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ABsTrRACT. In [DGGPR], we constructed 3-dimensional Topological Quan-
tum Field Theories (TQFTs) using not necessarily semisimple modular cat-
egories. Here, we study projective representations of mapping class groups
of surfaces defined by these TQFTs, and we express the action of a set of
generators through the algebraic data of the underlying modular category
€. This allows us to prove that the projective representations induced from
the non-semisimple TQFTs of [DGGPR] are equivalent to those obtained by
Lyubashenko via generators and relations in [Lyl]. Finally, we show that,
when € is the category of finite-dimensional representations of the small quan-
tum group of sla, the action of all Dehn twists for surfaces without marked
points has infinite order.
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1. INTRODUCTION

The main goal of this paper is to explicitly characterize and compute projective
representations of mapping class groups of surfaces coming from the non-semisimple
3-dimensional Topological Quantum Field Theories (TQFTs for short) constructed
in [DGGPR]. In doing this, we establish an equivalence with a family of projec-
tive representations constructed by Lyubashenko, while also proving some of their
remarkable properties in a concrete example.

1.1. Background. In [Tu], Turaev introduced the original semisimple version of
modular categories, and used them to construct 3-dimensional TQFTs. The latter
are defined as symmetric monoidal functors from a category of 3-cobordisms, which
carries a symmetric monoidal structure induced by disjoint union, to the category
of vector spaces. The theory developed in [Tu] is an extension and a categori-
cal reformulation of previous results of Reshetikhin and Turaev [RT1, RT2] which
produced topological invariants of links and 3-manifolds out of a particular class
of Hopf algebras. Comnsequently, the TQFTs obtained from semisimple modular
categories are known as Reshetikhin-Turaev TQFTs.

Around the same time, in [Lyl] Lyubashenko introduced a more general (and
not necessarily semisimple) notion of modular category, and used it to construct
3-manifold invariants and projective representations of mapping class groups of
surfaces. These invariants are a categorical reformulation of Hennings’ ones [He],
which are defined in terms of Hopf algebraic data, and which provide the first non-
semisimple generalization of the work of Reshetikhin and Turaev. The question
whether the theory of [Lyl] is part of a TQFT, or even of an extended notion
of TQFT (known as ETQFT), was addressed in [KL|]. However, the ETQFTs
constructed by Kerler and Lyubashenko are defined just for connected surfaces, and
are monoidal only in a weaker sense, that is, not with respect to disjoint unions.

In order to obtain TQFTs from non-semisimple modular categories (in the above
sense of symmetric monoidal functors with respect to disjoint union), another in-
gredient was required: modified traces [GPT, GKP1|. Working in the context of
Hopf algebras, generalized versions of Hennings’ invariants were defined with the
help of modified traces. At first, this was done in the special case of the restricted
quantum group of sly [Mu, BBGe]. Immediately afterwards, the construction was
carried out in the general Hopf case, and also upgraded to TQFTs [DGP]. Fi-
nally, the formulation of these TQFTs for general modular categories was given in
[DGGPRJ, twenty-five years after Lyubashenko’s original work.

1.2. Non-semisimple TQFTs. To present our results, we first briefly review the
TQFT defined in [DGGPR]. Let € be a modular category in the sense of Sec-
tion 2.1.1, which means in particular that % is not necessarily semisimple. The
category Cobg of admissible cobordisms is the symmetric monoidal category hav-
ing:
Objects: surfaces, decorated with finite sets of (oriented framed) marked
points labeled by objects of € and with Lagrangian subspaces of their first
homology group.
Morphisms: cobordisms, decorated with embedded bichrome graphs and
with integers called signature defects, and subject to a crucial admissibility
condition. A bichrome graph is a ribbon graph with red and blue parts.
Its blue subgraph, composed of edges and coupons, is labeled by objects
and morphisms of € respectively, with boundary vertices corresponding
to marked points on the boundary of the cobordism. Its red subgraph
essentially determines a surgery link, and will be described in more detail
in Section 2.2.1. A decorated cobordism is admissible if every connected
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component disjoint from the incoming boundary contains a blue edge la-
beled by a projective object of €.
More details can be found in Section 2.3.1. The category Cobg has the same
objects as the cobordism category used for the Reshetikhin-Turaev TQFT [Tu],
but it has fewer morphisms because of the admissibility condition. For example,
closed 3-manifolds without embedded bichrome graphs are not admissible. On
the other hand, every connected cobordism with non-empty incoming boundary is
admissible, in particular every mapping cylinder.
In [DGGPR] a dual pair of TQFTs, that is, a pair of symmetric monoidal functors

Vg : Cobg — Vecty, Vi : (Cobg)P — Vecty,

is constructed (see Section 2.3.2). The duality is provided by a non-degenerate
pairing (_, )y between the state spaces Vi (X) and Vg (X) for each object & of
Cobg. The pairing is invariant in the sense that for all morphisms M : & — ¥’
and for all vectors v € Vg (%) and v’ € V(') we have

(v, Va(M)(v)) 5, = (Ve(M)(v'), ), -

These TQFT functors admit both an algebraic description, which is closer to
Lyubashenko’s approach, and a skein theoretical one, which is closer to the topo-
logical construction of [BHMV]. In particular, the algebraic model is especially
convenient for discussing the contravariant TQFT V., while the skein one is best
suited for the covariant TQFT Vg. Consequently, we will use the functor Vi, in
the comparison with [Lyl], while we will focus on the functor Vg to establish the
infinite order of the action of Dehn twists in the quantum group example.

