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ABSTRACT

Modern cellular networks are multi-cell and
use universal frequency reuse to maximize
spectral efficiency. This results in high inter-cell
interference. This challenge is growing as cellu-
lar networks become three-dimensional with the
adoption of unmanned aerial vehicles (UAVs).
This is because the strength and number of inter-
ference links rapidly increase due to the line-of-
sight channels in UAV communications. Existing
interference management solutions require each
transmitter to know the channel information of
interfering signals, rendering them impractical
due to excessive signaling overhead. In this arti-
cle, we propose leveraging deep reinforcement
learning for interference management to tack-
le this shortcoming. In particular, we show that
interference can still be effectively mitigated even
without knowing its channel information. We then
discuss novel approaches to scale the algorithms
with linear/sublinear complexity and decentralize
them using multi-agent reinforcement learning. By
harnessing interference, the proposed solutions
enable the continued growth of civilian UAVs.

INTRODUCTION

Unmanned aerial vehicles (UAVs), better known
as drones, have found a wide variety of appli-
cations in the recent years. UAVs are inherently
mobile and rely on wireless connectivity to sup-
port their operational needs (command and con-
trol communication) and mission-related payload
data transmission. The deployment of UAVs over
cellular networks is transforming today’s terrestrial
mobile networks into three-dimensional (3D) net-
works. 3D networks are fundamentally different
from classical 2D networks. This is because the
high altitude of UAVs creates a radio environment
where UAV-associated channels are line-of-sight
dominant [1], thus causing strong air-to-ground
and ground-to-air interference. Meanwhile, the
mobility of UAVs increases the system'’s dynamics
and brings forth new challenges, such as delay
and Doppler shifts.

The strong air-ground interference severely
limits the cellular network capacity and adversely
affects coexisting aerial and terrestrial nodes. The
Third Generation Partnership Project (3GPP) lists
uplink/downlink interference detection and mit-

igation as a major challenge of communications
for UAVs [2]. Simulations and field trials indicate
that mobility-related performance (e.g., hando-
ver failure) of aerial users is worse than terrestrial
users [2] due to high interference. These challeng-
es are further exacerbated by the fact that inter-
ference can make basic tasks, like maintaining a
connection to the cellular network, more difficult
for UAVs. Therefore, the wide-scale deployment
of UAVs will only be possible if interference can
be properly mitigated or harnessed [3, 4].

Inter-cell interference management in cellu-
lar networks is a long-standing problem and has
been extensively studied for classical 2D networks.
Interference alignment [5] and coordinated muilti-
point (CoMP) [6] are two prominent examples of
such efforts. In theory, these techniques are much
more efficient than time-division multiple access
(TDMA), but they have some shortcomings that
prevent them from being used in real-world net-
works. Notably, they require a global knowledge of
channel state information (CSI), which is not practi-
cally feasible, and their implementation incurs large
signaling overhead and needs tight synchronization
between cooperating nodes, which reduces their
effectiveness in practice. Given these limitations,
orthogonalizing the resources (time/frequency/
beam) and treating interference as noise remains
the most common solution for addressing co-chan-
nel interference in practice.

Such an approach (treating interference as
noise) results in poor transmission rates unless the
interference power is very small, which is not the
case in today’s networks. This approach will cause
poorer performance in 3D networks as co-chan-
nel interference is much stronger and much more
prevalent in 3D cellular networks. As an example,
while the average number of neighbors for a user
at a height of 1.5 m is 5, this number increases to
17 at the height of 120 m [1], as depicted in Fig. 1.

To tackle this growing issue, this article advo-
cates the use of deep reinforcement learning
(DRL)-based interference mitigation as an alterna-
tive solution. DRL is a great tool to approach this
problem for several reasons: it is inherently useful
for decision-making in complex and dynamic envi-
ronments like a multi-cell network; it can outper-
form traditional approaches when (near)-optimal
solution is elusive; and it can learn from traditional

Mojtaba Vaezi is with Villanova University, USA; Xingqin Lin is with NVIDIA, USA; Hongliang Zhang is with Peking University, China;
Walid Saad is with Virginia Tech, USA, and with Lebanese American University (LAU), Lebanon; H. Vincent Poor is with Princeton University, USA.

