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Abstract

Motivated by the need of finding optimal configuration in the high-performance

computing (HPC) system, this work proposes an adaptive-region sequential design

(ARSD) for optimization of computer experiments with qualitative and quantitative

factors. Experiments with both qualitative and quantitative factors are also encoun-

tered in other applications. The proposed ARSD method considers a sequential de-

sign criterion under the additive Gaussian process to deal with both qualitative and

quantitative factors. Moreover, the adaptiveness of the proposed sequential procedure

allows the selection of next design point from the adaptive design region, achieving a

meaningful balance between exploitation and exploration for optimization. Theoret-

ical justification of the adaptive design region is provided. The performance of the

proposed method is evaluated by several numerical examples in simulations. The case

study of HPC performance optimization further elaborates the merits of the proposed

method.
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1 Introduction

In many areas of the fourth industrial revolution, high-performance computing (HPC) pro-

vides important infrastructures for enabling large-scale data analytics. Reliable computing

performance is vital for cloud computing, data storage and management, and optimization

(Sakellariou et al., 2018). Thus, the investigation of performance variability of HPC has

drawn great attention in recent research (Cameron et al., 2019). The variability of HPC

performance exists in several aspects, of which the input/output (IO) variability is of great

interest. The IO performance is usually measured by the IO throughput (i.e., data transfer

speed), which can vary from run to run. The variability of IO throughput can be affected by

various system factors such as CPU frequency, the number of threads, IO operation mode,

and IO scheduler, through a complicated relationship (Cameron et al., 2019).

To configure an HPC system with reliable IO performance, one important task is to find

an optimal configuration (i.e., a certain level combination of system factors) that optimizes

the IO performance measure. The search for the optimized configuration is a challenging

task since the functional relationship between IO performance measure and system factors is

unknown and complicated, especially for the HPC system containing both quantitative and

qualitative inputs. To address this challenge, sequential designs in computer experiments

(Sacks et al. 1989; Santner et al. 2003; Fang et al. 2005) can be used. It is a novel

application of sequential designs of experiments for the HPC performance optimization.

The execution of computer experiments of HPC is time consuming. For example, it

can take hours or days to collect the HPC IO performance in a single run under certain

system configurations. Therefore, statistical surrogates are often adopted for statistical

analysis and uncertainty quantification (Sacks et al. 1989; Bingham et al. 2014). One

fundamental issue is the design of experiments, i.e., how to choose the settings of input

variables to run computer experiments to obtain the output responses for the objectives

of interest. The commonly used designs are space-filling designs (Joseph 2016; Wang et

al. 2018). To entertain both qualitative and quantitative inputs, space-filling designs such

as sliced Latin hypercube designs and marginally coupled designs have been introduced

(Qian 2012; Deng et al. 2015; He et al. 2019). However, these designs are proposed
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with the aim of building an accurate emulator and thus they are not designed for other

objectives such as the optimization we consider here. An objective-oriented design approach

is to use sequential designs which find the new input setting sequentially for the objective

of interest (Picheny et al. 2016; Sauer et al. 2020). There are also works on adaptive

design region by zooming the design region efficiently around the target regions (Picheny

et al. 2010; Cortes et al., 2020). The sequential approach has appeared being efficient and

advantageous as indicated in many applications (Gramacy 2020). For example, Bingham et

al. (2014) adopted sequential designs for choosing input settings of a computer simulator for

the maximization of the tidal power in the Bay of Fundy, Nova Scotia, Canada (Ranjan et

al. 2011). One popular approach in the sequential design framework is to use an expected

improvement (EI) criterion (Jones et al. 1998; Ponweiser et al. 2008). An EI criterion was

initially introduced for the global optimization of black box functions (computer simulators)

by Jones et al. (1998). Since then, various EI criteria have been proposed for other objectives

such as contour estimation (Ranjan et al. 2008), quantile estimation (Roy 2008), estimating

the probability of rare events and system failure (Bichon et al. 2009), and prediction (Yang

et al. 2020). Other criteria in the sequential design framework include the upper confidence

bound (Srinivas et al. 2012), the knowledge gradient method (Frazier et al. 2008; Scott

et al. 2011), and hierarchical expected improvement (Chen et al. 2019). However, to

the best of our knowledge, these sequential design approaches including those using EI

criteria have exclusively focused on computer experiments with only quantitative inputs.

These approaches may not be directly applicable to computer experiments, such as the HPC

experiment, with both qualitative and quantitative factors.

In this article, our scope is to develop a sequential design approach for efficient optimiza-

tion of computer experiments with both qualitative and quantitative (QQ) factors. In the

HPC application, the IO operation mode is a qualitative variable, while the CPU frequency

is a quantitative variable. We propose an adapative-region sequential design (ARSD) method

for the global optimization for computer experiments with QQ factors. The proposed ARSD

method considers the additive Gaussian process (AGP) (Deng et al. 2017) as the surro-

gate model for searching follow-up design points. Similar to the EI and other criteria, the
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proposed sequential design criterion aims to achieve the balance between exploitation and

exploration when searching for the next input setting. What is fundamentally different and

makes this criterion novel is that the search design region at each stage via the new criterion

is adaptive in the sense that the design region changes with the data collected. Theoretical

justifications are provided to support the choice of the adaptive design region. In addi-

tion, the proposed ARSD criterion has a simple expression with meaningful interpretation

to choose the next design point sequentially based on the AGP as the surrogate. The se-

quential design procedure with the proposed criterion appears to be efficient in finding the

optimal setting, i.e., the setting of optimizing the response output.

The remainder of this paper is organized as follows. Section 2 briefly reviews the additive

Gaussian process model. Section 3 presents the details of the proposed ARSD method and its

theoretical justification on the choice of adaptive design region. In Section 4, several numer-

ical examples are conducted to illustrate the effectiveness of the proposed method. Section

5 presents the case study of HPC experiments, where the proposed method is demonstrated

to efficiently find the optimal setting for HPC performance optimization. We conclude this

work with some discussion in Section 6.

