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ABSTRACT
Modern cellular networks are multi-cell and 

use universal frequency reuse to maximize 
spectral efficiency. This results in high inter-cell 
interference. This challenge is growing as cellu-
lar networks become three-dimensional with the 
adoption of unmanned aerial vehicles (UAVs). 
This is because the strength and number of inter-
ference links rapidly increase due to the line-of-
sight channels in UAV communications. Existing 
interference management solutions require each 
transmitter to know the channel information of 
interfering signals, rendering them impractical 
due to excessive signaling overhead. In this arti-
cle, we propose leveraging deep reinforcement 
learning for interference management to tack-
le this shortcoming. In particular, we show that 
interference can still be effectively mitigated even 
without knowing its channel information. We then 
discuss novel approaches to scale the algorithms 
with linear/sublinear complexity and decentralize 
them using multi-agent reinforcement learning. By 
harnessing interference, the proposed solutions 
enable the continued growth of civilian UAVs.

INTRODUCTION
Unmanned aerial vehicles (UAVs), better known 
as drones, have found a wide variety of appli-
cations in the recent years. UAVs are inherently 
mobile and rely on wireless connectivity to sup-
port their operational needs (command and con-
trol communication) and mission-related payload 
data transmission. The deployment of UAVs over 
cellular networks is transforming today’s terrestrial 
mobile networks into three-dimensional (3D) net-
works. 3D networks are fundamentally different 
from classical 2D networks. This is because the 
high altitude of UAVs creates a radio environment 
where UAV-associated channels are line-of-sight 
dominant [1], thus causing strong air-to-ground 
and ground-to-air interference. Meanwhile, the 
mobility of UAVs increases the system’s dynamics 
and brings forth new challenges, such as delay 
and Doppler shifts.

The strong air-ground interference severely 
limits the cellular network capacity and adversely 
affects coexisting aerial and terrestrial nodes. The 
Third Generation Partnership Project (3GPP) lists 
uplink/downlink interference detection and mit-

igation as a major challenge of communications 
for UAVs [2]. Simulations and field trials indicate 
that mobility-related performance (e.g., hando-
ver failure) of aerial users is worse than terrestrial 
users [2] due to high interference. These challeng-
es are further exacerbated by the fact that inter-
ference can make basic tasks, like maintaining a 
connection to the cellular network, more difficult 
for UAVs. Therefore, the wide-scale deployment 
of UAVs will only be possible if interference can 
be properly mitigated or harnessed [3, 4].

Inter-cell interference management in cellu-
lar networks is a long-standing problem and has 
been extensively studied for classical 2D networks. 
Interference alignment [5] and coordinated multi-
point (CoMP) [6] are two prominent examples of 
such efforts. In theory, these techniques are much 
more efficient than time-division multiple access 
(TDMA), but they have some shortcomings that 
prevent them from being used in real-world net-
works. Notably, they require a global knowledge of 
channel  state information (CSI), which is not practi-
cally feasible, and their implementation incurs large 
signaling overhead and needs tight synchronization 
between cooperating nodes, which reduces their 
effectiveness in practice. Given these limitations, 
orthogonalizing the resources (time/frequency/
beam) and treating interference as noise remains 
the most common solution for addressing co-chan-
nel interference in practice.

Such an approach (treating interference as 
noise) results in poor transmission rates unless the 
interference power is very small, which is not the 
case in today’s networks. This approach will cause 
poorer performance in 3D networks as co-chan-
nel interference is much stronger and much more 
prevalent in 3D cellular networks. As an example, 
while the average number of neighbors for a user 
at a height of 1.5 m is 5, this number increases to 
17 at the height of 120 m [1], as depicted in Fig. 1.

To tackle this growing issue, this article advo-
cates the use of deep reinforcement learning 
(DRL)-based interference mitigation as an alterna-
tive solution. DRL is a great tool to approach this 
problem for several reasons: it is inherently useful 
for decision-making in complex and dynamic envi-
ronments like a multi-cell network; it can outper-
form traditional approaches when (near)-optimal 
solution is elusive; and it can learn from traditional 
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approaches (e.g., CoMP and interference align-
ment) while potentially performing better than 
them with less stringent CSI requirements.