134

0163-6804/24/$25.00 © 2024 IEEE

IEEE Communications Magazine ¢ February 2024



approaches (e.g., CoMP and interference align-
ment) while potentially performing better than
them with less stringent CSI requirements.

Despite its significant potential, DRL-based
co-channel interference management in cellular
networks has only been explored in limited cases.
This motivates us to summarize the main challeng-
es and potential solutions for developing novel
DRL-based interference management techniques
in this article to inspire future research in this field.
We particularly emphasize practical assumptions
in terms of the availability of CSI and the scale of
the network in our solutions. An ultimate goal is to
develop solutions that are independent of the CSI
of interfering signals and compatible with 3GPP
signal/interference power estimation methods, par-
ticularly those measured in Long-Term Evolution
(LTE) and New Radio (NR) networks [7].

We discuss solutions to mitigate interfer-
ence in 3D cellular networks in generic settings
in terms of the number of cells, the number of
antennas, and the frequency of operation (sub-
6 GHz and millimeter wave (mmWave) bands).
We also argue that the solutions can be scalable
with sub-linear complexity by developing novel
multi-agent learning and actor-critic architectures.
Further, numerical results are provided to evaluate
and validate the effectiveness of DRL-based inter-
ference management without requiring the CSI
of the interfering links. We also discuss the 3GPP
standardization aspects of embracing DRL for
interference management in UAV-based 3D net-
works. Finally, we highlight several future research
directions and conclude the article.

3D NETWORKS: A PRIMER
UAV NETWORKS: ComMonN USE CASES

In general, there are two ways that UAVs can be
exploited in cellular networks: aerial users and
aerial infrastructures.

User: As shown in Fig. 2a, one common use
case of UAVs is to deliver parcels. In this case,
UAV is a user equipment (UE). To guarantee the
safe operation of UAVs, cellular networks with
wide coverage can control the trajectory of these
UAVs. The UAVs could also be equipped with
various sensors to execute sensing tasks due to
their on-demand deployment and larger service
coverage compared with the conventional fixed
sensor nodes. As the altitudes of UAVs are typ-
ically much higher than the base station (BS)’s
antenna height, they are identified as a new type
of user that requires 3D coverage, as opposed to
the conventional 2D ground coverage.

Infrastructure: UAVs can also be used as new
types of aerial infrastructures, including BSs and
relays, to cover hard-to-reach areas, as illustrated in
Fig. 2b. For example, in hotspots or disaster areas
where the terrestrial infrastructure is destroyed or
users are underserved, UAVs can serve as tempo-
rary access points for emergency communication
or data offload to further improve the performance
of terrestrial wireless communications.

CHANNEL MODEL AND PROPAGATION ENVIRONMENT

Depending on the transmission modes, the chan-
nel model of a UAV can be categorized into two
types: air-to-ground and air-to-air channels. Since
the communications between UAVs typically occur

FIGURE 1. An aerial BS interferes with a much higher number of cells than a
ground BS. Here, S, is the area interfered with a ground BS and S, is the
area interfered wit% aUAVBS,

FIGURE 2. Common use cases for UAVS: aerial users and infrastructures.

in clear airspace, the air-to-air channel can be
characterized by the free-space path loss model.
The airto-ground channels significantly differ from
those used in terrestrial communications. Their
characteristics highly depend on the altitudes and
elevation angles of the UAVs, and any movement
caused by the UAVs will impact the channel. Since
an air-to-ground channel can also be occasionally
blocked by obstacles such as terrain, buildings, or
the airframe itself, a larger elevation angle leads to
a lower path loss as the line-of-sight components
will be more likely to dominate. To model these
characteristics, statistical path loss models have
been widely used for the air-to-ground channels,
where line-of-sight and non-line-of-sight compo-
nents are considered to occur with different prob-
abilities [8]. It should be noted that the reciprocity
of air-to-ground channels still holds although the
ground BS will optimize its tilt angle to maximize
the performance of ground users. This is because
the change of tilt angle only influences the antenna
gains in an angle span.