2 Brief Review of Additive Gaussian Process Model

Consider a computer experiment with p quantitative factors x = (x1, · · · , xp)T ∈ X ⊆ Rp

and q qualitative factors z = (z1, · · · , zq)T ∈ Z with the jth qualitative factor having

mj levels, j = 1, · · · , q, and the corresponding output is denoted by Y , where Z contains

M = ∏q
j=1 mj elements. Suppose that the observed data are (wT

t , yt), t = 1, · · · , n, where

wt = (xTt , zTt )T = (xt1, · · · , xtp, zt1, · · · , ztq)T . To model the relationship between output Y

and input w, the AGP model assumes

Y (x, z1, · · · , zq) = µ+G1(x, z1) + · · ·+Gq(x, zq), (1)

where µ is the overall mean, and the Gj’s are independent Gaussian processes with mean zero

and covariance function φj. For two inputs w1 = (xT1 , zT1 )T = (x11, · · · , x1p, z11, · · · , z1q)T
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and w2 = (xT2 , zT2 )T = (x21, · · · , x2p, z21, · · · , z2q)T , the covariance function φj is given by

φj(Gj(x1, z1j), Gj(x2, z2j)) = σ2
j τ

(j)
z1j ,z2j

R(x1,x2|θ(j)), (2)

where σ2
j is the variance component associated with Gj, τ (j)

r,s is the correlation of the rth

level and the sth level of the qualitative factor zj, j = 1, · · · , q. That is, τ (j)
r,s is the (r, s)th

element in correlation matrix T (j) = (τ (j)
r,s )mj×mj

, j = 1, . . . , q. Note that matrix T (j)

needs to be a valid correlation matrix, i.e., T (j) = (τ (j)
r,s )mj×mj

needs to be a positive def-

inite matrix with unit diagonal elements. To satisfy this requirement, the hypersphere

parameterization approach in Zhou et al. (2011) is adopted here to parameterize T (j)

for j = 1, . . . , q. The details of the hypersphere parameterization are given in the ap-

pendix. A common choice of the correlation function is the Gaussian correlation function

R(x1,x2|θ(j)) = exp
{
−∑p

i=1 θ
(j)
i (x1i − x2i)2

}
for any two quantitative inputs x1 and x2,

where θ(j) = (θ(j)
1 , · · · , θ(j)

p )T (Deng et al. 2017). Then, the response Y follows a Gaussian

process with mean zero and the covariance function φ specified by

φ(Y (w1), Y (w2)) = cov(Y (x1, z1), Y (x2, z2))

=
q∑
j=1

σ2
j τ

(j)
z1j ,z2j

R(x1,x2|θ(j))

=
q∑
j=1

σ2
j τ

(j)
z1j ,z2j

exp
{
−

p∑
i=1

θ
(j)
i (x1i − x2i)2

}
. (3)

We denote Y0 = Y (w0) as the prediction of Y at a new setting w0 = (xT0 , zT0 )T . Let

yn = (y1, · · · , yn)T be n outputs from the input (wT
1 , · · · ,wT

n )T . Based on the AGP, it is

easy to obtain that Y0|yn follows a normal distribution with

E(Y0|yn) = µ0|n = µ+ rT0 Φ−1(yn − µ1n), (4)

V ar(Y0|yn) = σ2
0|n =

q∑
j=1

σ2
j − rT0 Φ−1r0, (5)

where Φ is the covariance matrix of yn, and r0 = (φ01, · · · , φ0n)T with φ0t given by φ0t =

φ(Y (w0), Y (wt)) = ∑q
j=1 σ

2
j τ

(j)
z0j ,ztj

exp
{
−∑p

i=1 θ
(j)
i (x0i − xti)2

}
, t = 1, 2, . . . , n.

Clearly the mean and variance of Y0|yn, i.e., µ0|n and σ2
0|n, involve the parameters µ,

σ2 = (σ2
1, · · · , σ2

q ), T = (T (1), · · · ,T (q)), and θ = (θ(1), · · · ,θ(q)). There are 1 + q +
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∑q
j=1 mj(mj − 1)/2 + pq parameters. To estimate these parameters, Deng et al. (2017)

considered the maximum likelihood estimation as

{µ̂, σ̂2, T̂ , θ̂} = argmax
µ,σ2,T ,θ

[
−1

2 log |Φ| − 1
2(yn − µ1n)TΦ−1(yn − µ1n)

]
. (6)

With the estimates obtained from (6), one can calculate µ̂0|n, σ̂
2
0|n and subsequently compute

the predictive distribution of Y0|yn. The details of the maximum likelihood estimation can

be found in the appendix.

3 The Proposed Adaptive-Region Sequential Design

In this section, we describe the proposed ARSD based on the additive Gaussian process model

for computer experiments with quantitative and qualitative factors. The proposed ARSD

focuses on the efficient global optimization, i.e., efficiently finding the optimum through

the sequential design procedure. Without loss of generality, we consider the minimization

problem. That is, given n collected data points (wT
t , yt), t = 1, · · · , n, the key interest is to

find the next design point wn+1 ∈ A for the computer experiment such that we can promptly

find the optimal setting of w∗ to reach the smallest value of output y(w). Here A is the

whole design region of w, i.e., A = {(x, z)|x ∈X, z ∈ Z}.

Specifically, Section 3.1 presents the proposed ARSD method. Section 3.2 provides

some theoretical justification on the adaptiveness regarding the design region for the ARSD

method.

3.1 The Adaptive-Region Sequential Design Criterion

For a computer experiment with quantitative and qualitative factors, suppose that the col-

lected data are (wT
t , yt), t = 1, · · · , n. We can use the AGP to fit the data and obtain the

predictive normal distribution of Y0|yn for any input w0 with mean µ0|n(w0) and variance

σ2
0|n(w0) as described in (4) and (5). To find the design point for minimizing the response

output, one would encourage local exploitation as well as the flexibility of exploration to

other regions. Following Auer (2002), the exploitation is to makes decisions (i.e., design
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points) to maximize its current estimated rewards (i.e., responses) based on limited knowl-

edge, while the exploration is to improve the knowledge about the reward generating process,

but not necessarily maximize the current rewards. In our content, the design point with a

small value of µ0|n(w0) will support local exploitation. But there is only limited knowledge

about the minimization. One might decide to do exploration in a wider area. The design

point with a large value of σ0|n(w0) will encourage the exploration. Thus the idea of con-

sidering both µ0|n(w0) and σ2
0|n(w0) is natural thinking for choosing the next design point.