Despite its significant potential, DRL-based 
co-channel interference management in cellular 
networks has only been explored in limited cases. 
This motivates us to summarize the main challeng-
es and potential solutions for developing novel 
DRL-based interference management techniques 
in this article to inspire future research in this fi eld. 
We particularly emphasize practical assumptions 
in terms of the availability of CSI and the scale of 
the network in our solutions. An ultimate goal is to 
develop solutions that are independent of the CSI 
of interfering signals and compatible with 3GPP 
signal/interference power estimation methods, par-
ticularly those measured in Long-Term Evolution 
(LTE) and New Radio (NR) networks [7].

We discuss solutions to mitigate interfer-
ence in 3D cellular networks in generic settings 
in terms of the number of cells, the number of 
antennas, and the frequency of operation (sub-
6 GHz and millimeter wave (mmWave) bands). 
We also argue that the solutions can be scalable 
with sub-linear complexity by developing novel 
multi-agent learning and actor-critic architectures. 
Further, numerical results are provided to evaluate 
and validate the eff ectiveness of DRL-based inter-
ference management without requiring the CSI 
of the interfering links. We also discuss the 3GPP 
standardization aspects of embracing DRL for 
interference management in UAV-based 3D net-
works. Finally, we highlight several future research 
directions and conclude the article.

3D NETWORKS: A PRIMER

UAV NETWORKS: COMMON USE CASES

In general, there are two ways that UAVs can be 
exploited in cellular networks: aerial users and 
aerial infrastructures. 

User: As shown in Fig. 2a, one common use 
case of UAVs is to deliver parcels. In this case, 
UAV is a user equipment (UE). To guarantee the 
safe operation of UAVs, cellular networks with 
wide coverage can control the trajectory of these 
UAVs. The UAVs could also be equipped with 
various sensors to execute sensing tasks due to 
their on-demand deployment and larger service 
coverage compared with the conventional fixed 
sensor nodes. As the altitudes of UAVs are typ-
ically much higher than the base station (BS)’s 
antenna height, they are identifi ed as a new type 
of user that requires 3D coverage, as opposed to 
the conventional 2D ground coverage. 

Infrastructure: UAVs can also be used as new 
types of aerial infrastructures, including BSs and 
relays, to cover hard-to-reach areas, as illustrated in 
Fig. 2b. For example, in hotspots or disaster areas 
where the terrestrial infrastructure is destroyed or 
users are underserved, UAVs can serve as tempo-
rary access points for emergency communication 
or data off load to further improve the performance 
of terrestrial wireless communications.

CHANNEL MODEL AND PROPAGATION ENVIRONMENT

Depending on the transmission modes, the chan-
nel model of a UAV can be categorized into two 
types: air-to-ground and air-to-air channels. Since 
the communications between UAVs typically occur 

in clear airspace, the air-to-air channel can be 
characterized by the free-space path loss model. 
The air-to-ground channels signifi cantly diff er from 
those used in terrestrial communications. Their 
characteristics highly depend on the altitudes and 
elevation angles of the UAVs, and any movement 
caused by the UAVs will impact the channel. Since 
an air-to-ground channel can also be occasionally 
blocked by obstacles such as terrain, buildings, or 
the airframe itself, a larger elevation angle leads to 
a lower path loss as the line-of-sight components 
will be more likely to dominate. To model these 
characteristics, statistical path loss models have 
been widely used for the air-to-ground channels, 
where line-of-sight and non-line-of-sight compo-
nents are considered to occur with diff erent prob-
abilities [8]. It should be noted that the reciprocity 
of air-to-ground channels still holds although the 
ground BS will optimize its tilt angle to maximize 
the performance of ground users. This is because 
the change of tilt angle only infl uences the antenna 
gains in an angle span. 