INTER-CELL INTERFERENCE IN UAV NETWORKS

Several techniques have been proposed in the lit-
erature to alleviate inter-cell interference in UAV-
based networks. These include:

Time/Frequency Orthogonalization: The
time/frequency resource is divided into resource
blocks and each resource block is assigned to
a UAV within a cell at the same time. Although
UAVs associated with different BSs can share the
same resource block, the reuse factor needs care-
ful optimization to further reduce the interference
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FIGURE 3. Agent-environment interaction in reinforcement learning based multi-cell network. The agent is a BS con-
troller and depending on the UAVS' use case it may control aerial BSs (UAVS) or ground BSs.

as inter-cell interference is more significant in
UAV networks.

Beam Orthogonalization: Spatial techniques
are used in this case. Specifically, UAVs equipped
with multiple antennas can generate directional
beams toward the target receiver and alleviate the
interference to neighboring cells by suppressing
the side lobes. Even with a single antenna, a UAV
swarm can also form a virtual multiple-input multi-
ple-output (MIMO) for beamforming [9].

Path Design: Due to the mobility of UAVs,
the paths of UAVs can be designed to make the
distance between the UAVs sharing the same
spectrum as larger as possible to reduce mutual
interference [4].

Cooperation Techniques: Neighboring BSs
can cooperate to decode the signals transmitted
from UAVs. For example, each BS will decode the
signals from its associated UAVs and exchange
the decoded results with neighboring BSs, which
is the inter-cell interference to be canceled [10].

Existing inter-cell interference management
methods require accurate CSI for both desired and
interfering links, which is expensive to obtain in
practice. This issue motivates exploring new tools
for treating the multi-cell interference problem.

DRL FOR INTERFERENCE MANAGEMENT;
WHy AND How?

WHy DEEP REINFORCEMENT LEARNING?

Reinforcement learning is the science of deci-
sion-making [11]. In reinforcement learning an
agent learns to interact with an environment by
taking a sequence of actions to maximize cumu-
lative reward. The ultimate goal is to maximize
the utility which is an estimation of the long-term
reward that the agent is expected to receive. For
this, we will need to learn a policy function n that
maps states to actions. The value of a state s is
quantified by V(s), which is the utility we expect
to get if we are at state s and play optimally. A
related more frequently seen quantity is the
state-action value Qn(s, a), which is the expect-
ed utility starting at state s, taking action a, and
playing optimally thereafter. Then, we learn Q-val-
ues and extract actions from them. In Q-learn-

ing, Q-values are iteratively computed according
to the Bellman equation [11]. When state-action
space is large, deep Q-learning is preferred to tab-
ular Q-learning because it can reduce the com-
putational complexity by avoiding an exhaustive
search in the action space [11]. In DRL, deep neu-
ral networks are used to approximate the value,
the policy, or both. DRL increases the learning
capacity of reinforcement learning and enlarges
its scope by removing the need for expert feature
engineering to train the algorithm.

DRL has great potential for solving problems
whose optimal solution is unknown or requires
poor approximation. Cellular interference man-
agement is a notable example of such prob-
lems. Conventional interference management
solutions such as interference alignment, CoMP,
signal-to-interference-plus-noise ratio (SINR) max-
imization are sub-optimal and highly depend on
the accuracy/availability of the interference CSI.
By properly defining the agent, environment,
state, action, and reward, not only can DRL learn
how to implement traditional interference man-
agement algorithms, but it can also surpass them.
As we will see in this article, using DRL:

+ Multiple traditional algorithms can be com-
bined in one learning model via multi-objec-
tive learning.

