
six sequential points. From Figure 2, the proposed method efficiently allocates the design
point to the level z = 3 to seek the minimum of response. The points marked with “77, “8”,
“9” almost coincide at z = 3, with their responses values close to the true minimal response
value of —1.

To further examine the performance of the proposed ARSD method, it is of interest
to understand how the adaptive set of the feasible region behaves. Figure 3 reports the
sequential A,, subsets corresponding to the sequential design in Figures 1 and 2. From Figure
3, one can clearly observe that 4,, quickly converges to the set {(z, z) : = € (0.44,0.66), z =
3}. Note that the true minimum point (0.5, 3) belongs to this set.

We further examine the theoretical results in Theorem 1 and Corollary 1 through obtain-
ing the empirical probability from simulation. Specifically, we set for o = 0.05 and conduct
100 replications to record the number of times the inequality in Theorem 1 being held. The
empirical probability in Theorem 1 is calculated as the ratio of the number of times Theorem
1 holds to the number of replications. The empirical probability in Corollary 1 is calculated

similarly. The above simulation procedure is repeated 100 times. Figure 4 reports the box-
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Figure 3: Illustration of the adaptive A,, design region from one simulation in Example 1.

plots of the empirical probabilities for Theorem 1 and Corollary 1. From Figure 4, it is seen
that the empirical probability in Theorem 1 is greater than 1 — 4o = 0.8, and the empirical
probability in Corollary 1 is greater than 1 — 3a = 0.85.

We would like to remark that the performance of sequential design methods will depend
on parameter estimation. It is important to check the estimation of the variances of model
erTors a?’s, correlation 77?78 and other parameter values for the model presented in Section
2. Figure A1l in the Appendix reports the boxplots of the estimates of the parameters in
Example 1. From Figure A1, one can see that the estimates tend to be stable when the fifth
sequential points are added.

Now we compare the proposed ARSD method with the other four benchmark methods

over 100 simulations. For each method, the same number of initial runs of size three is
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Figure 4: Boxplots of the empirical probability for (a) Theorem 1 and (b) Corollary 1 from

100 simulations of Example 1.

used with a three-level full factorial design for the qualitative factor and a random Latin
hypercube design is for the quantitative factor. When the ARSD value is less than 1% of the
current ARSD value (Jones et al., 1998) or the maximal number of iterations is achieved,
we stop to search the next point.

Figure 5 reports the boxplots and the number of runs until stopping criterion with the
maximal number of iterations to be 15. The histograms of the obtained minimums for
methods in comparison can be found in the Appendix. From Figure 5, it is seen that the
performance of the ARSD is much better than the LCB, EI, MU and SI methods. For the
proposed ARSD method, most minimums are near —1. The ARSD method can obtain the
true minimum with a higher probability than other methods. We also find out that ARSD

generally need a smaller number of runs than other methods.

4.2 Examples with Multiple Quantitative and Qualitative Factors

Example 2. This example is used in Deng et al. (2017) for a computer experiment with

p = 3 quantitative factors and q = 3 qualitative factors. The response of the experiment has
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Figure 5: Boxplots of the obtained minimum values of response and boxplots of the number

of runs until stopping criterion over 100 simulations in Example 1.

the following expression

2 TiZa—i 3 T Z4—i
= — | si 15
=+ e (7)o (57) w

=1

where —100 < x; < 100 fori=1,--- ,p and z; = {—50,0,50} for j=1,--- ,q.

Note that the qualitative factors in this example behave as the ordinal factors. In each
simulation, a 9-run initial design is adopted, where a three-level fractional factorial design
is used for the qualitative factors and a random Latin hypercube design is used for the
quantitative factors. It is easy to know that the true minimum of (15) is 3.75. The proposed
ARSD method is compared with the LCB, EI, MU and SI methods. For the proposed
ARSD design, we choose p = 2. For each method in comparison, it has the same number of
initial runs and then nine follow-up points are obtained sequentially. Figure 6 displays the
boxplots of obtained minimums over 100 simulations. The histograms of obtained minimums
can be found from the Appendix. From Figure 6, it is seen that the proposed ARSD method
outperforms the EI, MU and SI methods significantly in terms of the obtained minimal

values. We also examine the computational time of the methods in comparison in Table
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Figure 6: Boxplots of the obtained minimums of the response over 100 simulations in Ex-

ample 2.