INTER-CELL INTERFERENCE IN UAV NETWORKS 

Several techniques have been proposed in the lit-
erature to alleviate inter-cell interference in UAV-
based networks. These include:

Time/Frequency Orthogonalization: The 
time/frequency resource is divided into resource 
blocks and each resource block is assigned to 
a UAV within a cell at the same time. Although 
UAVs associated with diff erent BSs can share the 
same resource block, the reuse factor needs care-
ful optimization to further reduce the interference 

FIGURE 1. An aerial BS interferes with a much higher number of cells than a 
ground BS. Here, Sg is the area interfered with a ground BS and Su is the 
area interfered with a UAV BS.

Data links between the UAV and its BSs

Interference to/from other co-channel BSs
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FIGURE 2. Common use cases for UAVs: aerial users and infrastructures.
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as inter-cell interference is more significant in 
UAV networks.

Beam Orthogonalization: Spatial techniques 
are used in this case. Specifi cally, UAVs equipped 
with multiple antennas can generate directional 
beams toward the target receiver and alleviate the 
interference to neighboring cells by suppressing 
the side lobes. Even with a single antenna, a UAV 
swarm can also form a virtual multiple-input multi-
ple-output (MIMO) for beamforming [9]. 

Path Design: Due to the mobility of UAVs, 
the paths of UAVs can be designed to make the 
distance between the UAVs sharing the same 
spectrum as larger as possible to reduce mutual 
interference [4]. 

Cooperation Techniques: Neighboring BSs 
can cooperate to decode the signals transmitted 
from UAVs. For example, each BS will decode the 
signals from its associated UAVs and exchange 
the decoded results with neighboring BSs, which 
is the inter-cell interference to be canceled [10]. 

Existing inter-cell interference management 
methods require accurate CSI for both desired and 
interfering links, which is expensive to obtain in 
practice. This issue motivates exploring new tools 
for treating the multi-cell interference problem.

DRL FOR INTERFERENCE MANAGEMENT: 

WHY AND HOW?

WHY DEEP REINFORCEMENT LEARNING?

Reinforcement learning is the science of deci-
sion-making [11]. In reinforcement learning an 
agent learns to interact with an environment by 
taking a sequence of actions to maximize cumu-
lative reward. The ultimate goal is to maximize 
the utility which is an estimation of the long-term 
reward that the agent is expected to receive. For 
this, we will need to learn a policy function  that 
maps states to actions. The value of a state s is 
quantifi ed by V(s), which is the utility we expect 
to get if we are at state s and play optimally. A 
related more frequently seen quantity is the 
state-action value Q(s, a), which is the expect-
ed utility starting at state s, taking action a, and 
playing optimally thereafter. Then, we learn Q-val-
ues and extract actions from them. In Q-learn-

ing, Q-values are iteratively computed according 
to the Bellman equation [11]. When state-action 
space is large, deep Q-learning is preferred to tab-
ular Q-learning because it can reduce the com-
putational complexity by avoiding an exhaustive 
search in the action space [11]. In DRL, deep neu-
ral networks are used to approximate the value, 
the policy, or both. DRL increases the learning 
capacity of reinforcement learning and enlarges 
its scope by removing the need for expert feature 
engineering to train the algorithm.

DRL has great potential for solving problems 
whose optimal solution is unknown or requires 
poor approximation. Cellular interference man-
agement is a notable example of such prob-
lems. Conventional interference management 
solutions such as interference alignment, CoMP, 
signal-to-interference-plus-noise ratio (SINR) max-
imization are sub-optimal and highly depend on 
the accuracy/availability of the interference CSI. 
By properly defining the agent, environment, 
state, action, and reward, not only can DRL learn 
how to implement traditional interference man-
agement algorithms, but it can also surpass them. 
As we will see in this article, using DRL:
• Multiple traditional algorithms can be com-

bined in one learning model via multi-objec-
tive learning.