+ The learning process can be completed
online and without a stringent need on CSI
of interference.

+ Learning is inherently robust to the dynam-
ic environment of 3D multi-cell networks,
for example, it works if a line-of-sight chan-
nel becomes non-line-of-sight or vice versa,
whereas interference alignment would fail.
Through interaction with the environment

(multi-cell network), the agent learns how to

make better decisions to maximize a cumu-

lative reward via taking a sequence of actions.

The interference management is handled by an

agent, which can be either centralized or distrib-

uted based on the specific DRL algorithm being

used. In a centralized DRL, the agent would be a

central node such as a BS controller (BSC) in 2G,

the radio network controller (RNC) in 3G, or a

central radio resource management controller in

4G/5G. Alternatively, the agent could also be one
of the BSs itself. If UAVs serve as BSs, the agent
may be referred to as the UAV controller. This
controller can either be one of the UAVs or a sep-
arate entity that communicates with the UAVs to
issue actions. As the agent learns to maximize its
explicit objective (i.e., the cumulative reward), it
can maximize other implicit optimizations as well,
such as network sum-rate or spectral efficiency.

This power of DRL makes it very competitive for

interference management. In a distributed DRL,

the BSs together make the agent.

DRL can be leveraged to develop novel inter-
ference mitigation algorithms and improve spec-
tral efficiency with real-world assumptions and
constraints, in terms of the availability of CSI,
range of signal-to-noise ratio (SNR), network
scale, and stochastic nature of the environment.
There are two important questions that we seek
to answer here:

+ How can we mitigate the interference with
local or no CSI?

+ How to make the algorithms work with the
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large network scale and high-dimensional

state and action spaces?

These questions can be explored in various
settings in terms of the operating frequency band
(sub-6 GHz/mmWave), propagation environment
(line-of-sight, non-line-of-sight, and mixed), the
level to which CSl is available, number of anten-
nas at each node, and network scale. Network
design and training will be different in each case.
For example, mmWave/Terahertz MIMO systems
rely on predefined coodbooks whereas sub-6
GHz systems use digital beamforming. The for-
mer implies a discrete domain whereas the latter
is continuous. DRL algorithms for the two cases
have to be designed differently.

AN ILLUSTRATIVE EXAMPLE

Consider a downlink cellular network where L
users simultaneously communicate over a wireless
channel in L cells. Let each BS have M antennas
and serve single-antenna users. To make the exam-
ple less involved, let us assume mmWave transmis-
sion where analog-only beamforming is common.

Then, we will have a discrete set for beamforming

vectors wy. Let W be the beamforming codebook

adopted by the BSs. Further, let P, represent the
transmit power of BS ¢, and assume that the set of

BS powers, denoted by P, is discrete.

The goal is to find P, € P and w, € W so that
the network sum-rate, which is a common mea-
sure of spectral efficiency in cellular networks, is
maximized. The network sum-rate is defined as
E}=1log2(1 +v,) where vy, is the SINR at the UE
located at cell ¢. The SINR evaluation requires
the CSI for both the desired and interference sig-
nals. Hence, at each BS we need to know global
CSl, that is, hy; for all £ and j. This is not, however,
practical since CSI overhead will consume a big
portion of the bandwidth particularly when L is
large. In addition, the above optimization prob-
lem is nonconvex and is hard to solve, and the
exhaustive search and other traditional optimiza-
tion methods need global CSI knowledge.