Intuitively, we would like to sequentially choose the next point w0 when the mean µ0|n(w0)

is small and the standard deviation σ0|n(w0) is large, which is to encourage balance between

exploitation and exploration. Under this consideration, it would be reasonable to consider a

criterion of choosing the next point wn+1 as minw0 [µ̂0|n(w0)− ρσ̂0|n(w0)], where ρ ≥ 0 is a

tuning parameter. Note that if ρ is chosen to be zα/2, the α/2 upper quantile of the standard

normal distribution, then µ̂0|n(w0)− ρσ̂0|n(w0) = µ̂0|n(w0)− zα/2σ̂0|n(w0) is the lower confi-

dence limit of [Y0|yn] with the confidence level 1− α. It implies that, instead of minimizing

the mean of [Y0|yn], it is to minimize the lower confidence limit of [Y0|yn] when searching

for the input of achieving the minimum of the response surface. Note that such a criterion

can be easily modified for the maximization problem as maxw0 [µ0|n(w0) + ρσ0|n(w0)], and

is closely related to upper confidence bound in the literature (Wang et al., 2021).

However, the optimization requires the search over the whole design spaceA = {(x, z)|x ∈

X, z ∈ Z} in each iteration of the sequential design procedure. When the inputs of ex-

periments contain both quantitative factors and qualitative factors, the design space A is

discontinuous in nature due to the qualitative factors. The optimization will be compli-

cated to obtain the global optimum especially when there are a large number of qualitative

factors with many levels. Moreover, as the sequential design procedure is conducted with

more collected data points, there should be more information on the design region where the

minimum is located. Therefore, we propose an adaptive-region sequential design (ARSD)

criterion for finding the next design point where the design region is adaptive in each iteration

of the sequential procedure. The proposed ARSD criterion borrows the intuition from LCB

(Wang et al., 2021) and theorizes the intuition by defining the adaptive region. We provide
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a theoretical justification that our strategy is to minimize an LCB criterion but restrict to

a region where the optimal solution should lie in with a high probability. Specifically, the

proposed ARSD criterion is to choose the next point wn+1 as

wn+1 = argmin
w0∈An

{
µ̂0|n(w0)− ρσ̂0|n(w0)

}
, (7)

where An ⊂ A is the adaptive design region as

An =
{
w0 ∈ A : µ̂0|n(w0)−

√
β0|nσ̂0|n(w0) ≤ min

w0
[µ̂0|n(w0) +

√
β0|nσ̂0|n(w0)]

}
, (8)

where β0|n = 2 log(π2n2M/6α) with M = |Z| = ∏q
j=1 mj being the size of Z, and µ0|n(w0)

and σ0|n(w0) are given in (4) and (5). Note that β0|n is a very complicated function of n,M

and α. When the sample size n or the size M is large, the value of β0|n can be large, which

may over-emphasize the role of the predictive standard deviation. Thus a relatively simple

number ρ is used in (7). Regarding to the stopping criterion, we follows Jones et al. (1998)

to stop searching the next design point when the objective value in (7) is less than 1% of

the current objective value.

For the adaptive region An in (8), it is easy to see that the lower bound µ̂0|n(w0) −√
β0|nσ̂0|n(w0) is always smaller than the upper bound µ̂0|n(w0) +

√
β0|nσ̂0|n(w0) for every

w0 ∈ A. In (8), the design region An consists of the points µ̂0|n(w0)−
√
β0|nσ̂0|n(w0) is less

than the minimum of µ̂0|n(w0) +
√
β0|nσ̂0|n(w0). It implies that the inequality in Eq. (8)

would eliminate regions where the function value is suboptimal with a high probability. One

can see that design region An, as a subset of the whole region A, varies with the data points

collected sequentially. In the numerical example in Section 4, we illustrate how An changes

as the data arrives. Solving the optimization with the ARSD criterion will be more efficient

because the search for next input setting in each iteration is confined in An rather than the

whole design region A.

3.2 Theoretical Justification for the Adaptive Design Region

For notation convenience, we use µ0|n and σ0|n rather than their estimates in the presentation

of theoretical investigation and technical proofs. These theoretical results still hold when
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the estimates are used. The technical proofs can be found in the appendix. Now we focus

on finding the adaptive region An based on the properties of the predictive mean µ0|n(w0).

First, we present Lemma 1 below.

Lemma 1. For a given quantitative factors x0 ∈ X from a design point w0 = (xT0 , zT0 )T ∈

A, let y(w0) be a sample from the Gaussian process in (1). For all α ∈ (0, 1), we have

P
(
|y(w0)− µ0|n(w0)| ≤

√
β0|nσ0|n(w0), ∀z0 ∈ Z, ∀n ≥ 1

)
≥ 1− α, (9)

where β0|n = 2 log(π2n2M/6α) with M = |Z| = ∏q
j=1 mj being the size of Z, and µ0|n(w0)

and σ0|n(w0) are given in (4) and (5).

Lemma 1 is based on Lemma 1 in Jala et al. (2016), which established similar results

for a finite space. Because Z is a finite discrete space and x0 ∈X is fixed, the design space

in Lemma 1 is finite. We can easily extend their proof to ensure that Lemma 1 holds, and

thus we skip the proof of Lemma 1.