• The learning process can be completed 
online and without a stringent need on CSI 
of interference.

• Learning is inherently robust to the dynam-
ic environment of 3D multi-cell networks, 
for example, it works if a line-of-sight chan-
nel becomes non-line-of-sight or vice versa, 
whereas interference alignment would fail.
Through interaction with the environment 

(multi-cell network), the agent learns how to 
make better decisions to maximize a cumu-
lative reward via taking a sequence of actions. 
The interference management is handled by an 
agent, which can be either centralized or distrib-
uted based on the specifi c DRL algorithm being 
used. In a centralized DRL, the agent would be a 
central node such as a BS controller (BSC) in 2G, 
the radio network controller (RNC) in 3G, or a 
central radio resource management controller in 
4G/5G. Alternatively, the agent could also be one 
of the BSs itself. If UAVs serve as BSs, the agent 
may be referred to as the UAV controller. This 
controller can either be one of the UAVs or a sep-
arate entity that communicates with the UAVs to 
issue actions. As the agent learns to maximize its 
explicit objective (i.e., the cumulative reward), it 
can maximize other implicit optimizations as well, 
such as network sum-rate or spectral efficiency. 
This power of DRL makes it very competitive for 
interference management. In a distributed DRL, 
the BSs together make the agent.

DRL can be leveraged to develop novel inter-
ference mitigation algorithms and improve spec-
tral efficiency with real-world assumptions and 
constraints, in terms of the availability of CSI, 
range of signal-to-noise ratio (SNR), network 
scale, and stochastic nature of the environment. 
There are two important questions that we seek 
to answer here: 
• How can we mitigate the interference with 

local or no CSI?
• How to make the algorithms work with the 

FIGURE 3. Agent-environment interaction in reinforcement learning based multi-cell network. The agent is a BS con-
troller and depending on the UAVs’ use case it may control aerial BSs (UAVs) or ground BSs.
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large network scale and high-dimensional 
state and action spaces?
These questions can be explored in various 

settings in terms of the operating frequency band 
(sub-6 GHz/mmWave), propagation environment 
(line-of-sight, non-line-of-sight, and mixed), the 
level to which CSI is available, number of anten-
nas at each node, and network scale. Network 
design and training will be different in each case. 
For example, mmWave/Terahertz MIMO systems 
rely on predefined coodbooks whereas sub-6 
GHz systems use digital beamforming. The for-
mer implies a discrete domain whereas the latter 
is continuous. DRL algorithms for the two cases 
have to be designed differently.

AN ILLUSTRATIVE EXAMPLE

Consider a downlink cellular network where L 
users simultaneously communicate over a wireless 
channel in L cells. Let each BS have M antennas 
and serve single-antenna users. To make the exam-
ple less involved, let us assume mmWave transmis-
sion where analog-only beamforming is common. 
Then, we will have a discrete set for beamforming 
vectors wℓ. Let W be the beamforming codebook 
adopted by the BSs. Further, let Pℓ represent the 
transmit power of BS ℓ, and assume that the set of 
BS powers, denoted by P, is discrete.

The goal is to find Pℓ  P and wℓ  W so that 
the network sum-rate, which is a common mea-
sure of spectral efficiency in cellular networks, is 
maximized. The network sum-rate is defined as 
SL

ℓ=1log2(1 + gℓ) where gℓ is the SINR at the UE 
located at cell ℓ. The SINR evaluation requires 
the CSI for both the desired  and interference sig-
nals. Hence, at each BS we need to know global 
CSI, that is, hℓ,j for all ℓ and j. This is not, however, 
practical since CSI overhead will consume a big 
portion of the bandwidth particularly when L is 
large. In addition, the above optimization prob-
lem is nonconvex and is hard to solve, and the 
exhaustive search and other traditional optimiza-
tion methods need global CSI knowledge.

