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Abstract: Gaussian process (GP) models are commonly used in the analysis of computer
experiments. Variable selection in GP models is of significant scientific interest but existing
solutions remain unsatisfactory. For each variable in a GP model, there are two poten-
tial effects with different implications: one is on the mean function, and the other is on
the covariance function. However, most of the existing research on variable selection for
GP models has focused only on one of the effects. To tackle this problem, we propose an
indicator-based Bayesian variable selection procedure to take into account the effects from
both the mean and covariance functions. A variable is defined to be inactive if both effects
are not significant, and an indicator is used to represent the variable being active or not.
For active variables, the proposed method adopts different prior assumptions to capture the
two effects. The performance of the proposed method is evaluated by both simulations and
real applications in computer experiments.
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1. Introduction

Physical experiments are often expensive, time-consuming, and dangerous to perform, es-
pecially for the study of complex systems. An effective and more efficient alternative is
computer experiment, which refers to the study of real systems using complex mathematical
models. However, computer experiments typically require a great deal of computing time
to produce simulation results, especially for complex problems. Therefore, it is desirable to
build a statistical model as an emulator for the actual computer experiments for prediction,
optimization, and calibration. The construction of emulators for the study of computer



experiments has received great attention in the past decades (Sacks et al., 1989; Santner
et al., 2003). Gaussian process (GP) models, also called kriging models, are widely used to
construct the emulators due to their flexibility in capturing the underlying nonlinearity and
quantifying the prediction uncertainty. Their interpolation property is also suitable for the
study of deterministic computer simulations. Examples of different modifications and appli-
cations of GP can be found in Joseph (2006), Gramacy and Lee (2008), Levy and Steinberg
(2010), Reich et al. (2009), Plumlee and Joseph (2018), Chen et al. (2018), etc.

An important issue in GP modeling is to identify variables with significant impacts on
the simulation responses. For complex systems, there are usually a large number of vari-
ables involved in computer experiments. These variables can have very different impacts
on the responses. Correct identification of significant variables not only provides scientific
insights into the underlying systems but also improves the prediction accuracy of the emu-
lator (Joseph et al., 2008). Therefore, the focus of this research is to achieve simultaneous
estimation and variable selection for GP models.

In general, a GP model contains two parts: a mean function y(x) and a Gaussian process
Z(x). The input variables x will affect both the mean function and the Gaussian process.
The mean function captures the global trend through the unknown coefficients, and the
Gaussian process captures the local structure through the correlation parameters. For each
variable in a GP model, there are potential effects on the two parts of the GP models with
different implications. Thus it is crucial to identify the important variables by simultaneously
considering both of the possible effects. It is worth noting that the ordinary kriging is a
popular GP model with a grand mean. It generally works well, but it is known that failing
to account for important variables in the mean function can cause poor performance in
prediction (Joseph et al., 2008). Furthermore, including unimportant variables in the mean
function can also deteriorate the prediction performance.

Most of the existing works on variable selections for GP models often focus only on
one of the effects. For example, Welch et al. (1992) introduces variable screening methods
to identify important correlation parameters sequentially. The idea of sequential variable
selection in the correlation function was also used for the high-dimensional Gaussian process
(Chen et al., 2012). Linkletter et al. (2006) propose a Bayesian procedure for the selection
of significant correlation parameters. These methods allow the variables to have different
impacts on the smoothness of the underlying system but overlook the potential impacts on
the global trend. On the other hand, Joseph et al. (2008), Hung (2011) and Huang et al.
(2020) propose modifications of GP models to perform variable selection only through the
mean function coefficients in GP models. When the sample size is huge, Zhao et al. (2018)
proposed subsample aggregating (subagging) approach to deal with the variable selection in
the mean function of GP models.

To conduct variable selection for GP models based on both effects, this work proposes
a unified Bayesian variable selection procedure, which is different from the conventional
variable selection methods in GP modeling where selections are performed in either the
mean or the correlation function. Note that when a variable is called active, it may not be
necessary to affect in both the mean function and the correlation function. For example,
in our real data case study shown in Section 6, we have found the variable “zone-to-zone
transition” has a significant effect on the mean function but not on the part of the Gaussian
process. Thus for each variable, an indicator is defined to represent the variable being active
or not. That is, the proposed method simultaneously considers the potential impacts on
the mean and correlation function from each variable. For active variables, their impacts



are further distinguished by two Bayesian priors. A variable is inactive only if both effects
are not significant. Furthermore, an active variable can be active due to the contributions
to the mean, the correlation function, or both. The major motivation is to enhance the
interpretability of GP model by disentangling the two impacts from each variable, one on
mean and the other on the correlation function, under a hierarchical Bayesian structure.
Finally, the proposed method can be modified as a two-indicator approach for detecting the
activities of the effects in the mean function and the correlation parameter separately.

The remaining of this paper is organized as follows. Section 2 briefly reviews the Gaussian
process model. Section 3 details the proposed method. Simulation studies are conducted to
examine the proposed method in Sections 4 and 5. Section 6 contains an illustration using
real data. In Section 7, the proposed method is extended to a two-indicator approach for the
mean function and the correlation parameter separately. We conclude this work with some
discussion in Section 8.

2. Gaussian Process Model

This section gives a brief review on the Gaussian process model. Denote x = (21, ...,z,) as
a p-dimensional input and y(x) € R as the response. Suppose the observed data is denoted
by {(x;,9i),i =1,...,n}. A Gaussian process model can be written as

y(x) = p(x) + Z(x), (2.1)

where p(x) is a mean function and Z(x) is a Gaussian process with zero mean and covariance
function ¢(x). Here u(x) is expressed as

px) =Y By = £(x) "8,

where f(x) = (21,...,2,)" and B8 = (81, ..., 3,) " is a vector of unknown coefficients. There
are various choices of covariance functions (Rasmussen, 2003) such as the Matern function
and the powered exponential function. The powered exponential function is expressed as

$(Z(x:), 2(x;)) = o* exp(= Y _ Ol — wa]"),

k=1

where 0y, is the correlation parameter, 8 = (0y,...6,)", o2 is the variance, and 0< x < 2
controls the underlying smoothness.
The unknown parameters, 3,0, and o2, can be estimated by the maximum likelihood
approach with
(y —Fp)' o ' (y — Fp)

B=(Fo'F)y'Foly, &%= - : (2.2)

and

6 = arg min_ {nlog(5*) + log(|®])},

6,>0,Vi



where F = [f(x1), £(<2). .- Fxa)] "+ ¥ = (41,30, ) with g = y(x;), and @ is an nxm
correlation matrix with elements ¢(Z(x;), Z(x;)). Plugging in the estimators, prediction at
x can be obtained by

§(x) = £(x) B+ (@) @ (y — £(x)" B). (2.3)
where ¥ = ($(Z(x1), Z(x)), .., o(Z(xn), Z(x))) .

