Quantum Topol. 15 (2024), 229-336 © 2024 European Mathematical Society
DOI 10.4171/QT/188 Published by EMS Press
This work is licensed under a CC BY 4.0 license

A surgery formula for knot Floer homology

Matthew Hedden and Adam Simon Levine

Abstract. Let K be a rationally null-homologous knot in a 3-manifold Y, equipped with a non-
zero framing A, and let Y, (K) denote the result of A-framed surgery on Y. Ozsvéth and Szab6
gave a formula for the Heegaard Floer homology groups of Y (K) in terms of the knot Floer
complex of (Y, K). We strengthen this formula by adding a second filtration that computes the
knot Floer complex of the dual knot K in Y}, i.e., the core circle of the surgery solid torus.
In the course of proving our refinement we derive a combinatorial formula for the Alexander
grading which may be of independent interest.
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1. Introduction

Let K be a rationally null-homologous knot in a 3-manifold Y. Let A be any fram-
ing on K, and let Y, (K) denote the result of A-framed surgery along K. In [44,45],
Ozsvith and Szab6 gave a formula for the Heegaard Floer homology groups of Y} (K)
in terms of the knot Floer complex CFK* (Y, K). This formula has been one of
the most important tools in the Heegaard Floer toolkit. Not only has it has been
the primary method of computation for many specific examples of Floer homology
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groups [2, 8, 12, 16, 19, 24, 30], but the existence of the formula indicates that the
knot Floer homology invariants tightly constrain the Floer invariants of manifolds
obtained by surgery, and conversely. This interplay between the two invariants, cou-
pled with the rich geometric content of both, has led to striking new applications
in Dehn surgery. For instance, it has given rise to interesting new surgery obstruc-
tions [15,18,49] and led to significant progress on the cosmetic surgery conjecture [34,
50,51], exceptional surgeries [3,17,25,31,35,52], and the Berge Conjecture [1,7,48].
The surgery formula was subsequently generalized by Manolescu and Ozsvath [28] to
surgeries on links, which results in a combinatorial (albeit largely impractical) algo-
rithm for computing all versions of Heegaard Floer homology for any 3-manifold [29].

Let K) C Y, (K) denote the core circle of the surgery solid torus, often called
the dual knot. In this paper, we strengthen Ozsvéith and Szabd’s results to provide a
formula for CFK*° (Y, (K), K3 ), provided the framing is non-zero. Specifically, we
define a second filtration on the chain complex defined by Ozsvath and Szabd, and we
show that it agrees with the Alexander filtration induced by K.

Some special cases of our formula are already known and have had numerous
applications. In [6], Hedden established a limited version of our formula, addressing
the significantly easier computation of the “hat” knot Floer homology groups of the
dual knot in sufficiently large surgery, and used this computation to derive a formula
for the knot Floer homology of Whitehead doubles in terms of the complex of the
companion knot. In [7], the same formula was used to derive an obstruction to lens
space surgeries in terms of the dual knot, namely that the dual knot must have sim-
ple Floer homology (cf. [48]); this result is central to Baker, Grigsby, and Hedden’s
approach to the Berge conjecture [1]. Also, in joint work with Plamenevskaya [11],
the “hat” formula was used to provide criteria for manifolds obtained by Dehn surgery
on fibered knots to admit tight contact structures. Subsequently, Kim, Livingston, and
Hedden [8] extended the preceding result to describe the full complex CFK* (Y (K),
K ) for sufficiently large surgeries, established that a framing coefficient that is twice
the genus of K is “sufficiently large,” and used the surgery formula as the key tool
in d-invariant computations that verified the existence of 2-torsion in the subgroup of
smooth concordance generated by topologically slice knots.

Most recently, Hom, Lidman, and Levine [16] have used our main theorem (Theo-
rem |.1) to provide an example of a knot in a homology sphere which has infinite order
in the non-locally-flat piecewise-linear concordance group. The reader is encouraged
to refer to that paper for a detailed computation using this formula, which illustrates
the general technique.
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1.1. Statement of the theorem

In order to state the main theorem, we start by quickly establishing some terminology
and notation. We will fill in more details in Section 3.

Assume that K represents a class of order d > 0in H;(Y; Z). Fix a tubular neigh-
borhood nbd(K). Let & C d(nbd(K)) be a right-handed meridian of K.

A relative spin€ structure is a homology class of nowhere-vanishing vector fields
on Y ~ nbd(K) which is tangent to the boundary along d(nbd(K)). The set of relative
spin® structures is denoted Spin®(Y, K) and is an affine set for H2(Y, K). (This set
does not depend on the orientation of K.) Given an orientation, Ozsvath and Szabd
define a map

Gy.k: Spin“(Y, K) — Spin“(Y),
which is equivariant with respect to the restriction map
H?>(Y,K;Z) - H*(Y;Z).
The fibers of Gy, are precisely the orbits of @"‘ (Y, K) under the action of
(PD[u]) C H*(Y. K Z).
The Alexander grading of each & € mc (Y, K) is defined as

(1@ [F) + 1 [F] _ 1, (1.1)

AR = R T 2

where F is a rational Seifert surface for K, and - denotes the intersection pairing
between Hq(Y ~ K) and H,(Y, K). Note that the relative Chern class in the above
equation depends on a choice of vector field along the boundary torus of the knot
complement; for this, we take a nowhere-vanishing vector field tangent to the torus.
For each s € Spin°(Y), the values of Ay k (&), taken over all £ € Gy IK (), form a
single coset in Q/Z, which we denote by Ay k(s). Indeed, any & € Spin“(Y, K)
is uniquely determined by the pair (Gy x(£), Ay, x(£)). Let ' denote the field of
two elements. The knot Floer complex of (Y, K) is a doubly-filtered chain complex
CFK* (Y, K), defined over IF[U, U '], which is invariant up to doubly-filtered chain
homotopy equivalence, with a decomposition

CFK™(Y, K) = @) CFK™(Y. K. ).
s€Spin€ (YY)

The two filtrations are denoted by i and j. Our conventions are slightly different
from Ozsvdth and Szabd’s: on each summand CFK*(Y, K, ¢), i is an integer, while
J takes values in Z + Ay, x(s). The action of U decreases both filtrations by 1. By
ignoring the j filtration, we have CFK*°(Y, K, s) = CF*(Y, $); in particular, the
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groups HF~ (Y, s), HF" (Y, s), and I/{T:(Y, ) are the homologies of the i < 0 subcom-
plex, the i > 0 quotient, and the i = 0 subquotient, respectively. If s is a torsion spin®
structure, then CFK* (Y, K, s) also comes equipped with an absolute Q-grading gr
that lifts a relative Z-grading; the differential has grading —1, and multiplication by
U has grading —2.

For each £ € G;IK (%), there is a “flip map”

Wge: CFK™(Y. K. s) — CFK®(Y. K. s + PD[K]),

a filtered chain homotopy equivalence that is an invariant of the knot K up to filtered
chain homotopy. (See Lemma 2.16 for the precise sense in which lllgo is filtered.)

An (integral) framing on K is specified by a choice of longitude A, which we may
view as a curve in d(nbd(K)). As elements of H;(d(nbd(K))), we have 0F = dA —
ku for some k € Z; the framing determines and is determined by k. Let Y = Y} (K)
denote the manifold obtained by A-framed surgery on K. The meridian yu is isotopic
to a core circle of the glued-in solid torus. Let K, denote this core circle, with the
orientation inherited from the left-handed meridian —u. The sets Spin€(Y, K) and
Spin®(Yy, K} ) are canonically identified, since they depend only onrecomplement.
The orientation of K induces a map Gy, k,: Spin°(Yy, K;) — Spin®(Y;) whose
fibers are the orbits of the action of PD[A]. o

Assume henceforth that k £ 0. Choose a spin€ structure t on Y (K). Let us index
the elements of G;)},KA (t) by (§1)1ez, where &;41 = & + PD[A]. Lets; = Gy, x (&)
and s; = Ay x(§;). Then ;41 = s; + PD[K] (so that the sequence (s;);ez repeats
with period d), while s;1.1 = s; + %. We pin down the indexing by the conventions

21 — Dk 2l + Dk .
% < AY’K(%-[) < % ifk > 0, (12)
21 + 1)k 2l — Dk .
% <Ay (&) < % ifk <O0. (1.3)

Moreover, it is easy to see that
y (E)_ZdAY,K(gl)—I-k—d _ 2dsp+k—d
Vi K ASl = 2k N 2k '

For each [ € Z, let Ag’ and Bg" each denote a copy of CFK* (Y, K, ;). Define
a pair of filtrations I+ and ¢; and an absolute grading gr, on these complexes as

(1.4)

follows:

. . 0o
for [x,1, j] € AS/’

It([xvi’ .]]) = max{i,j _Sl}’ (15)
2d k—d
Fe(x.i.j]) = max{i — 1. j — 51} + % (16)
—_ 2ds; — k)? 2 — 3sign(k
o (i, ) = B i, j]) + G0 27 3sien®) o)

4dk 4 '
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o for[x,i,j] € B

&>
It([X,i,j]) = i? (18)
2d k—d
Fe(x.i j) =i—1+ % (1.9)
AV _n_ :
er( i ) = 8 i, j)) + G407 Z2 7 3sien®) o )

4dk 4

The values of I are integers, while the values of J; live in the coset Ay, g, (t). Let
Ag} (resp. Bg ) denote the subcomplex of Ag’ (resp. Bg’l") generated by elements with
I: <0, and let Ag (resp. B;’ ) denote the quotient by this subcomplex; these agree
with the definitions from [45].

Let vé‘.’o A°° — B°° denote the identity map, and let h°°' A°° — B§°+ denote
the “flip map” \IJ°° descrlbed above. Both vZ° g and h°° are ﬁltered w1th respect to both
I:and g+ and homogeneous of degree —1 with respect to gr;; this is obvious for vé ,
and for hgl" it is Lemma 3.1 below.

If k > 0, then for any integers a < b, define a map

D 4 @Asl —>@B§] (1.11)

I=a+1

which is the sum of all the terms vg’ (forl =a+1,...,b)and hglo (forl =a,...,
b —1).If k <0, we likewise define

b+1

D ' @Ag, —>@Bg, (1.12)

to be the sum of all terms vg’l" and h°° forl =a,...,b. In either case, Df{ot ab is a
doubly-filtered chain map. Let X ft denote the mapping cone of D$° rtab which
inherits the structure of a doubly—ﬁltered chain complex that is finitely generated over
F[U, U1]. We will see below (Lemma 3.2) that for all a sufficiently negative and
all b sufficiently positive, the doubly-filtered chain homotopy type of X a.b 18 inde-
pendent of @ and b.

We are now able to state the main theorem.

Theorem 1.1. Let K be a rationally null-homologous knot in a 3-manifold Y, let A
be a non-zero framing on K, and let t be any torsion spin€ structure on Y (K). Then
foralla < 0and b > 0, the chain complex X ° tab equipped with the filtrations 14
and g+, is doubly-filtered chain homotopy equivalent to CFK*° (Y3, K, t).
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Figure 1. A portion of the filtered mapping cone for d = 1 and k = £1. The shaded regions rep-
resent the portion of each complex A$° or B with I+ = 0, or in other words the subquotients
A9 and BY. The level of shading indicates the g filtration. The values of both It and g on the
remainder of each complex are determined by the fact that multiplication by U (i.e. translation
down and to the left) decreases both filtrations by 1. Taking the homology of the mapping cone
of the (two) maps relating shaded regions with a fixed integer label yields H/ﬁ((Yil (K), K1)
in the Alexander grading corresponding to the label.
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Example 1.2. If the knot K is null-homologous (i.e., d = 1), the Alexander grading
for (Y, K) is integer-valued, so the values of s; are integers, and the spin® structures
s; are all the same. In particular, when kK = +1, the bounds (1.2) and (1.3) imply that
s; = £l. A portion of the mapping cone complex in the k = +1 cases is shown in
Figure 1, where we index the A and B complexes by the integers s;, as in [44].

The proof of Theorem 1.1 follows the same template as Ozsvath and Szabd’s
original proof in [44,45], with some modifications. Specifically, we examine the con-
struction of an exact triangle relating the Heegaard Floer homologies of Y, Y (K),
and Y} 4, (K) where m is large. The main new ingredient is the behavior of the maps
in the exact triangle with respect to the Alexander gradings, which turns out to be quite
subtle. Specifically, we must show that the chain maps and chain homotopies used in
the exact triangle detection lemma are filtered with respect to the relevant Alexander
filtrations. This turns out to be true only for the subquotients of the Heegaard Floer
complexes consisting of generators with bounded powers of U, and it requires mod-
ification of the construction of the maps by considering only certain spin® structures
on the various cobordisms involved.

In an unpublished preprint from 2006 [5], Eftekhary described a similar mapping
cone formula for CFK* (Y, (K), K. Although there are certain technical problems
with that formula, primarily related to the behavior of the flip maps \D§° and the
filtration issues discussed in the previous paragraph, the overarching ideas are simi-
lar. Moreover, the “hat” version of our formula (i.e., the associated graded complex,
which computes H/ﬁ((n (K), K,)) coincides with Eftekhary’s description in [4]; see
Corollary 3.6 below.

A key technical tool which allows us to get a handle on the grading subtleties is
a formula for the rational Alexander grading of knot Floer homology generators in
terms of data on the Heegaard diagram. This formula is analogous to Ozsvith and
Szab¢’s formula for the evaluation of the Chern class of a spin® structure associ-
ated to a Floer complex generator on the homology class of a periodic domain. We
expect this formula to be a useful addition to the Heegaard Floer tool-box, indepen-
dent of the present paper. (For instance, it was recently used by Raoux [47].) For that
reason, we take the time to state it here. Recall that a relative periodic domain on a
doubly-pointed Heegaard diagram is a linear combination of its regions whose bound-
ary consists of multiples of the @ and f curves and a longitude for the knot, drawn as
a union of arcs connecting the basepoints. (See [11, Definition 2.1].)

Proposition 1.3. Let (X, o, B, w, z) be a doubly-pointed Heegaard diagram for a
knot (Y, K) representing a class in H1(Y') of order d, and let P be a relative periodic
domain specifying a homology class [P] € Hy(Y, K). Then the absolute Alexander
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grading of a generator x € Tq N Tg, taken with respect to [P], is given by

Aus ) = 55 GP) +21(P) = n(P) =y (P). (L13)

Here y(P) denotes the Euler measure of P, and nx(P) denotes the sum, taken over
all x; € x, of the average of the four local multiplicities of P in the regions abutting
X;. Finally, ny, (P) (resp. n;(P)) denotes the average of the multiplicities of P on
either side of the longitude at w (resp. z).

1.2. Future directions

Before turning to the proof of Theorem 1.1, we discuss a few potential applications
and directions for future investigation.

Our formula should be useful for computing the Heegaard Floer homology of a
splice of knot complements in terms of their knot Floer homology. Indeed, let K and
K’ be knots in S3, and let M be the manifold obtained by gluing the exteriors of
K and K’, where the gluing identifies the meridian of K (resp. K’) with a longitude
A (resp. A) of K’ (resp. K). Then M can be viewed as Dehn surgery on the knot
K #K' CS f (K). Thus, we can determine the Heegaard Floer homology of M (and,
better yet, the knot Floer complex of a certain knot in M) as follows: use Theorem 1.1
to determine CFK* (Y (K), K;); take the tensor product with CFK*(S§3, K’) to
obtain CFK* (Y, (K), K # K’); and then use the surgery formula again to determine
the Heegaard Floer homology of M. The only difficulty is that for the second applica-
tion, we need to understand the flip map on CFK* (Y} (K), K # K'). This can always
be done explicitly if Y, (K) is an L-space; see Lemma 2.18 below. The general case
would be tractable if we could compute the flip map on CFK*° (Y (K), K in terms
of the mapping cone formula, but at present we do not know of such a description.

In another direction, the knot Floer homology of fibered knots carries geometric
information about their associated contact structures. As mentioned above, this idea
was used in [1 1] in conjunction with the “large surgery” version of our formula to give
conditions for surgeries on a fibered knot to admit tight contact structures. The present
work allows us to extend the scope of these results. In particular, the formula for the
knot Floer homology of the dual knot to 1 surgery on a fibered knot significantly
extends the potential scope of applications to contact geometry. This is because the
dual knot to —1 (resp. +1) surgery on a fibered knot K is a fibered knot whose mon-
odromy differs from that of K by a right-handed (resp. left-handed) boundary Dehn
twist. As an application, coupling our formula with the strong detection by knot Floer
homology of the identity mapping class ([13, Theorem 4]) should allow us to prove
that knot Floer homology determines whether a knot is fibered with monodromy con-
sisting of a boundary Dehn twist; we plan to return to this question in a future paper.
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In the same vein, our formula will allow us to derive conditions on the knot Floer
homology of a fibered knot which determine whether adding a left-handed (respec-
tively right-handed) Dehn twist along the boundary will kill the contact invariant
(respectively have non-trivial contact invariant). This understanding, in turn, should
lead to restrictions on the fractional Dehn twist coefficient of the monodromy of a
fibered knot in terms of its Floer homology and its flip map. To the latter end, it would
be quite useful to have a formula for the Floer homology of the dual knot to a rational
surgery. This would allow for a determination of the integral part of the fractional
Dehn twist in terms of knot Floer homology. (In Section 8, we describe CFK* of the
knot in a rational surgery obtained from the meridian of the surgery curve; however,
when the surgery slope is not integral, the meridian is not isotopic to the core of the
surgery solid torus.)

In another direction, it may be possible to generalize our formula to a much
broader situation. Let L C Y be a link of n components with a framing A. Manolescu
and Ozsvith [28] give a formula for determining the Heegaard Floer homology of
any surgery YA (L) on L in terms of the link Floer complex CFL*° (Y, L). If K is any
knotin ¥ ~ L, and K* is the induced knot in Y5 (L), it might be possible to obtain
a similar formula for CFK*° (Y4 (L), K*) in terms of CFL*°(Y, L U K), by tracing
through the Manolescu—Ozsvith’s proof while keeping track of an additional Alexan-
der grading corresponding to K, along the lines of our argument below. Carrying out
this proof seems like a daunting task, given the technical issues involved in our sub-
stantially simpler situation. If one could, then one could likely recover Theorem 1.1
by applying this more general result along with following two observations. First, for
any knot K C Y with framing A and meridian u, the knot K, C Y} is isotopic to u*
(in the terminology of this section). Second, the link Floer complex CFL>°(Y, K U )
can be determined from CFK*°(Y, K) since K U u is the connected sum of L with
a Hopf link. This would then lead to a description of CFK**(Y}, K) in terms of
CFK®* (Y, K), which presumably would agree with Theorem 1.1.

More abstractly, our main theorem can be viewed as a stand-in for the infinity
or minus version of the bordered Floer homology of a knot complement in a general
3-manifold. More precisely, the bordered invariant of a manifold with torus boundary
will admit a splitting with respect to idempotents corresponding to a basis for its
first homology. The basis can be taken as a meridian and longitude for a knot in any
3-manifold obtained by Dehn filling. In these terms, our formula allows us to compute
the invariant gotten by projection to one of the idempotents in terms of the invariant
gotten by projection to the other. In principle, higher structure maps will be necessary
to understand the full Ao, module associated to a knot complement by any minus
version of bordered Floer homology, but in practice it should be feasible to work
solely with our formula. For many applications this should prove easier.
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Organization

In Section 2, we collect various preliminary results, many of which can be described
as “Heegaard Folkloer,” and prove Proposition 1.3. In Section 3, we provide more
details about the mapping cone formula, outline the proof, and discuss an example. In
Section 4, we study the behavior of the Alexander grading under 2-handle cobordisms.
In Section 5, we look at the Heegaard quadruple diagrams relating Y, Y, (K), and
Y3+my.(K), and give a formula for CFK of the dual knot in large surgery. The most
technical part of the paper is Section 6, where we go through the construction of the
surgery exact sequence relating Y, Y3 (K), and Y, 1,,,,(K) and study the behavior
of each map with respect to the Alexander gradings. In Section 7, we assemble the
pieces to prove Theorem 1.1. Finally, in Section 8, we discuss rational surgeries.

2. Preliminaries

2.1. Homological algebra

We begin by stating a few basic facts about filtered chain complexes that will be useful
later on.

Definition 2.1. Let S be a partially ordered set. An S-filtered chain complex is a
chain complex C (over any ring) equipped with an exhausting family of subcom-
plexes {F,C | s € S}, such that #,C C FC whenever s < s'. The associated graded
complex of C is

F;C
Zs’<s ‘(FS'C’

with the induced differential. Given two S -filtered chain complexes B and C, a chain
map f: B — C is called a filtered chain map if f(F;B) C ¥5C forall s € S. Two
filtered chain maps f, g: B — C are filtered homotopic if they are related by a chain
homotopy & such that h(F;B) C F,C for all s € S. We call f a filtered homotopy
equivalence if there is a filtered chain map g: C — B such that go f and f o g are

Gr(C) = @Grs(C), where Grg(C) =

seS

each filtered homotopic to the respective identity maps. We call f a filtered quasi-
isomorphism if it induces an isomorphism on the homology of the associated graded
complexes. (We emphasize that a homotopy equivalence that is filtered is not nec-
essarily a filtered homotopy equivalence, and a quasi-isomorphism that is filtered is
not necessarily a filtered quasi-isomorphism. This terminology is unfortunately fairly
standard in the literature.)

A filtered chain homotopy equivalence is immediately seen to be a filtered quasi-
isomorphism, but the converse does not hold in general, even over a field. Indeed,
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considerable caution is required when working with filtrations by an arbitrary partially
ordered set as opposed to Z. For instance, suppose C is generated over [F by a single
element x, with vanishing differential, and we define a Z x Z filtration on C by

s o Jc wizo
GD™ 70 ifi <o,

According to Definition 2.1, we then have Gr(;_;)(C) = O forall (i, j) € Z X Z, even
though C has non-trivial homology! Moreover, C is filtered quasi-isomorphic to the
trivial complex, even though it is clearly not homotopy equivalent to this complex. !

We therefore specialize to a particular type of filtration, as follows. Let (C, ¥') be
a filtered complex over a field F. We call (C, ¥) special if there exists a basis B; for
each chain group C;, and a function §: B; — S, such that

F5Ci = Span{x € B; | 4(x) = s}. 2.1

Such a basis is called a filtered basis. Given a complex C, we may describe a special
filtration by simply specifying a function ¢ defined on some basis, provided that the
differential of each basis element x is a linear combination of basis elements whose §
values are less than or equal to & (x), and taking (2.1) as the definition of the filtration.
If (C, ¥) is special, then any choice of filtered basis induces an isomorphism of vector
spaces from C to Gr(C). (Thus, the filtered complex in the previous paragraph is not
special.)
The following lemma is immediate.

Lemma 2.2. If (C, ¥) is a special S-filtered chain complex over a field F, then C
and Gr(C) are isomorphic as graded vector spaces over F (although not necessar-
ily as chain complexes), where we take the homological grading on both complexes.
Moreover, if f: B — C is a filtered chain map between special S-filtered complexes,
and Gr(f): Gr(B) — Gr(C) is the induced map on associated graded objects, then
we may choose isomorphisms to make the square

B;)C

lg lg (2.2)
Gr(B) 22 Gi(C)
commute.

A filtered chain complex is called reduced if the induced differential on the associ-
ated graded complex vanishes, or equivalently if 3(F;C) C Y, FrC. As an imme-
diate consequence of Lemma 2.2, note that any filtered quasi-isomorphism between
reduced special complexes is an isomorphism. Moreover, we have the following result.

"'We are grateful to the anonymous referee of [16] for pointing out this example.
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Lemma 2.3. Any finitely generated, special S -filtered chain complex is filtered homo-
topy equivalent to a reduced complex.

Proof. Follow the discussion in [10, Section 4.1], using the filtration function ¢ in
place of the notion of “filtration level.” |

Lemma 2.4. If B and C are finitely generated, special S-filtered chain complexes,
then any filtered quasi-isomorphism from B to C is a filtered homotopy equivalence.

Proof. By Lemma 2.3, we may find reduced complexes B’ and C’ which are filtered
homotopy equivalent to B and C, respectively. The composition

BE:plcEc
is a filtered quasi-isomorphism, and therefore a filtered chain isomorphism. It then
follows that f is a filtered homotopy equivalence. ]

Because Lemmas 2.3 and 2.4 are stated for finitely generated chain complexes,
we need a slightly modified version for the types of complexes that arise in Heegaard
Floer homology. Let F be any field. Analogous to [44, Definition 2.6] and [28, Defini-
tion 10.2], we say that a chain complex of torsion CF™ type is a finitely generated, free
module C over F[U], equipped with an absolute (Q-grading that lifts a relative Z-grad-
ing, for which multiplication by U has degree —2, and a differential 0 with degree
—1.7 Given a basis {x1, ..., xg} for C consisting of homogeneous elements, note that
if the coefficient of U"x; in d(x;) is non-zero, then n = (gr(x;) — gr(x;) + 1)/2.

Next, we discuss filtrations. Suppose C is a complex of torsion CF~ type, and
X1, ..., X be homogeneous elements which form an F[U]-basis for C. Let
d: {x1,...,xr} — QO be a function whose values are congruent mod Z, and extend
this function to the set of all translates {U" x; } by declaring $(U"x;) = $(x;) — n.
Suppose that whenever U”x; appears in d(x;), we have §(U"x;) < (x;). Then the
subspaces of C spanned by the sublevel sets of ¢ give a filtration of C by F[U]-sub-
complexes. A filtration obtained in this way is said to be of Alexander type. We will
typically just refer to ¢ as the filtration.

Note that the filtration of C by the subcomplexes U”C is itself of Alexander
type, defined via a function I that is identically O on the elements of any basis for C.
We call this the trivial filtration. Any F[U]-equivariant quasi-isomorphism between
complexes of CF™ type is a filtered quasi-isomorphism with respect to the trivial
filtration. If we are given a second filtration § of Alexander type, C acquires the

2Unlike in loc. cit., we restrict our attention to complexes that are actually finitely generated,
free modules, rather than complexes that are quasi-isomorphic to such complexes.
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structure of a special Z x Z-filtered complex, using the above terminology. Moreover,
C is reduced if there are no terms in the differential that preserve both the I and g
filtrations; in other words, if U" x; appears in d(x;), then either n > 0 or (U"x;) <
$(x;). Note that a reduced complex is isomorphic to its associated graded complex as
an F[U]-module, not just as an [F-vector space. Moreover, the analogue of Lemma 2.3
also holds here.

Lemma 2.5. Let C be a complex of CF ™ type equipped, with an Alexander-type fil-
tration §. Then C is filtered homotopy equivalent (over F[U]) to a reduced complex.

See, e.g., [10, Section 4.1], [13, Reduction Lemma, p. 1005], or [27, Proposition
11.57] for a proof; the key point is that the cancellations taking C to a reduced com-
plex can be performed U -equivariantly. Likewise, akin to Proposition 2.4 above, we
have the following result.

Proposition 2.6. Let B and C be complexes of CF™ type, each equipped with an
Alexander-type filtration. Then any filtered quasi-isomorphism f: B — C (over F[U])
is a filtered homotopy equivalence.