Next, we develop an alternative solution based
on DRL. The proposed method can work based
on limited knowledge of CSI (e.g., with only the
serving cell channel h; 4, local CSI, or even no
explicit CSI) which is a big advantage compared
to the global CSI. As shown in Fig. 3, the envi-
ronment is a multi-cell network; the agent is a
BS controller which implements an interference
management algorithm (e.g., CoMP, SINR max-
imization, or others), and the reward could vary
depending on the availability of the CSI but is
supposed to help increase the network sum-rate.
To describe the potentials and challenges let us
define the state, action, and reward:

+ The state s; € S is a representation of the
environment that describes the current sit-
uation. It is what an agent observes at time
t. Let s; be the collection of UAVs’ coordi-
nates, BSs’ powers and beamforming vec-
tors. Even if we assume all the five elements
Xy, Yo, Zg, Py and wy are discrete and each
can take only 10 distinct values,  the num-
ber of states will be | S| = 105L, which is
extremely high.

* The action a, € A is the move taken by the
agent within the environment at time step
t. The action a, will advance the state s, to

St+1. In this example, actions are to change
the power and beamforming vector of each
BS. Let action a, be a binary vector

a; = laq, ..., a;, ..., ap;] where each element
being either “0” or “1.” More specifically, for
any ¢ € {1, ..., L}, we have

+ —ay = 0: decrease the transmit power of BS
¢ by 1dB,

+ —a, = 1:increase the transmit power of BS ¢
by 1dB

« — aj+y = 0: step down the beamforming
index of BS ¢

* —ay+¢ = 1: step up the beamforming index of
BS ¢.

« The cardinality of actions is | A| = 22L. Clear-
ly, by taking action a,, the agent is changing
the beamforming vectors and transmit pow-
ers for the serving and interfering BSs. Thus,
this is a collaborative interference manage-
ment scheme via coordinated power and
beamforming design.

+ The reward is a mechanism telling the agent
the consequence of its actions. The agent'’s
goal is to take actions that maximize an estima-
tion of the long-term reward it is expected to
receive (simply, the total cumulative reward).
Defining the reward function is a crucial step in

determining the type of CSI (global, local, or no CSI)
needed. Since our goal is to maximize the sum-rate
of the multi-cell network, the reward would ideally
be based on the sum-rate. With this, the agent must
evaluate the SINR received by the UEs at all cells,
which requires global knowledge of CSI. At each
time step, if v, > yiin for all users, then the reward
would be X;_qy; otherwise, we give a penalty to
ensure the quality of service for all users.

We propose using rewards that can mitigate
inter-cell interference without requiring the CSI
of the interference links. One example of such
rewards is to use SNR instead of SINR in reward
calculations which requires serving CSI only. Even
with this simplified method, the DRL algorithm
can effectively infer the severity of interference
from the users’ coordinates and BSs’ power to
adapt its actions based on it. For instance, it can
deduce that a user located at the cell edge will
cause more interference than the one located
at the cell center. Below, we provide additional
examples of rewards that do not require CSI of
interference links.

Next, we show the effectiveness of the pro-
posed method via simulations. Spectral efficiency
and overall network coverage are the performance
metrics we use for the evaluation. The former is
measured by the achievable sum-rate whereas the
latter is evaluated by the complementary cumula-
tive distribution function (CCDF) of the SINR. The
results are plotted in Figs. 4 and 5, where DRL-
based solutions are compared with maximum ratio
transmission (MRT) beamformer [12] and brute
force search. The proposed DRL algorithm learns
to mitigate interference with serving CSI almost
as effectively as that with global CSI. The brute
force method also uses global CSI knowledge to
find the best beam and power at each BS. MRT is
oblivious to interference since it replaces the L-cell
interference problem with L single-cell problems.
As a result, its spectral efficiency does not scale
with L. In this experiment, users are uniformly dis-
tributed within the cells, and the probability of LoS

Defining the reward function
is a crucial step in determin-
ing the type of CSI (global,
local, or no CS1) needed.