Based on (2.1), it is clear that each variable has two potential impacts, one is the linear
effects through the mean function 3, and the other is the effects on smoothness through
correlation parameters 6. Therefore, in performing variable selection, it is important to
clearly identify their effects.

3. Indicator-based Bayesian Variable Selection

In this section, we develop an indicator-based Bayesian variable selection for Gaussian process
models. The idea is to introduce a latent indicator for each input variable in the Gaussian
process model to represent whether the variable is active or not. For active variables, different
priors are assumed for the mean function coefficients and correlation parameters. Moreover,
to enhance the computational efficiency, we adopt some techniques from the empirical Bayes
(Yuan and Lin, 2005) to obtain a meaningful approximation of the corresponding posterior
density by setting proper priors of the indicators and the unknown parameters.

3.1 Priors and Posteriors

Denote 7, as the latent indicator for the kth variable, with one indicating active and zero
otherwise. The kth variable is inactive if f; = 0 and 6, = 0. The prior distributions of S
and 6, are specified as mixture distributions dependent on ;. Using this hierarchical Bayes
formulation, v, Br and 6, are well associated with each other. Then a numerical algorithm
can be used to generate the samples of 7., and these samples can be used to infer which
variables are active.

Let us start from setting priors for the indicators. For notation convenience, denote
B~ 0~ as the corresponding quantities 3, 6 under «. Let v = (715 -, Yp)" to be the vector of
indicator parameters. For the prior of 7, because of two status of each 7., we consider the
commonly used Bernoulli prior, Bern(q), where ¢ is the probability of v, = 1. By assuming
the independence among ~;’s, the prior of v = (71, ...,7,) can be written as

P(y) o< ¢V(1 = g7,

where |y| = >"7_, 7 and ¢ is the prior probability of v, = 1.

Now we specify the priors for 3 and 0. Straightforwardly, we set 8 = 0 if 7, = 0. When
~vx = 1, the double exponential distribution is chosen as the prior distribution for ;. Thus,
the prior of f§y is

T(Brlve) = (L = 7)0(0) + D E(0, 71),

where DE(0,7;) is the double exponential distribution and it has a density function as
(1/2)711, exp(—7x|Bk|) with the positive parameter, 7. Note that the double-exponential (DE)



prior can be accommodated for large coefficients because of its heavier tail property (Casella
and Park, 2008). For 6, we set it as

(O, k) = (1 = 72)0(0) + v Erp(Ap),

where Fxp(\g) is an exponential distribution with density function, A, exp(—Ai0;) and Ay
is the positive hyper-parameter. In addition, we assume the independence among the priors
of B and ;. To simplify the technique presentation, we assume that the hyper-parameters
7 = 7 and A\, = X\ for all k. Finally, we set the prior for ¢ to be an inverse y-squared
distribution Inv — x%(1), i.e., 02 = (¢2)7%/2 L exp(—1/(20?)). Based on above formulation,
we can write the posterior density, P(3,8,~,c%|y) as

P(8,6,v.0%y)

(v — F’)/ﬁ'y)Tq)_l(e)(y - F'yﬁ'y>])

1
ocexp(—é[nloga2+log]®(0)\ + >

x [T15 exp(=r18DI™ x [T A exp(-Al6i/)]™
k=1 k=1
x gL = " < (6)7 exp(~1/(207)
(y = FyB~) @7 1(0)(y — FyBy) + T0? D okery 1Bl £ A% 30y Qk])

E*@

1
x exp(—é[log |D(0)] +

g

% (02)*(n+uo)/271 eXp(—l/(202)) % (1 z qT)\)W"

Clearly, the posterior density here has a complicated expression. To facilitate the compu-
tation, we borrow strength from empirical Bayes to obtain a good approximation of the
posterior density.

3.2 Posterior Approximation
Denote p; = 702, py = Ao?, and w = 1;1(]7')\. The posterior distribution can be represented
as
1
P(ﬁ, 97 V‘y) (8 eXp(_iLP(Bv 07 ’7))(“0'7‘7

where L,(3,0,7) is defined as

(y = FyBry) 'Oy — FyBry) + p1 ey 1Brl + P2 3 gcmy O
0—2

(3.4)

and the posterior marginal likelihood of - is

Plyly) = C(y)wl / / exp(—%LP(ﬂ,O,'y))d,&yd&y.

The major difficulty for obtaining this marginal posterior is the high-dimensional integration.
To overcome this drawback, we focus on a subset of models with the highest posterior
probability, of which the posterior probability can be well approximated. Then we introduce



a numerical algorithm to generate the samples of ~ from this approximation density for
Bayesian inference.

Here we focus on a subset of models with the highest posterior probability, which can
be well approximated. Such an idea is similar to the idea of the maximizing-a-posterior
(MAP), which is used in approximating the posterior for variable selection in linear models
(Yuan and Lin, 2005). Note that (3,0) are dependent on ~. Without loss of generality, we
hereafter omit this dependency for notation convenience. We define (8%, 0") as

£ 9) = i 0 .
(8%, 67) arg(rélfg)Lp(ﬁ, ) (3.5)

Let us denote 3 = 8" +u and @ = 6" + v. In the formulation of L,(3,0), we can have

y— FpB3 =y — FB3" — Fu. Moreover, we consider the Taylor expansion as
& '0) =20 +v)

_ _ oP(07)

~®1(0) - & (6w’

(67— @700 0 0

log |®(6)] = log|®(6" +v)|

187 (6"); (3.6)

0B(0%)
20 )

~ log |®(6%)] + tr(® 1 (6")[v' o

73(0") )
00007 "
_ tr((I)_l(O*)[vT o 811()9(00 )]<I>‘1(0*)[UT o

2 log |®(0%)| + tr(L(v)) + tr(Q(v)),

+ (@7 (0w o

0®(6%)
20 )

(3.7)

where L(v) and Q(v) are linear terms and quadratic terms in approximating log |®(8)|.
T oP@)
00

Here the term v’ o is a matrix with its (i, j) entry as vT%g—gg), where ¢;;(0) is the

2P0

. . . . T . . . . . .