Next, we introduce the machinery of “vertical truncation.” Given a chain complex
C of torsion CF™ type, for any ¢t € N, let C’ denote the quotient C/U'T!C. Any
filtration of C of Alexander type descends to a filtration of C’. Note that C? is a free
module over F[U]/(U**!), and any basis for C descends to a basis for C*. Moreover,
for any 7 < ¢/, we have natural isomorphisms U*'~* - C*" = C* (with a grading shift
of 2(¢' —t)). The following lemmas imply that a (filtered) complex C of torsion CF~
type is determined up to (filtered) quasi-isomorphism by the complexes C* for large ¢.
(Compare [44, Lemma 2.7] and [28, Lemma 10.4].)

Lemma 2.7. Let C be a complex of torsion CF~ type, equipped with a filtration of
Alexander type. Then for large t, C is filtered quasi-isomorphic to C* in sufficiently
large gradings. To be precise, for any § € Q, there exists T € N such that for all
t > T, all gradings d > §, and all filtration levels s, the projection map C — C'
induces isomorphisms H;(C) — Hy(C") and H;(Grs(C)) — Hy(Grg(CY)).

Proof. Given §, for all ¢ sufficiently large, the projection C to C? is simply the identity
map in all gradings d > § — 1, and the filtrations on those portions of C and C’ agree
by construction. The result then follows immediately. |
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Lemma 2.8. Let B and C be chain complexes of torsion CF™ type, each equipped
with a filtration of Alexander type. Suppose that, for all t > 0, the complexes B! and
C'! are F[U]-equivariantly filtered quasi-isomorphic. Then the complexes B and C
are F[U]-equivariantly filtered quasi-isomorphic.

Proof. To begin, we show that there is a single chain map f: B! — C! that induces
filtered quasi-isomorphisms B — C! for all # simultaneously. (A priori, the hypothe-
ses of the lemma only stipulate that there exist such maps for each 7, without requiring
them to be related in any way.)

Let {x1,...,x¢} and {y1,..., y;} be bases for B and C, respectively, on which
we have functions §p and ¢ specifying the filtrations. Choose some f¢ large enough
that, for all z,z" € {x1,..., Xk, y1...., Vi}, we have ty > (gr(z’) — gr(z) + 1)/2.
Let dg and d¢ denote the differentials on B and C respectively, and 8%’ and 8%’
the induced differentials on B’ and C’. Choose a filtered quasi-isomorphism
flo. Blo — C'o,

Let us write

Op(xi) =Y pijll. QWD =D _qijlyil. oD =D rijlyl.
J J J

where each coefficient p; ;, g;,j, and r; ; is either O or a multiple of U" for some 0 <
n < to. We claim that the differential d 3 must be given by precisely the same formula:
dp(x;) = Zj pi,jXj. Indeed, every non-zero term in 83;) must be induced from the
corresponding term in dp. The only possible additional terms would have to involve
powers of U that vanish in F[U]/U"; however, this contradicts our hypothesis on 7.
The same applies identically to d¢ . Likewise, the map f: B — C defined by f(x;) =
Zj ri,j¥; is a chain map: any non-zero term in d¢ o f must also occur in E)tg o fo,
and hence be canceled by a term in £ o 8’0, which then also occurs in f o 0.

Next, we claim that f induces a filtered quasi-isomorphism B’ — C! for all 7.
For ¢ < tg, this follows by restricting f to the kernel of U’ +1 while for ¢ > t, it
then follows by induction using the five-lemma.

By the previous lemma, for any grading d and filtration level s, we may find ¢ for
which the map induced by f factors as

Hy(Gry(B)) = Ha(Gry(B") 2o Hy(Gry(C') = Ha(Gry(C)).

Thus, f is a filtered quasi-isomorphism, as required. |

The reason for dwelling on the distinction between filtered quasi-isomorphism and
filtered homotopy equivalence is that the proof our main theorem relies on a filtered
version of the mapping cone detection lemma [41, Lemma 4.2], which takes place in
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the filtered derived category. Although we will mainly work over Z /27, we state the
lemma with signs for completeness.

Lemma 2.9. Let S be a partially ordered set, and let (C;, 0;)icz be a family of S -fil-
tered chain complexes (over any ring). Suppose we have filtered maps f;: C; — Cjy1
and h;: C; — Cjy5 so that

(1) f; is an anti-chain map, i.e., f; 0 0; + 0j410 f =0;
(2) h; is a null-homotopy of fi+1 0 f;, iLe.,
ﬁ-f—l Oﬁ +hioai +aj+20hi :0’

3) hit10 fi + fi+2 0 h; is a filtered quasi-isomorphism from C; to Cj 43.

Then the anti-chain map
(}Jf) C; — Cone( fi+1)
1

is a filtered quasi-isomorphism (and hence a filtered homotopy equivalence when
working over a field).

(Note that the sign convention follows [22, Lemma 7.1], which we have verified
independently.)

Proof. Foreachs € S, the maps f; and h; induce maps
Grs(fi): Grs(C;) — Grs(Ciy1)

and
Gry(h;): Gry(C;) — Grs(Cita),

which satisfy the hypotheses of [41, Lemma 4.2]. Therefore,

(Grs(fi)

Grs(hi)): Gry(Ci) — Cone(Grs(fi+1)),

is a quasi-isomorphism. Moreover, there is a natural identification of Cone(Grs ( fi+1))
with Grg(Cone( f; +1)) under which

Gry(fi) _ fi
(Grs(h,-)) = an (h,-)'

We thus deduce that (,{i ) is a filtered quasi-isomorphism. n

Even over an arbitrary ring, one can also prove a version of the (filtered) mapping
cone detection lemma in the (filtered) homotopy category, but it requires a stronger
set of hypotheses. We state it here for posterity.
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Lemma 2.10. Let S be a partially ordered set, and let (C;, 0;)icz be a 3-periodic
Sfamily of S-filtered chain complexes. Suppose we have filtered maps fi: C; — Ciy1,
hil C; — Ci+2, gi. C; — Cl'+3, andr;: C; — Ci+4 so that

(1) f; is an anti-chain map;

(2) h; is a null-homotopy of fi+1 0 fi;

(3) hit10 fi + fita o h; is filtered homotopic to the identity, i.e.,

idc; +hiy10 fi + fitaoh; = 0; 0gi + gi 0 0;:

4) hijohijt1+ fiogi +gi+10 fi = diy1 01 +71i00;.
Then the map

(}{l) C; — Cone( fi+1)

i

is a filtered homotopy equivalence, with homotopy inverse given by
(hi+1  fit+2): Cone(fi+1) > Cit3 = G;.

Oddly enough, Lemma 2.10 is easier to derive than Lemma 2.9 (and is hence left
to the reader as an exercise), but its hypotheses are clearly more difficult to verify.
In the context of surgery exact triangles in Floer theory, in particular, the families of
complexes considered are not 3-periodic; it is only their isomorphism type which is
3-periodic. This fact makes Lemma 2.10 rather unwieldy for our purposes and forces
us to rely on Lemma 2.9 instead. However, by Lemma 2.8, we are then able to deduce
filtered homotopy equivalence without the stronger periodicity hypothesis.

Henceforth, we always set F = Z /27.

2.2. Relative spin® structures and Alexander gradings

We now discuss some more details about relative spin® structures and Alexander grad-
ings.

As above, let Y be a closed, oriented 3-manifold, and let K be an oriented, ratio-
nally null-homologous knot in Y, representing a class of order d > 0 in H{(Y).?
For any class P € H,(Y, K), the intersection number [u] - P is divisible by d. In
particular, if P = [F], where F is a rational Seifert surface for K, then [u]- P = d.

As in (1.1), for any P with P - u # 0, and any relative spin® structure &, the
Alexander grading of & with respect to P is defined as

(). PY+-P 1 2.3)

Avk,p(§) = 2l P >d

3In [45], the notation K is used when the orientation of K is relevant; here, we dispense
with that convention and always treat K as oriented.
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By construction, Ay k,p(§) is unchanged under multiplying P by a non-zero scalar;
in particular, if Y is a rational homology sphere, then the Alexander grading is inde-
pendent of P.* More generally, suppose P, P’ are non-zero classes in Hy(Y, K)
whose restrictions to K agree; after scaling, assume that [u] - P =[] - P’ = d. Then
P — P'is the image of a class Q € Ha(Y). For any £ € Spin‘(Y, K), we have

Arkp(€) — Avep ) = 5 (a1 (©). P~ P)

_ ﬁcl(GY,K(s)), 0).

In particular, if Gy k(&) is a torsion spin® structure on Y, then Ay g p(§) is com-
pletely independent of the choice of P. We will henceforth drop P from the notation
and just denote the Alexander grading by Ay k.

A framing for K is determined by the choice of a longitude A, which we view
as an oriented curve in d(nbd(K)). Let F be a rational Seifert surface for K. As
elements of H;(d(nbd(K)); Z), we have 0F = dA — ku for some k € Z. For any
other framing A’ = A + mu, we have 0F = d(A + mu) — (k + dm)p. Thus, the
framing determines and is determined by k, and the class of X mod d is independent
of the choice of framing. The rational self-linking of K is [%] € Q/Z; it depends only
on the homology class of K.

Let Y, = Y;(K) denote the manifold obtained by A-framed surgery on K. The
meridian p is isotopic to a core circle of the glued-in solid torus. Let K, denote
this core circle, with the orientation inherited from the left-handed meridian —p. The
curve A C d(nbd(K})) = d(nbd(K)) then serves as a right-handed meridian for K},
since #(—u - A) = 1 when d(nbd(Ky)) is given its boundary orientation.

The sets Spin°(Y, K) and Spin®(Y;, K) are canonically identified, since they
depend only on the complement._Viewing [F] as an element of H, (Y3 (K), K3), we
have [A] - [F] = k. We thus have

{c1(®). [F]) + K
2k
2dAyx(§) —d + k
2k '

AY)L,K)L (S) =

This justifies (1.4).
As shown in [38], a doubly-pointed Heegaard diagram (X, ¢, 8, w, z) determines
a 3-manifold Y and an oriented knot K C Y. To be precise, let H, and Hg be the two

4 Some authors (e.g. Ni [32]) normalize the Alexander grading differently, without the factor
of [u] - P in the denominator. The disadvantage of that convention is that the independence of
scaling P no longer holds.
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handlebodies in the Heegaard splitting; recall that X is oriented as the boundary of the
a handlebody. Let A be an immersed curve in X obtained as A =, + g, where 74 is
an embedded arc in ¥ ~ o« from z to w, and #g is an embedded arc in ¥ ~ B from w
to z. We obtain K C Y by pushing 7, into Hy and g into Hg. Thus, K intersects X
positively at w and negatively at z. In other words, we may write K = y,, — y,, where
Yw (resp. y.) is the upward-oriented flow line from the index-0 critical point pq to the
index-3 critical point p3 of the function associated with the Heegaard diagram. The
meridian p can be realized as a counterclockwise circle in ¥ around w.

Note that both possible conventions for how to orient K exist in the literature,
leading to some sign confusions. Our convention agrees with [38], but not with [43,
45].

Ozsvith and Szab6 show how to associate to each generator x € T, N Tg arelative
spin® structure s, - (x) € Spin‘ (Y, K), with the property that Gy, g ($y.z (X)) = Sy (X).
The Alexander grading of x is defined as

Aw,z (x) = AY,K(%"w,z (x))

= (w00 [F]) + 5. 04

where F is a rational Seifert surface for K.

For any generators X, y with s, (X) = s, (y), and any disk ¢ € 7,(Xx,y), we have
the familiar formula

Aw,z(x) - Aw,z(Y) =n,(¢) —ny(e). (2.5)

We will verify this formula below.

More generally, given any X,y € T, N Tg, let a and b be 1-chains in & and S,
respectively, with da = db =y —x, and let g(X, y) be the 1-cycle a — b. (That is, £(X,y)
goes from x to y along & and from y to x along B.) This is well defined up to adding
multiples of the & and 8 circles. Note that g(x, y) is homologous in H; (Y ~ K) to the
difference yy — yx, where yx (resp. yy) is the sum of the upward gradient flow lines
through x (resp. y) of the Morse function on Y associated to the Heegaard diagram.
(We see this by pushing the interior of a into H,, and the interior of b into Hg.) This
1-cycle represents a class in H{(Y ~ K) which is independent of the choices of a
and b (that is, up to adding multiples of « and S circles). By [43, Lemma 3.11] and
[45, Lemma 2.1], we have’

?w,z(x) - ?w,z(y) = —PD[g(x.y)]. (2.6)

SFormula 2.6 was stated with signs reversed in [43, Lemma 3.11], due to an apparent incon-
sistency in how g(X, y) is oriented. However, the proof of [40, Lemma 2.19] shows that our
statement has the correct signs given our orientation conventions.
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Therefore,

A () = Au 2 0) = 551G, (9) — 1220 [F)

(PDle(x. y)]. [F])
d
&I [F)
_ 1F),

This formula completely characterizes the Alexander grading up to an overall shift,

2.7)

even when Y is not a rational homology sphere.

If x and y represent the same (absolute) spin® structure on Y, and D is the domain
of a disk ¢ € m>(x,y), then dD = g(x,y). More generally, suppose the image of
e(x,y) in H1(Y) has finite order n. (If Y is a rational homology sphere, this is true
for all x and y.) Then there is a domain D in X (that is, an integral linear combination
of regions) with dD = ne(x,y). We may interpret the intersection number [g(X, y)] -
[F] from (2.7) as the linking number between the disjoint 1-cycles g(x,y) and dK.
Symmetry of the linking number then implies that

Aw,z(x) - Aw,z(Y) = _[D]nﬂ-

Since K meets X positively at w and negatively at z, we deduce that

nz(D) —ny(D)

Ay (X)) — Aw z(y) = (2.8)

The n = 1 case is (2.5), as claimed above.

Next, we explain the conjugation symmetry of knot Floer homology, which moti-
vates the second term in the numerator of (1.1). It is shown in [43, Lemma 3.12 and
Proposition 8.2] that for each & € mc (Y, K), we have

HFK(Y, K, £) =~ HFK(Y, K, J(§) — PD[u]), (2.9)

with an appropriate shift in the Maslov grading, where J denotes spin® conjugation.’
By our definition (1.1), we have

Ay.k(J(§) =PD[u]) = 5= (c1(J(§) = PDul). [F]) + [u] - [F])
%((61(1(5)) —2PD[u], [F]) + [u] - [F])

= S (@I ~ [ [F) = ~ Ay (@),

1
74"

60zsvith and Szabé [43] state this formula with 4+ PD[u] instead of —. However, as noted
above, their orientation convention for K is opposite ours, so the sign of the meridian is reversed
as well. Ni’s definition of the Alexander grading [32, Section 4.4] follows the same convention
as [43]; this explains the sign discrepancy between our definition (1.1) and Ni’s.
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Therefore, if we define (for any rational number r)

HFK(Y, K. r) = ey HFK(Y, K. ), (2.10)
{eespin® (Y. K)| Ay x (§)=r)

we have the symmetrization property
HFK(Y, K, r) =~ HFK(Y, K, —r). (2.11)

This property together with (2.7) completely determines the function A4,, ;. Note that
the sum in (2.10) may range over relative spin structures which induce different
absolute spin® structures on Y . Note, too, that the symmetry does not necessarily hold
within each individual absolute spin€ structure. (However, it does hold if we sum over
all £ € Spin°(Y, K) which map to all the torsion spin€ structures on Y; this is relevant
for Lemma 2.14 below.)

2.3. Relative periodic domain formula

We now prove Proposition 1.3, which shows how the absolute Alexander grading can
be computed directly from a Heegaard diagram.

Proof of Proposition 1.3. It is possible to give an explicit topological proof of (1.13)
along the lines of the first Chern class formula from [39, Proposition 7.5], taking into
account both basepoints. Here, we take a more indirect approach. As noted in the
previous section, the function A, ;: To N Tg — Q is completely determined by the
properties (2.7) and (2.11). It thus suffices to show that the function

Ay 6) = 5 (HOP) + 2y(P) = n(P) = (P))

satisfies the same two properties.
To check that 4, , satisfies the analogue of (2.7), it suffices to see that

[e(x.y)] - [P] = ny(P) — nx(P).

This is immediate from the description of [e(x, y)] as [yy — yx] as above, together
with the construction of a relative 2-cycle representing [F] from the relative periodic
domain P. Details are provided in [1 1, Lemma 2.1]. Thus, A;D’Z agrees with A, ; up
to adding an overall constant.

Verifying the symmetry
HFK(Y. K. A}, , = r) =~ HFK(Y, K, A}, , = 1) (2.12)

is somewhat more involved, though straightforward. The first step is to check that
the absolute grading on CFK(X, «, 8, w, z) induced by A;, , does not depend on
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the Heegaard diagram or auxiliary choices. This entails several verifications, whose
details are left as an exercise.

* If we leave A fixed, any other relative periodic domain representing [ F] differs
from P by adding a multiple of 2. Note that

X(P+X)=j(P)+2-2g,
ny(P + X) = ny(P) + g, ny(P 4+ %) =ny(P) + g,
ny(P +X)=ny(P)+1, n(P+3%)=n,(P)+1.

Therefore, A}, , is unchanged under replacing P by P + X in the definition.

* Any two choices of the arc ¢, differ by isotopy rel endpoints or by a handleslide
over the o circles. Either operation may introduce new intersections between ¢, and
either the B circles or 7g. By looking at how the local multiplicities of P change under
each operation, one can verify that 4, , is unchanged. An analogous argument holds
for 1.

* Finally, if we modify the Heegaard diagram by an isotopy, handleslide, or
(de)stabilization away from both w and z, the induced homotopy equivalence on CFK
preserves Ay, . If this map takes a generator x of the old diagram to a generator y of
the new one, then by looking at an appropriately defined 1-cycle g(x, y) and its inter-
section with the Seifert surface as above, one can verify that

A:u,z(x) - A;;,Z(Y) = A,z (X) — Ay z(y) = 0.
li

w,z
associated to a handleslide, such a 1-cycle is provided by the obstruction class for

Hence, the homotopy equivalence preserves A;, , as well. For instance, in the map

finding a Whitney triangle connecting x to y which misses the basepoints.

Next, recall that the Heegaard diagrams (X, &, 8, w, z) and (—X, B, &, z, w) both
present (Y, K) with the same orientations and have isomorphic C/l.ﬁ(, which gives the
spin€ conjugation symmetry (2.9). Because we swap w and z, — P plays the role of the
relative periodic domain in the latter Heegaard diagram; this has the effect of negating
each term on the right side of (1.13). For each x € Ty N Tg, we thus have 4}, ,(x) =
—A’, ,(x), where the former refers to the proposed grading on C/ﬁ((E ,o, B, w,z)and
the latter refers to its values on C/I-JT((—E, B.a,z, w). Thus, we have an isomorphism

HFK(S, o, B, w, 2, A, , = r) = HFK(—%, B, &, 2, w, A, ,, = —r).
Combining this with the isomorphism
HFK(-%,B.a,z,w, A}, = —r) = HFK(Z, o, B, w, 2, A}, , = —7)

induced by the Heegaard moves taking (—X, 8, o, z, w) to (2, o, B, z, w), followed
by the map induced by the half-twist diffeomorphism of pointed knots moving the
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(%)

Figure 2. Heegaard diagram (X, &, B, w, z) for the right-handed trefoil. The green curve A
represents a +5-framed longitude.

basepoints half-way around K (to yield (X, &, 8, w, z)), we deduce that the symme-
try (2.12) holds, as required. |

Remark 2.11. The above discussion provides an alternative proof of Ozsvath and
Szabd’s Chern class evaluation formula [39, Proposition 7.5]. Given a generator X €
T N Tg, their formula expresses the evaluation of the Chern class of the abso-
lute spin® structure s, (X) structure on the absolute homology class of a periodic
domain P:

(c1(sw (). [P]) = X(P) + 2nx(P) — 2ny (P). (2.13)

To recover this formula from Proposition 1.3, we consider an unknot U bounding
a disk in a coordinate ball of Y. Given a pointed Heegaard for ¥, we obtain a doubly
pointed Heegaard diagram for (Y, U) by placing z in the same region as w, and choose
A to be the boundary of a small disk D contained inside this region. Given an absolute
homology class [P] € H»(Y) represented by a periodic domain P, we consider the
relative periodic domain P’ = P + D, which represents a relative homology class
[P] € Hy(Y,U). We have ix[P] = [P'], where i: Y — (Y, K) is the inclusion map.
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Naturality of relative and absolute Chern classes [21] implies that the left-hand side
of (2.13) can be identified with (c1 (s, (X)), ix[P]).

On the other hand, the formula for the Alexander grading, taken with respect to
the relative homology class [P’], shows that

<Cl(‘:”w,z(x))’ [P/D + [u] - P’ = )?(P/) + znx(P/) - nw(P/) - nz(P/)- (2.14)

Observe that 7y, (P’) = nz(P') = ny(P) + 1, that 3(P’) = #(P) + 1, and that
2nx(P’) = 2nx(P). Therefore, the right-hand side of (2.14) equals the right-hand
side of (2.13). Next, observe that

{c1(2w,z(x).[P']) + [1] - P" = {c1(5w,z(x)). ix[P]) + {c1(3w,2(x)). [D]) + [u] - D.

Since the Alexander grading for an unknot relative to a disk Seifert surface is iden-
tically zero, we have (c1(sw,z(X)), [D]) + [u] - [D] = 0, which concludes the proof
of (2.13).

Example 2.12. Consider the genus-2 Heegaard diagram for the right-handed trefoil
shown in Figure 2. We have T, N Tg = {ax,bx,cx}. The green curve A, which passes
through the basepoints w and z, represents a +5-framed longitude. The coefficients
in Figure 2 represent a relative periodic domain P. We have

1 9
)?(P):_L"’ nZ(P):_Ev nw(P)ZE’

ng(P)y=1, np(P)=2, ne(P) =3, ny(P)=2,
and therefore
Awz(ax) =—1, Ay (bx) =0, Ay (cx)=1.

This is consistent with both (2.5) and (2.11).

For a second example, note that the Heegaard diagram (X, e, y) presents A-framed
surgery on K, where y = {1, A}. Moreover, the curve B, determines the knot K
induced by the surgery, so we can represent K, with basepoints w’, z’ € 8, as shown.
The ordering of w” and z’ is chosen to be consistent with the orientation on f, that
makes it occur in the boundary of P with positive coefficient. The reader can check
that the Alexander gradings of generators of C/F\K(E, a,y,w,z')are

1 3
Aw’,z’(ar) = _g, Aw’,z’(ps) = _57

Aw z7(pt) = Ay z(q5) = Ay 2 (br) =0,
3 1
Aw’,z’(qt) = ga Aw’,z’(cr) = g
Once again, the symmetry (2.11) is satisfied.
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In the complex C/F\K(Z,oc, y,w',z"), we have d(pt) = d(¢s) = br, which implies
that the knot K is Floer simple. As a sanity check, since ez N A| = 1, we can desta-
bilize this pair of curves to produce a standard genus-1 Heegaard diagram for a simple
knot in a lens space, which is consistent with known results about +5 surgery on the
trefoil.

For additional examples, see [47, Section 6].

Remark 2.13. Suppose we choose a Heegaard diagram (X, o, 8, w, z) for an oriented
knot K, but consider a relative periodic domain P that represents —[F] rather than
[F]; in other words, we assume dP = —dA + ---, where d > 0. Then (1.13) still
holds, provided that we take —d in place of d in the denominator. In other words, the
denominator is simply the coefficient of A in 0P, whether positive or negative. This is
one of the reasons we prefer our normalization for the Alexander grading.

We conclude this section with another helpful fact about the relationship between
the Alexander and Maslov gradings (cf. [1, Proof of Lemma 4.10], [33, Proof of The-
orem 3.3]). For any generator x € Ty N Tg, we have s, (X) = s, (x) + PD[K]. Since
we assume that the knot K is rationally null-homologous, this implies that s, (x) is a
torsion spin® structure if and only if s, (x) is. If so, then x admits two separate absolute
Maslov gradings when viewed as an element of a:(E, o, B, w) and @(E, o, B,z);
we denote these by gr,, and gr, respectively.

Lemma 2.14. For any x € Tq N Ty for which sy, (X) is torsion, we have
gry, (x) — gt (x) = 24y,2(x).

Proof. Define A4}, ,(x) = %(gfw (x) — gr,(x)). Suppose x and y are generators repre-
senting (possibly different) torsion spin® structures. Choose a domain D with (D) =
ne(x,y). By the Lee—Lipshitz relative grading formula [23, Proposition 2.13] together
with (2.8), we compute

Ay () — A4y, () = %((M(D) — 2ny (D)) = (u(D) = 2nz(D)))

= L12(D) — (D)
n
= Aw,z(X) - Aw,z()')-

Thus, A}, , agrees with Ay, , (on all generators representing torsion spin structures)
up to an overall constant. To pin down the constant, note that A’Z,w(x) = —A;U,Z (x),
where the former refers to the grading on CFK(—X, 8, &, z, w), and proceed just as
in the proof of Proposition 1.3. |
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2.4. The knot Floer complex for rationally null-homologous knots

For any Heegaard diagram (X, &, B8, w), the complex CF*(Z, a, B, w) is generated
(over [F) by all pairs [x, 7], where x € T, N Tg and i € Z. The differential on the chain
complex CF* (X, a, 8, w) is given by

x.il =y Z#ﬂ(q&)[y,i —ny(@)]. (2.15)
yeToNTg pems(x,y)
n(g)=1

For each spin® structure s, the summand CF>*(XZ, &, 8, w, &) is generated by all [x, 7]
with sy, (X) = 5. The action of U is givenby U - [x,i] = [x,i — 1]. Let CF (X, o, 8,
w, ) denote the subcomplex generated by all [x,i] withi <0, and CF* (2, e, B, w, )
the quotient of CF* by this complex. For ¢ € N, let CF' (2, a, 8, w, s) denote the
kernel of the action of U’*! on CF"; concretely, it is generated by all [x, i] with
0 <i <t.” Note that CF'(Z, ., B, w, s) is isomorphic (up to a grading shift) to the
quotient
CF (Z,a,8,w,3)/(U.CF (Z,a,8,w,s)),

and we sometimes use this perspective instead.

Let (X, o, 8, w, z) be a doubly pointed Heegaard diagram for a rationally null-
homologous knot K C Y. For each s € Spin°(Y), let CFK*(Z, &, 8, w, z, 3) be
generated by all [x, 7, j], where $,,(X) = s,7 € Z,and j —i = Ay -(x). (Note that
J need not be an integer!) The action of U is givenby U - [x,i, j]| = [x,i — 1, j — 1],
and the differential is given by

xijl=) D #M@.i—nu@).j—n:@) (216
yeToaNTg ¢ez't¢2)(x,{/)
M =

which is valid by (2.5). There is a canonical isomorphism
Qy: CFK*® (2, a,8.w,z,3) — CF*(Z,a, B, w,s)

given by Q4 ([x, i, j]) = [X, ]. In other words, the j coordinate can be seen as giving
an extra filtration on CF*° (X, e, B, w), which we call the Alexander filtration. Using
the terminology of Section 2.1, this is a filtration of Alexander type, given by the
function Ay, 7 ([X,i]) = Ay z(X) + 1.

This filtration descends to the other flavors; when thinking of them as doubly-
filtered objects, we will sometimes denote them by CFK™, CFK™*, and CFK’.