Lemma 1 gives the lower bound and upper bound for the prediction of y(w0). Let denote

the lower bound µL0|n(w0) and the upper bound µU0|n(w0) as follows:

µL0|n(w0) = µ0|n(w0)−
√
β0|nσ0|n(w0), µU0|n(w0) = µ0|n(w0) +

√
β0|nσ0|n(w0), (10)

Then Lemma 1 implies that given x0 ∈X, y(w0) belongs to the interval [µL0|n(w0), µU0|n(w0)]

with the probability greater than 1−α. Moreover, Lemma 2 below shows that minw0∈A y(w0)

belongs to the interval [minw0∈A µ
L
0|n(w0),minw0∈A µ

U
0|n(w0)] with the probability greater

than 1− α. Let us define ymin, µ̃min,n, µ̃
L
min,n, µ̃

U
min,n as follows:

ymin = min
w0∈A

y(w0), µ̃min,n = min
w0∈A

µ0|n(w0),

µ̃Lmin,n = min
w0∈A

µL0|n(w0), µ̃Umin,n = min
w0∈A

µU0|n(w0). (11)

Lemma 2. Let ymin, µ̃
L
min,n, µ̃

U
min,n be the quantifies as defined in (11). Then for all α ∈ (0, 1),

P
(
ymin ∈ [µ̃Lmin,n, µ̃

U
min,n], ∀n ≥ 1

)
≥ 1− 2α. (12)

The proof of Lemma 2 can be found in the appendix. Now we can obtain the bound for

the discrepancy between of the minimum of the response ymin and its estimate µ̃min,n in a

probabilistic manner.
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Theorem 1. Let µL0|n(w0), ymin, µ̃min,n, µ̃
U
min,n be the quantitie as defined in (10) and (11).

Then for all α ∈ (0, 1), we have

P

(
|µ̃min,n − ymin| ≤

√
β0|n sup

w0∈An

σ0|n(w0), ∀n ≥ 1
)
≥ 1− 4α, (13)

where An = {w0 ∈ A : µL0|n(w0) ≤ µ̃Umin,n}.

Clearly, the definition of An here is the same as in (8). It is easy to see that the lower

bound µL0|n(w0) is smaller than the upper bound µU0|n(w0) for every w0 ∈ A. In Theorem

1, the design region An consists of the points whose the lower bound µL0|n(w0) is less than

the minimum of its upper bound µ̃Umin,n. Thus An can have a smaller size than the whole

design region A. Note that An does not always cover An−1 because of the stochastic nature of

estimates. When n is large enough, this region converges in an asymptotic fashion. Theorem

1 provides a bound for the difference between ymin and its estimate µ̃min,n, which depends

on An. It implies that µ̃min,n will be in a small neighborhood of ymin with a relatively high

probability. Furthermore, Corollary 1 states that the adaptive design region An will cover

the true optimal setting w∗ = arg minw y(w) with a high probability.

Corollary 1. Denote w∗ be one of the optimal points that minimize y(w), i.e., y(w∗) =

minw∈A y(w). Then for all α ∈ (0, 1), we have

P (An 3 w∗, ∀n ≥ 1) ≥ 1− 3α,

where An is the design region defined in Theorem 1.

4 Numerical Examples

In this section, we investigate the performance of the proposed ARSD method in compari-

son with the four benchmark methods defined as follows: (1) LCB: the method sequentially

minimizes µ̂0|n(w0) −
√
β0|nσ̂0|n(w). (2) EI: the method sequentially maximizes the ex-

pected improvement as the acquisition function, where the corresponding EI criterion is

E[I(w)] =
∫
y∈R I(w)f(y|w,yn)dy with f(y|w,yn) to the predictive density and I(w) =

max {ymin,n − Y (w), 0}. Here ymin,n to be the minimum value of the obtained responses
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among the n runs. (3) MU: the method sequentially minimizes the prediction mean as the

acquisition function, i.e., wn+1 = argminw0 µ̂0|n(w0); (4) SI: the method sequentially max-

imizes the prediction variance as the acquisition function, i.e., wn+1 = argmaxw0 σ̂0|n(w0).

Note that these four benchmark approaches are sequential designs, each of which chooses

the next design point by the given method, gets its response and updates the model es-

timation, and then continues to choose the next design point until the stopping criterion

is met. Here we consider the methods in comparison have the same number of runs. In

each numerical example, we will report the minimal values found by the five methods in

comparison.

4.1 An Illustrative Example with one Qualitative Factor and one

Quantitative Factor

Example 1. Consider the simple case that there is only one quantitative factor x ∈ [0, 1]

and one qualitative factor z of three levels. The underlying function for the output response

y is expressed as

y =



2 + cos(6πx), if z = 1,

1− cos(4πx), if z = 2,

cos(2πx), if z = 3.

(14)

It is easy to see that the minimum of the function in (14) is obtained exactly at z = 3 and

x = 0.5.

To start the proposed ARSD method, we obtain an initial training data of three points,

where a three-level full factorial design (Wu and Hamada 2009) is used for the qualitative

factor and a random Latin hypercube design (McKay et al. 1979) is used for the quantitative

factor. In each iteration of the sequential design, the corresponding output value of the

chosen design point is calculated by (14), and the minimum of the obtained output values

is regarded as the minimum of (14). For the proposed ARSD method, we choose ρ =

2. We have compared the proposed method with different values of ρ = 0.5, 1, 2, 3. The

results appear to have similar performance. When we choose ρ = 2, µ̂0|n(w0)− ρσ̂0|n(w0) =
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µ̂0|n(w0) − 2σ̂0|n(w0) can be viewed as the lower confidence limit of Y0|yn with confidence

level around 0.95. In order to obtain the minimum of the response, the proposed method is

to minimize the lower confidence limit of Y0|yn. Thus it is more reasonable than minimizing

the mean of Y0|yn. Hereafter, we choose ρ = 2 in the simulation.

5 10 15

−
1

.0
−

0
.6

−
0

.2
0

.2

(a)

A
R

S
D

 v
a

lu
e

s

5 10 15

−
1

.0
0

.0
0

.5
1

.0

(b)

y m
in

y=−1

Figure 1: Results of the ARSD method in one simulation trial, (a) the ARSD value, (b)

the obtained minimum of response, where 15 points are selected sequentially based on three

initial runs.

Figure 1 shows the results of the ARSD sequential design in one simulation, where

the three initial points and 15 sequentially added points are on the left and right of the

red vertical line respectively. Here the ARSD value in Figure 1(a) represents the value of

µ̂0|n(wn+1)−ρσ̂0|n(wn+1) in each iteration. It is seen that the ARSD value converges quickly

within 10 iterations of the sequential runs. From Figure 1(b), it is clear that the estimated

minimum of the responses drops sharply as the points are added sequentially by the proposed

ARSD method.