Next, we develop an alternative solution based 
on DRL. The proposed method can work based 
on limited knowledge of CSI (e.g., with only the 
serving cell channel hℓ,ℓ, local CSI, or even no 
explicit CSI) which is a big advantage compared 
to the global CSI. As shown in Fig. 3, the envi-
ronment is a multi-cell network; the agent is a 
BS controller which implements an interference 
management algorithm (e.g., CoMP, SINR max-
imization, or others), and the reward could vary 
depending on the availability of the CSI but is 
supposed to help increase the network sum-rate. 
To describe the potentials and challenges let us 
define the state, action, and reward:
• The state st  S is a representation of the 

environment that describes the current sit-
uation. It is what an agent observes at time 
t. Let st be the collection of UAVs’ coordi-
nates, BSs’ powers and beamforming vec-
tors. Even if we assume all the five elements 
xℓ, yℓ, zℓ, Pℓ and wℓ are discrete and each 
can take only 10 distinct values,  the num-
ber of states will be |S| = 105L, which is 
extremely high.

• The action at  A is the move taken by the 
agent within the environment at time step 
t. The action at will advance the state st to 

st+1. In this example, actions are to change 
the power and beamforming vector of each 
BS.  Let action at be a binary vector  
at = [a1, …, aℓ, …, a2L] where each element 
being either “0” or “1.” More specifically, for 
any ℓ  {1, … , L}, we have

• — aℓ = 0: decrease the transmit power of BS 
ℓ by 1dB,

• — aℓ = 1: increase the transmit power of BS ℓ 
by 1dB

• — aL+ℓ = 0: step down the beamforming 
index of BS ℓ

• — aL+ℓ = 1: step up the beamforming index of 
BS ℓ.

• The cardinality of actions is |A| = 22L. Clear-
ly, by taking action at, the agent is changing 
the beamforming vectors and transmit pow-
ers for the serving and interfering BSs. Thus, 
this is a collaborative interference manage-
ment scheme via coordinated power and 
beamforming design. 

•  The reward is a mechanism telling the agent 
the consequence of its actions. The agent’s 
goal is to take actions that maximize an estima-
tion of the long-term reward it is expected to 
receive (simply, the total cumulative reward). 
Defining the reward function is a crucial step in 

determining the type of CSI (global, local, or no CSI) 
needed. Since our goal is to maximize the sum-rate 
of the multi-cell network, the reward would ideally 
be based on the sum-rate. With this, the agent must 
evaluate the SINR received by the UEs at all cells, 
which requires global knowledge of CSI. At each 
time step, if gℓ > gmin for all users, then the reward 
would be SL

ℓ=1gℓ; otherwise, we give a penalty to 
ensure the quality of service for all users.

We propose using rewards that can mitigate 
inter-cell interference without requiring the CSI 
of the interference links. One example of such 
rewards is to use SNR instead of SINR in reward 
calculations which requires serving CSI only. Even 
with this simplified method, the DRL algorithm 
can effectively infer the severity of interference 
from the users’ coordinates and BSs’ power to 
adapt its actions based on it. For instance, it can 
deduce that a user located at the cell edge will 
cause more interference than the one located 
at the cell center. Below, we provide additional 
examples of rewards that do not require CSI of 
interference links.

Next, we show the effectiveness of the pro-
posed method via simulations. Spectral efficiency 
and overall network coverage are the performance 
metrics we use for the evaluation. The former is 
measured by the achievable sum-rate whereas the 
latter is evaluated by the complementary cumula-
tive distribution function (CCDF) of the SINR. The 
results are plotted in Figs. 4 and 5, where DRL-
based solutions are compared with maximum ratio 
transmission (MRT) beamformer [12] and brute 
force search. The proposed DRL algorithm learns 
to mitigate interference with serving CSI almost 
as effectively as that with global CSI. The brute 
force method also uses global CSI knowledge to 
find the best beam and power at each BS. MRT is 
oblivious to interference since it replaces the L-cell 
interference problem with L single-cell problems. 
As a result, its spectral efficiency does not scale 
with L. In this experiment, users are uniformly dis-
tributed within the cells, and the probability of LoS 