"In [44,45] and elsewhere in the literature, the notation CF? is used; we have chosen to use
t to avoid confusion with the § curves used in Sections 5 and 6.
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In particular, CFK°(Z, &, B, w, z) is simply CF (Z,a, B,w), equipped with its Alexan-
der filtration. The associated graded complex of the latter is C/F\K(E, o, f,w,z),
whose homology is the knot Floer homology }Tﬁ((Y, K).

Each of these complexes is a topological invariant of (Y, K) up to doubly-filtered
chain homotopy equivalence; as in the introduction, we sometimes denote them by
CFK*(Y, K, s), etc.

Remark 2.15. In [45], Ozsvith and Szab6 define a separate doubly filtered complex
for each relative spin® structure. Specifically, they define CFK*° (X, &, 8, w, z, £) to
be generated by all [x, 1, j] € (Tq N Tg) x Z x Z with

$w,z(X) + (i — j) PD[u] = §.

For all § within a given fiber G () (for s € Spin‘(Y)), the resulting complexes
are isomorphic by a shift in j. To translate between the Ozsvath—Szabd description of
CFK® and ours, for each £ € Gy IK (%), there is an isomorphism

CFK®(X,a,B,w,z,§) - CFK*®(Z,a, B, w, z, ),
[x, i, j] = [x,i,] + Ay,k (§)]. (2.17)

We now describe the so-called “flip map” alluded to in the introduction. (See
[14, Section 18.2] for a similar explanation.)

We define it in several steps. First, note that for any x € T, N Tg, we have s, (x) =
sw(x) + PD[K]. Thus, for each s € Z + Ay, k(s), there is an isomorphism

Q.5 CFK®(Z,a, B, w,z,5) > CF®(Z,a, 8,2, + PD[K])

given by Q. s([x. i, j]) = [x.j —s].

Let B’ be the tuple of curves obtained by isotoping B over z to eliminate all inter-
section points in #, N B. (That is, for each such intersection point, we do a finger move
of B along #, until the segment of B crosses z.) There is a canonical isotopy class of
(unpointed) diffeomorphism ¢: (Y, z) — (Y, w), induced by extending the isotopy of
embeddings of a point represented by the path #,, first to 3 and then to all of Y, via the
isotopy extension theorem [26,46]. The restriction of this diffeomorphism to X yields
a diffeomorphism of pointed Heegaard diagrams ¢: (X, e, 8’,2) — (2, &, 8, w). Con-
cretely, this diffeomorphism undoes the above isotopy, dragging the z basepoint back
along 4 and all the way to w. The diffeomorphism of Heegaard diagrams induces a
canonical identification of complexes

¢«: CF®(Z,a, B, z, 5 + PD[K]) — CF*(Z,a, B, w,s + PD[K])

which represents the functorial homotopy class of chain map associated to the diffeo-
morphism ¢ : (Y, z) — (Y, w), according to the definition [20, Section 2.5]. Finally,
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let
I': CF®(Z,a,B,z,5 + PD[K]) - CF*(Z,a, B',z,s + PD[K])

be the [F [U]-equivariant chain homotopy equivalence induced by Heegaard moves in
the complement of z. According to the naturality theorem of Juhdsz, Thurston, and
Zemke [20, Theorem 1.8], I does not depend on the choice of Heegaard moves (up
to IF [U]-invariant chain homotopy), and

¢« oT: CF®(Z,a, B, 2,5 + PD[K]) — CF®(Z, a, B, w, s + PD[K])

also represents the action of the pointed diffeomorphism ¢ that moves z to w along the
arc of K obtained from #, (where now we have chosen a different representing chain
complex for the transitive system of complexes associated to (Y, z) by the construction
of [20]). The flip map

\Ilg‘fs: CFK*(X,a,B,w,z,s) - CFK* (X, a, 8, w, z,s + PD[K])

is then defined by
W = (Qu) oguol 0Qzy, 2.18)

which is a chain-homotopy equivalence.
Since the pair (s, s) determines, and is determined by, a relative spin® structure &,
we may also denote this map by \IJ§° For varying s, the maps W, ; are related by

Vgs+1 =UoWs s =Ws,0U.

Thus, it really suffices to know only one of them. When K is null-homologous, so
that the Alexander grading is integer-valued, it is most convenient to take s = 0.

Lemma 2.16. The map VT is a filtered homotopy equivalence with respect to the

J filtration on the domain and the i filtration (shifted) on the range, in the fol-
lowing sense: for any t € Ay k(s), W restricts to a homotopy equivalence from
the j <t subcomplex of CFK®(Z, &, B, w, z,3) to the i <t — s subcomplex of
CFK* (X, a, B, w, z, s + PD[K]). Moreover, wgfs is homogeneous of degree —2s
with respect to the Maslov grading gr.

Proof. For any [x,1, j] € CFK*(Z,a, 8, w, z,s), we have
W (X0, j]) = (Qu) ™ o w0 T)([X, j —s])

= @) (X lvp-iy))
14

= Z[va ll/” ll/’ + Aw,z(le)],
p
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where p is taken from some finite indexing set and each i 1’, is an integer < j — s.
This fact follows from the definition of I", which is a composition of maps which are
filtered homotopy equivalences with respect to the basepoint filtration.

Finally, for the statement about the Maslov grading, Lemma 2.14 implies that Q2
is homogeneous of degree —2s (using gr,, on the domain and gr, on the target), while
I' and 2, are grading-preserving. |

However, we emphasize that W% is not necessarily filtered with respect to the
other filtration on the domain and target; see Section 3.1 for an example. In particular,
in the case of a null-homologous knot, the complex CFK* (Y, K, s) is symmetric (up
to isomorphism) under interchanging i and j, but the map \Ilgf’o does not necessarily
realize that symmetry.

The maps W27 are actually invariants of K, in the following sense.

Lemma 2.17. Let (X, a, B, w,z) and (X', a', B', w, z) be two doubly-pointed Hee-
gaard diagrams which present the doubly-pointed knot (Y, K, w, z). Then, for each
pair (s, ) as above, the following diagram commutes up to homotopy:

W,
CFK*®(Z,a,B,w,z,8) —=> CFK*®(Z,a, B, w,z,s + PD[K])
:J/CD.; :quS-H)D[K] (219)
L2o
CFK* (X, o/, ', w,z,8) — CFK*®(Y,a’, ', w,z,s + PD[K])

/

where ®5 and O pp[ k] are the doubly-filtered chain homotopy equivalences induced
by a sequence of Heegaard moves taking (X, e, B, w,z) to (X', o', B', w, z), and
the homotopy can be assumed to satisfy the same filteredness property as W% (see
Lemma 2.16).

Proof. Tt suffices to show that each of the components in the composition (2.18) is
natural under Heegaard moves avoiding w and z. This is immediate for (2,)~! and
2, 5. As noted above, ¢ o I is the map induced by moving the basepoint from z to w
along a prescribed arc of K, and the naturality theorem says that this does not depend
on the choice of Heegaard diagram (up to homotopy). ]

In general, the maps W are extremely difficult to determine from the definition,
since they require understanding the homotopy equivalences induced by a series of
Heegaard moves. However, there is a special case in which they can be determined
explicitly.

Lemma 2.18. Let Y be an L-space and K a knotin Y. Let

P® ' CFK™®(Y, K, s) — CFK®(Y, K, s + PD[K])
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be any two maps which are filtered chain homotopy equivalences (in the sense of
Lemma 2.16). Then W™ and V'™ are filtered chain-homotopic.

Proof. By construction, ¥ and ¥’*° each restrict to filtered quasi-isomorphisms
U, W' CFK*™(Y, K, s){j <s} — CFK®(Y, K,s + PD[K]){i <0}

(for some fixed s € Z + Ay -(s)). Since Y is an L-space, the homology of each
of these complexes is isomorphic to F[U], so ¥~ and W'~ induce the same map
on homology. Therefore, ¥~ — W'~ is filtered null-homotopic (with respect to the
filtration by U powers), via an [F[U]-linear null-homotopy

H: CFK®(Y,K,s){j <s} — CFK®(Y, K, s + PD[K]){i < 0}.

By U-equivariance, we can then extend H over all of CFK*°(Y, K, ¢) to be a filtered
null-homotopy of ¥ — @/, [

Thus, when Y is an L-space, it suffices to guess any chain map W which is a
filtered quasi-isomorphism (in the sense of Lemma 2.16); Lemma 2.18 then guaran-
tees that this map is the actual map. In particular, for null-homologous knots in any
L-space (e.g. knots in S3), any map realizing the i <> j symmetry suffices. (This
principle has been used, implicitly or explicitly, by many authors; see, e.g., [16, Sec-
tion 6].)

3. More on the mapping cone formula

We now discuss a few more details concerning the mapping cone formula from the
introduction, and outline the proof.

Lemma 3.1. For each | € Z, the map hglo is filtered with respect to both Iy and $t
and homogeneous of degree —1 with respect to gr.

Proof. This is a straightforward exercise using Lemma 2.16. ]

Lemma 3.2. For all a sufficiently negative and all b sufficiently positive, the doubly-
filtered chain homotopy type of X7, ., is independent of a and b, and likewise for

- + p
Xotap X tap ad X, 4

Proof. The values of j — i for all non-zero elements of CFK* (Y, K) are bounded
above and below by constants. Therefore, when s; > 0 (which holds for / > 0 if

k > 0 and for / <« 0if k < 0), the filtrations on Ag’ both agree precisely with (1.8)
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and (1.9), so vglo is a doubly-filtered isomorphism. Similarly, when s; < 0 (which
holds for/ > 0if k < 0 and for/ <« 0if k > 0), the filtrations on Ag}o are given by
+ 2ds; +k—d

2k '
which is just the vertical (z basepoint) filtration, shifted appropriately. It follows from

Li(x.i.j) =j —si and  Fe([x. i, /) =j —si

Lemma 2.16 that hg]" is a doubly-filtered quasi-isomorphism.

Now, suppose k > 0; the other case is handled similarly. If b is large enough, then

[e9)

in the complex X7 we can cancel the filtered-acyclic subcomplex

sta,b+1’
o0
b+1
o0 o0
—_
AEb+1 B$b+1 ’

and the resulting complex is filtered isomorphic to X<, ;. Likewise, if a is negative
enough, thenin X° _, ,, we can cancel the filtered-acyclic subcomplex

heas
A2 —— B [
Remark 3.3. The range of values of a and b for which the conclusion of Lemma 3.2
holds (i.e., how large is sufficiently large) depends on the spread of the Alexander
grading on H/F\K(Y, K), and thus on the genus of K. For simplicity, suppose that K is
null-homologous, so that d = 1, and let g = g(K). If we used a reduced complex for
CFK® (Y, K), then all non-zero elements of CFK* (Y, K) satisfy —¢g < j —i < g.
By examining (1.5) and (1.6), we see that vg’ is a doubly-filtered isomorphism when
s> g+ 1,and hg’ is a doubly-filtered quasi-isomorphism when s; < —g. Thus, for

example, when k = +1, we may compute CFK* (Y, (K), K}) using the complex
[e.e]
At 1—g,8"

Let AS_/ (resp. BE_/ ) denote the subcomplex of Aglo (resp. Bgo) generated by ele-
ments with I < 0, and let Ag (resp. Bg ) denote the quotient by this subcomplex.

As a result, these maps vg’, hg’ descend to give maps

+. 4+ + +. 4+ +
Vg, Aéz — Béz and héz‘ Aéz — B§1+1

on the plus and minus versions of the complexes. Under the isomorphisms from
Remark 2.15, our construction of the AT and B* complexes and the v* and h™
maps agrees with Ozsvath and Szabd’s description in [45, Section 4]. Additionally,
forany 7 € N, let Ag[ (resp. Bél) denote the kernel of U’*! on Ag (resp. B;;); con-
cretely, these are generated by all generators with 0 < Iy < ¢. We also define the

U -completed versions of the minus and infinity complexes:
Ag, = Ag, Qru) FIU], B, = B, ®Fw F[U],

AL = A @y FIU,UT'], B = B gy y-1 FIU, U]
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Concretely, the elements of each group are countably infinite sums ), [Xq, i, io +
A(Xy)] such that for each I € Z, there are at most finitely terms with i, > 1. As such,
the I+ and ¢; filtrations still make sense. We may thus define corresponding versions
of the mapping cone, which we denote by X;ta b Xj’ta be Xi tab XIW be
Xi"’t’ ab In particular, the finite U-power versions X /t\,t, ab will play a crucial role in

the proof.

and

Remark 3.4. Ozsvith and Szabé originally stated the surgery formula only for HF ",
not for HF*®, and they made use of an infinite version of the mapping cone. Specifi-

D @Ag - @Bg (3.1)

leZ leZ

cally, let

be the sum of all the vg and hg maps, and let X ; ; be the mapping cone of D/tt.
Ozsvith and Szabd proved that X f ; 18 quasi-isomorphic to CF" (Y;(K),t). Manolescu
and Ozsvith [28] showed that the analogous results for HF~ and HF* hold if one
uses the U-completed versions and infinite direct products: that is, HF~ (Y, (K)) and
HF*° (Y, (K)) are respectively isomorphic to the mapping cones of

D; . [[A; = [][B; and DZ: []AR — []BE.
leZ leZ leZ leZ
(See [28, Section 4.3] for a discussion of why direct products rather than direct sums
are needed.) The technique of “horizontal truncation” from [28, Section 10.1] shows
that the finite and infinite versions yield filtered quasi-isomorphic complexes. We find
it preferable to avoid using infinite direct sums and products entirely, at the cost of
being more explicit about the roles of a and b.

We now discuss the proof of Theorem 1.1. The proof follows the same basic out-
line as Ozsvath and Szabd’s [44, 45], with a few modifications. Our main technical
result, which occupies most of the remainder of the paper, is the following.

Proposition 3.5. Ler t € Spin® (Y (K)). Then, for any a < 0 and b > 0 and any
t € N, CFK' (Y, (K), Ky, t) is filtered homotopy equivalent to the mapping cone
X)tt,t,a,b’ equipped with the filtrations I+ and $.

The new (but surprisingly subtle) ingredient in this result is that the equivalence
respects the second filtrations; the rest was shown by Ozsvath and Szabd. Assuming
Proposition 3.5, the rest of the main theorem follows immediately.

Proof of Theorem 1.1. In the terminology of Section 2.1, X;’t’a’b is a complex of
torsion CF~ type equipped with a filtration of Alexander type, and X i,t’ ab is
filtered isomorphic (with a shift in the grading) to X Atab JU? HXA_,t, ab Therefore,
Lemma 2.8 and Proposition 3.5 imply that X;,t’ ab is filtered quasi-isomorphic to
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CFK™ (Y3, K3, ). By taking the tensor product of each complex with F[U, U], we
then see that X)‘f"t 4.p 18 filtered quasi-isomorphic to CFK*(Y,, K, t), as required.
m

Next, we describe the version of the mapping cone which computes }ﬁJ\K(Y . K)).
For knots in homology spheres, this agrees with Eftekhary’s results in [4].

Corollary 3.6. For any t € Spin®(Y}), and any & € G;;,Kl (t), HFK(Y;, K., &) is
isomorphic to the homology of the mapping cone of

(hgl,vg[+1): Agl{i < O,j = Sl} b A$l+1{i = O,j <S/41— 1} — B$[+l{i = O}.
(3.2)

Proof. The complex Xi) ; (or X/(\) +ap ora < 0and b > 0) computes @(YA) with
its Alexander filtration, so its associated graded complex computes C/F\K(YA, K;). In
particular, for each &; € G;Al K, (t), CFK(Y;, K, &) is given by the subquotient of
X 35, with
2ds; +k—d

2k )

Using the definitions, we may verify that the only portions of the complex for which

It =0 and gt = AY/\,K,\(SI) =

both of these conditions hold are the three terms listed in (3.2). ]

Remark 3.7. The mapping cone formula in [44,45] is stated with coefficients in Z,
not just in F. Our proof should go through with coefficients in Z as well, but this
requires understanding signed counts of holomorphic rectangles and pentagons, which
is a technical headache and not fully spelled out in the literature. (One particular dif-
ficulty that arises is described below in Remark 6.30.) Therefore, we have chosen to
work over [F for simplicity.

3.1. Example: Surgery on the trefoil

In Lemma 2.16, we saw that the flip map on CFK® is filtered with respect to the
vertical (j) filtration on the domain and the horizontal (i) filtration on the target.
Using the mapping cone formula, we now show an example illustrating that the map
can be quite badly behaved with respect to the second filtration on each complex.
(Another example can be found in [19, Section 3.2], although the pathologies there
become apparent only when using Z coefficients.)

Let K C S3 denote the right-handed trefoil. The complex CFK*(S3, K) can be
generated (over F[U, U~!]) by generators a, b, ¢ in (i, j) filtration levels (0, —1),
(0,0), (0, 1) and Maslov gradings —2, —1, 0 respectively. The differential is given by
d(b) =a + Uc and d(a) = d(c) = 0, and the flip map is an involution which fixes b
and interchanges a and Uc. This complex is shown in Figure 3.
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(a) (b)

Figure 3. The complex CFK*® for (a) the right-handed trefoil and (b) the dual knot in its —1
surgery. (The pattern repeats infinitely in both directions.)

Let (Y,J) = (S3,(K), K_1). Letus apply Theorem 1.1 to compute CFK* (Y, J).
Since g(K) = 1, it suffices to look at the mapping cone

(AP @ AY°) — (B @ BS® @ BY),

which we denote by X . Let us write ay, by, ¢, for the copies of a, b, ¢ in AJ° (for s =
0, 1), and a}, b, c; for the copies in B{® (for s = —1,0, 1). By canceling differentials
which preserve both the I and ¢ filtrations, it is not hard to check that X can be
reduced to the complex generated (over F[U, U ~!]) by generators p, G, 7,5, as in the
following table:

Generator Il ¢ g|od

b=c 0| -1]-2]0

é =ap + C1 0 0| -1 }3+Ul_
F=ag+b)| 0| 0|—1|Us+UT
§=c) o ol olo

f=c o 1] olo

We can then make a filtered change of basis to simplify the differential further: set
p=p+UsS,gq=q+7r,r=r,s=5,andt =1+ 5,sothat d(q) = p, d(r) = Ut,
and d(p) = d(s) = 9(t) = 0. The complex CFK*(Y, J) is shown with respect to
this basis in Figure 3 (b). (See [16, Section 6] for a more extensive computation that
illustrates the technique in more detail.)

We now study the flip map ¥ on C = CFK*°(Y, J). Let us just consider the
induced map . C {j =0} - C{i = 0}, which is necessarily a quasi-isomorphism.
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The complexes C{j = 0} and C{i = 0} are each filtered (the former by i, the latter
by j) and are filtered quasi-isomorphic, but we claim that U cannot be a filtered map.
The grading requires that \Tl(q) = r and that \Tl(s) is a non-zero linear combination of
s and ¢. Suppose, toward a contradiction, that U is filtered; then l/I\’(s) = 5. However,
observe that (Y1 1(J), J4+1) = (§3, K). Consider the associated graded complex of
the filtered mapping cone formula for +1 surgery, as described in Corollary 3.6. The
part in Alexander grading 0O has the form

h
Aoli <0, =0} 2% By{i =0} <X 4,{i =0, <0}

which is the following complex:

(Here, the subscripts indicate the Maslov grading on the mapping cone, given by (1.7)
and (1.10), and the dashed arrows indicate possible additional terms in @.) Examining
this complex, we see that its homology has rank 3, which contradicts the fact that
HFK(S3, K, 0) = F. The only way to remedy this issue is to add a component taking
s € Ao{i <0} tos € By{i = 0}, which means that ¥ is not filtered with respect to the
second grading. (With further work, one can then use this information to completely
pin down W up to chain homotopy.)

4. Alexander gradings and surgery cobordisms

In this section, we study the relationship between the Alexander grading and spin®
structures on the 2-handle cobordism associated to a framed knot.

As above, assume that Y is an oriented 3-manifold and that K is an oriented,
rationally null-homologous knot representing a class of order d > 0in H{(Y;Z). Let
A be a non-zero framing for K, and let W = W, (K) be the corresponding 2-handle
cobordism from Y to Y} (K).

Let C C W, (K) denote the core disk of the 2-handle together with K x I, and let
C* C W (K) denote the cocore disk. We assume these are oriented to intersect posi-
tively. Then [C] and [C*] generate H,(W,Y) and H,(W, Y} ), respectively. Consider
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the Poincaré duals PD[C] € H?(W, Y3(K)) and PD[C*] € H?>(W, Y); by a slight
abuse of notation, we will also use PD[C] and PD|[C *] to denote the images of these
classes in H2(W). Then PD[C] restricts to PD[K] € H?(Y), and it generates the
kernel of H2(Wy(K)) — H?(Y;(K)). In particular, if t and t’ are spin® structures
on W, (K) whose restrictions to Y, (K) (resp. Y') are the same, then they differ by a
multiple of PD[C] (resp. PD[C *]).

Let F be a rational Seifert surface for K, and assume that [0F] = dA — ku in
H;(0(Y ~ nbd(K))). We can cap off F in W, (K) to obtain a closed surface F?
To understand this surface, it helps to imagine attaching the 2-handle in two steps:
First, attach S! x D? x [ to Y x I, gluing S! x D? x {0} to nbd(K) x {1}; and
then attach the 2-handle along S! x D? x {1}. Inside S! x D2 x I, 9F x {0} is
homologous to (d parallel copies of 1) x {1}; let G be a surface joining them, and
let F=FUGU (d parallel copies of the core of the 2-handle). The homology class
[ﬁ] € H(W) does not depend on the choice of G. Since [ﬁ] maps to d[C] in
H(W,Y) and to k[C*] in Hy(W, Y, (K)), it follows that [13]2 =dk.

We may represent W by a doubly pointed Heegaard triple diagram (X, e, 8, p,
w, z) with the following properties.

e The diagram (X, o, B, w, z) represents (Y, K), as above. Moreover, there is an arc
to from z to w that meets B, in a single point and is disjoint from all other & and
B curves.

* The curve B meets g in a single point xo and is disjoint from the remaining o
curves.

* The curve yg is a A-framed longitude that meets B once and is disjoint from
the remaining § curves; it is oriented with the same orientation as K. For i =
1,...,g— 1, y; is a small pushoff of 8;, meeting B; in two points.

* The points w and z lie to the right of y, (with its specified orientation).
We say that (X, e, 8,y,w, z) is adapted to (Y, K, 1).

Remark 4.1. If b1 (Y) > 0, we will further assume that (X, &, 8, w) is admissible for
all torsion spin structures on Y. Indeed, let I1,g denote the group of («, B) periodic
domains satisfying n,, = 0, and define I1,, analogously. Then I1,g = H>(Y) and
yy = H>(Y1(K)). Because K is rationally null-homologous, every element of IT,g
must have n,, = n;, so the multiplicity of B, in its boundary is 0. Furthermore, if
k # 0, there is a natural isomorphism ITog = Ilgy, given by adding “thin” periodic
domains in ITg, (see Section 5.2); thus, the multiplicity of y, in the boundary of any
element of Iy, is also 0. (If kK = 0, then Iy, = I1,g @ Z, where the generator of
the Z factor is given by P plus appropriate thin domains, but we will rarely need to
consider this case.)

8In [45], the notation F is used for what we call C.
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Orient the curves ag, Bg, Vg so that #(ag N Bg) = #(yg N Bg) = #(te N Bg) = 1.
Orient the remaining «, B, and y curves arbitrarily, except that 8; and y; are assumed
to be oriented parallel to each other fori = 1,..., g — 1. There is a triply periodic
domain P withn,(P) = —k, ny,(P) =0, and

g—1
0P = —dag —kBg + dyg + Z(aiai + bi Bi)

i=1

for some integers a;, b; (using the specified orientations). This periodic domain repre-
sents the class of a capped-off Seifert surface in H, (W) (K)). We may also view P as
a relative periodic domain, as in the introduction. There is a slight caveat: To compute
Alexander gradings using Proposition 1.3, we let w and z denote the points on yg
closest to w and z respectively; we then use 5 (P) and nz (P) in place of 4, (P) and
nz(P)in (1.13).

If k > 0, then the diagram (X, ¢, B, y, w) is admissible since P has both positive
and negative coefficients. If £ < 0, an adapted diagram is not necessarily admissible.
We can achieve admissibility by winding, as discussed below.

The self-intersection number of the homology class represented by P is given by

[P]2 = (0g P -0gP) = (0gP -0, P) = (0y P - 04 P). “4.1)
In this case, this formula gives
[P]2 = (=dk)(Bg - vg) = dk,

as expected.

As discussed above, let K; C Y, (K) be obtained from a left-handed meridian
of K. Let z’ be a basepoint on the other side of y, from w. The Heegaard diagram
(X, a,y,w,z) then represents K, with the specified orientation.

We now show how to relate the Alexander gradings for (Y, K) and (Y,, K,) in
terms of Heegaard diagrams. Let ©g,, € Tg N T), denote the standard top-dimensional
cycle in CF(X, B8, y, w).

Lemma 4.2. Foranyx € To N Tg, q € To NTy, and Y € m2(x, Ogy, q), we have

k+d
Qi 2(6) = kA, (@) = dn(9) + knzr () = (6 + () + 5 @42)

and
(c1(sw(¥)), [P]) = 2d Ay 2 (X) + 2dny (Y) —2dn(Y) —k (4.3)
=2kAy 7 (qQ) + 2kny(Y) — 2kny, (¥) +d. 4.4)
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Vg

| T Qg

Figure 4. Winding y, in the case where k > 0. The numbers represent the local multiplicities
of the triply periodic domain P.

Proof. To begin, we may assume that the Heegaard diagram contains a “winding
region” in a tubular neighborhood of B¢, shown in Figure 4 in the case where k is
positive. Specifically, we wind the y curve |k| times in a direction specified by the
sign of k, so that every spin® structure on Y, (K) is represented by a generator that
uses a point in the winding region. When k < 0, this further guarantees that the triple
diagram (X, &, 8, y, w) is admissible, since 7y, (P) = 0 and P has both positive and
negative coefficients. The general case will then follow by tracing through the proof
of isotopy invariance.

Up to permuting the indices of the B curves, let us assume that x consists of points
xj €a; NP;for j =1,...,g. Inparticular, xg is the unique point in g N B, which
is located in the winding region. For j = 1,..., g — 1, the local multiplicities of P
around x; are ¢j,cj +aj,c; + aj + bj,c; + b; in some order (for some c; ), while
the local multiplicities at x, are 0, d, d — k, —k as in Figure 4. Hence, we have

d—k S aj +b;
m(P) = ==+ 3 (0 +257)
j=1
and
ng(P)+nz;(P)=d —k.
Foreachx € Ty NTg and eachi = 1,..., |k, let x; € Ty N T, be the gener-

ator consisting of the ith point of ag N yg over from xg, together with the points
of a; N y; that are “nearest” to x; for j = 1,..., g — 1. These generators all rep-
resent different spin® structures on Y, (K). Let ¥x; € m2(x, ®gy, X;) be the class
whose domain consists of g small triangles W,{, ;» where w,i ; 1s supported in the wind-
ing region (having positive coefficients if k > 0 and negative coefficients if k < 0),
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and for j =1,...,g—1, w,{i connects x; to its “nearest point” in a; N y; (and is
independent of 7). It is easy to check that

(i,0,i —1) ifk >0,

(nw(Yx,i) nz(Yxi) nz (Ux,i)) = {(1 —i,0,—i) ifk <o0.