Since our goal is to maximize

the sum-rate of the multi-cell
network, the reward would
ideally be based on the
sum-rate.
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FIGURE 4. Network sum-rate using DRL-based approach with serving and

global CSI, MRT beamforming, and brute force search with global CS! for
the different number of cells.

for the channels is 0.8. We set y,;, = - 3dB. Any
channels that do not meet this threshold will not
be scheduled and will be dropped. To be fair, the
same channels that fail to meet this threshold are
also excluded from MRT calculations. However,
when L increases, there is a reduction in MRT gain
due to the possibility of some good channels being
dropped because of high interference. If users are
pushed toward the cell edge, interference will be
higher and sum-rates will reduce for all methods
except for MRT, as it avoids interference using
time division multiplexing.

OTHER TYPES OF REWARDS

The above example illustrates the basic idea of
DRL-based interference mitigation which does not
require the CSI of the interference links and relies
on serving CSl only. One can use more competi-
tive rewards such as the following:

No-CSI Reward: In this case, SINR will be mea-
sured using local power measurements without
explicitly requiring CSI. To do this, when the serv-
ing BS is not transmitting, at each cell the UE will
receive and measure interference plus noise (I +
N) level. Next, when serving BS is transmitting,
the UE can measure signal plus interference plus
noise (S + | + N). Subtracting these two measure-
ments, the UE can find signal power (S) and eval-
uate SINR = S/(I + N).

3GPP Compatible Rewards: A 3GPP com-
patible reward may use signal power and inter-
ference estimation measurements like received
signal strength indicator (RSSI) and reference sig-
nal received quality (RSRQ) [7]. These are key
signal-level measures of LTE/NR networks. This
way, similar to the no CSI case disused earlier, we
do not need to know any CSI explicitly.

Compound Rewards: Besides the above signal
level and quality measures which are common
in LTE/NR networks, SINR is also measured in
NR networks [7]. RSRQ and SINR measures are
related to the interference and can be used along
with RSSI to define compound rewards which are
based on multiple measurements rather than a
single one.

Multi-Objective Rewards: Here, the agent
can have multiple objectives each with its own
rewards. For example, we may consider interfer-
ence mitigation and UAV trajectory planning as
two objectives.

OPEN CHALLENGES

The DRL-based algorithm above works for dis-
crete state/action space where the number of
beamforming vectors is limited and the goal is to
show the potential of DRL with local CSI. In this
section, we point out some fruitful avenues for
extending and generalizing the above example.

SCALABILITY

The state and action spaces could be discrete or
continuous. Even in the discrete case, the state
space is typically very large and exponentially
increases with the number of cells. In a tabular
Q-learning, the state-action function Q(s, a) is
represented by a table of size RISI*IAl |n our
example in the previous section, we had | S| =
105t and | A| = 22L which result in 1090 possi-
ble states and 23 possible actions for L = 18.
Then, even for this simplified example, the tabular
Q-learning is impractical for our desired problem.

To address this difficulty, function approxima-
tion can be used to estimate the value of states
or actions. Deep Q-network (DQN) uses deep
neural networks as a function approximation.
Function approximation using DQN makes learn-
ing more efficient and allows us to reason about
previously unseen actions. However, DQN has
stability issues and its complexity grows linearly
with | A|. This renders DQN intractable when the
number of actions is significant, which is the case
in 3D multi-cell networks. To overcome this, we
propose Wolpertinger-based learning. Wolperting-
er architecture is an effective way of reasoning
when the action space is huge [13]. It generalizes
over action space with a sub-linear complexity.
This method generates actions that may not be
a valid action. It then uses the k-nearest neighbor
clustering to map from a continuous action space
to a discrete set.