) . ) T )
(i, 7)th entry of ®(@). Similarly, the term v’ o 9,0 CU 1S & matrix with its (i, 7) entry
as ’UT%’U. The detailed expression for v o %90) and v' o 8823;(907) o v can be found

in the Supplementary. Then we can write the posterior marginal as
1
Plaly) = Clw [ [exn (=51,08.6) ) dpydsy
1 * *
~ C(y)w exp <—§Lp(ﬂ ,0 ))
1 1

x//m%}bmum+mmm5§ﬂmﬂ>m@. (3.8)

Here f(u,v) is defined as

fu,v) = —€""Qe* — 26" ® (0" + v)Fu

+ (Fu) @16+ v)(Fu) + p1 > (185 +wil — IBi]) +p2 > v,
key key



where €* =y — F3*, Q=& 1(0")[v' o %]@‘1(0*). Now our main task is to evaluate

h(w, v) = %tr(L(v) 1 Q) + — f(u,v).
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Based on the definition of w and v, it is known that h(w,v) is minimized at u* = 0 and
v* = 0 such that h(u*,v*) is proportional to some constant.

Note that under different scenarios of 7, there can be two different types of models.

Definition 1. A model « is called a regular model if and only if all coefficients of ﬁfy (and
67) is nonzero.

Definition 2. A model ~ is called a nonregular model if at least one coefficient of ny (or
67) is zero.

We will discuss the approximation with respect to the two different model scenarios sepa-
rately in the following propositions.

Proposition 1. For the reqular model in Definition 1, with sample size n large enough and
using linearization approrimation on both B3 and @, then one can approrimate P(vy|y) as

P(vly) = C:C(y)(Vo2w) V! x exp (—% (rélig) L,(8, 9)) +o(n). (3.9)

The detailed derivation can be found in the Supplementary. Note that the approximation
with o(n) (3.9) comes from the Laplace approximation at the 3% and 6*. Here 8* and " are
essentially the MAP (maximum-a-posterior) estimators as shown in (3.5) and (3.4). When
the sample size n grows, it is expected that the variance of the posterior distribution will
become smaller, making the Laplace approximation to be adequate. However, for computer
experiments with relatively small sample sizes, such an approximation may not be accurate.
Based on our extensive simulation study in this work, it is found this approximation works
fairly reasonable for the sample size n = 30 and p = 5. We have also tried the case of
n = 50 or 100 for p = 10 or 20. The numerical results are also reasonable. One possible
explanation is the design points are from a space-filing design and our approximation (i.e.,
Taylor series expansion) is expanded at the maximizing-a-posterior (MAP) estimators. It
would be interesting to conduct a rigorous investigation of the approximation bound, which
could be beyond the scope of this work.

The approximation obtained in (3.9) does not apply to the nonregular model. It is
because that h(w,v) may not be differentiable at w = u*, v = v* in nonregular model (see
Definition 2). In this situation, we show that one can concentrate the regular model for the
model selection procedure. Specifically, we compare a nonregular model v with a regular
submodel included. Assume that the « has the form v = (1,...,1,0,...,0) with the first
7| entries are 1’s, and only the first s out of |y| components of 85 and 67 are nonzeros,
respectively. It means that s < |y|. Denote v* to be a p-dimensional binary vector as a
submodel of v with only the first s components being 1. The task here is to compare P(vy|y)
and P(y*|y).



Proposition 2. For the nonreqular model in Definition 2, for sample size n large enough
and using the linearization approrimation, one can obtain,

P(vly) 5\
Blrly) < C(Vo?w) V1™ + o(n). (3.10)
The detailed derivation can be found in the Supplementary. One can see that if w < 1, the
data would not give more support to the bigger model « (Yuan and Lin, 2005). Therefore,
we can focus on the regular model to avoid computing P(|y) for the nonregular model.
Although the quality of such an approximation would rely on the large sample size, it is
found in our simulation that this approximation works fairly well even for the small sample
size. It would be interesting to understand the effect of o(n) under the context of computer
experiments when n is relatively small. One possible explanation is that the regular model,
based on the Taylor expansion around the MAP estimators, received more support from the
data than the complex nonregular model. We also would like to remark that the condition
of @ > 0 could affect the accuracy of approximation in (3.10) since the first-order Laplace
approximation at @ is not established under the condition of @ > 0. But our empirical
study does not encounter such a problem. A possible explanation is that @ > 0 is satisfied
in the neighborhood of 6*.

Remark 1. The issue of identifiability is common in Gaussian process modeling when pa-
rameters are estimated for both the mean function and the correlation function. The identi-
fiability problem is relatively less an issue in the proposed model due to three reasons. First,
the proposed method only includes linear terms in the mean function without higher-order
terms. As a result, the correlation between the mean function coefficients and the correlation
parameters is generally smaller and thus the identifiability issue has less impact. Second,
the proposed Bayesian framework is closely related to a constraint estimation which imposes
penalties to the parameter estimation, both for the mean function coefficient as well as for
the correlation parameters, and therefore the identifiability issue can be further alleviated
through a penalization. Third, based on equation (3.4) in Section 3.2, it can be shown from
the empirical Bayes perspective that the regularization term ) 6; plays a similar role as
containing the correlation length. Therefore, the estimated length parameters are penalized
to avoid the identifiability issue. Furthermore, the proposed method is of interest when a
large number of variables are involved in the computer experiments but a few of them have
significant impacts. Thus those larger correlation lengths create a penalty to shrink the small
lengths to zero and avoid the identifiability issue.