In particular, ny, (Yx,;) — nz/(Yy,;) = 1 in all cases.

We begin by showing that (4.2) and (4.3) hold when ¥ = ;.

Let P’ be obtained from P by adding copies of the small periodic domains
bounded by B; —y; fori = 1,...,g — 1. Then P’ is a relative periodic domain
for K. We consider each of the terms in (1.13). We have y(P’) = j(P). Let  and
Z be the points on B closest to w and z’, respectively; then

nu~,(P/) +n§(P/) =ng(P)+ns:(P)=d —k.

Finally, forx € T, N Tg andi = 1,...,k, we have

d—k
ny(P) — ——+di ifk >0,
nX[ (P/) = d 2 k
nx(P)—T+d(1 —i) ifk<0
d—k
= ny(P) — 5 + dny (Yx,i)-
For j =1,..., g — 1, the local multiplicities of P at x; are the same as those of P’

at the nearest point. Combining these facts, we see that

d—k
dAw,Z(X) - kAw,z’(Xi) = _dnw(l//x,i) + T
d+k
= —k —dny (i) + %
d+k
=dn;(Yx,i) + knz(Yxi) — (d + k)ny (i) + 5

as required.
To prove (4.4), we use the first Chern class formula from [42, Proposition 6.3].°
The local contribution of Wéi to the dual spider number o (Yy;, P) is ¢j for j =

9There is a sign inconsistency in the definition of the dual spider number in [42, Section 6.1]:
if we compute intersection numbers in the usual way, it should be

o(Y, P) = nyx)(P) —#a Ny P) —#(b NdgP) —#(c NI, P),

rather than with + signs throughout. Also, the term #(dP) is a signed count of the curves in dP
relative to some fixed orientations (which are the ones used to define the parallel pushoffs 9/, P,
etc.)
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1,...,g— 1andeither di (if k > 0) or d(1 — i) (if kK < 0) for j = g. Note that the
latter equals 714, (Y, ) in either case. Therefore,

{c1(5w (Yx,i)), [P])
= {(P) +#(0P) — 2ny (P) + 20 (Yx,i, P)

g—1 g—1
— 7(P) + (—k +3 (@ + bj)) —2.0+ 2(dnw(1/fx,i) +> cj)
=1 =1
g_lj J
= J(P) =k + > (aj + bj +2¢;) + 2dny ()
j=1

= 1(P) + 2nx(P) —d + 2dny (¥x,i)
= 1(P) + 2nx(P) —ng(P) —nz(P) — k + 2dny (Yx,i)
=2dAy (X) +2dny, (Yx,i) —2dn (Vi) — k,

as required.

Now, we consider an arbitrary triangle ¥ € m>(x, @g,, q). (Assume that k > 0;
the other case follows similarly.) Choose r € Z and i € {1, ..., k} such that

ny () —nz(Y) =rk +1i.

Lety' =y —rP € m»(x, ©g,,q); then ny, (¥') —n(y') = i. The composite domain

¢ with D(¢) = D(Y') — D(Yx,i) is adisk in 72(x;, q), 50 S (Y') = s (Yx,i). We
then compute

Ay, (Xi) — Aw 2 (@) = nz(P) — ny(P)
= nz/(w/) — nz/(l/fx,i) - nw(‘/’/) + nw(‘/’x,i)
= () — () — rd + 1

and
dAw,z(X) - kAw,Z’(q) = (dAw,z(X) - kAw,z/ (Xi)) + k(Aw,z’(Xi) - Aw,z’(q))

=—di + # +k(ny () —ny()—rd +1)

= i+ T k) )~ rak
d+k
= k(1) = ma () — Ay () — = () + =
d+k

= dn () + knz () = (k + dmu (V) + .
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as required. Similarly, we have

(c1(5w (). [P]) = (c1(sw (¥ + rP)).[P])
{c1(sw(¥') + r PD[P]). [P])
(c1(sw)(¥). [P]) +2r[P?
{c1(sw)(Wxi). [P]) + 2rkd

2dAy - (X) —k +2di + 2rkd
2dAy (X)) + 2dny, (V) —2dn(¥) — k,

as required.
Finally, (4.4) follows immediately from (4.2) and (4.3). ]

Remark 4.3. In [45, Proposition 2.2], Ozsvath and Szabd construct a bijection
Ey ) k: Spin(W;(K)) — Spin°(Y, K)
characterized by the property that for ¥ € 7> (x, Og,, q),

EY,)L,K(gw ) = %w,z(x) + (nz () —ny(¥)) PD[u]

(where, as above, our u is the negative of theirs). Lemma 4.2 gives an explicit and
diagram-independent description of Ey,; g: for any t € Spin®(W,(K)), Ey, k(t) is
the relative spin® structure that satisfies

(c1(), [F]) +k

Gy,xk(Eyk(t) =tly and Ayg(Eya k(1) = °d

Let W) = W/{ (K) denote W, with orientation reversed, viewed as a cobordism
from Y (K) to Y. This cobordism can be represented by the triple diagram (X, e, y, B).
The periodic domain P still generates H,(W;); with respect to the reversed ori-
entation, we have [P]> = —dk. Let ©,4 be the corresponding top generator. The
following is then the analogue of Lemma 4.2 for (¢, y, B) triangles.

Lemma 4.4. Foranyqe€ Ty, NT,, x € Ty N Ty, and € m2(q, ©yp.,X), we have

k +d

K2 (@) = dAu 2 (%) = dnz () + Kz () = (K + D () = === (45)

and

(c1(s0w (W), [F]) = 2k Ay 2 (q) + 2kny (Y) — 2kn (¥) +d (4.6)
=2d Ay, (X) + 2dn;(Y) — 2dny (¥) — k. 4.7)
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Proof. There is a disk ¢ € m2(0Og,,, ©,,8) consisting entirely of small bigons outside
the winding region, with ny, (¢) = n;(¢) = nz(¢) = 0. Hence, forany q € To, N T,
x € Ty N Tg, and ¥ € 7m2(q, ©yp, %), we have aclass ¥/ = ¥ * ¢ € m2(x, Oy, Q).
We now apply Lemma 4.2 to this class. |

As a consequence of either of the two previous lemmas, we see that the cosets in
Q/Z in which the Alexander gradings for Y, (K) are contained is closely connected
to spin€ structures on W) (K).

Corollary 4.5. Ler t € Spin®(Y,(K)), and let v be any spin® structure on Wy (K)
extending t. Then

c1(v),[P]) —d
Ay, x, (1) = % (mod 7). (4.8)
Proof. Apply (4.4) to any triangle representing v. |

5. Large surgeries

In this section, we will restate the large surgery formulas from [45, Section 4] and
[11, Section 4.1] with more details about the Alexander and Maslov gradings, and
prove some key lemmas that will be needed for studying the surgery exact triangle
in Section 6. Throughout this section, let A denote a fixed longitude for K as above,
corresponding to some integer k # 0. We will be studying Heegaard diagrams for
Y3 +mu(K), where m is a large positive integer.

5.1. Well-adapted Heegaard diagrams

Assume we have fixed a Heegaard diagram (X, e, 8, Y, w, z, z’) adapted to A-surgery
on K. If k < 0, we wind y, to achieve admissibility as in the proof of Lemma 4.2.
Let A be an annular neighborhood of ¢ containing all three basepoints w, z, z’, and
let A’ C A be a smaller such neighborhood. For any natural numbers 0 < b < m,
let §™b = (8;"’17, ey 8?’17) be a tuple of curves obtained from y as follows. For
i=1,...,g-128"
¢ is obtained from a parallel pushoff of yg by performing m left-handed Dehn twists

is a small translate of y; meeting it in two points. The curve

parallel to B¢, where b (resp. m — b) of these twists are performed in the component
of A~ A’ on the same side of B, as w (resp. z). (See Figure 5.) We say that the
Heegaard diagram (X, e, §mb w2, z') is well-adapted to (A + mu)-surgery on K.
We call A the winding region. If m and b are understood from context, we omit the
superscripts from the § curves.
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I
S o N A A

Figure 5. The winding region of a well-adapted Heegaard diagram, in the case where m = 6
and b = 3.

The Heegaard triple diagram (X, e, 8, 8™?, w, z,z') is adapted to (A + m1)-surgery
on K. Hence, all the results of the previous section apply, where we take k 4+ dm in
place of k throughout.

As shown in Figure 5, let u be a basepoint located on the w side of B¢, in between
vg and 8g. This will be needed later on to understand the effect of («, y, §) triangles
on the Alexander grading.

We will typically use s, t, and u to refer to spin® structures on Yop, Yoy, and Y5,
respectively, and use v for spin® structures on the various cobordisms between them.
As a notational convenience, define G(a, 8) = Ty N Tpg and

G(a, B, w,s) ={xe Ty NTg | sy (x) = s}, (5.1)

and likewise for the spin® decompositions of the other complexes.

5.2. Periodic domains

We now discuss the periodic domains present in the Heegaard multi diagram (X, &, 8,
y.9). ‘

To begin, for any j = 1,..., g — 1, there are small periodic domains S é , and
S;{s with as};’y = fB; —y; and 85}{8 = y; — 6;, supported in a small neighborhood of
each pair of curves. We will refer to these as thin domains. As in the previous section,
the groups Ilyg, T4y, and Iy are naturally isomorphic, by adding thin domains as
needed.
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Let P, and P;s be the triply periodic domains for (&, B, y) and («, B, §), respec-
tively, which correspond to P from Section 4. Specifically, we have

nw(Py) = ny(Ps) =0

and
g—1
0Py = —dag —kBg + dyg + Y _(aia; + biyi). (5.2)
i=1
g—1
0Ps = —dagy — (k +dm)Bg + dbg + Z(a,-oz,- + bi8;). (5.3)

i=1
There is a (B, y, 8) triply periodic domain Q with
00 =mPg + yg — 8.

so that
P, — Ps = dQ + thin domains.

Finally, define the (o, y, §) periodic domain
m k
v v
where v = ged(k, m); it has

dm k+dm k m 52
oR = —Tag + Vg — =8 + " Z(a,'ai + biy;).

i=1

v

The multiplicities of the periodic domains at the various basepoints are as follows:

‘ Ny ‘ ng ‘ nzr | Ny
P, |0 | & d |0
Ps |0 | —k—dm|d |d
0 |0 m 0 —1
d k
R 0 0 Tm -3

Let ITgpy s denote the group of integral (c, B, y, §) periodic domains with 7, = 0,
and let I:Iaﬂ s denote its quotient by the thin domains. Define I1qg,, ITogs, Iy s, and
I1g,s and their barred versions similarly. The following lemma is left as an exercise
for the reader.

Lemma 5.1. The group ﬁaﬂyg is free abelian of rank 2 + b1 (Y), generated (over Z.)
by Py and Q together with any basis for T1ag = H>(Y).
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For any domain S, define
N(S)=dnz(S)+kny(S)+dmny(S)— (k +dm + d)ny(S). 5.4)

For any multi-periodic domain S (including those with non-zero multiplicity at w),
we have N (§) = 0, since any such domain is a linear combination of P,, Q, X, thin
domains, and elements of Ilyg, and N vanishes for each of these. Observe that for
different types of domains, the formula for N (S) simplifies considerably depending
on which basepoints are in the same regions. These simplifications are noted in the
following table:

Type of domain N(S)

(a, B) d(nz(S) —nw(S))

(a,y) k(nz(S) —nw(S))

(o, 8) (k +dm)(nz(S) —ny(S))

B.y), (y.8),0r(p,8) | 0

(a,B.7) dnz(S) +knz(S) — (k + d)ny(S)

(o, 7, 6) knyg(S) +dmny(S) — (k + dm)ny(S)

(,8,8) dn,(S) + (k + dm)ny (S) — (k +dm + d)ny (S)
(B.y.6) dnz(S) +dmny(S) — (dm + d)ny(S)

5.3. Topology of the cobordisms

Let us consider the topology of the cobordisms associated with the quadruple diagram
(Z,a,8,y.98).

The construction from [40, Section 8.1.5] gives rise to three separate 4-manifolds
Xaﬁyg, Xaygﬂ, and Xaglgy, with

8Xaﬁy5 = —tgp U —Yﬂy L —ng U Ygs,
3Xay5ﬂ = —Yay [N —Yy,g [N —Yaﬂ ] Ya,B’
8Xa3ﬂy = —Yus U —Yglg L —Yﬁy L Yay.

Each one comes with a pair of decompositions:

Xot,ByS = Xaﬁy UYD(y XotyS = XaﬁS UY,g,g Xﬂy&v (55)
Xoysp = Xays Urys Xasp = Xayp Uy, s Xysp, (5.6)
XaSBy = Aaép UYag Xaﬁy = Aady UY,;V X8,By- (57)

The 3-manifolds in question are

Yocﬂ =7, Yay = YA(K)? Ya& = Y)L-i—mu(K)’
Yg, = #71(S x S?), Yys = L(m, 1) #871 (S' x §?), Ysp = #571(S! x §?),
Y)’ﬂ = _Y,BV’ Y5V = T 1Iys, Yﬂg = —Yglg.

Note also that Xy,5 = —Xggy, and so on.
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Let Xyp,, Xopys, €tc., be the manifolds obtained by attaching 3-handles to kill all
of the S! x S? summands in Yg,, Y,s, and Ysg, as appropriate; analogues of (5.5),
(5.6), and (5.7) hold for these manifolds as well. In each case, there are isomorphisms
making the following diagram commute:

lg |=

H*—»ﬁ*

(where * is any 3- or 4-element ordered subset of {«, 8, y, 8}). In particular, the peri-
odic domains { Py, Ps, Q. R} represent homology classes which survive in H, (X, aBys)
and satisfy the relations

[P = [P]—dl0]. [R]="1p,] + “l0]

(Hence, we may also write [R] = T[Ps] + @[Q].) The same relations also hold
in Hy(Xqys8) and Hz(Xysp,), which are defined analogously.

Let Wyg,, (resp. Wysp) be obtained from X, apy (resp. )?mg,g) by gluing a 4-handle
to the S boundary component left over from Yg, (resp. Ysg). These cobordisms are
simply the 2-handle cobordisms W (K) and W, u
cannot do this with Xy, s, since the boundary component left over from Y, 5 is L(m, 1)
rather than S3. Instead, let Ways be obtained from )?ay,g by deleting a neighborhood
of an arc connecting Yy, and L(m, 1). This is a cobordism from Y (K) # L(m, 1) to
Y; +mu given by a single 2-handle attachment.

Let 5% y denote the unique torsion spin® structure on Yg,. Let ®g, and O, be
the standard top-dimensional generators for CF=0 (Z,8,y,w) and CFfO(E, v.B,w),
both of which use the unique intersection point in B, N y, as shown in Figure 5.
Define 9%5, ®ps, and Ogp analogously.

The situation for Y, 5 is a bit more complicated. The triple diagram (X, y, 8, 4) is

(K), respectively. However, we

an adapted diagram for m-framed surgery on the unknot in #~1(S! x §2), where B,
is the meridian and §, is the longitude, and —Q plays the role of P from Section 4;
this confirms that Y, 5 is indeed as describe above. Indeed, if we let B, denote the
Euler number m disk bundle over S2, which has boundary L(m, 1), the 2-handle
cobordism associated to (X, y, 8, 8) is diffeomorphic to (#871S! x S2) x I) | By,
and Q corresponds to the homology class of the zero section in B,,.

Let 52 s € Spin“(Y,s) denote the canonical spin® structure from [45, Definition
6.3]; that is, 52 P the unique spin® structure on Y, s that is torsion and has an extension
t to X, g5 which satisfies (c; (t), [S?]) = £=m. The m intersection points of yg N §g can
be paired with the top-dimensional intersection points of y; N6; (j =1,...,8—1)
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to give m canonical cycles in CFSO(E, y,8,w), each of which represents a different
torsion spin® structure on Y, 5. Let ®,5 denote the generator which uses the point of
vi N 8,- that is adjacent to w, z’, and u, as shown in Figure 5.

Lemma 5.2. The generator ®,; represents 98 5

We prove this by studying the diagram (X, 8, y, §), which describes the same
4-manifold as (X, y, B8, 8§) but with reversed orientation. The following result is a
simple adaptation of [42, Section 6]; see also [9, Section 5].

Lemma 5.3. For each integer | > 0, there are positive classes rl+, 7, €m2(0py, 0y,
©gs), which satisfy

nw(f]+) = Wv nz(fl+) = w,
Il+1 I+ +2
no (1) = w no(e7) = w

(In particular, the intersection of the domain of r(;" with the winding region is the small
triangle containing u in Figure 5.) Moreover, each of these classes has ;L(rli) =0
and #M(rli) = 1, and these are the only classes in 72(©gy, ©,5, ") (for any " €
Tg N Ts) with rigid holomorphic representatives.

Proof of Lemma 5.2. A direct computation using [42, Proposition 6.3] shows that
(c1(sw (1)), [Q]) = (21 + )m.

Since the restriction of 5w(rli) to Y5 18 Sy (0©,5), this shows that $,,(0,5) is the
canonical spin€ structure. u

For each of the 4-manifolds X4 described above, let Spin(c) (X«) denote the set of
spin€ structures that restrict to 5% , on Ygy, s?/ sonYys, and 5gﬂ on Ysg, as applicable.

Note that all such spin® structures extend uniquely to X.

Remark 5.4. Assuming that k and k + dm are both non-zero, the groups H>(Y,p),
H>(Y4y), and H(Yys) are naturally isomorphic. Moreover, these isomorphisms are
realized through the cobordisms X; that is, any element S,g € H>(Y,g) is homol-
ogous in Xy, to a unique element Sy, € H(Yyy ), and so on. As a result, if s €
Spin®(Yeg) and t € Spin®(Yy, ) are the restrictions of some v € Sping(Xyg, ), then
(c1(s), Sep) = (c1(t), Say). In particular, s is torsion if and only if t is torsion. (The
same applies for the other cobordisms.)

We conclude this section by discussing the intersection forms on the 4-mani-
folds X«. While H» ()?aﬁyg), Hz()?aygﬂ), and Hz()?a(gﬁy) are all isomorphic groups,
their intersection forms are quite different, as we now explain.
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In Xopy s, the classes [Py ], [Ps], [Q], and [R] can be represented by surfaces which
are contained in Xog,, Xo8s, Xgys, and Xg, s, respectively. Using the formula (4.1),
we can compute that

[P,))> = dk, [Ps)* =d(k+dm), (5.8a)
[0 =-m, [R]*= —M. (5.8b)

The decomposition (5.5) shows that
[Py]-[R] = [Ps]-[Q] =0, (5.9

since each pair can be represented by disjoint surfaces. The intersection numbers of
the other pairs of generators can have non-trivial intersection numbers which can be
worked out using bilinearity.

On the other hand, in Xy,s, the above-mentioned classes have different self-
intersection numbers (up to sign) and different pairs which are disjoint. Namely,

[P,]* = —dk, [Ps]* =—d(k +dm), (5.10a)
[Q)> = -m, [R]= —M, (5.10b)
[R] - [Ps] = [Py]-[Q] = 0. (5.10¢c)

The signs of [P,]? and [Ps]? are reversed because they are contained in X,p and
Xqsp, respectively, which are diffeomorphic to —Xgyg, and —X,gs. Note that these
determine the reversed cobordisms W; (K) and W} +mM(K ). Similar analysis applies
to Xagﬁy.

5.4. Polygons, spin‘ structures, and Alexander gradings

We now describe the Alexander grading shifts and ¢ evaluations associated to Whit-
ney triangles and rectangles in our Heegaard multi-diagram. If b, (Y) > 0, then the
Alexander grading may depend on the choice of homology class of Seifert surface; if
so, we fix such a choice for K, and use the corresponding choices for K and K 4, .

Throughout the rest of the paper, we will generally refer to elements of T, N Tg
as x or y, elements of T, N Ty, as q or r, and elements of Ty, N T as a or b. Also, as
a notational convenience, let us define

A(X) = Aw,z(x)’ A(q) = Aw,z’(q)’ A(a) = Aw,z’(a),
AX) = dAy - (x), A(Q) = kAw(q), A(a) = (k +dm)Ay . (a).

(That is, A denotes the other normalization convention for the Alexander grading, as
discussed in footnote 4.)
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Proposition 5.5. Letx € T, NTg, q € To NTy, anda € Ty, N Ts.
(1) Forany ¥ € m(x,0gy,q),

A(x) — A(Q) = dn (V) + knz ()

—(k+d)nw(w)+¥, (5.11)
(c1(5w (). [Py]) = 24(x) + 2dny (Y) — 2dn (y) — k. (5.12)

= 24(q) + 2kn, (¥) — 2kny (V) + d. (5.13)
(2) Forany ¥ € m1(q, ©,5,a),

A(q) — A(a) = kny(¥) + dmny ()

—(k+dm)ny,(¥) — dTm (5.14)
(e1(eu (W)L [R) = =A@ + 20k + dm)(nu(p) = nu (V)
—k—dm +d) (5.15)

— %(ZX(q) ¥ 2kny (W) — 2kna (Y) —k +d). (5.16)
(3) Forany ¥ € m>(a, O, X),

A(a) — A(x) = dn, (V) + (k + dm)ny ()
—(k+dm+ dyny () — W,

(c1(5w(¥)), [Ps]) = 2A4(a) + 2(k + dm)ny, (¥)
—2(k + dm)ny (V) + d (5.18)

= 2A(x) + 2dn, (V) — 2dny (¥) — (k + dm). (5.19)

(5.17)

Note that the linear combinations of basepoint multiplicities in (5.11), (5.14),
and (5.17) are all specializations of N () from (5.4).

Proof of Proposition 5.5. The statements about («, 8, y) and («, §, B) triangles are
given by Lemmas 4.2 and 4.4, respectively, where for the latter we take kK + dm in
place of k. It remains to prove the three statements about («, y, §) triangles.

Letqe Ty NTy,ae Ty NTs, and ¢ € m2(q, O, s, a). Observe that n, () =
nyw (¥) since w and z are only separated by f.

Choose an arbitrary triangle ¢ € m>(x, ®g,,, q) for some x € Ty N Tg. By (5.11),

~ ~ k+d
) — A@) = dn=(6) + kna@) — (k + dyna(@) + 0
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Let T = 7,7 € m2(©@p,, ©ys, Ops) be the class represented by the small triangle

in the center of Figure 5 (see Lemma 5.3); it has ny, (t) = n,(t) = ny(r) = 0 and
ny(t) = 1. Let 0 be the composite domain with D (o) = D(P) + D(¥) — D(7).
This is almost the domain of a triangle in > (x, ©gs, a), except that the boundary of
o includes y, with multiplicity

r=nzy(0)—ny(o)
=nz(P) +nz(¥) —nu(@) —nu(¥) + 1
= ny (@) +nz () —ny(p) —nu(¥) + 1.

Therefore, there is an actual triangle class 0’ € 7, (x, ©gs, a) with D(0’) = D(0) —
rQ. In other words, the composites p; = ¢ * ¥ and p, = 0’ * T are each quadrilaterals
in m2(x, ©g,, ©,5,a) whose domains satisfy D (p1) = D(p2) + Q.

Using Lemma 4.2 (with k 4+ dm in place of k), we now compute

Ax) — A(a) = dn;(c") + (k + dm)nz(6") — (k + dm + d)ny (o)
N k+dm+d

2
=dnz(0)—dmr + (k +dm)n,(6) — (k +dm + d)ny (0)

k+dm+d
2
=dnz(¢) +dn;(¥) —dm(nz () + ny(¥) —nw(@) —nu(Y) + 1)
+ (k +dm)ny (¢p) + (k + dm)ny (¥)

—(k +dm + d)ny (@) — (k + dm + d)ny (V) + W
=dn;(¢p) + kny(¢p) — (k + d)ny(P) + kny(Y) — (k + dm)ny, (¥)
k—dm+d
+dmny,(¥) + —

Subtracting, we have

dm

@) = A@) = knzr (9) = (k + dmyn (p) + dmny () = .

which proves (5.14). Likewise, using (5.8), we have
{c1(sw(¥)). [R])
= (c1(sw (1)), [R])

= {c1su(p2) + r PDIQI). [R])
k+dm
Vv

= (c1(sup2)) + 20 PDIO]. 2 Py] + [0])
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3

Kdm o (su(@). ) + 2LE 4™

= —{c1(sw(0”). [Ps]) + (0]

Vv v

= @@ + 2k + dm)(r20") — mp(0) + ) +

2k +d
2t dm)

v

(m)
(=m)
= %(221'(21) +2(k + dm)(n2(0) — nyw(0)) + d) + M(l —2r)
- %(221‘(51) 4 (k 4+ dm)(2n,(0) — 20y (0) + 1 —2r) + d)
- %(25@) + (k + dm)2ny(0) — 21y (0) + 1) + d)
= %(221‘(3) + (k + dm)2ny(¥) — 200 (W) — 1) + d). .
Next, we turn to rectangles. Recall that for any rectangle p, we define

N(p) = dnz(p) + knz(p) + dmny(p) — (k + dm + d)ny(p).

Proposition 5.6. Letrx € T, N Tg, q € To NTy, anda € Ty, N T;.
(1) Forany p € m2(x,0Og,,0,5,a),

Z@—&m=ww+53§ﬁﬁ (5.20)

(c1(5w (). [Py]) = 24(x) + 2dny (p) — 2dnz(p) — k. (5.21)
(c1(zw(p)). [R]) = %(221“@) +2(k + dm)(ny(p) — nw (p))

—k—dm+d), (5.22)

{c1(50(p)). [Q]) = mQ2ny(p) — 21z (p) — 1). (5.23)

(2) Forany p € m2(q, ©ys, Osp,X),

- - k+d+2d
A - A = W (p - — =, (5.24)

(€15 (p)). [R]) = ZQA(Q) + 2k (p) = Zenzs (p) — k +d). (529)
(15w (p)), [Ps]) = 24(x) + 2dn: (p) — 2dny (p) — (k + dm),  (5.26)
(c1(5w(0))- [Q1) = m(2nu(p) — 21 (p) — ). (527)
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(3) Forany p € ma(a, O3, Op,, q),

A~ @ = ¥ (o)~ 2. (5.28)
{c1(sw(p)). [Ps]) = 24(a) + 2(k + dm)ny (p)

—2(k + dm)ny(p) + d, (5.29)

(c1(5w(p)). [Py]) = 24(q) + 2kn(p) — 2kny(p) + d, (5.30)

<C1(gw(p)’ [Q])) = 2nw(:0) - 21’!2(,0) + m. (5.31)

Proof. We consider the case of (¢, 8, y, §) rectangles; the other two cases are similar.

Forany x € Ty N Tg,a € Ty N Ts, and p € ma(x, Og,, O, 5, a), we may choose
qe Ty NTy, ¥ € ma(x, 0y, q), and Y, € m2(q, Oy, a) such that s, (Y1) =
Sw () x5, and Sy (¥2) = 5w (p)|x,,, - Moreover, by adding copies of X to (say) ¥2,
which does not change the spin® structure condition, we may assume that n,,(p) =
nyw(¥1) + ny(¥2). Hence, S = D(p) — D (Y1 * ¥») is an (integral) quadruply peri-
odic domain with 7, (S) = 0. Since the function N vanishes on all periodic domains,
we have

A(x) — A(a) = (A(x) — A(q)) + (A(q) — A(a))
=W+ v -

which proves (5.20).