1. It is seen that that the computational time of the ARSD method is also effieicnt in

comparison with other methods.

Table 1: Average computational time (in mins) over 100 simulations for methods in compar-

ison in Example 2.

Methods ARSD LCB EI MU SI

Time 1.03 1.10 190 1.18 1.72

5 Case Study of HPC Data

In this section, we apply the proposed ARSD sequential design for studying the HPC systems,
which are important infrastructures to advance the industry 4.0. To enhance the performance
of the HPC systems, a key step is to understand the HPC variability since there are run-

to-run variation in the execution of a computing task. In particular, the input/output (I10)
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throughput (i.e., data transfer speed) is an important metric, which is affected by various
system factors such as CPU frequency, the number of threads, IO operation mode, and 10
scheduler. The relationship between the 10 throughput (y) and these system factors can be
quite complicated. Moreover, some of these system factors are quantitative and some are
qualitative.

In this case study, our objective is to find an optimal level combination of system factors
that optimizes the IO performance variability measure. Table 2 summarizes the input factors,
of which the quantitative factors are the CPU clock frequency (z;) and the number of
threads (z2), and the qualitative factors are the 10 operation mode (z;) with three levels,
the 1O scheduler (z2) with three levels and the VM IO scheduler (z3) with three levels. Here
the IO scheduler is the method that computer operating systems use to decide in which
order the block 1O operations will be submitted to storage volumes. For the IO operation
modes, Initialwrite measures the performance of writing a new file, Randomread measures
the performance of reading a file with accesses being made to random locations within the
file, and Fwrite measures the performance of writing a file using fwrite() function. The HPC
server is configured with a dedicated 2TB HDD on a 2 socket, 4 core (2 hyperthreads/core)
Intel Xeon E5-2623 v3 (Haswell) platform with 32 GB DDR4, using Linux operating system.
The 10zone benchmark task (Norcott 2020) was used in this computer experiment (Xu et
al. 2020).

For a given level combination of input factors as a configuration, the HPC server executes
the 10zone benchmark task and the IO throughput (in kilobytes per second) is recorded.
By executing for 40 replicates, the mean and the standard deviation (SD) of the 40-replicate
IO throughput values are calculated (Cameral et al. 2009). Clearly, a smaller value of
the SD indicates the robustness of the HPC system, and a large mean value indicates the
effectiveness of the HPC system. Hence, we consider to use the signal-to-noise ratio Ygy,
i.e., the ratio of the mean and SD of the throughput values, as the output response in the
optimization.

We apply the proposed ARSD sequential design to find the optimal configuration to

achieve the maximum of Yy, the ratio between the mean and SD of the throughput values.
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Table 2: A summary of input factors in the IO throughput experiment of the HPC system.

No. of
Category Variable Values
levels
Hardware x1: CPU clock frequency 1.2, 1.4, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1
continuous
(GHz) 2.3,24, 25,27, 2.8, 2.9, 3.0
Operating zy: 10 scheduler 3 CFQ, DEAD, NOOP
System  z3: VM 10 scheduler 3 CFQ, DEAD, NOOP
z1: 10 operation mode 3 Fwrite, Initialwrite, Randomread

Application
To: number of threads continuous 1, 2, 4, 8, 16, 32, 64, 128, 256

It appears that there is little domain knowledge on the configuration (the setting of input
factors) to maximize the ratio of the mean and standard deviation of the throughput values.
Note that maximizing Yy is equivalent to minimizing —Ysy. Thus we use —Ygn as the
response for our proposed ARSD sequential design. For the initial experiment, we consider
a 9-run design with a three-level fractional factorial design for the qualitative factors and a
random Latin hypercube design for quantitative factors. Then five design points are obtained
sequentially by each method in comparison. Here, we focus on the comparison between the
proposed ARSD sequential and the EI method. For the proposed ARSD design, we choose
p = 2. Figure 7(a) reports the obtained minimums of —Ysy in one simulation trial with the
same initial runs from the ARSD method and the EI method, respectively. One can see that
the ARSD sequential design performs much better than the EI design. The ARSD method
obtains a smaller value of response than the EI method under the same number of runs. In
the case of Figure 7(a), the maximum of Ysy obtained by the proposed ARSD method is
20.198 at the setting x1 = 1.2, o = 2, z; = “Initialwrite”, 2o = “NOOP”, z3 = “NOOP”. It
is interesting to note that the number of threads in this optimal setting of maximizing Yy
is zo = 2. For different initial runs, it happens that the ARSD method performs better than
the EI method in most cases. Moreover, we also compare the ARSD sequential design with