3.3 Bayesian Inference Procedure

Based on the analysis in Section 3.2, we can focus on the marginal posterior density function
for the regular model. According to the expression in (3.4) and (3.9), we have

Q

P(ly) & COHIV)T x exp(— min L,(8,6.7)
= Oy (Vo)) x exp( 5 ,() (3.11)

where L,(y) = min, 3 g, L,(B,0,7). Note that it is not trivial to find the model for the
density in (3.11). To address this challenge, we take advantage of the sampling technique to

8



generate the corresponding Monte Carlo samples as the estimation of P(v|y) for Bayesian
inference. The details of the numerical algorithm are described in Algorithm 1. Here the o
is chosen to be a pre-specified constant.

Algorithm 1 Numerical sampling algorithm for ~

Step 1: Set initial values of v, B and 6.

Step 2: Fix v and update 6 and (3 by solving the minimization problem,
min(ﬁﬂ) Lp(ﬁ, 0, 'y).

Step 3: Fix 6 and 3, and then sequentially sample v; based on

Py =1,v_ly)
P(vi =0,v_ly)+ P(vi = 1,v_ly)’

Plvi=1ly,v.) =

for each i =1,2,...,p. Here y_;, = (Y1, Yi—1,Yi+1, - - -»Yp)" represents the vector of all v’s
except ;.
Step 4: Repeat Step 2 - 3 till convergence or the maximal number of iterations.

The proposed numerical algorithm is similar to a Monte Carlo Expectation Conditional
Maximization (ECM) algorithm (Trevezas et al., 2014). Here we may treat the 7;’s as latent
variables. In addition, there are non-explicit forms for both E- and M-steps. Thus the
numerical optimization is adopted to identify the current best values of 3 and 6, and then a
Gibbs sampling type method is used to generate the samples of v as shown in Hastie et al.
(2001).

The Algorithm 1 is implemented in MATLAB. In Step 2, the minimization problem is
solved respective to B and @ iteratively by taking “patternsearch” function in MATLAB.
Suppose that we iterate the algorithm K times. We will discard the first few samples, say T,
and then collect the remaining (K — T') samples of 7 vectors as the posterior samples of the
indicators, 7. Based on our empirical experience, we usually set K = 2,000 and 7" = 1, 000.

Having the Monte Carlo samples, we adopt the median probability criterion (Barbieri
and Berger, 2004) for variable selection of active variable Xj’s. Specifically, we estimate
the marginal probability of v, = 1, P (7 = 1), for each variable X from the Monte Carlo
samples and then we consider the kth variable to be active if ]5(% = 1) > 0.5. Note
that in the literature, the highest posterior probability criterion is also commonly used in
Bayesian variable selection, where the model is selected by maximizing the model posterior
probabilities among all 2P possible models. Barbieri and Berger (2004) have shown that
under certain conditions, one can identify the same model under these two criteria for the
linear regression. According to our numerical experience, the model identified by the median
probability criterion would be in the top ranking in terms of the model posterior probabilities.
Thus with the consideration of computational efficiency, the median probability criterion is
used here. Once we determine the active variables, 3, and 6, can be estimated by solving
the optimization problem in Eq. (3.5) with respect to the selected active variables. Thus
the prediction value of y(x) can be obtained according to Eq. (2.3).

In Algorithm 1, we treat o2 as a tuning parameter. To include o2 into the Algorithm 1,
one can add a step for sampling o2 from its conditional distribution. Usually, the sampling
of % is not needed in each iteration. One can update it after a few iterations for Steps 2
and 3.



Table 1: Different values of true 8 and @ in groups 1 to 5

16_ (617527&37B47ﬂ5) 0= (01302703a94705)
scenario 1 : (-0.2, 0,0, 0, 0.4) (0.3, 0,0,0.2,0)
scenario 2 : (-1.0, 0, 0, 0, 2.0) (0.3,0,0,0.2,0)
scenario 3 : (-2.0, 0, 0, 0, 4.0) (0.3,0,0,0.2,0)
scenario 4 : (-2.0, 0, 0, 0, 4.0) (1.5, 0,0, 1.0, 0)
scenario 5 : (-2.0, 0, 0, 0, 4.0) (3.0, 0, 0, 2.0, 0)

4. Simulation Study

In this section, we examine the performance of the proposed method by a five-dimensional
simulation study with data generated from a pre-specified Gaussian process. In the Supple-
mentary, we also demonstrate a numerical example based on the typical setting of a computer
experiment and discuss the parameter tuning issue.

Here we compare the proposed method with the blind kriging method (Joseph et al.,
2008). The blind kriging method, modified from the ordinary kriging, has an unknown
mean function to be identified through some data-analytic procedures. Joseph et al. (2008)
considered the Bayesian forward selection technique for the unknown mean model under
the maximum likelihood estimates of the correlation parameters. Here, the blind kriging
is implemented using a MATLAB toolbox called “00DACE” (Couckuyt et al., 2012) which
integrates the correlation parameter estimation and the estimation of the unknown mean
model. In addition, we consider a variant of the selection approach in Linkletter et al.
(2006) such that it can identify active variables in the mean function and the covariance
function.

We consider the input x with dimensionality to be p = 5. Without loss of generality, we
set the experimental region as [0, 1]?. To generate the simulation data, we first sample the
input data points, x;, ¢ = 1,2,...,n, from a Latin hypercube design. Here different sample
sizes n = 5,10, 15,20, 30 are considered. The responses, y;, are generated by following the
Gaussian process model in (2.1) with x = 2 and pre-specified 3 and 6.

To investigate the effects of different scenarios of 3 and @ on selecting active variables, we
consider five scenarios of active variables as shown in Table 8. Here, we consider the variable
being active under three different situations: active in the mean part, active in thecorrelation
part, and active in both mean part and correlation part. In all set-ups, X;, X, and X5 are
active variables. For X, both ; and #; are non-zeros. For X4, its correlation parameter
0, is non-zero but [, is fixed as zero. For Xj5, the (5 is non-zero but #5 is fixed as zero.
The differences among the five scenarios are the scales of true 8 and 6. As the Gaussian
correlation function is used, it is interesting to investigate the scale effects with respect to 3
and 6.