Next, we consider the spin® evaluations. Up to thin domains, we have S = xP), 4

YR, where x = —"ZT(S) and y = —"""T(S). Note that x and y need not be integers.

The decomposition Xyg,5 = Xegy Uy,, Xays shows that classes [Py] and [R] can
be represented by disjoint surfaces in X85, 50 [Py] - [R] = 0 in the intersection form
on Xgy5. Using (5.8), (5.9), and (5.13), we compute

(c1(sw(0)), [Py]) = (c1(sw (Y1 * ¥2) + PD[S]), [P,])
= (c1(sw (Y1 * ¥2)) + 2PD[S], [Py ])
= (c1(sw(¥1)). [Py]) + 2x[Py]* + 2y[R] - [Py]

= 24(x) + 2d(ny (Y1) — n:(Y1)) —k — 2dk - nZIES)

= 2A(x) + 2d(nw (Y1) — (1)) — k —2d(n(p)
—nz (Y1) —nz(Y2))

= 2A(x) + 2d(nw (Y1) + nz(¥2) — nz(p)) — k

= 24(x) +2d(ny (Y1) + nw (V2) — n2(p)) —k

= 24(x) + 2d(nw(p) — nz(p)) — k.
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which proves (5.21). (Note the similarity between this equation and (5.13).) We
observe that formula (5.22) follows from (5.15) in a similar manner. Finally, to
prove (5.23), we have

m

(€15 (p)). [21) = £ (e (p)). [R]) = (e (5 (o). [Py])
= TQA@) + (k +dm)2ny(p) = 2 (p) = 1) +d)
— Z QA +2d(mu (0) ~ n:(p)) — k).

as required. |

5.5. The filtered large surgery formula

We now focus on the special Heegaard diagrams (X, o, §) associated to Y3 1, (K),
adding some additional details to the discussion from [38, Section 4], [45, Section 4],
[11, Section 4.1], and elsewhere. For ease of notation, let us write

Win = Wyymu(K) and W, =W, (K);

these are the cobordisms induced by (X, &, 8,8) and (X, e, 8, B), respectively.

For any 1 € Spin®(Y} 4, (K)), the set of spin® structures on W,, which extend
u form an orbit of the action of PD[C], where C denotes the core of the 2-handle
attached to Y, extended across Y x [I. For each such spin€ structure v, we have

{c1(v 4+ PD[C)), [F]) = (c1(v), [F]) + 2(k + dm),

so the values of {c; (v), [ﬁ]) taken over all such v form a single cosetin Z /2(k + dm).
Therefore, we can make the following definition.

Definition 5.7. For each u € Spin® (Y} 4, (K)), let x; denote the unique spin® struc-
ture on W,,, extending u such that

—2(k +dm) < (c1(xn), [F]) <0, (5.32)

and let 3, = xy|y. Let yy = x4 + PD[C], so that

0 < {c1(yw), [F]) < 2(k + dm). (5.33)
Define
su = 5= ((er (), [F]) + k + dm), (5.34)
so that bt d b d
_ktdm o Krdm (5.35)

2d - 2d
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Finally, define

oo 2dsy —k —dm)* 1
Au = gr( W;;zséCu) - _( 4;(1( + dl’l’l) ) + Z (536)

Note that x,, and v, achieve the two lowest values of |{c;(v), [Ps])| among all
v € Spin®(W,)) restricting to u. (These two values may be equal.) In the special case
where (c1(xy), [Ps]) = 0 and (c1(yu), [Ps]) = 2(k + dm), there is a third spin®
structure whose evaluation is —2(k + dm), but this will not affect our arguments.
Finally, Corollary 4.5 implies that for any a € T, N T, we have the congruence

24(d) + k +dm +d = 2dsy, (mod 2(k + dm)). (5.37)
Remark 5.8. To justify (5.36), the grading shift formula from [42] gives

c1(xn)® —2x(W,) — 30 (W)
. .

fg\f.( I;/C;/ﬂaé,'cu) =
We have y(W,,) =1 and o (W,,) = —1 since W, is oriented to be negative-definite. To
compute ¢1(xy)?, the general formula is that for any ¢ € H?(W,),) whose restriction
to H?(dW,)) is torsion, we have
b FA 2
o2 = e (5.38)
[F]?
Here, we have [1‘?]2 = —d(k + dm) by (5.10), which gives (5.36).
To prove (5.38), consider the exact sequence

HW 0wy L m2 Wy S 12w,
Letr = (¢,[F]) and s = [F]*> = (j* PD[F], [F]). Therefore,
(sc —rj*PD[F],[F]) = 0.

Since i*(c) is torsion, ¢ evaluates to 0 on all classes in H,(W,,) coming from
H,(0W,,,), hence sc — rj*(PD[F]) evaluates to 0 on all classes in H,(W,,). By the
universal coefficients theorem, s¢ — rj * (PD[ﬁ ]) is therefore a torsion element, so for
some ¢t € N, ts¢ = trj*(PD[F]). By definition of the rational cup product square, we

have

r2

& = e uirj*@DIF), W) = e () = =

as required.
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Recall from Section 2.4 that CFK* (Y} 4my, Ki+myu. 1) denotes the doubly-
filtered knot Floer complex of K, 4. By ignoring the second () filtration, it is
canonically identified with CF*° (Y} 4, 11).

We define a pair of filtrations I, $ on CFK*°(Y, K, $,) by the formula

Iu([x,i, j]) = max{i, j — su}, (5.39)

LN . . 2dSu—d+k+dm
Ju(x,i,j]) = max{i — 1, — sy} + 2k + dm) . (5.40)

(Compare (1.5) and (1.6).) It is clear from the definition that the differential on
CFK®™ (Y, K, sy,) is filtered with respect to both I, and $y. Observe that I only
depends on u via the number sy, while ¢, also includes a shift that depends on
k +dm.

Theorem 5.9. If m is sufficiently large, then for every u € Spin® (Y 4m,.), there is a
grading-preserving, doubly-filtered quasi-isomorphism

Avw: CFK® (Ymus Katmp, 1) = CFK®(Y, K, sy)[Ax].

where the latter is equipped with the filtrations I, and $, making the diagrams

All
CFK® (Ya4mu(K), Kagmpy, 1) —— CFK®(Y, K, 5,)[Ay]

I e =

CF® (Y - 1) Wim:au CF®(Y, s)

and
Ay
CFK°°(Y,H_mM (K), Kp4mp- 1) —— CFK*®(Y, K, 54)[Ay]

A b

CF®(Y e 1) —— s CF®(Y, 3 + PD[K])
commute up to chain homotopy.

The bulk of Theorem 5.9 was proven by Ozsvéth and Szabd, apart from the pres-
ence of the second filtration and a slight technical issue regarding the definition of xy,
and v, (see Remark 5.14 below). We will follow through their proof while keeping
track of the second filtration, clarifying a few details along the way. (An analogous
result for large negative surgeries on knots in S, including the second filtration, was
shown by Kim, Livingston, and Hedden [8, Theorem 4.2].)

Consider any well-adapted Heegaard diagram (X, e, 8, ., 8 mb w, z, 7z ), as
described above. The reader should refer to Figure 5.

We begin by discussing the generators in &(er, §”?) more carefully. Let g be
the unique point of g N Bg. Label the m points of ag N &g’  in the winding region
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DPb—m. - - - » Pb—1 according to the orientation of o, . Thus, p; is on the z side of 4 if
[ < 0 and on the w side if / > 0, and ¢ lies between p_; and pg. For any x € G(«, )
and/ e{b—m,...,b—1},let X;"’b € &(a, §™?) be the point obtained by replacing
q with p; and taking “nearest points” elsewhere; these generators are called interior
generators. (We sometimes omit the superscripts if they are understood from context.)
There is a small triangle w;'fl’b € my (x;"’b, Osp.x) with

0,—1,0) ifl <0

" m,b . m,b Ty mbyy ' 541
(o (V) 1z W)z (V) {(1,o,z+1) if1 > 0. 4D

The remaining elements of &(a, 8™?), called exterior generators, are naturally in
1-to-1 correspondence with elements of G(a, y). For each q € G(a, y), let ¢
G(at, 8™?) denote the nearest exterior generator.

The spin® structures represented by the two types of generators in & (e, 8™?) are
governed by the following lemma.

Lemma 5.10. For any m > 0 and any 0 < b < m, the following hold.

(1) Forallx € &(a,B)andl € {b—m,....b—1}, 5, (x"?) € Spin (Va1 mu(K))
depends only on X and | and not on b. Moreover, the Maslov grading of X;"’b
is given by

QA(x)—2dl —k —dm)* 1
4d(k + dm) 4

g(x)") = gi(x) + —max(0,2]). (5.42)

(2) Foreach q € G(a, y), we have s, (™) = s, (q"?) — PD[K 4 mp]-

Proof. For statement (1), equations (5.19) and (5.41) give

(c1(50 (V23"). [Ps]) = 24(x) + 2d (- (05") — nu (Y1) — (k + dm)
= 24(x) —2d1 — (k + dm). (5.43)

Thus, s, (Y, ; i ) is completely determmed by x and / and is independent of b. The
same is therefore true of Su (X7 / ) By the usual grading shift formula, equation (5.42)
then follows because

c1(sw (W) + 1

~ ~ b ) b
(0 — E) = y + 2m, (7).

For statement (2), the curves 5;"’1’ are isotopic for all choices of b if we allow
crossing the basepoint; the only difference is the position of the basepoint w. To be
precise, there is a diffeomorphism

(S, e, 8™+ w) = (T, a,8mP,2)
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taking q"?*1 — ¢?. Thus, by [40, Lemma 2.19], we have
50 (@™ = 52(q™P) = 55, (q™") = PD[K 4 my]
as required. |

Definition 5.11. Following [45, Definition 4.3], we say that u € Spin®(Y 4, is
supported in the winding region of (X, o, §™P?) if every a € T, N Ts with s, (a) =
u is of the form X;”’b for some [, and for every pair of such generators a, b and
any ¢ € ma(a,b), 0D(¢) N 8 is contained in the winding region. (By Remark 4.1,
the multiplicity of 8, in the boundary of any (c, §) periodic domain is 0, so this
condition holds for a single ¢ € m,(a, b) if and only if it holds for every ¢.) We say
that u is strongly supported in the winding region if, additionally, for each generator
X; representing 11, we have ¢ (sy, (gb;'fl’b)) = 1y (equivalently, cl(gz(w;:’l’b)) = Yu).

The following lemma gives a more explicit characterization of what it means for
a spin® structure to be (strongly) supported in the winding region.

Lemma 5.12. Consider the diagram (X, a, §™°, w).

m,b

(1) Foranyx,y € To N Tg andi, j € {b—m,...,b— 1}, the generators X;
and y;-"’b represent the same spin® structure on Yy, if and only if for some
integer r,

Sw(X) — sy (y) = —r[K] (5.44a)

and
r(k + dm)

=] =Aw:(X) — Awz(y) — d

(5.44b)

(2) A spin® structure 1 is supported in the winding region of (X, e, 8™ w) if
and only if for some spin® structure s on Y and some constant L, we have

G, 8™P, w,u) = {X'ZE,IZ)JFL | x € G(a, B, w,s)}. (5.45)

(3) A spin® structure u is strongly supported in the winding region of (¥, &,
8™b w) if and only if

S(e. 8™ w ) = X4 |x€ Bl B.w s} (5.46)

Proof. For the “only if” direction of statement (1), suppose sy, (x;."’b) = 5w(y;"’b),

and choose any class ¢ € 75 (Xl'-”’b, y;”’b). Consider the concatenation p = ¥y ; * ¢ *

Yy, ;. The domain of p has boundary equal to &(x,y) (viewed as a 1-chain in & U 8)
together with r copies of 85, where r = n,/(p) — ny(p) € Z. This shows that e(x,y)
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is homologous to —r[K] in H1(Y). Moreover, B = d D(p) — r Ps (plus thin domains)
is a domain whose boundary is d e(x, y). Therefore,

AG) ~ 4() = 5 02(B) ~ nu(B))

= 12(p) — 1y (p) — g(nz(Ps) — nw (P5))

k+d
= ) ) + 12 W) — )+ )
iyt

as required. The “if” direction follows similarly, by applying the same construction in
reverse.

For the “only if” direction of statement (2), suppose 1 is supported in the winding
region. If xl'."’b and y;."’b are generators representing u, let ¢ € o (x;" b, y;."’b) be a
class whose §, boundary segment is contained in the winding region. Applying the
above construction, we find that r = 0. Thus, s, (X) = s, (y) and A(x) — A(y) =
i — j, so both le’b and y;"’b are of the stated form. Moreover, given any generators
X,y With 5, (X) = 4, (y) and sy, (x;"’b) = u for some 7, we can find some j for which
Sw (y}"’b) = u as well, and therefore i — j = A(X) — A(y). The converse follows
similarly.

Finally, for statement (3), we apply (5.43) and (5.34). ]

Lemma 5.13. Let (X, o, B, y, w, z) be an adapted Heegaard diagram for A-surgery
on K. Then there exists an M such that for all m > M and each spin® structure u €

Sm,b

Spin (Ya4my (K)), u is strongly supported in the winding region of (X, e, , W)

for some b. (Note, however, that b depends on the choice of 11.)

Remark 5.14. In [45, Lemmas 4.5 and 4.6], it is shown that each spin¢ structure u
can be supported in the winding region, in such a way that for each small triangle v,
we have

—C =2k +dm) = (c1(sw(¥)).[Ps5]) = C

for some constant C > 0 independent of m. However, this is not quite as strong as
saying that u is strongly supported in the winding region, since these bounds do not
uniquely determine s, (V).

Proof of Lemma 5.13. We begin by establishing a sufficient condition for & (e, §?,
w, 1) to contain all the generators called for by (5.40), i.e.,

G(e. 8™ w,w) DKL | x € B, fow. su)}. (5.47)
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By construction, we require that 0 < b < m. Let C be a constant such that for all
xe T, NTg,|A(X)| < C.Foranyx € G(a, B, w,5y), x':é’)_su is one of the elements
of &(er, 8™?, w, u) if and only if

b—m<AKX)—sy <b-—1

or equivalently
AX) —sy + 1 <b < A(X) — sy + m.

Thus, a sufficient condition for (5.47) is that
max{0, —C — sy + 1} < b < min{m, C — sy, + m}. (5.48)
Let B(u) denote the difference between the upper and lower bounds in (5.48); then
Bu)>min{m+C +sy—1,m+ C —sy, m+2C — 1, m}.

By (5.35), we have
m k

m =t sy > 5~ ﬁ
Therefore, we have a lower bound B(u) > % + C’, where C’ is a constant indepen-
dent of m and u. In other words, for each u, there are at least % + C’ consecutive
values of b for which (5.47) holds. (The ranges may differ for different choices of u,
of course.)

As noted by Ozsvith and Szabd in the proof of [45, Lemma 4.5], the number
of exterior generators in &(a, %), and hence the number of spin® structures on
Y +my represented by the exterior generators for any particular b, is bounded by a
constant independent of m. The set of such spin€ structures varies with b according
to Lemma 5.10 (2). In particular, if m is sufficiently large, then for any u and any 7
consecutive values of b € {0, ..., m}, we find some b within the specified range such
that none of the exterior generators in (e, §”?) represent 1. In particular, if we use
the range of b values specified by (5.48), we see that u is strongly supported for some
value of b. ]

Next, we discuss the Alexander grading on CF(e, §, w) induced by the knot
K3 4my- (Henceforth, we omit the m, b superscripts for conciseness.) For any inte-
rior generator x;, (5.17) gives

Axp) — AX) = dnz (Y1) + (k + dm)ny (Yry 1)

k+dm+d
= (k+ dm + dymy () = —————
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“”‘W it1 <0,
- k
—dl+(k+dm)—w if1>0
g krdm e
_ 27 2
T S LYY
2 2

If we assume that x; represents a spin® structure 1 which is strongly supported in the
winding region, then [ = A(X) — sy, and therefore we have

d k+d

3 dsu =3 = +2m if1 <0,

Ax)) = Sk dm (5.49)
dsy — E + ) if [ >0,
—Z(i% d_ h_ % ifl <0,

Ax)) = d((2S+ ”3 1 (5.50)
Dm0,
2ktdmy 2 MF

Thus, the Alexander grading for u takes exactly two values, which differ by 1. (Cf. [11,
Theorem 4.2]).

Proof of Theorem 5.9. Using Lemma 5.13, we may assume that u is strongly sup-
ported in the winding region of (X, o, 8§mb .z ) for some b. Define

AY: CF®(Z,a,8, w,u) - CFK™(Z, a, B, w, 2, $4)[Ay] (5.51)
by
AR(a i) =) D HME)[X i =y ()i —nz(Y) +5u). (5.52)

x€ToNTg Yens(a,058,%)
sw®=su  w(Y)=0
sw(¥)=2u
Standard arguments show that AP is a chain map, and the shift in the Maslov grading
by A, makes A° grading-preserving. Using the standard identification of CF™° (X, e,
8, w,u) with CFK*°(Z, &, §, w, z’, 1), we may also think of A, as being defined on
the latter.
Because u is strongly supported in the winding region, every element of &(«, §,
w, u) is of the form x;, where x € G(«, 8, w, 5,;) and [ = A(X) — sy. Denote the
contributions to A$° coming from the small triangles ¥y ; by /Kg" . By (5.41), these
terms are given by
[x,i,i +sy + 1] ifl <O,

AP([x;,i]) = 5.53
w (b 1) {[x,i—l,i+su] ifl >0, 69
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Note that /Kgo is a F[U]-module isomorphism but not necessarily a chain map. Indeed,
it is easy to check that for [x, i, j] with j =i + A(X), the inverse of K{’Io is given by
[x¢.i] if A(X) < s,
[Xi,i + AKX) —su] if ARX) = 50
= [x;, max(i, j — sy)], (5.54)

AP N (x.i, j]) = {

where [ = A(x) — sy as above.
The proof that A7’ is a chain isomorphism uses the fact that

A% = A + higher order terms

with respect to an energy filtration, as proved by Ozsvéth and Szabd. We just need to
check that every triangle contributing to A decreases or preserves both filtrations,
and that every triangle contributing to K;;° preserves both filtrations. The proof for I,
is obvious from the definition, so we focus on ¢,.

Thus, consider any term in (5.52), corresponding to a triangle ¥ € m>(a, Osp, X)
admitting holomorphic representatives. If a = y;, where /[ = A(y) — sy, observe that

dQ2sy,—1) 1 | .
) i 2(k—|——a’m)+§+l_l ifl <0,
w,z ([y1,1]) = d(2sy — 1) 1 1> 0
2+dm T2 B
and
Fu([x.i —nw(W).i —nz(¥) + su))
_dQ@sy—-1) 1 B 1
= s am T3t max nw (W) — 1, —nz(¥))

and therefore

Aw 2 ([y1:1]) = Fu (X0 —nw (). i —nz(¥) + sul)
B {min(nw(w),nz(\p)—l) ifl <0,

_ _ (5.35)
min(ny, (Y) + 1,n,(y)) ifl > 0.

In the case where n,(¥) = 0 and [ < 0, equations (5.18), (5.49) (with y in place of x),
and (5.34) imply that
2dsy —k —dm = {c1(zn), [Ps]) = 2dsu + (k + dm)2ny (Y) —2n(Y) — 1),

and hence n,, () = n,/ (). However, the multiplicity of ¥ in the fourth region abut-
ting ®sg in the winding region must then be —1, a contradiction. Thus, the left-hand
side of (5.55) is always non-negative, as required.
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Finally, the small triangles v/ ; (which contribute to K{’f) have either n4, () = 0
or n,(¥) = 0, and hence the difference (5.55) vanishes for those terms. ]

Example 5.15. As a sanity check, consider the example where Y = S* and K is the
unknot, so that Y;,(K) is the lens space L(m, 1). Denote the induced knot by O,,. In
this case, we may assume that Figure 5 (with its left and right edges glued together) is
the entire Heegaard diagram, and we may take k = 0, d = 1, and b = m. The unique
generator X € Ty N Ty has A(x) = 0.For/ = 0,...,m — 1, let u; be the generator
represented by x;. Then s, = —/, and u; is characterized by the following property:
if B, denotes the Euler number m disk bundle over S2, and v is any extension of 11;,
then
(c1(0),[S?]) +m = =2 (mod 2m).

Equation (5.50) shows that H/ﬁqL(m, 1), Op,1u;) = I, supported in Alexander grad-
ing %ﬂl;l It is easy to check that the symmetry (2.11) holds. Moreover, by equa-
tion (5.42), the Maslov grading of x; is

2l —m)? —m

, 5.56
4m ( )

gr(x;) =
which agrees with the computation of d invariants for lens spaces in [37, Proposi-
tion 4.8].

5.6. Maslov gradings on the large surgery

We will now prove some bounds on the Maslov gradings on the complexes CF' (2, o,
gmb, w) as a function of m, provided that b is within a bounded distance of % These
bounds will be used in Section 6 to control the spin® structures in the surgery exact
triangle. The technical statement is as follows.

Proposition 5.16. Ler (X, a, B, y,w,z,z’) be a Heegaard triple diagram adapted to
(Y, K, L) as above. For any integer e > 0, there is a constant C > 0 such that for all m
sufficiently large, and any b with "¢ < b < mT"”e, 10 every generatora € Ty N Tym.»
satisfies

—C < §i(a) < % el (5.57)

Remark 5.17. In [45, Corollary 4.7], which is stated when Y is an integer homol-
ogy sphere (hence d = 1), Ozsvath and Szab6 proved the upper bound from (5.57)
but gave an incorrect lower bound, asserting that the gradings on CF'(Z, o, §, w)

10Tp the terminology of [45, Definition 4.4], this condition is equivalent to saying that the
meridian f¢ is e-centered in (X, o, gmb. w).
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are always within a bounded distance of m /4. Equation (5.56) above shows that
only a constant lower bound is possible. Additionally, the statement of [45, Corol-
lary 4.7] requires looking at different Heegaard diagrams for different spin® structures
on Y} 4 m, (K) (namely, arranging for the chosen spin® structure to be supported in the
winding region), whereas Proposition 5.16 applies simultaneously to all of the gener-
ators in the same Heegaard diagram.

To prove Proposition 5.16, there are two types of generators in Ty N Ty to con-
sider: interior generators x;"’b (for x € T, N Tg) and exterior generators qm’b (for
q € T, N'T,). These two types of generators will require separate arguments.

Lemma 5.18. Fix e > 0. There is a constant C1 > 0 such that for any m suffi-
ciently large, if we take 5% < b < m+e , then for any x € Ty N Tg and any | =
b—m,....,b—1,the gradmg of the genemtor X; satisfies

—C; < g < % +C1.

. + + .
Proof. By our hypothesis on b, we may assume that —"3¢ < [ < "¢, Using

Lemma 5.10, for each x € T, N Tg, define

- 1 QdAKx)—2dl —k —dm)?
gx(l) == gr(x}" by —i(x )+— 4 + dm) —max(0,21), (5.58)

which we may view as a function of all real numbers /.
Assuming m is sufficiently large, one can easily check that the local minima of gy
occurat/ = A(x) £ & +dm , with values of 0 and —2 A (x). The local maxima of gx on

m+e m-‘re m+e m+e : :
5=, 75| oceur for [ € {—75<,0, #5%}, with values given by

the interval [—

gx(_m + e) _ (dAX) -k + de)?

2 4d(k + dm)
o — 244X —k —dm)?
&0 = — T am

_m k  dA(x)?
= AT g T i dm

and

m+e\  (2dARX)+k —de —2(k + dm))?
( 2 )_ 4d(k + dm) mee
_ (2dA®X) +k —de)? + 4(k + dm)(—2A(x) —k + de + k + dm)
- 4d(k + dm)
—m-—e

_ (2dA®X) 4+ k —de)?
 4d(k +dm)

—2A(x).
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Both gx(— ’”;’ €) and gx('";r ¢) are bounded above independent of m, whereas gy (0) =

gr(xp) is not, so gy attains its global maximum on the interval [— m;r £, ”‘; £latl = 0.
Thus, there is a constant Cy such that for any b satisfying #5% < b < mTJ“e and any

l=b—-—m,...,b—1, we have
— m
—Cx Sgr(xl) < Z + Cx.

Maximizing Cx over all x € Ty, N Tg gives the desired result. |

Lemma 5.19. Fix e > 0. Then for all m for which k + dm > 0, and all b with "5% <
b < mT+e the absolute gradings of all the generators q,, , are bounded by a constant

independent of m.

To prove this lemma, we will work inductively on m and b. Note that the Heegaard
quadruple diagrams (, &, B, 8™, 8™+t10) and (=, «, B, 80, 8™+t 1:0+1) are well-
adapted, where now we are treating A + mu as the “original” longitude and A +
(m 4+ 1)u as the new one. The cases correspondtom = 1,b =0andm = 1,b = 1,
respectively. For each of these quadruple diagrams, an analogue of Proposition 5.5
holds, where we plug in 1 for m, k + dm for k, and 1 for v in each of the formulas.
Let R , and R;;’ » respectively denote the triply periodic domains that are analogous
to R in the two cases; note that [Ri’b]2 = —(k +dm)(k + dm + d). We may also
refer to the original y as §%°.

For any q € Ty N T, there are triangles

W;;m,b € 772(‘]m,b, 0, Qm+1,b) and %fm,b € 7T2(‘lm,bv 0, qm+1,b+1)

with Maslov index 0, which satisfy

oy (gmp) =1z Wamp) =12 Wamp) =0, mu(l, ) =1 m(¥,,) =0
Lemma 5.20. Let mq be an integer for which k + dmg > 0. For any q € T, N T,
anym > my, and any 0 < bg < mg and 0 < b < m, we have

d((m —2b) — (mo — 2by))
5 .