Note that the true minimum of the function in (14) is −1. The proposed ARSD method

achieves the minimum with four iterations of the sequential procedure. Moreover, when the

minimum is achieved, the sequential inputs converge at the minimum point. Figure 2 marks

the selected design points corresponding to the simulation in Figure 1. In Figure 2, the
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Figure 2: Illustration of the ARSD sequential inputs with three initial points and six se-

quentially added points.

small solid dots are the initial three points, and the points which are labeled “4” to “9” are

six sequential points. From Figure 2, the proposed method efficiently allocates the design

point to the level z = 3 to seek the minimum of response. The points marked with “7”, “8”,

“9” almost coincide at z = 3, with their responses values close to the true minimal response

value of −1.

To further examine the performance of the proposed ARSD method, it is of interest

to understand how the adaptive set of the feasible region behaves. Figure 3 reports the

sequential An subsets corresponding to the sequential design in Figures 1 and 2. From Figure

3, one can clearly observe that An quickly converges to the set {(x, z) : x ∈ (0.44, 0.66), z =

3}. Note that the true minimum point (0.5, 3) belongs to this set.

We further examine the theoretical results in Theorem 1 and Corollary 1 through obtain-

ing the empirical probability from simulation. Specifically, we set for α = 0.05 and conduct

100 replications to record the number of times the inequality in Theorem 1 being held. The

empirical probability in Theorem 1 is calculated as the ratio of the number of times Theorem

1 holds to the number of replications. The empirical probability in Corollary 1 is calculated

similarly. The above simulation procedure is repeated 100 times. Figure 4 reports the box-

13



0.0 0.4 0.8

A4

x

z

1
3

0.0 0.4 0.8

A5

x

z

1
3

0.0 0.4 0.8

A6

x

z

1
3

0.0 0.4 0.8

A7

x

z

1
3

0.0 0.4 0.8

A8

x

z

1
3

0.0 0.4 0.8

A9

x

z

1
3

0.0 0.4 0.8

A10

x

z

1
3

0.0 0.4 0.8

A11

x

z

1
3

0.0 0.4 0.8

A12

x

z

1
3

Figure 3: Illustration of the adaptive An design region from one simulation in Example 1.

plots of the empirical probabilities for Theorem 1 and Corollary 1. From Figure 4, it is seen

that the empirical probability in Theorem 1 is greater than 1− 4α = 0.8, and the empirical

probability in Corollary 1 is greater than 1 − 3α = 0.85.

We would like to remark that the performance of sequential design methods will depend

on parameter estimation. It is important to check the estimation of the variances of model

errors σ2
j ’s, correlation τ jr,s and other parameter values for the model presented in Section

2. Figure A1 in the Appendix reports the boxplots of the estimates of the parameters in

Example 1. From Figure A1, one can see that the estimates tend to be stable when the fifth

sequential points are added.

Now we compare the proposed ARSD method with the other four benchmark methods

over 100 simulations. For each method, the same number of initial runs of size three is

14



0
.8

0
0

.8
5

0
.9

0
0

.9
5

F
re

q
u

e
n

cy

(a)

0
.8

6
0

.9
0

0
.9

4
0

.9
8

F
re

q
u

e
n

cy

(b)

Figure 4: Boxplots of the empirical probability for (a) Theorem 1 and (b) Corollary 1 from

100 simulations of Example 1.

used with a three-level full factorial design for the qualitative factor and a random Latin

hypercube design is for the quantitative factor. When the ARSD value is less than 1% of the

current ARSD value (Jones et al., 1998) or the maximal number of iterations is achieved,

we stop to search the next point.

Figure 5 reports the boxplots and the number of runs until stopping criterion with the

maximal number of iterations to be 15. The histograms of the obtained minimums for

methods in comparison can be found in the Appendix. From Figure 5, it is seen that the

performance of the ARSD is much better than the LCB, EI, MU and SI methods. For the

proposed ARSD method, most minimums are near −1. The ARSD method can obtain the

true minimum with a higher probability than other methods. We also find out that ARSD

generally need a smaller number of runs than other methods.

4.2 Examples with Multiple Quantitative and Qualitative Factors

Example 2. This example is used in Deng et al. (2017) for a computer experiment with

p = 3 quantitative factors and q = 3 qualitative factors. The response of the experiment has
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Figure 5: Boxplots of the obtained minimum values of response and boxplots of the number

of runs until stopping criterion over 100 simulations in Example 1.

the following expression

y =
3∑
i=1

xiz4−i

4000 +
3∏
i=1

cos
(
xi√
i

)
sin

(
z4−i√
i

)
, (15)

where −100 < xi < 100 for i = 1, · · · , p and zj = {−50, 0, 50} for j = 1, · · · , q.

Note that the qualitative factors in this example behave as the ordinal factors. In each

simulation, a 9-run initial design is adopted, where a three-level fractional factorial design

is used for the qualitative factors and a random Latin hypercube design is used for the

quantitative factors. It is easy to know that the true minimum of (15) is 3.75. The proposed

ARSD method is compared with the LCB, EI, MU and SI methods. For the proposed

ARSD design, we choose ρ = 2. For each method in comparison, it has the same number of

initial runs and then nine follow-up points are obtained sequentially. Figure 6 displays the

boxplots of obtained minimums over 100 simulations. The histograms of obtained minimums

can be found from the Appendix. From Figure 6, it is seen that the proposed ARSD method

outperforms the EI, MU and SI methods significantly in terms of the obtained minimal

values. We also examine the computational time of the methods in comparison in Table
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Figure 6: Boxplots of the obtained minimums of the response over 100 simulations in Ex-

ample 2.

1. It is seen that that the computational time of the ARSD method is also effieicnt in

comparison with other methods.

Table 1: Average computational time (in mins) over 100 simulations for methods in compar-

ison in Example 2.

Methods ARSD LCB EI MU SI

Time 1.03 1.10 1.90 1.18 1.72

5 Case Study of HPC Data

In this section, we apply the proposed ARSD sequential design for studying the HPC systems,

which are important infrastructures to advance the industry 4.0. To enhance the performance

of the HPC systems, a key step is to understand the HPC variability since there are run-

to-run variation in the execution of a computing task. In particular, the input/output (IO)
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throughput (i.e., data transfer speed) is an important metric, which is affected by various

system factors such as CPU frequency, the number of threads, IO operation mode, and IO

scheduler. The relationship between the IO throughput (y) and these system factors can be

quite complicated. Moreover, some of these system factors are quantitative and some are

qualitative.