CONTINUOUS STATE-ACTION

Discrete spaces are plausible when we choose
beamforming vectors from a discrete set, which
is common in mmWave analog-only beamform-
ing [14]. With digital beamforming, which is com-
mon in sub-6GHz communication, beamforming
vectors take values from a continuous domain.
One approach is to discretize the spaces. This will
however make learning difficult due to noise and
delayed reinforcements. An alternative is learning
from a continuous space. Value-based DRL is not
suitable to model continuous action space (e.g.,
digital beamforming). A policy-based DRL may
be applied alternatively. Unlike value-based meth-
ods, policy-based methods remain stable under
function approximation, but they suffer from
sample inefficiency. An actor-critic algorithm [15]
is a powerful approach that combines the two
methods. In such an algorithm, the policy (actor)
and value (critic) functions are parameterized to
enable the effective use of training data with sta-
ble convergence.

DISTRIBUTED LEARNING

A single agent implies a backhaul connection for
the communication of the DRL agent and the BSs.
While the overhead of this communication may
not be large (it is 2 bits/BS in our example in our
earlier example), distributed learning is preferred
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to avoid the exchange of this information. Multi-
agent DRL can accomplish this.

In multi-agent DRL, multiple agents interact
within a common environment to learn a pol-
icy for each agent such that all agents togeth-
er achieve the desired goal of the system. The
main advantage of multi-agent DRL in a multi-
cell network is that each BS (agent) can learn to
shape the signal of its user independently. If we
consider each BS as an independent learner, the
other agents’ actions would be treated as part of
the environment. Cooperative multi-agent algo-
rithms are the other extreme. In this approach,
the agents learn to share their learning. This will,
however, increase the communication overhead.
We propose using sequential learning of the
agents without observing the actions of other
agents and without complicated communica-
tion. We can order the neighboring cells by the
severity of interference they receive (e.g., based
on the distance of the user to the neighboring
BSs or RSRQ) and train them sequentially, after
training the serving agent. The serving agent
can allocate any beam whereas the neighboring
agents choose the beam that causes the least
interference. Such algorithms also decrease
the complexity from | A|Lto L|A|, where L is
the number of cells and | A| is the number of
actions in each cell.

MOBILITY AND DOPPLER SHIFT

In our case study, the moving speed is assumed
to be low so that we can approximate the UAV
as static in each time slot. However, sometimes,
for instance, if the UAV is delivering a parcel, the
moving speed of the UAV could be high. In such a
case, the high mobility might introduce a Doppler
shift, thus introducing inter-carrier interference.

To address this issue, a solution is to include
the parameters of the mobility in the input of the
deep neural networks, for example, the moving
direction and speed. Therefore, the structure
of the neural networks also needs to be well
designed to weigh the impact of mobility/Dop-
pler shift properly on the inter-carrier interference.
We can also include the moving of the UAV in
the action space so that the DRL algorithm can
tell what the optimal path is to have minimum
interference.

MopeL-BAsED DRL

We have considered model-free reinforcement
learning algorithms so far since it is hard to get
a ground-truth model of the dynamic environ-
ment of multi-cell networks. In model-free DRL,
the algorithm estimates the optimal policy with-
out using or estimating the dynamics (transition
and reward functions) of the environment. On
the other hand, a model-based DRL uses a known
or learned model (e.g., p(s;.71s; a;) probability
of transiting to the next state) when learning to
approximate a global value or policy function.
Although finding or learning a decent model
for the multi-cell interference mitigation task is
demanding, model-based DRL has a big advan-
tage. It has a much higher sample efficiency, and
thus, is far less complex. To train an 18-cell, 3D
network with a policy gradient method may take
several days while model-based DRL may take
less than an hour.

1.0 —— Brute force
—e- DRL — Global CS!
0.8 —-= DRL — Serving CS}
0.6
w
Q
Q
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0 10 20 30 40 50 60 70
i [dB]

FIGURE 5. CCDF of coverage of DRL with serving and global CSI as well brute
force method for  =5.

3GPP STANDARDIZATION ASPECTS

The interplay between DRL and interference man-
agement in UAV-based 3D networks and the stan-
dards work on UAV communication in 3GPP is
an interesting topic of practical relevance. On the
one hand, DRL algorithms for interference man-
agement in UAV-based 3D networks can leverage
the latest standards features developed by 3GPP.
On the other hand, the 3GPP standards work on
UAV communication can evolve toward embrac-
ing DRL for interference management in UAV-
based 3D networks.