the EI design in 100 simulations with different initial runs. Figure 7(b) reports the boxplots
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of minimal response (—Ysx) values obtained by the ARSD method in comparison with the
EI method. Clearly, the proposed ARSD sequential design is much more efficient than the

EI design in finding the maximal value of Ygy.
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Figure 7: The performance of the proposed ARSD method and EI methods for the HPC
case study: (a) the sequential procedure in one simulation; (b) the boxplot of the obtained

minimums of the response (—Ysy) over 100 simulations.

6 Discussion

In this work, we propose an adaptive-region sequential design for optimization of computer
experiments with qualitative and quantitative factors. Here we have focused on finding
the optimal level combination of factors to minimize (or maximize) the response output.
The proposed adaptive-region sequential design combines the predictive mean and standard
derivation to achieve the balance between exploitation and exploration with meaningful
interpretation. Moreover, the adaptive design region varies with the collected design points
with a theoretical justification based on the bound between the true optimal response and

its estimate.

20



Currently the proposed ARSD criterion is built based on the AGP in Deng et al. (2017)
for computer experiments with qualitative and quantitative factors. The proposed method-
ology can also be applicable for other Gaussian process models for computer experiments
with qualitative and quantitative factors. It is worth pointing out that the theoretical jus-
tification of the adaptive design region can be extend to the case of contour estimation for
computer experiment with qualitative and quantitative factors.

There are several directions for the further development of the proposed method. First,
when the number of input variables or the levels of qualitative factors is large, the use of
AGP can involve a large number of parameters and consequently the sequential procedure
can be slow due to the parameter estimation and the large number of possible design points.
One possible solution to overcome this drawback is to adopt a more parsimonious Gaussian
process model (Zhang et al. 2020) or construct a sensible initial design. To address the
intensive search over a large design region in the optimization in (7), more advanced opti-
mization technique is needed such as the mixed integer programming used in Xie and Deng
(2020). Second, there is a tuning parameter p in the proposed ARSD criterion in (7). In
the numerical study, there seems to be no significant difference on the performance of the
proposed method under p = 0.5,1,2,3. It will be interesting to understand the sensitivity
on the choice of the tuning parameter. It will also be interesting to understand how the
adaptive design region behaves at different stages of sequential design. Third, when the
response is rugged, i.e., there are several local optima, the performance of the ARSD may
not be as good as the case of unique optima. We will consider several robust approach to
better balance the trade-off between exploration and exploitation. It would be even more
interesting to investigate some specific metrics to quantify the balance between exploration
and exploitation. Fourth, it will be interesting to investigate more theoretical properties on
the convergence of the estimated optimum. A key challenge lies in the design space to be
semi-continuous and semi-discrete. Finally, the proposed method is not limited to the con-
tinuous response. It will be interesting to investigate on how to extend the proposed method

for computer experiments with non-continuous output such as binary responses (Sung et al.

2020).
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Appendix

Details of the Maximum Likelihood Estimation of AGP
Under the AGP model (1), the log-likelihood function is

n 1 1 _
U, 0%, T,0) = =5 log(2m) — 5 log |® — S (y, — pln)" @7 (y,, — piln). (16)