To evaluate the accuracy of the proposed method, we consider the following performance
measures: the True Classification Rate (TCR), the True Positive Rate (TPR), the False
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Table 2: The TCR, TPR and FPR for different n and scenarios

n=5 n=10 n=15 n

Scenario 3 avg. TCR 0.864 0.972 0.996 1
avg. TPR  0.913 0.993 1 1

avg. FPR  0.21 0.06 0.01 0

Positive Rate (FPR),

number of correctly selected variables

TCR =
number of variables ’
TPR — number of correctly selected active variables
N number of active variables ’
PR — number of falsely selected active variables

number of inactive variables

The TCR is an overall evaluation of the accuracy in the identification of the active and
inactive variables. TPR is the average rate of active variables identified correctly and is used
to measure the power of the method. FPR is the average rate of inactive variables that are
included in the regression and can be considered as type I error of the selected approach.
Larger values of TCR and TPR indicate better performance, whereas smaller values of FPR
indicate better performance than larger values.

Here we fix the tuning parameters as ¢ = 0.5,0 = 1,7 = 1,A = 1, and k = 2 for the
proposed method. For each scenario with sample size n, we independently repeat this simu-
lation 50 times, and the 50 selection results are summarized in Table S1 in Supplementary.
Table 9 is the selection results for Scenario 3. From the results, it is seen that the values of
TCR, TPR and FPR in all five scenarios are acceptable when n is relatively large. Specifi-
cally, the values of TCR and TPR are close to 1 and the values of FPR are close to 0, which
indicates good accuracy in selecting active variables. In fact, we have tried the cases with
a larger sample size, n. For example, when n = 500, based on Scenario 3 and the same
tuning parameters, the values of TCR and TPR are also equal to 1 and the value of FPR
is 0. To save space, the results with larger sample sizes are omitted here. Moreover, the
comparison of Scenarios 1, 2 and 3 indicates that the proposed method can obtain better
selection performance when [y, is larger under fixed 8. The comparison of Scenarios 3, 4 and
5 indicates that when fixing 3, the smaller 0 is, the better selection accuracy of the proposed
method can achieve.

Furthermore, we examine the effect of the tuning parameters, A and 7, on selecting active
variables. Taking the setting of Scenario 3 with n = 15 for illustration, we consider a set of
possible (A, 7) to be {(0.5,0.5), (0.5,1), (1,0.5), (1,1), (1,5), (5,1), (5,5)}, while o2 is set
as 1. We repeat the simulation 50 times under each setting of tuning parameters. Table
3 reports the selection results of the proposed method over 50 replications. Table 3 shows
that when the values of A and 7 become larger, the values of TPR keep on 1, but the values
of FPR become larger accordingly. Larger FPR values mean that more inactive variables
are identified as active ones by our approach. Thus the results from Table 3 could imply
that larger values of A and 7 could result in over-selecting the variables. The selection of
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Table 3: The TCR, TPR and FPR for different values of A and 7

(A7)
(0.5,05) (0.5, 1) (1,05) (L, 1) (1,5) (1) (5, 5)
avg. TCR 1 0.996 1 0.996 0.996 0992 0.98
avg. TPR 1 1 1 1 1 1 1
avg. FPR 0 0.01 0 001 001 002 005

Table 4: Results of the blind kriging for simulations with n = 15

avg. TCR avg. TPR avg. FPR

scenario 1 0.852 0.8867 0.1267
scenario 2 0.856 0.9267 0.1667
scenario 3  0.868 0.9467 0.1667
scenario 4  0.832 0.8667 0.1467
scenario 5  0.808 0.8267 0.1467

tuning parameters will be discussed in Supplementary. Finally, due to the median probability
criterion, we choose 0.5 as the threshold value for the posterior probability to decide whether
the variable is active or not. We have tried the other threshold values, like 0.1,0.2,...,0.8
and 0.9 and no matter what the threshold value is, the values of TPR and FPR are similar.
Thus we simply fix this threshold value as 0.5 for our proposed method.

Note that it is important to show the convergence of the proposed numerical algorithm.
Here the Monte Carlo standard error (MCSE), introduced in Jones et al. (2006) and Flegal
et al. (2008), can be used to check the convergence of the Monte Carlo samples. When the
corresponding MCSE value is sufficiently small, it indicates the convergence of the Monte
Carlo samples. Here we compute MCSE of the samples of indicator parameters by choosing
the whole samples as one batch, and the threshold value of MCSE is set as 0.04 as suggested
in Flegal et al. (2008). Take the five scenarios in Section 4.1 with n = 15 as an illustration.
Among the total of 250 cases, there is only one case whose maximal MCSE value of the five
variables is 0.065, and for the other cases, all standard deviation values are less than the
threshold values. The samples of indicator parameters in the process appeared to be stuck
on 0 and 1 for the variables being active or not. Under 2000 iterations, after burning in the
first 1000 samples, the MCSE of the remaining indicators samples is less than the threshold
value, 0.04. This provides proper evidence of the convergence of the MCMC process.

In addition, we examine the blind kriging method under the five scenarios with n = 15.
We compute the average TCR, TPR and FPR in each scenario based on 50 independent
replications, and the results are reported in Table 4. By comparing the results of the proposed
method with results in Table 4, the proposed method can generally be more accurate than
the blind kriging method on variable selection. In particular, it is seen that when true f is
large and true 6 is small, the blind kriging tends to over-select the variables because of the
non-zero FPR values.

The blind kriging selects the active variables from the mean function. While the proposed
selection approach not only targets on the active variables in the mean function but also
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Table 5: The results based on the approach generalized from Linkletter et al. (2006).

avg. TCR avg. TPR avg. FPR

scenario 1 1.0000 1.0000 0.0000
scenario 2 1.0000 1.0000 0.0000
scenario 3  1.0000 1.0000 0.0000
scenario 4  0.9840 1.0000 0.0400
scenario 5  0.9520 1.0000 0.1200

considers the non-zero correlation parameters. For benchmark comparison, we also include
a variant of the selection approach in Linkletter et al. (2006). Linkletter et al. (2006)
introduced a Bayesian selection approach with a focus on the correlation function, which
needs to generate a new inert variable in the analysis. Since this inert variable must be
non-active, we consider a variant of their approach by generating the posterior samples of
the coefficient and correlation parameter for this inert factor as reference distributions to
check whether the other variables are active or not. We take the same five scenarios with
n = 15 as an illustration, and the selection results are summarized based on 50 independent
replications. We first generate the inert variables in each replication and set [ and 6 as
their corresponding coefficients. Then we iterate our algorithm 2000 times and compute the
posterior medians for Fg and 6 based on the last 1000 iterations. Thus, a variable will be
considered active if at least one of its posterior medians is larger than the median values
for g and 0. Table 5 reports the selection performance of this variant method. Generally,
this method has a similar performance to our proposed approach in terms of TCR, TPR
and FPR and outperforms the blind kriging. It provides certain evidence that it is useful to
consider both effects in the mean function and the correlation function.