Defining the reward function 
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for the channels is 0.8. We set gmin = – 3dB. Any 
channels that do not meet this threshold will not 
be scheduled and will be dropped. To be fair, the 
same channels that fail to meet this threshold are 
also excluded from MRT calculations. However, 
when L increases, there is a reduction in MRT gain 
due to the possibility of some good channels being 
dropped because of high interference. If users are 
pushed toward the cell edge, interference will be 
higher and sum-rates will reduce for all methods 
except for MRT, as it avoids interference using 
time division multiplexing.

OTHER TYPES OF REWARDS

The above example illustrates the basic idea of 
DRL-based interference mitigation which does not 
require the CSI of the interference links and relies 
on serving CSI only. One can use more competi-
tive rewards such as the following:

No-CSI Reward: In this case, SINR will be mea-
sured using local power measurements without 
explicitly requiring CSI. To do this, when the serv-
ing BS is not transmitting, at each cell the UE will 
receive and measure interference plus noise (I + 
N) level. Next, when serving BS is transmitting, 
the UE can measure signal plus interference plus 
noise (S + I + N). Subtracting these two measure-
ments, the UE can fi nd signal power (S) and eval-
uate SINR = S/(I + N).

3GPP Compatible Rewards: A 3GPP com-
patible reward may use signal power and inter-
ference estimation measurements like received 
signal strength indicator (RSSI) and reference sig-
nal received quality (RSRQ) [7]. These are key 
signal-level measures of LTE/NR networks. This 
way, similar to the no CSI case disused earlier, we 
do not need to know any CSI explicitly.

Compound Rewards: Besides the above signal 
level and quality measures which are common 
in LTE/NR networks, SINR is also measured in 
NR networks [7]. RSRQ and SINR measures are 
related to the interference and can be used along 
with RSSI to defi ne compound rewards which are 
based on multiple measurements rather than a 
single one. 

Multi-Objective Rewards: Here, the agent 
can have multiple objectives each with its own 
rewards. For example, we may consider interfer-
ence mitigation and UAV trajectory planning as 
two objectives.

OPEN CHALLENGES

The DRL-based algorithm above works for dis-
crete state/action space where the number of 
beamforming vectors is limited and the goal is to 
show the potential of DRL with local CSI. In this 
section, we point out some fruitful avenues for 
extending and generalizing the above example.

SCALABILITY

The state and action spaces could be discrete or 
continuous. Even in the discrete case, the state 
space is typically very large and exponentially 
increases with the number of cells. In a tabular 
Q-learning, the state-action function Q(s, a) is 
represented by a table of size |S||A|. In our 
example in the previous section, we had |S| = 
105L and |A| = 22L which result in 1090 possi-
ble states and 236 possible actions for L = 18. 
Then, even for this simplifi ed example, the tabular 
Q-learning is impractical for our desired problem. 

To address this diffi  culty, function approxima-
tion can be used to estimate the value of states 
or actions. Deep Q-network (DQN) uses deep 
neural networks as a function approximation. 
Function approximation using DQN makes learn-
ing more effi  cient and allows us to reason about 
previously unseen actions. However, DQN has 
stability issues and its complexity grows linearly
with |A|. This renders DQN intractable when the 
number of actions is signifi cant, which is the case 
in 3D multi-cell networks. To overcome this, we 
propose Wolpertinger-based learning. Wolperting-
er architecture is an effective way of reasoning 
when the action space is huge [13]. It generalizes 
over action space with a sub-linear complexity. 
This method generates actions that may not be 
a valid action. It then uses the k-nearest neighbor 
clustering to map from a continuous action space 
to a discrete set.