Setting the derivative of I(u, o2, T, 0) with respect to i to be zero, we have the maximum

likelihood estimator of p is

17® 1y
[l = ———t. 17
% 15‘1’_1171 ( )
Substituting (17) into (16), we obtain
. 9 n 1 1 e T a1 .
Ui, 07, T, 0) = — log(2m) — 5 log || — S (y, — ila)" @7 (y, — /i)
n 1 1 1(1Xe 1y, )2
= ——log(27) — = log |®| — —yl®~! e o
5 log(2m) — 5 log |®] — 5y, @7y, + 5 7o 11,
The estimators of o2, T, @ can be obtained as
A A 1T(I)_1 2
(6%,T,0) = argmin { log |®| + y @'y, — (’qﬁ[—_l’y”) . (18)
171,
To ensure the m; x m; matrix T is a valid correlation function, TV = (Tﬁfs))mjxmj

must be a positive definite matrix with unit diagonal elements. We apply the hypersphere
parameterization approach in Zhou et al. (2011) to quantify the correlations of qualitative
factors. The key of this approach is to find a lower triangular matrix LY = (1)) with

strictly positive diagonal entries such that

70 — 1,0 [T
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Forr =1,letl;; = 1. Forr = 2,--- ,m;, the entries of the rth row of LY can be constructed

as follows:
l(Jl) = cos(6,1),
lfg = sin(6,.1) cos(6,.2),
l,@ 1 =sin(6,.1) - - - sin(6,,,—2) cos(6,,_1),

l7(",J7} = sin(QT,l) st Sin(@r,r_g) sin(@,«’r_l),
where 6, € (0, 7).
Proof of Lemma 2

Proof. Recall the definition of Yy, ,&min ns o Aionin 88 follows

min — = - 1 nd < €y,
Yoin = in, y(wo) = sup{v M -~ Jriex {y(wo)<v}d@o < €}
0
[min,n = n = - 1 v d ,
Hmin, J}lleﬂ Ho (wp) = SUP{U M Z/woeX {Ho)n (Wo)<v}AT0 < €}
0

ﬁ’rllllin,n = mln lu()|n(w0) - SUp{'U ar Z / GX 1{u0‘n wo)<u}d$0 < E}?
Pl = guin, i, (wo) = supfo: 7 Z / x Mg, awo<ndzo <

where € > 0 is a small positive number, and 1{.} is the indicator function.

By Lemma 1, for a given oy € X, we have
P (g (wo) < y(wy) < piff, (wo), Vzo € Z,¥n>1) >1-a.

When M0L|n('wo) < y(wy) < pOUln('wo), for given &y, € X and all v € R,

1 1 1
17 2 L wo<n € 37 2 Tewo<r € 57 2 g, @< V0 2 L

zocd zocd Zoc

Integrating each term over xy in X, we have

/330€X ]\/[ Z 1{“0\n wo)<v}d:BO - /:BOGX M Ze:Z Huo <o
0

= /CCOGX M ZZ 1{“0\ (Wo <v}dx07vn > 1.

Zo€E
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Let v = i}y, given in (21), we get

1
/330€X M 2 Lyawo) <l 1 9%0 < €
z

(1S

By (19), we obtain that i . < ymin. Thus

P (ﬂéjnm S yminvvn Z 1)
>P (Mén(wo) < yl(wo) < pgl,(wo), V2o € Z,%n > 1)

>1 —a. (24)

Similarly, in (23), let v = Yy, we get that

1
/zc eX M Z 1{u0U|n<wo)<ymm}dwo < €.
° zocd

0c€

By (22), we obtain that ymin < i, ,, thus

P (ymin S ﬂg‘lin,ﬂ’vn 2 1)
> P (g, (wo) < y(wo) < puff, (wo), ¥z € Z,%n > 1)

>1—a. (25)
By (24) and (25), we have

P (4huin € [ s 0] ¥ > 1)
=P (fifinn < Yin < fibnin V1 > 1)

>1 — 2a.

Proof of Theorem 1

Proof. By (22), for any n > 1,

1
i 2 /w X Loy, o)<t 140 < €.
ZQEZ 0
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Define
An(z0) = {0 € X : pf, (0, 20) < flipinn}-
It is clear that A, = {(xo, z0) : 20 € Z,x¢ € A,(20)}, then we have

> /moeAn T o<t 19%0 = 4 7L Lo, dm <
Zoe ZQGZ

Since M(Iﬂn(’wo) = piojn(Wo) + /BomTom(wo), we get that
1

M ZZ /3306./4 (ZO) 1{/"/0|n(w0)<umm n=\ B0|n Supw()E.An 00|n(w0)}d$0
Zo
1

M ZZ /mOG.A ZO) 1{“0|n(w0)<‘umm n_ V ﬁm”go‘”(wo)}dwo
Zo€

<e.