Existing 3GPP Work on Interference Man-
agement for LTE- and NR-Connected UAVs: In
Release 15, 3GPP conducted a study item on
enhanced LTE support for aerial vehicles, assess-
ing the performance of utilizing LTE networks to
provide UAV connectivity. The outcome of the
study highlighted that interference issues exist in
both uplink and downlink when providing cellular
connectivity to UAVs, particularly for dense UAV
scenarios. The study identified a set of solutions
for interference detection and interference miti-
gation to address the interference problems. In a
follow-up work item, 3GPP introduced specifica-
tion enhancements to improve the performance
of LTE-connected UAVs. Compared to LTE, 5G
NR has significantly improved capabilities and
can provide efficient UAV connectivity in more
diverse scenarios. To further improve the 5G
networks’ capabilities for UAV communication,
3GPP is conducting a work item in Release 18
to introduce UAV-related enhancements in NR
specifications. In Release 15, the study item on
enhanced LTE support for aerial vehicles identi-
fied that using directional antennas at an aerial
UE can help mitigate the interference problems
in both uplink and downlink. However, it was
considered at that time that the use of directional
antennas at the aerial UE was an implementation
issue. Thus, there was no corresponding specifi-
cation enhancement introduced in LTE. However,
3GPP revisits this topic in the Release-18 NR UAV
work item and studies UE capability signaling to
indicate UAV beamforming capabilities and, if
necessary, radio resource control signaling for
UAV UE with a directional antenna.

Potential Future 3GPP Work on DRL-Based
Interference Management for Connected UAVs:
Though some DRL-based interference man-

The interplay between DRL
and interference man-
agement in UAV-based 3D
networks and the standards
work on UAV communication
in 3GPP is an interesting
topic of practical relevance.
On the one hand, DRL
algorithms for interference
management in UAV-based
3D networks can leverage
the latest standards fea-
tures developed by 3GPP.
On the other hand, the 3GPP
standards work on UAV
communication can evolve
toward embracing DRL for

interference management in
UAV-based 3D netwarks.
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3GPP Release 18 studies arti-

It is worth noticing that

ficial intelligence/machine
learning for the 5G NR air

interface.

agement solutions (e.g., the solution presented
above) may be purely based on proprietary imple-
mentations by exploiting the existing features in
the standards, others may benefit from further
specification enhancements. Along this line of
work in 3GPP, embracing DRL for interference
management in UAV-based 3D networks can be
an interesting evolution direction in 3GPP. It is
worth noticing that 3GPP Release 18 studies arti-
ficial intelligence (Al)/machine learning (ML) for
the 5G NR air interface. The study investigates the
3GPP framework of Al/ML for air interface under
three selected use cases, including CSI feedback,
beam management, and positioning. The selected
use cases represent generic functionalities, and
the corresponding potential enhancements can
be leveraged to improve interference manage-
ment for UAV communication. The current selec-
tion of the three use cases targets formulating a
framework to apply Al/ML for the NR air inter-
face. It is anticipated that 3GPP would investigate
more use cases to apply Al/ML for the air inter-
face. Such future use cases may include specific
features dedicated to interference management
for UAV communication.

CONCLUSIONS

In this article, we have illustrated a concrete
example of the use of DRL for interference mit-
igation without requiring the CSI of interfering
signals and indicated how this solution can be
extended in various other settings. Overall, we
have shown that this framework can be used to
explore important questions surrounding interfer-
ence management in UAV-based 3D networks,
such as making the algorithms scalable and hav-
ing the spectral efficiency grow with the number
of cells. In addition, we have discussed using
3GP-based rewards with no explicit CSI and hav-
ing multi-objective learning by combining those
rewards and path planning to avoid interference
besides SINR maximization.
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