CONTINUOUS STATE-ACTION

Discrete spaces are plausible when we choose 
beamforming vectors from a discrete set, which 
is common in mmWave analog-only beamform-
ing [14]. With digital beamforming, which is com-
mon in sub-6GHz communication, beamforming 
vectors take values from a continuous domain. 
One approach is to discretize the spaces. This will 
however make learning diffi  cult due to noise and 
delayed reinforcements. An alternative is learning 
from a continuous space. Value-based DRL is not 
suitable to model continuous action space (e.g., 
digital beamforming). A policy-based DRL may 
be applied alternatively. Unlike value-based meth-
ods, policy-based methods remain stable under 
function approximation, but they suffer from 
sample ineffi  ciency. An actor-critic algorithm [15] 
is a powerful approach that combines the two 
methods. In such an algorithm, the policy (actor) 
and value (critic) functions are parameterized to 
enable the eff ective use of training data with sta-
ble convergence.

DISTRIBUTED LEARNING 

A single agent implies a backhaul connection for 
the communication of the DRL agent and the BSs. 
While the overhead of this communication may 
not be large (it is 2 bits/BS in our example in our 
earlier example), distributed learning is preferred 

FIGURE 4. Network sum-rate using DRL-based approach with serving and 

global CSI, MRT beamforming, and brute force search with global CSI for 
the diff erent number of cells.
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to avoid the exchange of this information. Multi-
agent DRL can accomplish this.

In multi-agent DRL, multiple agents interact 
within a common environment to learn a pol-
icy for each agent such that all agents togeth-
er achieve the desired goal of the system. The 
main advantage of multi-agent DRL in a multi-
cell network is that each BS (agent) can learn to 
shape the signal of its user independently. If we 
consider each BS as an independent learner, the 
other agents’ actions would be treated as part of 
the environment. Cooperative multi-agent algo-
rithms are the other extreme. In this approach, 
the agents learn to share their learning. This will, 
however, increase the communication overhead. 
We propose using sequential learning of the 
agents without observing the actions of other 
agents and without complicated communica-
tion. We can order the neighboring cells by the 
severity of interference they receive (e.g., based 
on the distance of the user to the neighboring 
BSs or RSRQ) and train them sequentially, after 
training the serving agent. The serving agent 
can allocate any beam whereas the neighboring 
agents choose the beam that causes the least 
interference. Such algorithms also decrease 
the complexity from |A|L to L|A|, where L is 
the number of cells and |A| is the number of 
actions in each cell.

MOBILITY AND DOPPLER SHIFT

In our case study, the moving speed is assumed 
to be low so that we can approximate the UAV 
as static in each time slot. However, sometimes, 
for instance, if the UAV is delivering a parcel, the 
moving speed of the UAV could be high. In such a 
case, the high mobility might introduce a Doppler 
shift, thus introducing inter-carrier interference. 

To address this issue, a solution is to include 
the parameters of the mobility in the input of the 
deep neural networks, for example, the moving 
direction and speed. Therefore, the structure 
of the neural networks also needs to be well 
designed to weigh the impact of mobility/Dop-
pler shift properly on the inter-carrier interference. 
We can also include the moving of the UAV in 
the action space so that the DRL algorithm can 
tell what the optimal path is to have minimum 
interference. 

MODEL-BASED DRL

We have considered model-free reinforcement 
learning algorithms so far since it is hard to get 
a ground-truth model of the dynamic environ-
ment of multi-cell networks. In model-free DRL, 
the algorithm estimates the optimal policy with-
out using or estimating the dynamics (transition 
and reward functions) of the environment. On 
the other hand, a model-based DRL uses a known 
or learned model (e.g., p(st+1|st, at) probability 
of transiting to the next state) when learning to 
approximate a global value or policy function. 
Although finding or learning a decent model 
for the multi-cell interference mitigation task is 
demanding, model-based DRL has a big advan-
tage. It has a much higher sample effi  ciency, and 
thus, is far less complex. To train an 18-cell, 3D 
network with a policy gradient method may take 
several days while model-based DRL may take 
less than an hour.