By the definition of A, (2o),

1

\/mOGX 1{“0\n(w0)<ﬂg}in,n_\/ 50|n SquoeAn UO\n(wO)}dmo

M Z0€Z
1
:M Z /3306.,4 (Zo) 1{u0‘n(w0)<ﬂij}in,n*ﬂ /50‘nsupw0€Anao‘n(wo)}da:o
Z()GZ "
<e€.
Thus,
L d
M ZZ/CUUEX {rojn (Wo)<aly, =/ Boln SUPW € 4, T0n(Wo)} Zo < €
Zo€

By (20), we obtain that

~ ~U /
Woe A

n

By Lemma 2, we have P (ﬂgm,n > Ymin, VN > 1) > 1 — 2a. Thus,

P fin,n = Ymin — n Su Ooln\W ,VnZl 21—206,
(u o 2 in =B 5100 (w0) )

where By, = 210g M.
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On the other hand, by (20), for any n > 1,
Z /w()GX {:u0|n w0)<ﬂmin,n}dw0 < €.

By the definition of A, (2) and i < fiminn < ﬂginn, we get that

M dz M i adag < e
M Z%Z /wOGAn(Zo) {#Oln(w0)<ﬂmm n} 0= Z /:B()eX {,LLO‘ w0)<#mm’n} 0
Since M0L|n(’wo) = ﬂo\n(’wo) — B0|n00\n(w0), we get that
1 ) ;
M zZZ /CBOEAn(Zo) {1, (W0)<fimin.n—+/Bojn SUPW ¢ 4, T0ln (Wo)} Zo
o€
1
:M ZZ /woeAn(Z()) 1{“0|n(w0) \/ 60\n00\n(w0)</—‘n1111 n— BO‘”SUP’U)OEAn UO\n(wO)}dwO
NS V
1
M / ! f dmo
- M 2 Z oA, (Z0) {HOIn(wO) \/BO\nSuP’LUOGAn UO'"(w0)<“mi“v”_\/msup'woe,4n 0'0|n(w0)}
<e.

By A < fiming < iV inn and the definition of A, (2o),

1
/w(JGX 1{M€m(’wo)<ﬂmin,n—\/ﬁo|n SUPW e An Uo\n(wo)}dmo

M ZoGZ
_M Z /mOG.A (ZO) {u&n(w0)<ﬂmin,n*w/Bg‘nsupwoeAn Uo‘n(wo)} wo
ZoEZ "
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Thus,
1 1 4
M Z /:»COGX {“éln(w0)<ymin_\/ BO\nsuprEAn Uo‘n(wo)} wo <€
Z()EZ
By (21), we obtain that
:uﬁunn = :umlnn - \/ﬁ0|n sup 00|n(w0)
w()E n
By Lemma 2, we have
P min = Mmin,n — n Su Oo|n (W ,VTLZl >1-2a. 27
(s i = o). > 1) o)
Using (26) and (27), the conclusion of Theorem 1 is proved. O
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Proof of Corollary 1

Proof. By Lemma 1, for the minimum point w* € A, we have
P (i (w*) < y(w") < pfl, (w"),¥n > 1) > 1 -
By the definition of yyi, in (19), we have ymyin = y(w*). Thus
P (uoﬁn(w*) < Ymin < u0U|n(w*),Vn > 1) >1—a.
By Lemma 2, we have
P ([ < Yoin < il ¥ > 1) > 1— 20
Thus

ZP (/Jl(l]l\n(w*) S Ymin S :ug|n<w*)7 ﬁﬁqin,n S Ymin S ﬂglin,rwvn Z 1)

>1 — 3a.

It implies the conclusion of Corollary 1.

Additional Results in Simulation
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Figure A1l: Boxplots of parameter estimates over 100 simulations in Example 1.
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Figure A2: Histograms of the obtained minimum values of response over 100 simulations in

Example 1.
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Figure A3: Histograms of the obtained minimums of the response over 100 simulations in

Example 2.
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