5. Simulations with 10 and 20 variables

In this section, we consider a large variable dimension in the simulation studies. In computer
experiments, the variable dimension is not very large due to the concern of the curse of dimen-
sionality and expensive computational cost. Thus we set the number of the variables, p = 10
and 20, by extending Scenario 3 shown in Section 4.1 through adding 5 or 15 inter variables,
respectively. That is, Bywe = (—2,0,0,0,4,0,...,0) and 6., = (0.3,0,0,0.2,0,0,...,0). It
means that there are only three active variables, X7, X4 and Xs;.

First, we consider the cases with p = 10 and n = 50 and 100. In each replication, we
choose n points from a LHD in [—1,1]'% and generated the responses based on ;.. and
0irue- Based on 50 independent replications, the selection results for n = 50 are summarized
as TCR = 1.0000, TPR = 1.0000 and FPR = 0.0000. For the case of n = 100, the selection
results from 50 replications are TCR = 0.9800, TPR = 0.9933, FPR = 0.0257. Generally, the
proposed method can identify active variables with very high probability and only over-select
few inactive variables in very low frequencies.

The distributions of ; and 6; among 50 replications for the case with n = 50 are in
Figure S1 in the Supplementary. Here (; and 6; are the optimal solutions in each iteration
of our algorithm. The variables Xg, ..., Xjo can be treated as five inert variables. For these
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inert variables, the corresponding (; and 6; are all stuck on zeros. For the active variables,
X1, X4 and X5, the medians of the corresponding samples are significantly far from zeros and
are all close to the true values. These results indicate that the proposed approach can have
high TPR and low FPR values. In addition, we also compute the 95% HPD intervals for all
parameters via the R function hdi in the package “HDInterval” and report these values in
Table S3 in the Supplementary. Overall, the lengths of the HPD intervals are quite small
because the parameters, 3; and 6;, are obtained via an optimization approach based on the
training data and the current indicators.

Furthermore, we also conduct variance-based sensitivity analysis to compare with the
proposed method. A function called “sobol2002” from an R-package “sensitivity” is used for
sensitivity analysis, which implements the Monte Carlo estimation of the Sobol indices for
both first-order and total indices at the same time. Here we consider the first-order index
value generated from this method for identifying active variables. Only the variables with
first-order indices that are larger than a threshold will be selected as active variables. The
case with p = 10 and n = 100 is studied here. To find the best selection results, we went over
14 thresholds as 0.01, 0.02,..., 0.09, 0.1, 0.2,..., 0.5. Among these thresholds, the maximum
TCR is 0.7960, which appears when the threshold is set at 0.05, and the maximum TPR is
0.7933, which appears when the threshold is set at 0.01. Both of these two values are smaller
than those of the proposed approach. The FPR values decrease as rthe threshold increases:
the FPR=0.31 if the threshold is set at 0.01 and the FPR=0.09 if the threshold is set at
0.05. Note that only X1 and X5 will be selected when we set the threshold as 0.5. Thus
it can be seen that our proposed approach overall has better performance in terms of TPR
and FPR.

Now we consider the cases of p = 20. The simulation setting is the same as the case of
p = 10 except having 15 inert variables. Here we set the sample size, n, as 100 and 200,
and generate the experimental points from an LHD over [—1,1]*. To avoid the numerical
problems in MATLAB, we multiplied the sample points by eight instead of inputting the
original sample points. The selection results are summarized from the 50 independent repli-
cations. When n = 100, the proposed method has TCR = 0.9670, TPR = 0.8933 and FPR
= 0.0200. For the case of n = 200, three measurements are TCR = 0.9460, TPR = 0.9133,
FPR = 0.0482. Overall the proposed method also works quite well even though there are
more inert variables.

6. A Real-Data Case Study

This real example has been studied in Fang et al. (2005) and Joseph et al. (2008). Here we
provide a brief background of the computer experiment. The engine block and head joint
sealing assembly is a fundamental structural design in the automotive internal combustion
engine. Design decisions need to be made upfront prior to the availability of a physical
prototype. The design of the joint sealing affects downstream design decisions for other
engine components and can significantly impact the long lead time tooling and machining
facility setup. It is very expensive in time and expense to conduct such designs. The use
of a computer simulation model is indispensable (Chen et al., 2002). The engine block and
head joint sealing assembly is very complex due to multiple functional requirements (e.g.,
combustion gas, high-pressure oil, oil drain, and coolant sealing) and complicated geometry.
The interactions among design parameters in this assembly (block and head structures,
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Table 6: RMSE under different parameters

o A T RMSE || o A T RMSE
1 0.1 0.1 | 1.0463 1.2 1 1 0.8109
1 0.5 0506917 || 1.5 1 1 0.9659

1

2

5

06 1 1 0.7330 || 1 S5 1.5 | 0.7741
0.8 1 1 0.7221 || 1 2 0.7333
1 1 1 0.6749 || 1 5) 0.7333

gasket, and fasteners) have significant effects. Usually, a finite element model was used
to capture the complexity of part geometry, the compliance in the components, non-linear
material properties, and the contact interface between the parts. To address the performance
robustness of the joint sealing, manufacturing variability of the mating surfaces and head
bolt tensional load are included in the analysis for which design parameters are optimized.

Here, eight factors are selected for experimentation. These are gasket thickness (z7),
number of contour zones (), zone-to-zone transition (x3), bead profile (x4), coining depth
(x5), deck face surface flatness (xg), load/deflection variation (z7), and head bolt force
variation (xg). Because of the complexity in the simulation setup and the excessive computing
requirements, a 27-run orthogonal array is used and is shown in Supplementary Section S7.
In this example, the gap lift (y) is the response variable.