A@mp) = AlQmg.py) + (5.59)

Proof. By applying the analogue of (5.14) to the triangles x//q_m p and \//:m p» We have

~ ~ d
A(‘]m,b) - A(‘lm+1,b) = -3

(SIS

/T((Im,b) - /T(qm—i-l,b-i-l) =

The lemma follows by induction. ]



M. Hedden and A. S. Levine 292

Proof of Lemma 5.19. Choose some mg for which k + dmgy > 0, and any by with
TOL < by < mOTJ“e We will inductively obtain a bound (as in the statement of the
lemma) which applies for all of the pairs (m¢ + 2i, by + i). We can then repeat the
argument for each of the finitely many choices for by, obtaining a different bound each
time, and repeat it again with mg replaced by mo + 1 (and all possible corresponding
values of bg). The largest of the resulting bounds will then apply to all pairs (m, b)
with ¢ < p < ke,

The induction proceeds as follows. Suppose m = mg + 2i and b = by + i. By
applying (5.16) to the triangle w;m, p» We obtain

(1 (Vg )[R b])
=24(qmp) +k +dm +d
= 2A(Qg po) + d((m —2b) — (mo — 2bo)) + k +dm +d
= 2A(Qmg.py) + k +dm +d

and

g (Ant1,641) — 2(Am,p)
1 (gw(w;:m,b))z +1
4
_ (C1(¢me,b), [R;,b])z n 1
Ak +dm)k+dm+d) 4

 QA(Gmy.by) +k +dm + d)? N 1
Ak +dmy(k +dm +d) = 4

_ AQmgpy)?  Amgsy) k+dm+d !
(k+dm)(k +dm +d) k+dm 4(k + dm) 4
/T(qm(),bo)z Z(qmo,bo) _ d

T (k+dm)k +dm+d) k+dm 4k +dm)

Similarly, applying (5.16) to wq Mt 1b41’

{c1Wgmerp+1) Ry pyal)
= 24(Qmi1o+1) — (k +dm+d) +d
= 24(Amy.by) + d((m + 1 —2b —2) — (mg — 2by)) —k —dm
= 24(Qmg py) —k —dm —d
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and

g @m+2,6+1) — E(Qm+1,6+1)
Cl(gw(w;m+1,b+1))2 +1
4
(1 mr1p41)s [R;z+1,b+1])2

1
T 4k+dm+d)k+dm+2d) 4
__ A@nyh) —k—dm—d)® 1
Ak +dm+d)k+dm+2d) 4

Av(qm(),bo)z X(qmo,b())

= T ktdmtdk+dm+2d)  k+dm+2d
k+dm+d 1

T iktdm+2d) T3
Av(qm(),b())z X(qm(),b())

T G(kt+dm+dyk +dm+2d)  k+dm+2d
d

T ikt dm+2d)

+

Combining these statements,

ﬁ(qm+2,b+l) - gf(qm,b)

_/T(qmo,bo)z( Lo 1 )
k+dm+d\k+dm k+dm+2d

+ (Aamo ) + %)(k n diiz T2d k& +1dm)

B 2A(qmo,bo)*
(k+dm)(k +dm + 2d)

5 d
+ (Ao + ) ( n d; T2d & +1dm)

= (M Ao o) + %) (k n dnl¢ Y24k +1dm)

- d
= %(A(qmo,bo) + E)Z(k i d;; +2d  k +1dm>'

Therefore, we may compute gr(qm,5) — 81(Qqm,,5,) by a telescoping sum:

gf(qm,b) - fg\f(qmo,bo)
= (ngr(qm,b) - gf‘(qm—z,b—l)) +-o (5’(‘1m0+2,b0+1) - é\f'(qmo,bo))

s d ! !
— —(A(q, =)? - '
d( (@mo.bo) + 2) (k+dm k+dmo)

293
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Since this has a finite limit as m — oo, the values of gr(q,+2i,p,+i), Fanging over
all q € T, N Ty, are globally bounded by constants, as required. ]

Proof of Proposition 5.16. Apply Lemmas 5.18 and 5.19. |

6. The surgery exact sequence

In this section, we will examine the construction of the long exact sequence relating
the Floer homologies of Y, Y3 (K), and Y} 1, (K) for m large. In fact, we will make
all statements on the level of chain complexes, rather than discussing the resulting
exact sequence on homology. Ozsvéth and Szabd’s original proof of the surgery for-
mula [44,45] does not explicitly discuss the maps that count holomorphic rectangles
and pentagons (first used in [41]), so we will need to describe these maps in more
detail, based on the description given by Mark and Hedden [9]. !

Throughout the proof, we will use a well-adapted diagram (, a, 8, ¥, 82", w,
z,z'), as described above. We will make a series of statements about “all m suffi-
ciently large.” To be precise, this means that we fix some integer ¢ > 0, and consider
pairs (m, b) for which #5¢ < b < ’"T’Le, as in Proposition 5.16. This will be implicit
throughout; we will generally suppress b from the notation.

6.1. Construction of the exact sequence

We begin by defining the twisted chain complex associated to (X, &, B, w). Let [y,
denote the group ring F[Z/mZ], which we realize as the quotient F[T']/(T™ — 1). It
is convenient to think of I, as a subring of IF[Q/mZ], which is the ring of rational-
exponent polynomials in 7 (i.e., sums ) . a,T" with only finitely many a, # 0)
modulo the relation 7" = 1. In particular, for any r € Q, the coset 7" T",, depends
only on the fractional part of r (and is isomorphic to F™ as a vector space).

The twisted complex CF* (a, 8, w; I'y,) is generated over Iy, by all pairs [x, i] as
usual, with differential'2

AT D =D D #M@T OOy i —ny(@)]. (6.1

yeETaNTg pema(x,y)
u(g)=1

"Our cyclic indexing of the groups and maps is shifted from that of [9]: our 8, y, and
8 respectively correspond to p2, ¥, and y! there, and our fjo, h;., and g]‘.’ (defined below)
correspond to f; 42, hj42, and g;j 42 (indices mod 3). Also, our T corresponds to ¢ in [9].

121n [44, 45], the exponent of T is described as the intersection number between 3(¢) and
a subvariety of Sym® (¥) determined by a marked point p that sits on S¢ between w and z,
which is the same as our formulation.
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The other versions CF~, CF*, and CF’ (for t € N) are derived from the infinity
version in accordance with their definitions in the untwisted setting.

As in [44,45], the complex CF* (e, B, w; I'y,) is isomorphic to a direct sum of m
copies of CF*° (X, a, 8, w), but we define the isomorphism slightly differently. Let

6: CE®(et, B.wiIn) — (PCF®(@. p.5.w) @ T4, (62)
s€Spin° (Y)
be defined by
O(T*[x.i]) = [x.i] ® T*4®. (6.3)

It is simple to check that this is an isomorphism of chain complexes.

Let us look more closely at the right-hand side of (6.2). For each s € Spin®(Y),
there are m different powers of T occurring in CF* (e, 8,5, w) ® T—A®) T, with
exponents in Q/mZ. We will frequently need to lift these exponents to Q; we do so
by choosing the m values of r satisfying

r=—Ayk(s) (modZ) and % <r< % (6.4)

We may thus write

CF®(a. .5, w) ® T~ 4»=®T,, = (HCF(@.B.5.w)®T". (6.5
reQ satis. (6.4)

Define chain maps

f0+:Q+(a7ﬂv vam) _>CF+((¥’ y,l»U), (66)
f1+: CF+(a, y,w) — CF' (e, 8, w), 6.7)
fof: CFH(a, 8, w) — CE (a, B, w; T'y) (6.8)

by the following formulas:

foh(Ts [x.i) =) > #MW)[q.i —nw ()], (6.9)
qeTaNTy Yem(x,08y,,9)
e

S
s+ny(¥)—nz(¥)=0 (mod m)

fdaih) =) Y o H#M)la,i —ny (), (6.10)

ac€ToyNTs Yen(q,0,5,2)
n(P)=0

IAERIEDY D #ME)T =) [x i —ny ()], (6.11)
x€TeNTg Yemns(a,058,x)
n(P)=0
Let f{, f{, f§ denote the analogous maps on CF’, which will play a critical role in
our argument below. (There are also corresponding chain maps on the U-completed
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complexes CF~ and CF, but not on the ordinary CF~ and CF* because the sums
may fail to be finite.)
Following [9], the quadrilateral-counting maps

he: CE" (e, B, w; ) — CFH (e, 8, w), (6.12)
hi: CFt(a,y,w) — CFt(a, B, w; Thn), (6.13)
h;r: CF'(a,8,w) - CF (a, y, w), (6.14)

are defined by the following formulas:

hy (T°-[x.i) =) > #M(p)la.i —nw(p)], (6.15)
a€TyNTs pemr(x,04,,0,5,3)
n(p)=—1
s+ny(p)—nz(p)=0 (mod m)

W la.i) =) D #ME)T" O [k i —ny(p)]. (6.16)
x€TaNTp pens(q,0,5.058.%)
w(p)=—1
HENEDY D #M(P)la.i —nw(p)]. ©.17)

q€TaNTy pems(a,058,04),,q9)
m(p)=—1
ny(p)=nz(p) (mod m)

A standard argument shows that for each j € Z /3, the following holds:
. h;r is a null- homotopy of /+1 o ft;
. J+1 o f+ + ]+2 ) h;-r is a quasi-isomorphism.
(The second statement is proven by introducing pentagon-counting maps, which we
discuss in Section 6.4.) Therefore, the exact triangle detection lemma [41, Lemma 4.2]
implies an exact sequence on homology. Again, using the same formulas, one can
likewise define such maps on CF’, CF~, and CF®°.

Each of the complexes CF" (a, 8, w; T),), CFT (e, ¥, w), and CF™ (e, §, w) has
a decomposition according to the evaluations of spin¢ structures on elements of H;
of the corresponding 3-manifolds. Remark 5.4 implies that the maps fj+ and h;r all
respect that decomposition. In particular, the maps respect the subgroup of each com-
plex consisting only of the groups in torsion spin® structures. Henceforth, by abuse of
notation, we will disregard all non-torsion spin® structures; that is, whenever we refer
to the Heegaard Floer complexes, we actually mean the subgroups consisting of only
the torsion spin® structures.

Each of the three complexes discussed above is naturally filtered by the i coor-
dinate, with respect to which the maps f; and /; are obviously filtered. We define a
second filtration on each complex as follows.
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Definition 6.1. + The filtration g4, on CF" (a, y, w) is simply the Alexander filtra-
tion:
Fay([q.1]) = Aw /(@) + 1. (6.18)

 The filtration g4s on CF (e, 8, w) is the Alexander filtration shifted by a
constant on each spin® summand. To be precise, for each spin® structure u, and each
generator a with s,,(a) = u, we define

d?m2sy — 1)

2k(k +dm) " (6.19)

Fas((a,i]) = Ay (@) +i +

where sy, is the number from Definition 5.7.
* The filtration g, on CF" (a, B, w; I'y,) is defined via the identification § and
the decomposition (6.5). For any x € T, N Tg with s, (X) = s, and any r satisfy-

ne (04 2dr +k+d
e r
gaﬂ([xsl](@T):l——Zk .

That is, gqp is the trivial filtration shifted by a constant that depends linearly on the

(6.20)

exponent of 7', and it does not depend on x except via the associated spin® structure.
We transport this back to CF™ (er, 8, w; T',,,) via 6.

It would be tempting to try to prove that the maps fjJr and hf defined above are all
filtered with respect to the filtrations Jyg, fuy, and g5, but this turns out not to be the
case. To understand the reason for this failure, we must look at spin® structures. Each
of the maps f;, h;f decomposes as a sum of terms corresponding to spin€ structures
on the relevant cobordisms: for instance, we may write

f0+: Zf()_,*—v’

veSping (X o8y)

where fofv counts only the terms in (6.9) for which s, (1) = v, and likewise for the
other maps. (Recall that Sping (X4, ) denotes the set of spin structures which restrict
to the canonical torsion spin® structure on Ypg,,, which is represented by the generator
©g,.) As we will see, for each triangle ¥ contributing to ]*; the filtration shift of v
is given by n,/ () plus a term that is given by a linear step function of the evaluation
of ¢1(v) on the relevant triply periodic domain (P, R, or Ps). As a result, f]‘; is
filtered only when v lies within a certain range.

However, the maps on the truncated complexes CF’ (for z € N) are better behaved.
Since the Maslov grading shift of fj’ , 18 given by a quadratic function of ¢ (v), only
finitely many terms of the terms f]’v can be non-zero for any fixed t. (If b;(Y) > 0,
this is why we only consider the torsion spin® structures.) By looking closely at how
the Maslov gradings interact with the filtration shifts described above, we will prove
the following.
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Proposition 6.2. Fix t € N. For all m sufficiently large, the maps f{, f{, and f}
are all filtered with respect to the filtrations $op, $ay, and $os. Moreover, for any
triangle \ contributing to any of these maps, the filtration shift of the corresponding
term equals n, (V).

The situation with the rectangle-counting maps is even more complicated. Unlike
with the triangle maps, the Maslov grading alone does not guarantee that the only
non-zero terms h;-,v are filtered. However, it turns out that we can simply throw away
the bad terms. To be precise, we will define “truncated” versions ﬁ;, each of which is
a sum of terms h;-’n satisfying certain constraints. We will prove the following.

Proposition 6.3. Fixt € N. For all m sufficiently large, the maps h%, h%,, and h', have
the following properties:

. ﬁ’- is a filtered null-homotopy of f}, o f};
. j+1 o f’ + 1+2 o l;; is a filtered quasi-isomorphism.

The challenging part is to choose the spin constraints appropriately so as to make
ﬁ; a filtered map but still preserve the degeneration arguments needed to prove the
other properties. Moreover, the filtered quasi-isomorphism property requires defining
spin®-truncated versions of the pentagon-counting maps, which we will discuss in
Section 6.4.

We also define a modified version of the Maslov (homological) grading on each
of the three complexes.

Definition 6.4. Let gr denote the standard Maslov grading on each complex; in par-
ticular, on CF° (e, B; I'yyy), it is simply an extension of the ordinary Maslov grading on
the untwisted complex, without reference to the twisting variable 7. The new grading
gr is defined as follows:

* onCF°(e, y, w), define gr = gr;
 foreach u € Spin® (Y} 4, (K)), we define gr on CF°(a, §, w, 11) by
5 d*ms? m + 1 + 3sign(k)

E=et  rdm) Z : 6.21)

» Foreach s € Spin°(Y) and each r satisfying (6.4), we define gr on CF(e, 8, w) ®
T" by

(2dr +k)*> 2+ 3sign(k)
4kd 4

and then transport this grading to CF° (e, B, w; I'y,), via 6.

gr=gr+

(6.22)
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(Throughout the discussion below, we will use gr( /) and gr(f) to denote the
grading shift of any map f with respect to the appropriate grading: for instance,
ar(f) = gr(f(x)) — gr(x) for any homogeneous element f.)

Proposition 6.5. Fixt € N. For all m sufficiently large, the maps f{, f{, 13, };6, 1;’1,
and h’2 are all homogeneous with respect to gr, with respective degrees 0, —1, 0, 0, O,
and 1.

Combining Propositions 6.2 and 6.3 with Lemma 2.9, we deduce the following.

Theorem 6.6. Fixt € N. For all m sufficiently large, the map
flt . CFI (E o / C t
i) o, y,w,z') — Cone(f,)
1

is a filtered homotopy equivalence that preserves the grading gr.

6.2. Triangle maps

In this section, we prove Proposition 6.2. We consider the maps f{, f{, and f; indi-
vidually. (Throughout, we will write fj° when making statements that apply all the
flavors of Heegaard Floer homology.)

6.2.1. The map f, 0’ . To begin, we look at how the spin® decomposition of f; inter-
acts with the trivializing map 6. For any v € Sping(Xggy), any x € T N Tpg with
sw(X) = v|y, and any r € Q/mZ congruent mod Z to —A,, ;(x), we have

feo @ (%1 ® TT)) = foo(THA® . [x,i])
=> > H#MW)Q. i — 1w (V)]

q€TaNTy Yem(x,04y,9)

u(y)=0

sw(¥)=p
r+AX)+ny (¥)—nz (¥)=0 (mod m)

By (5.13), note that

(1), [Py]) + k-

AG) + 0y (9) =z (y) = 2

Thus, f;, o6~ is non-zero only on the summand

CFt(Eva7 ﬂvg’ w) ® TrFm’
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where s = v|y and

r =@ (B +K) (mod m).

On this summand, neglecting the power of T, the composition equals the untwisted

cobordism map FIj’VA( K)o
Lemma 6.7. Fixt € N and ¢ > 0. For all m sufficiently large, if v is a spin® structure
Jor which f§ , # 0, then

[{c1(0), [Py])| < edm. (6.23)

In particular, if we take ¢ < 1, then for any s € Spin®(Y') and any r € Q which sat-
isfies (6.4), there is at most one v € Spin® (W), (K)) for which fot,n o 0~ may restrict
non-trivially to CF' (a, B, s, w) ® T" T, this spin® structure must satisfy

(c1(0),[Py]) = —2dr — k. (6.24)
Proof. The grading shift of the term fg,, is given by

_ o 2 _2¢y(W(K)) — 30 (W (K
gr(fom)zcl(v) x( 1(4)) o (W,.(K))

_ {e1), [Py])*> 2+ 3sign(k)
N 4kd 4 ’

(6.25)

(This is proven just as in Remark 5.8.) For fixed ¢, gradings of non-zero elements
of CF' (a, B, w; T'y) and CF' (e, ¥, w) are bounded by a constant independent of m.
Thus, for m sufficiently large, the terms f()t,v with [{c1(v), [Py])| > edm must vanish.

For the second statement, note that the values of (c; (v), [P, ]) for which f()t,n 0f™1
may restrict non-trivially to CF' (az, B, w,s) ® T" form a single coset in Z/2dm. If
& < 1, there is at most one such value within the permitted range. ]

Proposition 6.8. Fixt € N. For all m sufficiently large, the map
fo: CF' (e, B w: Ty) — CF' (. . w)

is filtered with respect to the filtrations 48 and $u, and is homogeneous of degree 0
with respect to gr.

Proof. Assume m is large enough to satisfy Lemma 6.7 (with ¢ < 1). Let v be a spin®
structure for which f()t,n # 0, and let s = v|y, which must therefore satisfy (6.24).
Forany x € Ty, N Tg and q € T, N T, with

sp(X) =35 = U|YaB and sy (q) = v|y,,.
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and any triangle ¥ € m> (X, ©g,, q) contributing to fot,n, we then have

Fap (X, 1] ® T") — Fay ([q, i — 1w (¥)))
2dr+k+d  Ag

- 2%k r Te®)
_2dr+k+d  {ei().[Py]) = 2knz (§) + 2kny (Y) —d
2k 2k
+ 1y (¥)
=ny(¥) >0,
as required. The final statement follows from (6.22), (6.24), and (6.25). ]

6.2.2. The map f° 1‘ The map f;° decomposes as a sum

L= f (6.26)

veSping (Xgy5)

By aresult of Zemke [53], each term £’ has an alternate description, as follows. Let
t = vy, (k). As in Section 5.3, let Wy, 5 be the 2-handle cobordism from Y} (K) #
L(m, 1) to Y31, obtained by drilling out an arc from )?ayg. Then v induces a
spin® structure on W, s whose restriction to Y, (K) # L(m, 1) is t # 59, where s
is the canonical spin¢ structure on L(m, 1). Moreover, since L(m, 1) is an L-space,
CF°(Y;(K) # L(m, 1),t#s9) is naturally identified with CF° (Y} (K), t) with grading
shifted up by mT_l (which is the grading of the generator of }/IT:(L (m, 1), 3)). Under
this identification, [53, Theorem 9.1] implies that f7,, is naturally identified with the
map FI?VW&U, as originally defined by Ozsvith and Szab6 [42]. As a consequence of
this identification, we deduce that /7, is homogeneous of degree

~/ ro ~, 0 m—1
g(f1) = &(Fy, ;o) + 2

v2{c1(v),[R])> m — 3+ 3sign(k)

== 6.27
dmk(k + dm) Z 6.27)
Lemma 6.9. Fixt € N. For all m sufficiently large, if flt,n = 0, then
m(k + dm
fer (o) [R)| < ZEXAM), (6.28)

In particular, for any w € Spin® (Y 4, (K)), there is at most one non-zero term land-
ing in CF' (2, a, 8,1, w), corresponding to a spin structure v with
2dmsy

(c1(0),[R]) = m— (6.29)
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Proof. By Proposition 5.16, there is a constant C such that for all m sufficiently large,
if f{, # 0, then

—C < F(f,) < % e

(Here, we used the fact that the gradings on CF' (X, e, y, w) are bounded above and
below independent of 72.) Thus, for another constant C’,

v2(ci1(v),[R])> m m
O« VR T T o,
S T amkGk+dm Ta 3"
and hence 2< [ ]>2
all v=(c1(v), [R r, M
C < Tmkktam € T

Thus, we obtain an upper bound on |{c; (v), [R])| which is asymptotic to m*/2 if k > 0
and to m if k < 0. In either case, for m sufficiently large, we immediately deduce the
weaker bound (6.28).

For the second statement, note that for a fixed u € Spin®(¥} 4, (K)), the values
of (c1(v), [R]), ranging over all v € Sping(X) with v|y,, = u, form a single coset in
Z/(MZ). Indeed, for any triangle ¥ € m2(q, ®,5, a) representing v, (5.15)
and (5.37) imply

{c1(0), [R]) = %(25(3) + (k +dm)(2ny () = 2ny (¥) — 1) + d)
2m(k + dm))
v

%(Z/T(a) tk+dm+d) (mod

2 2
dmsy (mod m(k —l—dm))'
v v

This congruence, combined with the bounds on s,, from (5.35), implies that (6.29)
holds. ]

Proposition 6.10. For m sufficiently large, the map
fi: CF(a,y,w) - CF (e, 8, w)

is filtered with respect to the filtrations $4, and $qs5 and is homogeneous of degree
—1 with respect to gr.

Proof. By Proposition 6.9, it suffices to consider only terms flt,n with

fer(o). [R]) = 2275
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where u = v|y,. Forany [q,i] € CF°(X,«, y,w) and any term [a,i — 1, ()] occur-
ring in fY ,([q, i]), we first observe

A(q) — A(a)
i@ Aw
k k+dm
k(A(q) — A(a)) + dmA(q)
k(k + dm)

1 dm
= g (k= @)+ dmn () = (k- dmymy () = =)

dm v k J
" m(ﬁ“l(sw(‘ﬂ))’ [R]) = knu(y) + knzr () + 5 = 7)
d>*m

v
=12 =) + i g (g (1 G ). (R - 1)
d’m2sy — 1)

=1z () =m0 + e T

Therefore,
Fay([q,i]) — Fas([a,i —ny(P)]) = nz(¥) =0

as required. The final statement follows from equations (6.21), (6.27), and (6.29). =

6.2.3. The map f 2’ . We start by examining how the spin® decomposition of f;” inter-
acts with the trivializing map 6. For any a € Ty N T, using (5.19), we have

Oofiaid =3 D #ME)X.i—ny(y)]@ T

x€TqNTg Yems(a,Bs8,x)

w()=0

— Z Z#M(x//)[x,i — 1y (V)] 1

x€ToNTg Yens(a,Bs4,%) ® d T~ za (1w @W)),[Ps])+k+dm)
u(y)=0

In other words, the term ¢ o f;°, lands in the summand
CF° (e, B. o]y, w) @ T2 (cr (M Psl)hdm) (6.30)

and agrees with the untwisted map F};,, in the first factor. The Maslov grading shift
of the term £, is given by

ci(?+1  (ei(v).[Ps])* 1
4 T T adktdm & ©3D)

fg\f(fzczn) =
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Lemma 6.11. Fixt € N and ¢ > 0. For all m sufficiently large, if }’2’,U # 0, then
l{e1(v), [Ps])| < (1 + e)(k + dm). (6.32)

In particular, if we assume that (1 + &)(k + dm) < 2dm, the only spin® structures
that may contribute to f. are those denoted by xy and vy in Definition 5.7.

Proof. Assume that m is large enough to satisfy Proposition 5.16. Suppose, toward a
contradiction, that fztjv # 0 and |{c1(v), [Ps])| = (1 4+ €)(k + dm), Then, for some
constants C, C’ independent of m, for any homogeneous element a € CF' (e, 8, w)
with f}  (a) # 0, we have

gf(f;,v(a)) = gf‘(a) _ (Cl (U)’ [PS])Z 1

4d(k +dm) ' 4
2 2
Eﬂ_(l—i—s)(k—l-dm) +C—|—l
4 4d(k + dm) 4
_dm—(1+¢e)?(k +dm) 1
- 4d ety
1—(1 2

Since the grading on Qt (o, B, w; T'yy) is bounded below independent of m, while
ar( fzt’v(a)) is bounded above by a negative multiple of m, we obtain a contradiction
if m is large enough. |

Proposition 6.12. Fixt € N. For all m sufficiently large, the map
f4: CF(a,8, w) — CF' (a, B, w; Tyy)

is filtered with respect to the filtrations $us and $op and is homogeneous of degree 0
with respect to gr.

Proof. Choose m sufficiently large to satisfy Lemma 6.11, where we assume that
(1 4+ ¢&)(k + dm) < 2dm. Suppose v is a spin® structure on W, for which fzt’v #0,
and letu = UlYA+'nM(K) and s = v|y. We thus have

—2dm < —(1 +¢e)(k +dm) < {c1(0),[Ps]) < (1 + &)k +dm) <2dm.
Let r denote the rational number satisfying
—k—dm <2dr < -k +dm

and
2dr = —({c1(v), [Ps]) + k +dm) (mod 2dm).
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Note that r is one of the exponents appearing in (6.5). By (6.30), fzt’n lands in
CF°(ee, B, 0|y, w) ® T". At the same time, by (5.35) and (5.37), the number sy, satis-
fies

—k —dm <2dsy <k+dm

and
2dsy = {c1(0),[Ps]) + k +dm (mod 2(k + dm)).

There are two possibilities to consider. If —(1 + &)(k 4+ dm) < {(c1(v),[Ps]) <0,
then the above inequalities and congruences imply that

(c1(0),[Ps]) = —2dr —k —dm = 2dsy —k —dm. (6.33)
On the other hand, if 0 < {c1(v), [Ps]) < (1 + &)(k + dm), we obtain
(c1(0),[Ps]) = —2dr —k +dm = 2dsy + k + dm. (6.34)

Suppose now that Y € m2(a, O3, %) is any triangle that counts for f; , so that
9(f2t,v([a, i])) includes the term [X,i — 1y, ()] ® T”. We compute

Fas(a,i]) — Fap([x.i —nuw (@) @ T")
2dr +k+d = d*m2sy — 1)

= Aw,zf(a) + o 2%k +dm) + 1y (Y)
_ {c1(0),[Ps]) — 2(k + dm)ny, () + 2(k +dm)ny (¥) — d
N 2(k + dm)
2dr +k+d = d*m2sy — 1)
T ek +am) e
_ {c1(0),[Ps]) —d  2dr+k+d d’m(2sy — 1)
= ktram T % Tk ram "W

Depending on the sign of (c1(v), [Ps]), we may use either (6.33) or (6.34) to put the
first two fractions in terms of s, and deduce

Fas((a,i]) — Fap((x.1 —nw ()] @ T7)
_ 2dsy—d 2dsy —d  d*m(2sy — 1)
T 2k +dm) 2k 2k(k + dm)
=ny(¥) = 0.
For the final statement, equations (6.21), (6.22), and (6.31) together with either (6.33)
or (6.34) show that

+ny ()

(c1(0).[Ps])? ~ (dr+k)?  d’ms?

+2 =0
" -

as required. |
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6.3. Rectangle maps

Next, we turn to the rectangle-counting maps. We will introduce the truncated maps
i, h%, and h%, and use them to prove the first part of Proposition 6.3.

6.3.1. The map hf). Just as with f;” in Section 6.2.1, for each v € Sping(Xggys), the
composition /g ,, 0 6~ is non-zero only on the summand CF°(et, 8,3, w) ® T" [y,
where s = v|y and

r= 51, [P]) +5) (mod m).
on which &g ,, o 6~ equals an untwisted count of rectangles.

The cobordism Xgg,5 is always indefinite. Specifically, if k& > 0, then Xg,, is
positive-definite and X, is negative-definite while the reverse is true if k < 0. Define
oy = U|Wa,3y, and likewise for other subsets of , 8, y, 5.