3GPP STANDARDIZATION ASPECTS

The interplay between DRL and interference man-
agement in UAV-based 3D networks and the stan-
dards work on UAV communication in 3GPP is 
an interesting topic of practical relevance. On the 
one hand, DRL algorithms for interference man-
agement in UAV-based 3D networks can leverage 
the latest standards features developed by 3GPP. 
On the other hand, the 3GPP standards work on 
UAV communication can evolve toward embrac-
ing DRL for interference management in UAV-
based 3D networks.

Existing 3GPP Work on Interference Man-
agement for LTE- and NR-Connected UAVs: In 
Release 15, 3GPP conducted a study item on 
enhanced LTE support for aerial vehicles, assess-
ing the performance of utilizing LTE networks to 
provide UAV connectivity. The outcome of the 
study highlighted that interference issues exist in 
both uplink and downlink when providing cellular 
connectivity to UAVs, particularly for dense UAV 
scenarios. The study identified a set of solutions 
for interference detection and interference miti-
gation to address the interference problems. In a 
follow-up work item, 3GPP introduced specifi ca-
tion enhancements to improve the performance 
of LTE-connected UAVs. Compared to LTE, 5G 
NR has significantly improved capabilities and 
can provide efficient UAV connectivity in more 
diverse scenarios. To further improve the 5G 
networks’ capabilities for UAV communication, 
3GPP is conducting a work item in Release 18 
to introduce UAV-related enhancements in NR 
specifications. In Release 15, the study item on 
enhanced LTE support for aerial vehicles identi-
fied that using directional antennas at an aerial 
UE can help mitigate the interference problems 
in both uplink and downlink. However, it was 
considered at that time that the use of directional 
antennas at the aerial UE was an implementation 
issue. Thus, there was no corresponding specifi-
cation enhancement introduced in LTE. However, 
3GPP revisits this topic in the Release-18 NR UAV 
work item and studies UE capability signaling to 
indicate UAV beamforming capabilities and, if 
necessary, radio resource control signaling for 
UAV UE with a directional antenna.

Potential Future 3GPP Work on DRL-Based 
Interference Management for Connected UAVs: 
Though some DRL-based interference man-

FIGURE 5. CCDF of coverage of DRL with serving and global CSI as well brute 
force method for L = 5. 
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It is worth noticing that 

3GPP Release 18 studies arti-
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learning for the 5G NR air 

interface. 

agement solutions (e.g., the solution presented 
above) may be purely based on proprietary imple-
mentations by exploiting the existing features in 
the standards, others may benefit from further 
specification enhancements. Along this line of 
work in 3GPP, embracing DRL for interference 
management in UAV-based 3D networks can be 
an interesting evolution direction in 3GPP. It is 
worth noticing that 3GPP Release 18 studies arti-
ficial intelligence (AI)/machine learning (ML) for 
the 5G NR air interface. The study investigates the 
3GPP framework of AI/ML for air interface under 
three selected use cases, including CSI feedback, 
beam management, and positioning. The selected 
use cases represent generic functionalities, and 
the corresponding potential enhancements can 
be leveraged to improve interference manage-
ment for UAV communication. The current selec-
tion of the three use cases targets formulating a 
framework to apply AI/ML for the NR air inter-
face. It is anticipated that 3GPP would investigate 
more use cases to apply AI/ML for the air inter-
face. Such future use cases may include specific 
features dedicated to interference management 
for UAV communication.

CONCLUSIONS

In this article, we have illustrated a concrete 
example of the use of DRL for interference mit-
igation without requiring the CSI of interfering 
signals and indicated how this solution can be 
extended in various other settings. Overall, we 
have shown that this framework can be used to 
explore important questions surrounding interfer-
ence management in UAV-based 3D networks, 
such as making the algorithms scalable and hav-
ing the spectral efficiency grow with the number 
of cells. In addition, we have discussed using 
3GP-based rewards with no explicit CSI and hav-
ing multi-objective learning by combining those 
rewards and path planning to avoid interference 
besides SINR maximization. 
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