For using the proposed variable selection method to consider both effects in the mean
function and the correlation parameters, we only involve the main effects in the mean part,
ie., f(z)'B = 'B. Note that in Joseph et al. (2008), the main effects and interaction
effects are used to construct the mean model for the blind kriging. The predictive RMSE,
based on leave-one-out cross validation (LOOCYV), is used as a performance measure. A
smaller value of RMSE indicates better performance on prediction. The values of RMSE
under different settings of tuning parameters are reported in Table 6

Clearly, it is seen that (o, A, 7) = (1,1,1) gives the smallest RMSE than other settings
in the table. This smallest RMSE is also smaller than the RMSE obtained by the ordinary
kriging model which is 0.7333. This result indicates that the proposed method can obtain
a better prediction through the proper variable selection. According to the table in Supple-
mentary Section S8, it shows that the posterior probabilities of 7, = 1 for ¢ = 1,...,8 in
each trail in the LOOCYV by fixing (o, A\, 7) = (1, 1, 1). Based on the median probability
criterion, once the posterior probability of 7; = 1 is great than or equal to 0.5, x; is treated
as active. Thus z1, x3, v¢ and xg are the active variables. The other variables should be
inactive because in most trails, the corresponding posterior probabilities are less than 0.5.
For these four active variables, we estimate the corresponding 3; and 6; via the MLE method.
The results show that x1, r¢ and zg have significant effects in both the mean function and
correlation function. While for 3, we have 83 = 0.0166 and 05 = 7.04 x 10~ close to 0. It
implies that x3 may only affect the mean function.

7. Extension to Two-indicator Approach

When considering the different meanings of § and 6, instead of single indicator, we define
two indicators for B, and 6 separately. Unlike the single indicator approach used above,
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Table 7: The averages of TCR, TPR and FPR for § and 6 for the Algorithm 2

TCR  TPR FPR
8 0.7880 0.7800 0.2067
6 0.7960 1.0000 0.3400

two binary vectors are used to denote respectively whether §; and 6, are zeros or not. Let
Y8 = (V8,15 -y Ys,p)- Specifically g = 1 if B is non-zero, and 5, = 0 otherwise. Similarly,
let v = (Yo.1, -, Vo). Thus, 79, = 1 if 6; is non-zero, and y; = 0 otherwise.

The priors of By and 6, are also the mixture distributions, and the same as these used
in Algorithm 1 by replacing 7, with g, and 7, separately. For the priors of 75 and
v9, Bernoulli distributions with different probabilities are adopted here. By assuming the
independence among factors, the priors can be written as

1Y 51 -
P(yg) ocqr " (1= qu)"~70),

Pg) o< g5 e (1 = go)p~1el,

where [v5] = >77_; vk and [vg| = 35— Yok Denote wi = {Z-X and wy, = {£-7. In

addition to the independent assumptions in Section 3.1, we also assume that the priors of
vp and v are independent. Then we can write

Y8, Vo

1
P(,B,O,'YB,'YQ‘Y) X exp(_§LP(IB70776779))W1 Wa™ s

where L,(8,6,v3,7,) is defined as

Ly(B,0,75,7,) o log|®(6,,)]

(¥ = Fry,B~,) " ®7O)(y = Fry,By,) + P12 ke, 185l + 02 ey, O
2

o

Following the similar approximation procedures, the posterior marginal likelihood of ~y5 and
vy can be approximated as

1
P(ysl6,y) W‘{w'wyelewp(—#p(ﬂ 0,75,75))-

1
P(v9lvs,y) wpﬂ'w'z”"'exp(—in(ﬁ, 0,75:75))-

Here we also treat ¢ as a tuning parameter and it should be specified before implementing
the following Algorithm 2.

Here Algorithm 2 is also implemented by MATLAB. To illustrate the performance of
Algorithm 2, we revisit scenario 3 in Table 1 with n = 15. Based on the same simulation
set-ups, the means of TCR, TPR and FPR for g and 6 are used to evaluate the performance
of Algorithm 2. The results are as shown in Table 7. The TPR of 3 equals 0.78, which means
that only few true active variables might not be correctly selected as important variables,
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Algorithm 2 Numerical sampling algorithm for 74 and ~,

Step 1: Set initial values of v4, vy, 8 and 6.
Step 2: Fix 74 and <, and update @ and B by solving the minimization problem,

mm(/@ﬂ) Lp(/B> 0, Y Yo)-
Step 3: Fix 6 and 3, and then sequentially sample vz, based on

P(ypi = 17’75,—z‘|}’)
P(ypi = Oa')’g,ﬂ'b’) + P(vs: = 1»’75,4‘3’)’

P(Vm = 1|y775,4) =

And sample vy, based on

P(’Ye,i = 17’79,—1"}’)
P9, = 0,79 ly) + P(v9: = 1,79, 4ly)’

P9, = 1|Y776,7i) =

for each ¢ = 1,2,...,p. Here 5 _; = (V8,5 - V8i_1> VBisrs - - - V3,)" r€Dresents the vector of
all yg's except s, And vy ;= (Yo, -+, V0r_15 Vi - - - ,0,)" represents the vector of all y’s
except 7y,

Step 4: Repeat Step 2 - 3 till convergence or the maximal number of iterations.

Table 8: Different values of true 8 and € in new scenarios

) )
scenario 3 : (-2, 0,0, 0.0, 4) (0.3,0,0, 0.2, 0)
scenario 3.1 : (-2,0,0,0.3, 4) (0.3,0,0,0.2,0)
scenario 3.2 : (-2, 0,0, 0.3, 4) (0.3, 0,0, 2.0, 0)
scenario 3.3 : (-2, 0,0, 3.0, 4) (0.3, 0,0, 2.0, 0)

and the FPR of 8 equals 0.2067, which means that the over-selection problem for the mean
function does exist. For the correlation parameters, Algorithm 2 can identify all active 6;,
because the TPR value is equal to 1.0000. However, the over-selection problem for 6; still
exists and based on Table 7, more than one-third of the inactive 6; are selected as important
variables.