Each summand A ,, is homogeneous, with grading shift given by

gi(hg) = E(for0,,,) + E(fv,,s) T 1
_ c(v)+m—1
Y

We can break this down in two ways. The first is

c1(Vpy)* + c1(vgys)> +m— 1
4
(c1(0),[Py])*  vZ{c1(0),[R])? m—1

_ . 6.35
4dk amk(k +dm) 4 (6.35)

gi(hg) =

This expression alone does not allow us to simultaneously control (c;(v), [P,]) and
{c1(v), [R]) as in Lemmas 6.7 and 6.9; there could be non-zero summands hf)’n for
which the evaluations of ¢;(t) on [P,] and [R] are both large in magnitude while
gr(hf)’n) is small. Instead, it will be more useful to write

e c1(vaps)® + c1(vgys)* +m — 1
gf(ho,n) — aﬁ 4 ﬂl’

_ A1), [Ps])?  {e1(v),[Q])? Lm —1
T 4d(k +dm) 4m 7

(6.36)

By (5.23), note that (¢ (v), [Q]) = em, where ¢ is an odd integer.'* We will mostly be
interested in the cases where e = =£1, but we can state the following lemma in more
generality.

13Not to be confused with the e from Proposition 5.16.
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Lemma 6.13. Fixt € N and € > 0. For all m sufficiently large, the following holds:
if v is a spin® structure with {c1(v), [Q]) = em, and hto,n # 0, then

[{c1(v). [Ps])] < (le] + &)(k + dm).

Proof. By Proposition 5.16, there is a constant C (independent of m) such that the
gradings of all elements of CF'(a, §, w) are bounded above by C + %> while
the grading on CF'(«, B, w; I',;) is bounded below by —C. Suppose that hf),n #£0
and that |{c1(v), [Ps])] = (le] + €)(k + dm). For any homogeneous element
x € CF (a, B, w; T), if hfy ,(x) # 0, we have

—_ ~ m
2C = §(hf o () — () — 7

_ {a), [P5])*  {e1(v),[Q])* L -1 m
4d(k +dm) am 1

- (le] + &)%(k + dm) B e?m? 1
= 4d am 4

((le] + &)®> —e?)dm + (le| + ¢)%k —d

4d '

The right-hand side tends to infinity as m — oo, which gives a contradiction. |
We now define the “truncated” version of /. Fix a small real number ¢ > 0.

Definition 6.14. For any ¢ > 0, let l;f) . be the sum of all terms hf,,n corresponding to
spin® structures v which either satisfy both

l{c1(v), [Py])| < edm, (6.37)
fer (o) [R) | < "EZA 638)

or satisfy
[{c1(0),[Q])| = £m. (6.39)

We will often suppress the dependence on ¢ from the notation and just write I;’O

Lemma 6.15. Fixt € N and ¢ > 0. For all m sufficiently large, E{) is a null-homotopy

of f{ o fg-

Proof. Let p € (X, Oyp, Og,, a) be any rectangle such that j1(p) = 0,0 < ny(p) <
m, and M(p) # 0. The possible ends of M(p) correspond to the following possible
decompositions:

(R-1) a concatenation of a rectangle o' (with s, (0') = s (p)) and either an

(@, B), (B.y), (v.8), or (a, §) bigon,
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(R-2) a decomposition p = ¥y * ¥», where Y1 € m2(X, ©g,,, q) and Y, € ma(q,
®y8 > a)’

(R-3) a decomposition p = ¢ * ¢, where ¢; € 72(Opy, O,5,©) and ¢, €
m2(x, ®, a) (for some ® € Tg N Ts).

We claim that if v = s,,(p) fails to satisfy either [(6.37) and (6.38)] or (6.39),
then M (p) has only ends of type (R-1). Indeed, if M(p) has an end of type (R-2),
then ¥; counts for fot,na,g,, and ¥, counts for ffynw 5- Hence, by Lemmas 6.7 and 6.9,
we deduce that v = s, (p) satisfies (6.37) and (6.38). Similarly, if M (p) has an end of
type (R-3), then ® = ®gs and ¢; must be one of the triangles ‘L'l:t from Lemma 5.3.
Moreover, if we assume that m > ¢, then since ny, (¢1) < m, ¢ must in fact be Tg:_
Therefore, v satisfies (6.39). This proves the claim.

It follows that the map &} — Ef),e (which counts rectangles which satisfy neither
[(6.37) and (6.38)] nor (6.39)) commutes with the differentials:

(o — ) © Bap + Bus o (g — ) = 0.
Since hy is a null-homotopy of f{ o f{, it follows that l;f) . is as well. [

Proposition 6.16. Fixt € N and 0 < ¢ < 1. For all m sufficiently large, the map };6,5
is filtered with respect to o8 and Jqs5 and is homogeneous of degree 0 with respect
fo gr.

Proof. We will start by trying to understand the filtration shift of an arbitrary sum-
mand hf)’v,

included in ﬁf),s. Write (c1(v), [Q]) = em, where e is an odd integer.

and then specialize by imposing the conditions required for hf),n to be

Suppose x € Ty, N Ty and a € Ty, N T are generators with s := s, (X) = v|y
and u := sy (a) = vy, (k)- Suppose that p € ma(x, Opy, O, a) is a rectangle
which contributes to /g ,,. That is,

hh 007 ([x,i] ® T7) = [a,i — 1y (p)] + other terms

where r is the unique number satisfying

—k—dm —k+dm
— <7< ——— and r=-—

1
g = °d g (c1(0).[Py]) + k) (mod m).

Note that r is one of the exponents appearing in (6.5), and hence it appears in the
definition of Jug([x,i] ® T") by (6.20). Our goal is to show that

Fap (X, i1 ®T") = Jas([a.i —nw(p)]) = nz(p) = 0.
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Let us write
(c1(0), [Py]) = —2dr —k + 2pdm, (6.40)

where p € Z. In other words, p is the unique integer for which
(2p — Ddm < (e1(0). [Py]) < 2p + Ddm. (6.41)

In particular, if v satisfies (6.37), then p = 0.
Associated to the spin® structure u, we have the number s,,, which by (5.35)
and (5.37) satisfies
—(k+dm) <2dsy <k+dm

and
2dsy, =24(a) +k +dm +d (mod 2(k + dm)).

At the same time, by (5.22), we have

%(Cl(n)v [R]) = 24(@) + (k + dm)(2ny(p) — 21y (p)) — (k + dm) + d,

and hence y
E(CI(U)’ [R]) =2dsy (mod 2(k + dm)).
Write ;
Z«:l(t’)’ [R]) = 2dsy + 2¢q(k + dm), (6.42)
where g € Z, so that
(2q = Dk +dm) < ~(c1(@). [R]) < @q + Dk +dm).  (643)

Again, if v satisfies (6.38), then ¢ = 0. Since ,[R] = [P, ] + %[Q], we also have
20q—p—1dm+ 2q— )k <ke <2(q—p+ )dm + 2¢q + k. (6.44)
We compute

Fos(a,1 —ny () — Fap(x,i1] @ T")
A(a) d*mQ2sy —1)  2dr+k+d
“kram O e gam T %
_ wlei(),[R) +k+dm—d
a 2(k +dm)
dm(,(c1(v), [R]) —2q(k + dm))
2k(k + dm)
n —({c1(0), [Py]) =k +2pdm d*m +k+d
2k 2k(k +dm) 2k

—ny(p)
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_ Uer),[R]) | dmviei(), [R]) | —{c1().[Fy])  (p=q)dm

" 2m(k +dm)  2km(k + dm) 2k k
d’*m k+d d
T okktdm) T 2k 2k tam M@
1 —q)d d k+d
= pla, LR - + LD S L)
1 —q)d 1
= o o) + LD
1 —q)d 1
= 3 mp) = 2n(p) — 1)+ LD )
—q)d
— —na(o) + W

Thus, to show that ﬁf),g is filtered, we must simply show that p — g = 0 whenever v
satisfies the conditions from Definition 6.14.

If v satisfies (6.37) and (6.38), we immediately deduce that p = g = 0. Thus,
suppose that v satisfies (6.39), i.e., ¢ = £1. By Lemma 6.13, we may also assume
that |c1(v), [Ps]] < (1 + &)(k + dm). Recall that [Py] = [Ps] + d[Q] and . [R] =
[Ps] + ££4m[ 0], Therefore,

(e—1—e)dm—(1+ek <{c1(v).[P)]) <(e+1+e)dm+ (1+ )k,
v
(e—1—¢)k+dm) < E(Cl(n)’ [R]) < (e + 14 ¢&)(k +dm).

Assuming m is sufficiently large, this implies that p, g € {0, e}. It then follows from
inequality (6.44) that p = ¢, as required.

We now turn to the statement about gr, which we check in each of the two cases in
the previous paragraph. In the case where p = ¢ = 0, equations (6.21), (6.22), (6.35),
(6.40), and (6.42) immediately imply that ﬁ(hf)’n) =0.If p=qg = e = %1, then let

v’ = v + e PD[Q], which has the same restrictions to ¥ and Y} 4, (K) as v and the
same corresponding values of r and s,;. We may easily check the following:

(c1(0), [Py]) = (c1(v),[P)]) —2edm = —2dr —k,

(e1(0). [R]) = —(c1 (). [R]) = 2e(k +dm) = 2dsu.

(c1(0).[Q1)
)

S|<
Il

(c1(0),[Q]) —2em = —em,
(c1(0),[Ps]) = (c1(v), [Ps]) = —2dr —k — dem.

Thus, the analogues of e, p, and ¢ associated to v’ are ¢/ = —e and p’ = ¢’ = 0, which

t
0,0/

c1(v)* = ¢1(v")?, and hence gr(hf ) = 0 as required. n

implies that gr(hf, ;) = 0 by the previous case. At the same time, (6.36) implies that
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6.3.2. The map h’l. As in the previous section, we will need to define a truncated
version of ﬁ’l that uses only certain spin® structures. To begin, we have, for any v €
Sping(X4ysp) and any q € To N T,

6 ohi ,(a,i])

=) D EM(p)[x. i = o (p)] @ T P70~
x€TyNTg pem2(q,0,5,058.,%)

u(p)=—1

sw(p)=v
=2 S HMPI T — iy (p)] @ T2 (1 LIPSl k),
x€TeNTg pen(q.0,5.055.%)

u(p)=-1

sw(p)=v

Thus, the summand of (6.5) in which 6 o h‘l’,n lands is determined by the value of
(c1(v), [Ps]) modulo 2dm.

Definition 6.17. Let ﬁ’l denote the sum of all terms htl,n for which v satisfies
(c1(0).[Q]) = £m. (6.45)

Remark 6.18. The definition of };’1 appears considerably somewhat simpler than that
of hg (Definition 6.14) in the previous section. In fact, however, the two definitions
are parallel. Suppose that 0 < & < 1 and that v is any spin® structure which satisfies

k4+d
<m( + m)’

[{c1(0), [R])] (6.46)

[{c1(0). [Ps])] < (1 + &)(k + dm) (6.47)

(which are the conditions suggested by Lemmas 6.9 and 6.11, analogous to (6.37)
and (6.38) in Definition 6.14). We then have

m

k+dm|<cl(v)’[R]>|+k+dm
v mk +dm) m

L4k +d
S txamn v Tigamtok+dm

=mQ2 +¢),

[{c1(0), [Q])] = [{c1(v). [Ps])]

which implies (6.45). Thus, it is not necessary to include (6.46) and (6.47) in the
definition of /7.

Lemma 6.19. Fix t € N. For all m sufficiently large, /;tl is a null-homotopy of
fa o fi.

Proof. This follows just like Lemma 6.15, taking Remark 6.18 into account. |
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The cobordism Xy, is indefinite if k& < 0 and negative-definite if K > 0. As in
the previous section, the grading shift htl,v is given by

c1(0)? +m + 2 + 3sign(k)

g(htl,n) = 4
_ V)[R (ea(o). [Ps))? | om 24 3signk) oo
© dmk(k +dm)  4d(k +dm) 4 '
_ {a),[P])? (e1(v),[Q])* | m+ 2+ 3sign(k)
T 4dk  4m + 4 ' (649

The following lemma is analogous to Lemma 6.13.

Lemma 6.20. Fixt € N. For all m sufficiently large, if v is any spin® structure with
[{c1(v),[Q])| = em (where e is an odd integer), and h’l’n # 0, then |{c1(v), [P}])| <
le|dm.

Proof. The gradings on CF' (a, B, w; I',;) and CF' (e, y, w) are bounded above and
below by constants independent of m. Therefore, for some constant C, if v is any
spin® structure for which 4{ , # 0, then —C < gr(h} ) < C. Using (6.49), we have

oo @B (a@®)L0)? | m+2=3signk)

4dk 4m 4 ¢

Thus, for some other positive constant C’,

(€10, [P @~ Dm
4dk 4

Setting C” = 4d|k|C’, we have

—C' < <C'.
C” > (c1(v), [P,])* + (e* — D)dkm.
If [{c1(v), [Py])| = |e|dm, we obtain
C" > e?d*m?* + (e? — )dkm = dm(e*(k + dm) — k) > d*m?,

which is a contradiction for m sufficiently large. Hence, |{c1(v), [Py])| < |e|dm as
required. u

When k > 0, there is an even stronger statement.

Lemma 6.21. Fixt € N, and assume k > 0. For all m sufficiently large, if v is any
spin€ structure for which htl,n #£0, then v satisfies (6.46) and (6.47) (and hence (6.45)).

In particular, b, = hY.
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Proof. Let C be as in the proof of Lemma 6.13. By (6.48), we have

V2 (c1 (). [R])? | (e1(o).[Ps))>  m+5

C.
amk(k +dm) * 4dk +dm) 4

The first two terms are both non-negative since k > 0, so each one is less than '”TJFS +
C. Just as in the proofs of Lemmas 6.9 and 6.11, for m sufficiently large, both (6.46)
and (6.47) must hold. ]

Proposition 6.22. Fixt € N. For all m sufficiently large, the map ﬁ’l is filtered with
respect to the filtrations $4, and $qg and is homogeneous of degree 0 with respect to
or. (When k > 0, the same is true for h',.)

Proof. Let v be a spin® structure for which h’l,n % 0. Write (c1(v), [Q]) = em.
By (6.45), we will eventually assume that e = +£1, but for now let us treat e as an
arbitrary odd integer (which will motivate the definition of };’1 ).

Suppose that p € 72(q, ©ys, Osp, %) is a rectangle which contributes to 41 . Let

r be the value with
—k —dm —k +dm
- << —

2d - 2d
and

(c1(0),[Ps]) + kK +dm) (mod m),

1

= _ﬁ(
which is one of the exponents appearing in (6.5). Let p be the integer for which

(c1(v).[Ps]) = —2dr —k + (2p — 1)dm,
which implies that

(2p —2)dm < {c1(v), [Ps]) = 2p)dm. (6.50)
It also follows from (5.26) that

—2dr +2pdm = 2A(x) — 2dny (p) + 2dn.(p).

By Lemma 6.20, we may assume that |(c1(v), [Py])| < dm. Recall that [P)] =
[Ps] + d[Q], and therefore

{c1(0),[Ps]) = (c1(0). [Py]) —edm.

If e > 1, this gives
—2edm < {c1(v),[Ps]) <O.

Therefore, —e < p and 2p —2) < 0,s0 —e < p < 0. Similarly, if e < —1, then

0 < {c1(v),[Ps]) < —2edm,
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s0 0 < p < —e. Specializing to the cases where e = *1,if e = 1, then p = 0, and if
e = —1, then p = 1. In either case, note that e + 2p = 1. By (5.27), this means that

P =5 =nup) = mup) + 1.

Now, we compute
gay([% i]) — ((r’aﬂ([x’i —ny(P)]®T")

2dr +k +d
2k

1 ~
= ﬁ@A(q) +2dr +k+d)+ ny(p)

= Aw,z’(Q) + + ny(p)

= %(21‘?(‘1)—2X(X)+2dnw(p)—2dnz(p) F2pdm +k +d) + 1y (p)
1

=% (2dnz(p) + 2knz (p) + 2dmny,(p)

—2k+dm+dny(p)—k—d—2dm

+ 2dny(p) —2dn;(p) + 2dmny(p)

—2dmny(p) +2dm +k +d) + ny(p)
nz(p) = 0.

For the statement about gr, we first note that
(c1(0),[Py]) = (c1(v),[Ps]) + dem = —2dr —k + 2p + e — 1)dm = —2dr — k.
Equations (6.22) and (6.49) then immediately imply that ﬁ(ﬁﬁ’n) =0, asrequired. m

Remark 6.23. In the proof above, without the simplifying assumption thate+2p =1,
we would have found that
e+2p—1

gay([q’ i]) — gaﬁ (X i —nw(@E]®T") =n.(p) + %

Thus, the map A} (which incorporates all spin® structures) is not necessarily filtered.

6.3.3. The map h’,. Next, we consider the map h}. Let Wysp, be the associated
cobordism, which is indefinite if & > 0 and negative-definite if k < 0. According
to (6.17), the map h% counts only holomorphic rectangles p with the property that
nyw(p) = nz(p) (mod m). By (5.31), this is equivalent to the condition that

{c1(sw(p)). [Q]) = em,

where e is an odd integer. As usual, consider the decomposition into terms of the form
ht
2,0°
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Just as in the previous section, let h~’2 denote the sum of all terms /5 ,, for which
(c1(v),[Q]) = £m. (6.51)
The analogue of Remark 6.18 holds here as well: for any 0 < ¢ < 1, if v satisfies

[{c1(0), [Ps]})| < (1 + &)(k + dm), (6.52)
l{c1(0), [Py])| < edm, (6.53)
then it satisfies (6.51) as well. The following lemmas are left as an exercise.

Lemma 6.24. Fix t € N. For all m sufficiently large, ﬁtz is a null-homotopy of

foofs.

Lemma 6.25. Fix t € N and ¢ > 0. For all m sufficiently large, if v is any spin®

structure with |{c1(v), [Q])| = em (where e is an odd integer), and hli,n % 0, then

m(k + dm)le|
” .

[{c1(0), [R])] < (6.54)

Lemma 6.26. Fixt € N and ¢ > 0, and assume k < 0. For all m sufficiently large,
if v is any spin® structure for which htl,U = 0, then v satisfies (6.52), (6.53), and
hence (6.51). Therefore, h, = ht,.

Proposition 6.27. Fixt € N. For all m sufficiently large, the map ﬁtz is filtered with
respect to the filtrations o5 and $oy and is homogeneous of degree 1 with respect to
gr. When k < 0, the same is true for hb.

Proof. Leta€ Ty € Ts and q € Ty, N Ty, and suppose p € m2(a, Osg, O, q) con-
tributes to h’z’v([a, i]). Let u = sy (a). The definition of s involves the number sy,
which by (5.35) and (5.37) satisfies

—(k+dm) <2dsy <k+dm

and
2dsy =2A4(@) +k +dm+d (mod 2(k + dm)).

Combining these facts with (5.29), we have
(c1(5w (). [Ps]) = 24(a) + 2(k + dm)ny (p) — 2(k + dm)nz(p) + d

=2A(a) +d (mod 2(k + dm))
=2dsy —k —dm (mod 2(k + dm)).

Let g be the integer for which

(c1(5w(p)). [Ps]) = 2dsu + (2 — D)(k + dm),
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so that
(2 =2)(k +dm) < {c1(sw(p)), [Ps]) <2q(k + dm).

Suppose that {c;(v),[Q]) = em and htz,n = 0, so that v satisfies (6.54). If e > 1,
we have

k+dm

(e1(0). [Ps) = ~ e (o). [R]) - (e1(0).[Q)
~2e(k +dm) < (c(v).[Ps]) <.

so —2e <2gand2g —2 < 0,s0 —e < g <0;andif e = 1, then g = 0. Likewise, if
e <—1,then 0 < g < —e; and if e = —1, then ¢ = 1. In either case where e = +1,
we see that e + 2¢g = 1.

Assuming e = £1, we now compute

Fas([a.1]) — Fay (@, 7 — 1w (p)])
_ A@ o dPm@sa—1) Al
T ktdm T 2k(k+dm) |k
2k A(a) — 2(k + dm)A(q) + d*>m(2sy — 1)

—i+ny(p)

- 2k(k + dm) 1w (p)
_ 2(k +dm)(A(a) — A(q)) —2dmA(a) + d®m(2s, — 1)
- 2k(k + dm) +1mw(p)

= %(dnz(/)) +knz(p) + dmny(p) — (k +dm + d)ny(p) — dTm)
B dm({c1(sw(p)),[Ps]) — 2(k + dm)ny (p) + 2(k + dm)ny(p) — d)

2k(k + dm)

d’m2sy — 1)

ek +dm) Tl

1

dm) _dm((c1(sw(p)). [Ps]) — 2dsu)
k

(dnz(p) + knzr(p) = dmu(p) — - ek + dm)
d
= nz(p) + ﬁ@nz(p) —2ny(p) —m—m(2q — 1))

d
= nz(p) + - (=(c1(0). [Q]) —m(2g — 1))
dm(e +2q —1)

= l’lz/(,O) - 2k

=n,(p) > 0.

The statement about gr follows just as in the proof of Proposition 6.22. ]
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Figure 6. Close-up of the winding region with the added curve B g-

6.4. Pentagon maps

We now turn t0 the proof of the second part of Proposition 6.3: showing that each map
Reyyo ff+ fliao ﬁ; (where j € Z/3) is a filtered quasi-isomorphism. This relies on
the standard strategy of counting holomorphic pentagons, used by Ozsvéth and Szab6
in [41] and then adapted by Mark and Hedden in [9]. We will only discuss the case of
J = 0, which is the most technically difficult because of the twisted coefficients. The
arguments for j = 1 and j = 2 are similar and are left to the reader as an exercise.
Let B = (5 1s-- ,Bg) be obtained from B by a small Hamiltonian isotopy, such
that each ,B, meets ,Bl in a pair of points, and assume that ,3 ¢ 1 as shown in Figure 6.
Let v be a point that is in the same region of ¥ ~ (¢ U ) as w and in the same
region of £ ~ (o U B) as z. Finally, let © pf € Tg N Tg denote the canonical top-
dimensional generator. (The twisted chain complex associated to (8, f!) is somewhat
subtle; see [9, p. 36].)
Foreachx € To N Tg,letx € Te N'T F; be the nearest point. Indeed, every gen-
erator in To N T is of this form, and clearly A(X) = A(x) and gr(X) = gr(x). The
differentials on the complexes CF' (a, B, w; I',) and CF (a, B ,w; ['yy,) are given by

dp(x.iD) = D HM@ TPy i —ny(g)]

yeTaNTg ¢ema(x,y)
u(g)=1

0D =D D #MHT"P D[y —ny(9)].
yeTaﬂT pemr(X,y)
u(p)=1
Note that in the exponents of 7', we now use v in place of whichever basepoint (w or z)
is contained within the same region. Let 0y and 0, i be the trivializations defined
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by (6.3) and its ,B~ analogue, and let $,p and ¢, i be the corresponding filtrations
defined by (6.20).

Henceforth, we will treat f and 4} as mapping into CF’ (e, B.w:;T,y), with (6.11)
and (6.16) modified accordingly. Of course, all of the results of Sections 6.2.3
and 6.3.2 continue to hold. Thus, we may define maps

Wy, Uo: CF (3, &, B, w; T) — CF(Z, &, B, w; T)

by
Wo=hyo fo+ frohy and Wy =hyo fo+ f>oh.

In [9, pp. 34-38], it is verified that Wy is a quasi-isomorphism. We must prove the
analogous filtered statement.

Proposition 6.28. Fixt € N and ¢ > 0. For all m sufficiently large, \’Ivlf) is a filtered
quasi-isomorphism with respect to the filtrations $4p and &, Iz

It is immediate from our previous results that @6 is a filtered map (since it is a
sum of compositions of filtered maps), but more work will be required to see that is a
filtered quasi-isomorphism.

The key to understanding @6 is to relate it to the chain isomorphism

®0: CF(Z, . B. w: Tpy) — CF°(Z, &, B, w; Ty) (6.55)
given by
QT - [x.i]) = D #MY) T g i — g, (¥)]. (6.56)
?ETQHTB WEﬂz(X,@ﬁB,y)
u(y)=0

The verification that ®g is an isomorphism uses a standard energy filtration argument,
asin [9]: we have ®g(T™ - [x,i]) = T*® - [X,i] + lower order terms. Moreover, for any
¥ e mh(x, ®ﬁ/§’ y), we have A(x) — A(Y) = nz(¥) — ny (¥). It follows easily that
®g is a filtered isomorphism with respect to 4 and &, j

Consider the map

g0 CE°(Z, &, B, w: ) — CF°(Z, e, B, w; Ty) (6.57)
defined by
go(T* - [x.i]) = Y H#M@) T OOy i —ny (0)].  (6.58)
yETaﬂT[} 06”2("’651”@7/5’@85’37)
u(o)=-2

s+ny(0)—ny(0)=0 (mod m)

The following lemma is a slight refinement of the statement from [9] and immediately
implies that W is a quasi-isomorphism.
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Lemma 6.29. The map g is a chain homotopy between Wy and 3 + U™ ', where
@' is some other chain map. In particular, when m > t, gk is in fact a chain homotopy
between Ul and P,

Proof. Just as in [44, p. 122] and [9, p. 36], this comes down to a model computation
of F;y s 5(® By ® Oys ® O 5)’ which is made only slightly more complicated by the
presence of twisted coefficients. The key observation is that there are m distinguished

holomorphic rectangles in 75 (®g,,, ©,5, Oz, © 8 5)’ which are the only classes with

ny = 0. By looking more closely at the comslfutation there (specifically [9, Figure 2]),
one can verify that all other holomorphic rectangles have n,, divisible by m. (Compare
Lemma 5.3 above.) Therefore, one of the terms that arises in the count of degenera-
tions of holomorphic pentagons is of the form F° .(— ® (® gi T U™®’)), where ®’

~ B
is some element of CF<°(X, B, B, w), so it has oéﬁe form described in the lemma. m

Remark 6.30. To generalize Lemma 6.29 to Z coefficients, one would need to show
that the m distinguished holomorphic rectangles mentioned above all count with the
same sign. This statement is implicitly asserted, but without justification, in [44]. Intu-
itively, Ozsvath—Stipsicz—Szabd’s approach to sign assignments from [36] could be
useful here; because the boundaries of domains of these rectangles all interact with
the orientations of the 8, y, 8, and 3 curves in the same way, the rectangles should all
count with the same sign. However, that argument is far from rigorous; to our knowl-
edge, it is not known whether the combinatorial sign assignments from [36] actually
agree with the orientations of moduli spaces, even for bigons.

Before we discuss the filtration shifts, we need to state analogues of the results
of Section 5.4 for pentagons. To begin, let V' be the (8, 5) periodic domain with
W = Bg — Berny(V) =1, and nyy (V) = n;(V) = ny (V) = ny (V) = 0. Let Py,
ﬁg, and Q be the analogues of P, Ps, and Q with f circles replaced by ﬁ circles: to
be precise, up to thin domains, we have

[P)] = [P)]+ K[V, [Ps]=[Ps]+ (k +dm)[V], [0]=[Q]-mlV].