In this case study, our objective is to find an optimal level combination of system factors

that optimizes the IO performance variability measure. Table 2 summarizes the input factors,

of which the quantitative factors are the CPU clock frequency (x1) and the number of

threads (x2), and the qualitative factors are the IO operation mode (z1) with three levels,

the IO scheduler (z2) with three levels and the VM IO scheduler (z3) with three levels. Here

the IO scheduler is the method that computer operating systems use to decide in which

order the block IO operations will be submitted to storage volumes. For the IO operation

modes, Initialwrite measures the performance of writing a new file, Randomread measures

the performance of reading a file with accesses being made to random locations within the

file, and Fwrite measures the performance of writing a file using fwrite() function. The HPC

server is configured with a dedicated 2TB HDD on a 2 socket, 4 core (2 hyperthreads/core)

Intel Xeon E5-2623 v3 (Haswell) platform with 32 GB DDR4, using Linux operating system.

The IOzone benchmark task (Norcott 2020) was used in this computer experiment (Xu et

al. 2020).

For a given level combination of input factors as a configuration, the HPC server executes

the IOzone benchmark task and the IO throughput (in kilobytes per second) is recorded.

By executing for 40 replicates, the mean and the standard deviation (SD) of the 40-replicate

IO throughput values are calculated (Cameral et al. 2009). Clearly, a smaller value of

the SD indicates the robustness of the HPC system, and a large mean value indicates the

effectiveness of the HPC system. Hence, we consider to use the signal-to-noise ratio YSN ,

i.e., the ratio of the mean and SD of the throughput values, as the output response in the

optimization.

We apply the proposed ARSD sequential design to find the optimal configuration to

achieve the maximum of YSN , the ratio between the mean and SD of the throughput values.
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Table 2: A summary of input factors in the IO throughput experiment of the HPC system.

Category Variable
No. of

Values
levels

Hardware x1: CPU clock frequency
continuous

1.2, 1.4, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1

(GHz) 2.3, 2.4, 2.5, 2.7, 2.8, 2.9, 3.0

Operating z2: IO scheduler 3 CFQ, DEAD, NOOP

System z3: VM IO scheduler 3 CFQ, DEAD, NOOP

Application
z1: IO operation mode 3 Fwrite, Initialwrite, Randomread

x2: number of threads continuous 1, 2, 4, 8, 16, 32, 64, 128, 256

It appears that there is little domain knowledge on the configuration (the setting of input

factors) to maximize the ratio of the mean and standard deviation of the throughput values.

Note that maximizing YSN is equivalent to minimizing −YSN . Thus we use −YSN as the

response for our proposed ARSD sequential design. For the initial experiment, we consider

a 9-run design with a three-level fractional factorial design for the qualitative factors and a

random Latin hypercube design for quantitative factors. Then five design points are obtained

sequentially by each method in comparison. Here, we focus on the comparison between the

proposed ARSD sequential and the EI method. For the proposed ARSD design, we choose

ρ = 2. Figure 7(a) reports the obtained minimums of −YSN in one simulation trial with the

same initial runs from the ARSD method and the EI method, respectively. One can see that

the ARSD sequential design performs much better than the EI design. The ARSD method

obtains a smaller value of response than the EI method under the same number of runs. In

the case of Figure 7(a), the maximum of YSN obtained by the proposed ARSD method is

20.198 at the setting x1 = 1.2, x2 = 2, z1 = “Initialwrite”, z2 = “NOOP”, z3 = “NOOP”. It

is interesting to note that the number of threads in this optimal setting of maximizing YSN
is x2 = 2. For different initial runs, it happens that the ARSD method performs better than

the EI method in most cases. Moreover, we also compare the ARSD sequential design with

the EI design in 100 simulations with different initial runs. Figure 7(b) reports the boxplots
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of minimal response (−YSN) values obtained by the ARSD method in comparison with the

EI method. Clearly, the proposed ARSD sequential design is much more efficient than the

EI design in finding the maximal value of YSN .
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Figure 7: The performance of the proposed ARSD method and EI methods for the HPC

case study: (a) the sequential procedure in one simulation; (b) the boxplot of the obtained

minimums of the response (−YSN) over 100 simulations.

6 Discussion

In this work, we propose an adaptive-region sequential design for optimization of computer

experiments with qualitative and quantitative factors. Here we have focused on finding

the optimal level combination of factors to minimize (or maximize) the response output.

The proposed adaptive-region sequential design combines the predictive mean and standard

derivation to achieve the balance between exploitation and exploration with meaningful

interpretation. Moreover, the adaptive design region varies with the collected design points

with a theoretical justification based on the bound between the true optimal response and

its estimate.
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Currently the proposed ARSD criterion is built based on the AGP in Deng et al. (2017)

for computer experiments with qualitative and quantitative factors. The proposed method-

ology can also be applicable for other Gaussian process models for computer experiments

with qualitative and quantitative factors. It is worth pointing out that the theoretical jus-

tification of the adaptive design region can be extend to the case of contour estimation for

computer experiment with qualitative and quantitative factors.

There are several directions for the further development of the proposed method. First,

when the number of input variables or the levels of qualitative factors is large, the use of

AGP can involve a large number of parameters and consequently the sequential procedure

can be slow due to the parameter estimation and the large number of possible design points.

One possible solution to overcome this drawback is to adopt a more parsimonious Gaussian

process model (Zhang et al. 2020) or construct a sensible initial design. To address the

intensive search over a large design region in the optimization in (7), more advanced opti-

mization technique is needed such as the mixed integer programming used in Xie and Deng

(2020). Second, there is a tuning parameter ρ in the proposed ARSD criterion in (7). In

the numerical study, there seems to be no significant difference on the performance of the

proposed method under ρ = 0.5, 1, 2, 3. It will be interesting to understand the sensitivity

on the choice of the tuning parameter. It will also be interesting to understand how the

adaptive design region behaves at different stages of sequential design. Third, when the

response is rugged, i.e., there are several local optima, the performance of the ARSD may

not be as good as the case of unique optima. We will consider several robust approach to

better balance the trade-off between exploration and exploitation. It would be even more

interesting to investigate some specific metrics to quantify the balance between exploration

and exploitation. Fourth, it will be interesting to investigate more theoretical properties on

the convergence of the estimated optimum. A key challenge lies in the design space to be

semi-continuous and semi-discrete. Finally, the proposed method is not limited to the con-

tinuous response. It will be interesting to investigate on how to extend the proposed method

for computer experiments with non-continuous output such as binary responses (Sung et al.