To compare the performance of Algorithms 1 and 2, in addition to scenario 3 in Section
4, more different scenarios are considered. In these scenarios, the different values of 3, are
chosen and these scenarios are shown in Table 8. To have a fair comparison, the results of
two indicators in Algorithm 2 are re-summarized as the one indicator approach in Algorithm
1. That is that a variable, xy, is active if vy or g4 is equal to 1, and is non-active only
when g5 = Yo, = 0. For these scenarios, we still fix n = 15 and the other set-ups are the
same as those in Section 4. The averages of TCR, TPR and FPR among 50 replications for
both algorithms are reported in Table 9, and we also report the CPU time for each scenario
with 50 replications. Here we run our MATLAB codes on the computer with Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10GHz & 2.10 GHz and 128 GB RAM. According to Table
9, firstly, both algorithms have high TPR values, because the lowest value is 0.9933, which
is quite close to one. It means that both algorithms can identify the true active variables.
In addition, Algorithm 1 has higher TCR values and lower FPR values in all four scenarios.
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Table 9: Average TCR, TPR and FPR for Algorithm 1 and 2, and different scenarios

TCR TPR  FPR  Time(s)

Algorithm 1  scenario 3 1.0000 1.0000 0.0000 148342
scenario 3.1  0.9840 0.9933 0.0300 170667

scenario 3.2 0.9800 1.0000 0.0500 190144

scenario 3.3  0.9920 1.0000 0.0200 185888

Algorithm 2 scenario 3 0.8960 1.0000 0.2600 200687
scenario 3.1  0.9000 1.0000 0.2500 208005

scenario 3.2 0.8640 1.0000 0.3400 227651

scenario 3.3 0.8640 1.0000 0.3400 251695

Thus Algorithm 2 has more serious over-selection problems. Finally Algorithm 2 takes more
CPU time. This is because twice the number of indicators are used in Algorithm 2 and thus
the larger model space is defined for Algorithm 2 to search the best active variable set.

8. Discussion

In this work, we proposed an indicator-based Bayesian variable selection method for Gaus-
sian process model. To take into account the correlation in the regularization procedure,
a hierarchical Bayesian structure is superimposed in this paper by the design of indicator
functions and therefore, the identified active variables may have effects in the mean function
and /or in the correlation function. The use of group selection in the proposed method rather
than separate selection is to tie the regularization of two effects, one in the mean function and
one in the correlation function, from the same variable by a hierarchical Bayesian structure,
which is not only intuitive but also parsimonious. For active variables, their estimation may
suffer from the identifiability issue. The use of empirical Bayesian procedure in the proposed
method can potentially alleviate this issue through constraining the correlation lengths with
a proper prior. Another possible mitigation is to consider the orthogonal GPs (Plumlee and
Joseph, 2018) for the proposed selection framework.

Note that the proposed method is also applicable to general power exponential correla-
tion functions with different smoothness. Instead of pre-specifying the hyper-parameter for
smoothness, one direction for future work is to incorporate the estimation of smoothness
into the proposed Bayesian framework. In a preliminary study of Scenario 3 in Section 4.1,
we have observed promising results of TCR = 0.988, TPR = 1.000 and FPR = 0.03 by using
Li-norm in the power exponential correlation function, i.e., kK = 1. We will further extend
the proposed method to other correlation functions, such as variants of the Matern function
(Gu et al., 2018), to enable meaningful variable selection. Another direction for future work
is to seek a more effective procedure of parameter estimation under the empirical Bayes
framework. Currently, the estimation of B and @ can be viewed as a penalized likelihood
estimation. Alternatively, one can consider the restricted likelihood estimation (REML) ap-
proach (Lewis et al., 2021). It will be interesting to integrate the REML procedure with the
proposed Bayesian selection method.

For the proposed algorithms, one needs to pre-specify the number of iterations. To
determine the number of iterations automatically, we suggest using the MCSE value to
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Table 10: The RMSE values under different parameters via the LOOCV

o A T RMSE
1 05 05 ] 0.1721
1 05 1 0.3129
1 1 0.5 | 0.1664
1 1 1 0.3026
1 1 5 0.8326
1 5 1 0.7333
1 5 5 0.6663

define the stopping criterion. That is, for every certain iterations (e.g., 100 iterations), one
can compute the MCSE values for all indicators. If the maximal MCSE value is less than the
pre-specified threshold value, we can stop the algorithm; otherwise, we keep implementing
the procedure. To implement the proposed algorithms, one also needs to pre-specify the
tuning parameters, like A and 7. The leave-one-out cross validation (LOOCV) can be a
data-driven approach to determine the proper parameter values. We have implemented the
LOOCYV approach in our real data case study in Section 6 to choose the proper values.
Moreover, take scenario 3 and n = 15 in Section 4 as an illustration. The values of RMSE
generated from the LOOCV under different settings of tuning parameters, A and 7, are
reported in Table 10. The case with (A, 7) = (1,0.5) has the smallest RMSE value. This best
parameter setup is the same as what we have used in Section 4. In addition to the LOOCV,
Nguyen (2019) introduced the Bayesian optimization approach for parameter tuning. In
the Bayesian optimization approach, one can consider the parameter tuning as a black-
box optimization problem and a sequential design procedure is used to identify the best
parameter values within a few iterations. Note that the proposed method only has two or
three tuning parameters, the LOOCYV approach can be a proper choice when the number of
tuning parameters is small.

Moreover, the proposed variable selection for GPs can be extended for the group variable
selection (Lai and Chen, 2020). We can use an indicator parameter to denote a group is active
or not, and the proposed approach could be modified accordingly. One can also extend the
proposed variable selection method for the Gaussian process models of computer experiments
with both quantitative and qualitative factors (Zhou et al., 2011; Qian et al., 2008; Deng
et al., 2017). Note that when the qualitative factors, discrete in nature, are presented in the
model, it will be interesting to investigate how the indicator-based variable selection can be
adopted for the variable selection of qualitative factors. Finally, an interesting direction is
to consider a full Bayesian MCMC procedure for inference. Based on our empirical study,
the key to efficiently implementing a fully Bayesian MCMC relies on an efficient sampling
procedure for the correlation parameter . Some existing approaches, such as the “slice
sampling” discussed by Huang et al. (2020), have not yet achieved sufficient efficiency in
the estimation based on our preliminary study. It is also pointed out by Huang et al.
(2020) that the direct use of the slice sampling is not generally recommended because of
the computational issues in high-dimensional problems. As a future research, it will be
interesting to investigate how to conduct an efficient sampling procedure for 6 to enable a
fully Bayesian approach.
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