The Heegaard diagram determines a 4-manifold Xaﬁy 83 which admits various
decompositions into the pieces described in Section 5.3; for instance, we have

Xaﬁy&ﬁ = Xogys Urys XocSE = Xogy Uy, Xayé’ﬁ'

In the intersection pairing form on H> (X, By ,§)7 we have

Vi-vi=[v]-191 =[V]-[@] =0,

and all other intersection numbers can be deduced accordingly.
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Lemma 6.31. Foranyx e To NTg,y€ Ty N ']TE, and o € (X, Op,y,, Oy, ®8/§’5')’
we have

AX) — AF) = dn;(0) + knz (o)

+dmny(o)—(k +dm + d)ny (o) —dm, (6.59)
(c1(5w(0)). [Py]) = 24(x) 4 2dny (0) — 2dny(0) —k, (6.60)
(c1(5w(0)). [P5]) = 2AF) + 2dn,(0) — 2dn, (o) — (k + dm), (6.61)
{c1(5w(0)),[Q]) = m(2ny(0) —2n.(0) — 1), (6.62)
(c1(5w(0)), [Q]) = m(2ny(0) — 21y () — 1), (6.63)
(c1(50(0)). [V]) = 21y (0) — 2n./(0). (6.64)

Proof. This follows from Propositions 5.5 and 5.6 in much the same way as Proposi-
tion 5.6 follows from Proposition 5.5. ]

Just as with the other maps, g; decomposes as a sum

g(o) = Zgg,v’

nESping(XaﬂwsB)

where g; ,, counts pentagons o with $,,(0) = v. To be precise, for any x € Ty N Tp

and any r = —Ay - (x) (mod Z), we have
(6,5 ©86© 0 )([x,1] @ T")
=2 Y #MO). i —nu(0)] @ T~ Avz@+nu@)=n:(0)
iETaﬂT/} G’E]Tz(x,@l.;y,®y8,®85,§)
n(o)=-2
V+Aw,z (X)+nw(P)_nv (P)EO (IIIOd m)
=> S HN0)F, i — 4y (0)] ® T~ 27 (1 Gu@IPs]y+ekdm),
¥eTaNTy 0€m2(x.0p,.0,5:0,5.5)
n(o)=-2

r+ 55 ((c1(5w(0)),[Py1))=0 (mod m)

In particular, given a spin€ structure v, let » and s be the numbers satisfying

—k —dm —k +dm 1

BEYEE <r< g r= —ﬁ((cl(v), [Py]) + k) (mod m), (6.65a)
—k—dm —k +dm 1 ~

Y <5< YR s = —ﬁ((cl(v), [Ps]) + k +dm) (mod m),

(6.65b)
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which are both among the exponents appearing in the decompositions of CF°(e, 8,
w; T'y,) and CF° (e, B, w; T'yy) given by (6.5). Then the composition 6 o €60 © f~1
takes

CF°(at, 8.5, w) ® T Ty — CF°(a, B. 5, w) ® T*T),

where s = vly,, and $ = v|y_ 5 (Analogous statements hold for @g.)
The grading shift of gg ,, is

ci(v)?2+m+4
—

This can be expressed in terms of ¢; evaluations in various ways. For instance,

(c1(0), [Py])2 v3{c1(0),[R])?  (c1(v),[Ps])? Lmtd

gr(go.0) =

§leow) = — g~ dkm(k +dm)  4d(k + dm) g (6:60)
CTON LY el CIUATSY S CTON ) R
~ {e1(0), [Ps])? — (c1(0). [Ps])? (c1(0).[Q])2  m+4
= 4d(k + dm) T am g ©89)

Lemma 6.32. Fixt € N and 0 < ¢ < &’ < 1. For all m sufficiently large, if v is any
spin€ structure for which g(’)’v # 0, then the following implications hold.

(1) If|{c1(v), [Py])| < edm and {c1(v),[Q]) = +m, then
[{c1(0). [Py])] < &'dm. (6.69)
2) If (c1(0), [Q]) = +m and |(c1(v), [Ps])] < (1 + &) (k + dm), then
[{c1(0),[Ps])| < (1 + &) (k + dm). (6.70)
3) If {c1(0),[V]) = O, then
(c1(0),[Q]) = (c1(0),[Q]) = £m.

Proof. The gradings on CF' (a, B, w; I',y) and CF (a, B, w; T,) are bounded (above
and below) independently of m. Thus, for some constant C > 0, if g(’Ln # 0, then

—C < gri(gg,) < C. (6.71)

To prove (1), let us assume k > 0; the case where k < 0 proceeds almost identi-
cally. By (6.67), we have

(e1(0). [P — (1), [PD)?  (1(0).[0])  m+4
4dk 4dm 4
£2d*m® — (c1(0), [P)))2 m®  m+4
< 4dk T T Ta

_CS
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SO
(c1(0), [P)))? < e2d*m? + C/,

= i C’ .
where C' = 4dk(C + 1). Therefore, if m > /d2(sf2_g2)’ we obtain
l{e1(0). [Py])] < €'dm,

as required.

The proof of (2) proceeds similarly using (6.68).

For (3), assuming that (c; (v), [V]) = 0, we have (c1(v), [Py]) = {(c1(v), [ﬁy]) and
(c1(0),[0]) = (c1(v),[Q]) = em for some odd integer e. By (6.67), we have

(e* = m < 4(C +1).
Thus, for m sufficiently large, we deduce that e = £1, as required. [

Definition 6.33. Fix 0 < ¢ < % Call a spin€ structure v good if it satisfies both

[{c1(0), [Py])| < edm, (6.72)
(c1(0),[0]) = +m, (6.73)
or it satisfies both
[{c1(0), [Ps])| < (1 + &) (k + dm), (6.74)
(c1(0),[Q]) = £m, (6.75)
or it satisfies
(c1(v), [V]) = 0. (6.76)

Let g§ denote the sum of all terms gé’n for which v is good.

Lemma 6.34. Fixt e Nand 0 < e < % For all m sufficiently large, the map gl is
filtered with respect to the filtrations 4 and § , B

Proof. It suffices to show that each non-zero term gf, , in the definition of & is fil-
tered. We will start by looking at an arbitrary term g(’),v, and then specialize to the case
where v is good (which will justify our definition).

Let r and s be as in (6.65). Write

(c1(v), [Py]) = —2dr —k + 2pdm,
(c1(v), [Ps]) = —2ds —k + (2q — 1)dm,
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so that we have

2p—dm < (c1(v),[Py]) < 2p + 1)dm, (6.77)
(2¢ —2)dm < {(c1(v),[Ps]) < 2qdm. (6.78)

Let us assume that (c;(v), [Q]) = em, where e is an odd integer.
For any 0 € m2(x, ©g,, Oy, ®8/§’ ¥) contributing to g(’)yv, we compute

Fop (X 01 T") =5 ([¥.i —nuw(©@)] @ T°)

. 2dr+k+d ) 2ds +k+d
e e R TG R e
_ d(sk— r) 1y (0)
_ @)+ 2g—2p b
_ {e1(0). [Ps] + d[Q] — [Ps]) + 2 —2p — )dm
= 2% +ny (o)
_ {e1(@). =k +dm)[V] + d[Q]) + 2g —2p — 1)dm
= 2% +ny (o)
_ 2(k +dm)(ny (o) —ny(0)) +dm2ny (o) —2n,(0) — 1)
B 2k

P a2l )
_ 2kny(0) —2dmny(0) +2dmny(0) —dm
B 2k

2q —2p —1)dm

* T
oty + U100+ @g ~2p
— 1 (0) + (e +2¢q —;Cp — l)dm.

Thus, it suffices to show thate +2g —2p — 1 = 0.

Note that

(c1(0), [Py]) = (c1(0),[Py)]) — k{c1(v),[V])
= {c1(v), [P5]) + d {c1(v), [D]) — k{c1(v), [V])

SO

(c1(0), [Py] = [Ps]) = edm — k{e1(v). [V]).
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Combining this with the bounds (6.77) and (6.78), we obtain

kic1 (o). [V])

<2p—2q+3. (6.79)
dm

2p—2q—-1<e—

In particular, if (c1(v), [V]) is small compared to m (i.e., if |k{c1(v), [V])| < 2dm),
we immediately deduce that e = 2p — 2q + 1, which is precisely what we need. To
ensure this, we now apply the hypotheses for g;.

* Suppose that v satisfies both (6.72) and (6.73), and hence also (6.69) by
Lemma 6.32 (1), where we take ¢’ = 2¢. Then

Ik {c1(0), V)] = [{c1(v), [Py] — [Py])]
< [{e1(0), [Py])] + [{c1(0). [P])]
< 3edm < 2dm,

as required.

* Suppose that v satisfies (6.74) and (6.75). By Lemma 6.32 (2), again taking &’ =
2¢, we also have
[{c1(0), [Ps]}| < (1 + 2&)dm.

Therefore,
(k + dm)|(c1(0), [V])] = {c1(0). [Ps] — [Ps])| < 2+ 3e)(k + dm).

Since {c1(v), [V]) is an even integer, it must equal either —2, 0, or 2. For m suffi-
ciently large, we again obtain |k (c1(v), [V])| < 2dm, as required.

* Finally, if v satisfies (6.76), then the conclusion is obvious. [

Lemma 6.35. Fixt e Nand(0 < ¢ < % For all m sufficiently large, the map g¥ is a
(filtered) chain homotopy between VY and ®},.

Proof. We begin by reviewing the proof that go gives a homotopy between W, and
®y, and then see how to modify it to incorporate the notion of good spin® structures.
(See [9, pp. 34-35] for the most complete treatment.)

For any class o € m(X, Og,, Oy, ®8E’ y) such that (o) = —1 (and hence
dim M (o) = 1), the possible ends of M (o) correspond to the following six types
of degenerations:

(P-0) a concatenation of a pentagon ¢’ (with s, (0') = 34 (o)) with either an
(. B). (B.y). (v.6), (8, B), or («, B) bigon,

(P-1) a decomposition o = p; * Y1, where p; € m2(x, Og,, O,5,a) and ¥ €
o (a, ®85,§') for some a € T, N Ty,
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(P-2) a decomposition o = v, * py, where ¥, € m2(x, ©g,,q) and p, € m2(q,
Oys, ®85,§') forsomeq € T, N'T,,

(P-3) a decomposition 0 = Y3 * p3, where V3 € m2(®g,, ©,5, Ops) and p3 €
72 (X, Ops. O55.¥).

(P-4) a decomposition 0 = Y4 * p4, Where ¥4 € 72(0,5, ®8/§’ ®y/§) and p4 €
73(%. Oy, 0 5. ),

(P-5) adecomposition o = ps * Y5, where ps € 12(0g,, 0,5, @85, ©) and Vs €

m2(x,©,y), where ® € Tg N Tg.

If we look at all such classes o with no restrictions on the spin® structures, ends
of type (P-0) correspond to 0, j o8 +goo dop (since Og,, O,s, and O 5§ are all
cycles). Ends of types (P-1) and (P-2) correspond to f> o kg and A1 o fo, respectively.
Ends of types (P-3) and (P-4) cancel in pairs, as seen in the proof of Lemma 5.3.
Finally, ends of type (P-5) correspond to ®q. The fact that each M (o) has alge-
braically zero ends implies that

Jaoho+hio fo+ Po=10,50°80+ goodap

as required.
To prove that g} gives a homotopy between W{ and @, we must see what happens
when we restrict our attention to good spin® structures.

* If M(o) has an end of type (P-1), then the evaluations of ¢;(v) on [P, ], [Ps],
[Q], and [R] are determined solely by p;, while {c; (v), [Ps]) is determined solely
by 1. In particular, since ¥ counts for f), Lemma 6.11 implies that (6.74)
holds (i.e. |{c1(v), 135)| < (1 4+ &)(k + dm)). We claim that p; counts for 56 (see
Definition 6.14) if and only if v is good (see Definition 6.33).
Because (6.74) holds, one of the criteria for p; counting for ﬁf) (namely (6.39))
coincides precisely with one of the criteria for v being good (namely (6.75)). We
thus must simply show that the remaining criteria in each definition are equivalent.

— 1If [{e1(v), [P,])] < edm and |{c1(v), [R])] < mktdm) a5 in Definition 6.14,
then (c1(v), [Q]) = £m by Remark 6.18, and hence v is good.
- If |{c1(0), [Py]})| < edm and (c;(v), [O]) = +m as in Definition 6.33, then

Maslov grading considerations show that |{c1(v), [131,])| < 2edm (just as in
Lemma 6.32 (1)). Therefore,

e @) 1RD] = [fero). 171+ 10

- k
%HCI(U), [P)])| + U|<c1(v), [O])]

Vv

IA
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2
< ﬂstm + mm < —m(|k| + 2edm)
% v

k+d
- m(k + m)‘
%

Vv

If k > 0 the last inequality is automatic; if k < 0, it holds provided that
m > d(1 25) .) Therefore, p; counts for h’ via (6.38).

— If (c1(v), [V]) = 0, then Maslov grading considerations as in Lemma 6.32 (3)
show that (c1(v), [Q]) = £m, and hence p; counts for A}, via (6.39).

The claim is thus proved. The case where M (o) has an end of type (P-2) is handled
similarly, with fewer cases to check.

Next, suppose M (o) has an end of type (P-3). If we assume that m > t, we see
that ¥r3 equals one of the classes 7:0 from the proof of Lemma 5.3; without loss
of generality, assume that Y3 = rg', so that (c1(v),[Q]) = m.Leto’ = 15 * p3,
which is the class that provides the canceling end, and let v = s,,(¢”). Then
D) =D(0) + Q,s0v =v+ PD[Q], s0 {c1 (v),[Q]) = —m. We claim that v
is good if and only if v’ is good. It will follow that when considering contributions
coming from only good spin€ structures, ends of type (P-3) cancel in pairs.
Since

(c1(0), [P5]) = (c1(v'), [Ps]) = (c1(5w(p3)). [P5]).

v satisfies (6.74) if and only if v’ does. For the other two criteria from Defini-
tion 6.33, suppose that v is good; the converse follows similarly. There are two
cases to consider.

— If {¢1(v), [V]) = 0, then (equivalently) |(c1 (v), [Q])| = m. We have

(c1(¥').[V]) = (c1(v) +2PD[Q]. [V])
= (c1(0).[V]) +2[0] - [V] = O.

Thus, v’ is good.

- If {(¢1(v), [V]) # 0, then we must be in the case where {c(v), [Q]) =-—m
(and hence (c1(v), [V]) = 2) and |{c1(v), [P}])| < edm.
As in Lemma 6.32 (2), we have

{e1(0), [Ps])* = (c1(v), [P5])>

—C< 4d(k + dm)

< C,

where C is a constant that is independent of m. Note that

(c1(v), [Ps]) = {(c1(0). [Ps] — (k +dm)[V]) = (c1(v). [Ps]) — 2(k + dm).
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Therefore, we have

({e1 (), [Ps]) = 2k + dm))> — (1 (), [P5])?

—C< 4d(k + dm) <G
—4(k + dm){c1(v), [Ps]) + 4(k + dm)?
—C< 2d(k + dm) <6

—Cd < —{c1(0),[Ps]) + k +dm < Cd,
k+dm—Cd < {(ci(v),[Ps]) <k +dm+ Cd.

If m is sufficiently large, it follows that |{c1(v), [Ps])| < (1 + &)(k + dm).
And since {(c1(v), [Ps]) = (c1(¥'),[Ps]), we deduce that v’ is good.

The claim is thus proved. The case of where M (o) has an end of type (P-4) is
handled similarly.

* Finally, ends of type (P-5) correspond to @, as in Lemma 6.29. If p has an end
of this type, then ny, (p) = n./(p), since w and z’ are in the same region of both

(Z,B,y.,8.B) and (2, «, B, B') (see Figure 6). By (6.64), {c1(5w(p)),[V]) =0,
so v must be good. |

We have thus concluded the proof of Proposition 6.28, and hence of Theorem 6.6.

7. Proof of the filtered mapping cone formula

We now turn to the proof of the filtered mapping cone formula. As noted in Section 3,
it suffices to prove the mapping cone formula for CF*, namely Proposition 3.5.

Proof. Let us assume that k > 0; the case where k < 0 is similar and is left to the
reader. Fix ¢ € N. By Theorem 6.6, for sufficiently large m and a well-adapted dia-
gram (2, o, 8,8, w, z, z'), the map

t
(ffz%) CF' (e, y, w) — Cone(f5)
is a filtered homotopy equivalence.

Let us start by looking closely at how these maps interact with the spin® decom-
position of CF' (2, e&t, y, w).

Fix a spin® structure t € Spin®(Y (K)). As in the introduction, let {s; | [ € Z} be
the arithmetic sequence (with step k /d) characterized by

_ ZkAY)”KA(t) +d—k

d
S )

(mod k) (7.1a)
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and 2 — 1)k 20 + 1k
%qjs,f%.

These numbers are precisely the values of Ay x(§) forall & € G;Al’ K, (1).

(7.1b)

First, consider the restriction of ff to CF' (e, y, w, t). For all spin® structures
v € Sping (W, s) extending t, the values of (c;(v), [R]) are congruent modulo % =

2kp. Indeed, let v; be the spin structure extending t with

Q1 — Vymk
_— <
V

(1 (o), [R) = LA Dmk

For any triangle ¥ € m2(q, ®,5, a) representing v, (5.16) gives

d—k

(c1(0). [R]) = Al@) + k() = knz () + ——

d—k
= kAy, k, (t) + 5 (mod k)

v
2m

=ds; (mod k)

and therefore
_ 2dms

{c1(vp), [R])

Moreover, by Lemma 6.9, if ff,vl Z# 0, then

v

EEE ey oy ) < L,

so it follows that
k+dm 1

T2

Let L be the largest integer satisfying this constraint; thus, the only possibly non-zero

1] <

terms in the restriction of f{ to CF' (e, y, w, t) are flt’nl forl =—L,...,L.Foreach
such /, let 1; = vyly,,. By (6.29), we have

dmss,
(erton) IR) = 20,

and therefore sy, = s7.
Now, look at the spin€ structures on Wasp extending ;. For each |=—-L,...,L,
recall that we have spin® structures xy,, Yu, on Wysg which satisfy

(c1(xu,). [Ps]) =2ds; —k —dm,
(c1(u,), [Ps]) = 2ds; + k + dm.



A surgery formula for knot Floer homology 329

For ease of notation, let us write x; = xy, and y; = y9y,. Forl =—-L +1,...,L, 9
and x; have the same restriction to Y ; denote this by ;. Note that ; = s;_; + PD[K],
so the list (s_r+1,...,5L) is cyclic with period d. Moreover, we have

(c1(x1),[Ps]) = 2ds; —k —dm
=2ds;—1 +k—dm
= {c1(yi-1), [Ps]) — 2dm.

In particular, the images of the maps 6 o f2t,zc/ and 6 o fZ’,W_] both lie in the summand
CF'(a, 8,51, w) ® T, using the decomposition (6.5). Finally, Lemma 6.11 implies
that the maps 6 o f, and 6 o f; = vanish.

Next, suppose v € Sping(Xy,s8) is a spin structure restricting to t for which
(c1(v),[Q]) = £m and htl,n # 0. By Lemma 6.21, we have |c1(v), [R]| < M
and |c1(v), [Ps]| < (1 4+ €)(k + dm). This implies that for some [ € {—L,..., L},
v restricts to v; on Xy, and to either x; or y; on X4 (and not x_z, or vz, ). Therefore,
the image of h’l,b lies in one of the summands of (6.5) mentioned in the previous
paragraph.

Thus, we see that CF' (2, ., y, w, t), equipped with its two filtrations I oy and
ay, is doubly-filtered quasi-isomorphic to the doubly-filtered complex

CF' (e, 8,1_1) CF' (e, 8,u_741) CF' (e, 8,117)
FVtV/nm—L FV[V;%J—LH Fév;",n,url F‘t"/rz”L(l\IthV/nJL
CF (o, B,5_p+1) @ T5-L+1 -+ CF'(a,B,5)® T5L
(7.2)

which inherits its filtrations from those on CF’ (e, 8, w) and C_Ft (o, B, w; Tpp).
By Theorem 5.9, there are doubly-filtered quasi-isomorphisms

Afll: CFt(Z,a,S,ul) — A

S1581

where the Alexander filtration on Afl ; is identified with the filtration g, from (5.40).
Moreover, each CF' (., 8,s;) ® T~ can be identified with B;l =C5,{0<i =<1},
so that the complex in (7.2) is quasi-isomorphic to

t t t
AE—L AS—L+1 AEL
hl vl £ véL (7.3)

E-L TEL+41 htg_L_H
N N Nl
B! B;L

S—L+1

By definition, this is precisely the complex X i ¢z from Section 3.
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To complete the proof, we must check that the { filtration and the absolute grading

on (7.3) agree with the descriptions given in the Introduction. Let us denote these by
Fmc and gr,. ., respectively.

On each summand CF' (a, 8, 1;), Jus is defined in (6.19) as the Alexander fil-
tration plus %, SO Fme ON Agl is obtained by shifting ¢, by the same
amount:
d*m(2sy, — 1)

2k(k + dm)

d2s;—1) 1 d*m(2s;—1)
2k +dm) 2 2k(k +dm)
2ds; +k —d

2k '

Fmc (X, 1, j]) = du, ([x. 1, j]) +
=max{i —1,j —s;} +

=max{i —1,j —s;} +

This agrees with (1.6).

The absolute grading on CF’ (e, §,1;) in (7.2) is the original Maslov grading,
plus the shift from (6.21), plus 1 (by the definition of a mapping cone). Thus,
the induced grading on Atéz in (7.3) (taking into account the grading shift from
Theorem 5.9) is given by

el /) o
- ] ms m + 1+ 3sign
&) =2+ 1 TS
d?*ms? m + 1 + 3sign(k)
= Gr(x) — 2i L _ 1
&) =20+ z +

2ds; —k —dm)?> 1
4d(k + dm) 4
4a’3msl2 + k(4dzsl2 —4ds;(k + dm) + (k + dm)?)

4dk(k + dm)

= gr(x) —2i +
2 —m — 3sign(k)

4(k + dm)d?s7 — 4kds;(k + dm) + k(k + dm)>

— 5T(x) — 2i

gr(x) =27 + 4dk(k + dm)

2 —m — 3sign(k)
4

_ _4d*s} —4kds; + k(k +dm) 2 —m — 3sign(k)
=gr(x) —2i + 1dk + 1

_ . A4d*s} —4kds; +k* 2 —3sign(k)
=gr(x) —2i + 1dk 1
e . Qds; —k)?  2-—3sign(k)
= gr(x) — 2i + 1dk + 1

which agrees with (1.7).
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+ Oneach summand CF' (a, B,s;) ® T™%, (6.20) gives

Fnc([X, 1, j1) = Jap (X, 1] @ T7)

C 2d(=s) 4+ k +d
' 2%

2ds; +k —d

2k

=i—1+

which agrees with (1.9). By (6.22), the absolute grading on CF' (e, B,s;) ® T~
is

L j]) = & ., (2dsi —k)> 2+ 3sign(k)
grmc([x’ L, ]]) = gr(x) 21 + 1 : ’

which agrees with (1.10).

We have shown that CF’ (e, y, w, 1) is filtered homotopy equivalent to X i t—L.L

A priori, the value of L may increase with ¢, since we needed larger values of
m to prove the results of Section 6. However, by Lemma 3.2, X /tl,t,— LL is filtered
homotopy equivalent to X i,t,a,b for any a < —L and b > L, independent of ¢, as
required. ]

8. Rational surgeries

In [45, Section 7], Ozsvéth and Szabé derived a mapping cone formula for rational
surgeries as well as integral ones. Here, we show how this computation interacts with
the second filtration discussed in this paper. For simplicity, we show the details only in
the case of 1/n surgery on a null-homologous knot K C Y for n > 0, but it is not hard
to generalize to the case of arbitrary rational surgeries on rationally null-homologous
knots.

Let K, denote the knot in Yy, (K) obtained from a left-handed meridian of K.
(Unlike in the case of integral surgery, we emphasize that K/, is not isotopic to the
core circle of the surgery solid torus.) Observe that Y;,,(K) is obtained by a certain
surgeryon K/ = K# O, inY' =Y #—L(n, 1), where O, C —L(n, 1) is the Floer
simple knot from Example 5.15, and the induced knot (coming from the meridian of
K') is precisely Ky /p.

We notice that there is a natural one-to-one correspondence between Spin(Y') and
Spin‘ (Y1 /,(K)). To be completely precise, let W be the 2-handle cobordism from Y’
to Y1/, (K). For each s € Spin®(Y) and each g € {0,...,n — 1}, let s, = s#u, €
Spin®(Y # —L(n, 1)), where u, is as described in Example 5.15. Then all the s, are
cobordant to the same spin® structure t € Spin®(Y7,,(K)) through W.
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The computation in Example 5.15 shows that H/F\K( L(n, 1), Oy, 1uy) is sup-
ported in Alexander grading w (The — comes from the orientation reversal
on L(n, 1).) The Kiinneth prmc1p1e for connected sums ([38, Theorem 7.1], [45, The-
orem 5.1]) then implies that CFK*(Y’, K’, s4) is isomorphic to CFK* (Y, K), with
the Alexander grading (and hence all values of j) shifted by —%.

We now apply the mapping cone formula to (Y, K’) to compute CFK* (Y7 /, (K),
Ki/n.1). Using the terminology from Section 2.2, we take d = n, and the framing on
K’ corresponds to k = 1. Label the elements of G;ll/m Ki/n (t) by (&7), where

21 — 1 20 +1
< Ay k(&) < ,
2n 2n

and set s; = Ay’ x(&)).
For each [ € Z, it is clear that Gy’ g/ (§;) = s4 for some g € {0,...,n —1}. To
determine ¢, the Alexander grading satisfies

—n+2q+1
Ay g = =51 (mod 2).
SO write 42041
—n
Ay () = = 4

forthenr € Z. Then2/ — 1 < 2r—1)n +2q+1<2/ 4+ 1,50 2r —Nn <2(l —q) <
(2r — D)n + 2. Therefore, if n is even, we deduce that 2(/ — ¢) = (2r — 1)n and
§;] = 212:1, while if 7 is odd, then 2( —¢) = 2r — )n + land s; = £
By definition, the complexes Ag’ and Bg" are each copies of CFK*(Y', K, 54).
As noted above, this is isomorphic to CFK* (Y, K, s), with the j coordinate shifted by
"_i—ql Under this identification, the filtrations on A°° and B§° given by formulas
(1.5), (1.6), (1.8), and (1.9) can each be expressed in terms of CFK*(Y, K, s), as
follows. The quantity j —s; in (1.5) and (1.6) is replaced with j + M R
which by the above discussion is equal to j — r (in both the n even and n odd cases),

and the quantity M simplifies to [ — L%J Thus,

. onAg’,
I:([x,1, j]) = max{i, j —r}, 8.1)
i, j]) = max{i — 1, - |m=), 8.2
Folx.i, j1) = maxti =1 j —ry+1— | 5= : 8.2)

. ont?,
It([x’i’j]) = i? (83)

gAMLjD=i—1+l—Ln;1} (8.4)
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It is easy to check that the I filtration agrees with Ozsvath and Szab6’s description
of the A and B complexes: namely, the mapping cone contains n copies of each of
the As and Bg complexes for K. The g, filtration takes the same form on each copy,
with some shifts as necessary.
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