2020).
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Appendix

Details of the Maximum Likelihood Estimation of AGP

Under the AGP model (1), the log-likelihood function is

l(µ,σ2,T ,θ) = −n2 log(2π)− 1
2 log |Φ| − 1

2(yn − µ1n)TΦ−1(yn − µ1n). (16)

Setting the derivative of l(µ,σ2,T ,θ) with respect to µ to be zero, we have the maximum

likelihood estimator of µ is

µ̂ = 1TnΦ−1yn
1TnΦ−11n

. (17)

Substituting (17) into (16), we obtain

l(µ̂,σ2,T ,θ) = −n2 log(2π)− 1
2 log |Φ| − 1

2(yn − µ̂1n)TΦ−1(yn − µ̂1n)

= −n2 log(2π)− 1
2 log |Φ| − 1

2y
T
nΦ−1yn + 1

2
(1TnΦ−1yn)2

1TnΦ−11n
.

The estimators of σ2,T ,θ can be obtained as

(σ̂2, T̂ , θ̂) = argmin
{

log |Φ|+ yTnΦ−1yn −
(1TnΦ−1yn)2

1TnΦ−11n

}
. (18)

To ensure the mj × mj matrix T (j) is a valid correlation function, T (j) = (τ (j)
r,s )mj×mj

must be a positive definite matrix with unit diagonal elements. We apply the hypersphere

parameterization approach in Zhou et al. (2011) to quantify the correlations of qualitative

factors. The key of this approach is to find a lower triangular matrix L(j) = (l(j)r,s ) with

strictly positive diagonal entries such that

T (j) = L(j)L(j)T .
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For r = 1, let l1,1 = 1. For r = 2, · · · ,mj, the entries of the rth row of L(j) can be constructed

as follows:

l
(j)
r,1 = cos(θr,1),

l
(j)
r,2 = sin(θr,1) cos(θr,2),

· · · ,

l
(j)
r,r−1 = sin(θr,1) · · · sin(θr,r−2) cos(θr,r−1),

l(j)r,r = sin(θr,1) · · · sin(θr,r−2) sin(θr,r−1),

where θr,s ∈ (0, π).

Proof of Lemma 2

Proof. Recall the definition of ymin, µ̃min,n, µ̃
L
min,n, µ̃

U
min,n as follows

ymin = min
w0∈A

y(w0) = sup
v∈R
{v : 1

M

∑
z0∈Z

∫
x0∈X

1{y(w0)<v}dx0 < ε}, (19)

µ̃min,n = min
w0∈A

µ0|n(w0) = sup
v∈R
{v : 1

M

∑
z0∈Z

∫
x0∈X

1{µ0|n(w0)<v}dx0 < ε}, (20)

µ̃Lmin,n = min
w0∈A

µL0|n(w0) = sup
v∈R
{v : 1

M

∑
z0∈Z

∫
x0∈X

1{µL
0|n(w0)<v}dx0 < ε}, (21)

µ̃Umin,n = min
w0∈A

µU0|n(w0) = sup
v∈R
{v : 1

M

∑
z0∈Z

∫
x0∈X

1{µU
0|n(w0)<v}dx0 < ε}, (22)

where ε > 0 is a small positive number, and 1{·} is the indicator function.

By Lemma 1, for a given x0 ∈X, we have

P
(
µL0|n(w0) ≤ y(w0) ≤ µU0|n(w0), ∀z0 ∈ Z, ∀n ≥ 1

)
≥ 1− α.

When µL0|n(w0) ≤ y(w0) ≤ µU0|n(w0), for given x0 ∈X and all v ∈ R,
1
M

∑
z0∈Z

1{µU
0|n(w0)<v} ≤

1
M

∑
z0∈Z

1{y(w0)<v} ≤
1
M

∑
z0∈Z

1{µL
0|n(w0)<v}, ∀n ≥ 1.

Integrating each term over x0 in X, we have∫
x0∈X

1
M

∑
z0∈Z

1{µU
0|n(w0)<v}dx0 ≤

∫
x0∈X

1
M

∑
z0∈Z

1{y(w0)<v}dx0

≤
∫
x0∈X

1
M

∑
z0∈Z

1{µL
0|n(w0)<v}dx0, ∀n ≥ 1. (23)
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Let v = µ̃Lmin,n given in (21), we get
∫
x0∈X

1
M

∑
z0∈Z

1{y(w0)<µ̃L
min,n}dx0 < ε.

By (19), we obtain that µ̃Lmin,n ≤ ymin. Thus

P
(
µ̃Lmin,n ≤ ymin, ∀n ≥ 1

)
≥P

(
µL0|n(w0) ≤ y(w0) ≤ µU0|n(w0), ∀z0 ∈ Z, ∀n ≥ 1

)
≥1− α. (24)

Similarly, in (23), let v = ymin, we get that
∫
x0∈X

1
M

∑
z0∈Z

1{µU
0|n(w0)<ymin}dx0 < ε.

By (22), we obtain that ymin ≤ µ̃Umin,n, thus

P
(
ymin ≤ µ̃Umin,n, ∀n ≥ 1

)
≥P

(
µL0|n(w0) ≤ y(w0) ≤ µU0|n(w0), ∀z0 ∈ Z, ∀n ≥ 1

)
≥1− α. (25)

By (24) and (25), we have

P
(
ymin ∈ [µ̃Lmin,n, µ̃

U
min,n], ∀n ≥ 1

)
=P

(
µ̃Lmin,n ≤ ymin ≤ µ̃Umin,n, ∀n ≥ 1

)
≥1− 2α.

Proof of Theorem 1

Proof. By (22), for any n ≥ 1,

1
M

∑
z0∈Z

∫
x0∈X

1{µU
0|n(w0)<µ̃U

min,n}dx0 < ε.
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Define

An(z0) = {x0 ∈X : µL0|n(x0, z0) ≤ µ̃Umin,n}.

It is clear that An = {(x0, z0) : z0 ∈ Z,x0 ∈ An(z0)}, then we have

1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µU
0|n(w0)<µ̃U

min,n}dx0 = 1
M

∑
z0∈Z

∫
x0∈X

1{µU
0|n(w0)<µ̃U

min,n}dx0 < ε.

Since µU0|n(w0) = µ0|n(w0) +
√
β0|nσ0|n(w0), we get that

1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µ0|n(w0)<µ̃U
min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

≤ 1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µ0|n(w0)<µ̃U
min,n−

√
β0|nσ0|n(w0)}dx0

<ε.

By the definition of An(z0),

1
M

∑
z0∈Z

∫
x0∈X

1{µ0|n(w0)<µ̃U
min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

= 1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µ0|n(w0)<µ̃U
min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

<ε.

Thus,

1
M

∑
z0∈Z

∫
x0∈X

1{µ0|n(w0)<µ̃U
min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0 < ε.

By (20), we obtain that

µ̃min,n ≥ µ̃Umin,n −
√
β0|n sup

w0∈An

σ0|n(w0).

By Lemma 2, we have P
(
µ̃Umin,n ≥ ymin, ∀n ≥ 1

)
≥ 1− 2α. Thus,

P

(
µ̃min,n ≥ ymin −

√
β0|n sup

w0∈An

σ0|n(w0), ∀n ≥ 1
)
≥ 1− 2α, (26)

where β0|n = 2 log π2n2M
6α′ .
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On the other hand, by (20), for any n ≥ 1,

1
M

∑
z0∈Z

∫
x0∈X

1{µ0|n(w0)<µ̃min,n}dx0 < ε.

By the definition of An(z0) and µ̃An ≤ µ̃min,n ≤ µ̃Umin,n, we get that

1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µ0|n(w0)<µ̃min,n}dx0 = 1
M

∑
z0∈Z

∫
x0∈X

1{µ0|n(w0)<µ̃min,n}dx0 < ε.

Since µL0|n(w0) = µ0|n(w0)−
√
β0|nσ0|n(w0), we get that

1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µL
0|n(w0)<µ̃min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

= 1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µ0|n(w0)−
√
β0|nσ0|n(w0)<µ̃min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

≤ 1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µ0|n(w0)−
√
β0|n supw0∈An

σ0|n(w0)<µ̃min,n−
√
β0|n supw0∈An

σ0|n(w0)}dx0

<ε.

By µ̃An ≤ µ̃min,n ≤ µ̃Umin,n and the definition of An(z0),

1
M

∑
z0∈Z

∫
x0∈X

1{µL
0|n(w0)<µ̃min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

= 1
M

∑
z0∈Z

∫
x0∈An(z0)

1{µL
0|n(w0)<µ̃min,n−

√
β0|n supw0∈An

σ0|n(w0)}dx0

<ε.

Thus,

1
M

∑
z0∈Z

∫
x0∈X

1{µL
0|n(w0)<ymin−

√
β0|n supw0∈An

σ0|n(w0)}dx0 < ε.

By (21), we obtain that

µ̃Lmin,n ≥ µ̃min,n −
√
β0|n sup

w0∈An

σ0|n(w0).

By Lemma 2, we have

P

(
ymin ≥ µ̃min,n −

√
β0|n sup

w0∈An

σ0|n(w0), ∀n ≥ 1
)
≥ 1− 2α. (27)

Using (26) and (27), the conclusion of Theorem 1 is proved.
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Proof of Corollary 1

Proof. By Lemma 1, for the minimum point w∗ ∈ A, we have

P
(
µL0|n(w∗) ≤ y(w∗) ≤ µU0|n(w∗), ∀n ≥ 1

)
≥ 1− α.

By the definition of ymin in (19), we have ymin = y(w∗). Thus

P
(
µL0|n(w∗) ≤ ymin ≤ µU0|n(w∗), ∀n ≥ 1

)
≥ 1− α.

By Lemma 2, we have

P
(
µ̃Lmin,n ≤ ymin ≤ µ̃Umin,n, ∀n ≥ 1

)
≥ 1− 2α.

Thus

P
(
µL0|n(w∗) ≤ µ̃Umin,n, ∀n ≥ 1

)
≥P

(
µL0|n(w∗) ≤ ymin ≤ µU0|n(w∗), µ̃Lmin,n ≤ ymin ≤ µ̃Umin,n, ∀n ≥ 1

)
≥1− 3α.

It implies the conclusion of Corollary 1.

Additional Results in Simulation

31



−
1

.0
0
.0

1
.0

number of sequential points

ta
u

1
,2

4 5 6 7 8 9

−
1

.0
0
.0

1
.0

number of sequential points

ta
u

1
,3

4 5 6 7 8 9

−
1

.0
0
.0

1
.0

number of sequential points

ta
u

2
,3

4 5 6 7 8 9

0
2

0
4

0
6

0
8

0

number of sequential points

σ

4 5 6 7 8 9

0
2

0
4

0
6

0

number of sequential points

θ

4 5 6 7 8 9

Figure A1: Boxplots of parameter estimates over 100 simulations in Example 1.

Histogram of ARSD

ymin

De
ns

ity

−1 0 1 2 3

0
1

2
3

4
5

6
7

Histogram of LCB

ymin

De
ns

ity

−1 0 1 2 3

0
1

2
3

4
5

6
7

Histogram of EI

ymin

De
ns

ity

−1 0 1 2 3

0
1

2
3

4
5

6
7

Histogram of MU

ymin

De
ns

ity

−1 0 1 2 3

0
1

2
3

4
5

6
7

Histogram of SI

ymin

De
ns

ity

−1 0 1 2 3

0
1

2
3

4
5

6
7

Figure A2: Histograms of the obtained minimum values of response over 100 simulations in

Example 1.
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Figure A3: Histograms of the obtained minimums of the response over 100 simulations in

Example 2.
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