Remark 1.1. If we take € to be semisimple, at first glance the TQFT Vg is dif-
ferent from the Reshetikhin-Turaev TQFT, as the source category Cobg has fewer
cobordisms. In order to match the two theories exactly, given a (possibly non ad-
missible) decorated cobordism M, simply embed an unknot labeled by the tensor
unit 1. For admissible M, this does not change the value of Vg(M), while for €
semisimple, the tensor unit is projective, and so M together with this additional
unknot becomes admissible.

In Section 2.4, we demonstrate our TQFT construction in more explicit terms
for the case when the modular category € is of the form H-mod for a factorizable
ribbon Hopf algebra H, and we show the equivalence with the construction of
[DGP], which is also based on a factorizable ribbon Hopf algebra.

1.3. Projective representations of mapping class groups. For every natural
number g, we consider a standard closed connected surface Y, of genus g and a
Lagrangian subspace A, C Hq(X,;R). Next, for every natural number m and every
m-tuple V. = (V1,..., V) € €, we denote with X,y = (X, Py, Ag) the object
of Cobg determined by a standard set Py C ¥, of m positive marked points with
labels specified by the subscript. Then, we denote with Mod (X, Py) the mapping
class group of the decorated surface (X, Py), which is the group of isotopy classes
of decoration-preserving positive self-diffeomorphisms.

By applying the TQFT functor V¢ to mapping cylinders over X4 v, one obtains
a map pg : Mod(Xy, Pv) = GLx(Vg(X)). Since the gluing operation affects the
signature defect, this is in general only a projective representation, that is, in general
only the induced map

Pz - MOd(Eg,Pz) — PGL]]((V%&(E))
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is a group homomorphism. Analogously, the TQFT V¢, defines a group homomor-
phism

1) s : Mod(Z,, Py) — PGLy(Vi(Z)).

Here, the contravariance of Vi, is compensated by choosing the mapping cylinder
for the inverse element of the mapping class group (see Section 3.2).

The state space Vi (X4,1) is isomorphic to a morphism space in &, namely (see
Section 2.3.3),

(2) Vi (Zgv) 2 E(Vi®...0 V, @ L% 1),
where & € € is the coend

Xew
3::/ X*® X.

By combining (1) with (2), we obtain the group homomorphism
Bx : Mod(Z,, Py) — PGLy(G(Vi ® ... ® Vi © L9, 1)).

Our first main result consists in computing py on a set of generators of Mod (X, Py)
in terms of the algebraic data of € (see Proposition 3.3).

On the other hand, in [Lyl] Lyubashenko constructs projective representations
of Mod(X,, Py) on the morphism space

%(V1®...®Vm,ff®g>.

This is done by explicitly giving the action of a set of generators in terms of the
ribbon structure of € and of canonical morphisms associated to &, and then veri-
fying that these satisfy the required relations. We denote the corresponding group
homomorphism by

1t Mod(5,, Py) = PGLL(B(Vi ® ... ® Vi, Z29)).
Our second main result is (see Theorem 4.4):

Theorem 1.2. The projective representations px and py, of Mod (X, Py) are equiv-
alent.
Remark 1.3.

(i) Theorem 1.2 establishes Vi, (or, equivalently, Vg) as a TQFT extension
of Lyubashenko’s mapping class group representations. To our knowledge,
this is the first such extension in the literature (with TQFTs understood
as symmetric monoidal functors with respect to disjoint union). In the
approach taken here, functoriality of Vi, guarantees that we obtain a pro-
jective representation, and therefore the action of the generators we com-
pute in Proposition 3.3 automatically satisfies all defining relations of the
mapping class group. In this sense, Theorem 1.2 is an independent proof
of the fact that the action of the generators given in [Lyl] indeed defines
a projective representation.

(#) The renormalized Lyubashenko invariants (see Sec. 2.2.2) underlying our
TQFT are profoundly different from the original invariants of [Ly1] when
the modular category € is non-semisimple. Indeed, for admissible closed
3-manifolds, the latter are identically zero, while the former are non-
trivial. Furthermore, renormalized invariants are not defined for closed 3-
manifolds with empty decorations, while the original ones are well-defined,
but vanish against X x S! for every surface X. This is why the original
Lyubashenko invariants could not be consistently extended to a TQFT.
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Finally, we consider the small quantum group U,sl at an odd root of unity ¢ as
an example. For these values of ¢, the Hopf algebra qulg can be equipped with a
factorizable ribbon structure (recalled in Section 5.1), so that € = U,sl,-mod is a
non-semisimple modular category. Let X' be a connected surface, let A C Hy(X;R)
be a Lagrangian subspace, and consider the object ¥ = (X, &, \) of Cobg, i.e. the
case with no marked points. It turns out that even in this simple situation, the
action of Dehn twists 7, has infinite order for every simple closed curve y. To
establish this result, it is more convenient to use the TQFT Vg rather than V.

Proposition 1.4. If € = U,sl,-mod, % = (X, 3, )\) is a connected object of Cobe,
and v C X is an essential simple closed curve, then pg(7y) has infinite order in
PGLc(Vg(X)).

The proof is given in Section 5.2.
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Conventions. Throughout this paper, k is an algebraically closed field, possibly
of finite characteristic, and € stands for a strict modular category over k (after
the notion has been recalled in Section 2.1). Also, every manifold considered is
oriented, and every diffeomorphism orientation-preserving.

2. TQFTS FROM NON-SEMISIMPLE MODULAR CATEGORIES

In this section we review the construction of a 3-dimensional TQFT from a pos-
sibly non-semisimple modular category, following [DGGPR|. We start by recalling
the necessary algebraic ingredients, then we describe how to use a modular cate-
gory to define an invariant of closed 3-manifolds decorated with bichrome graphs,
and next we explain how this invariant gives rise to a TQFT via the universal con-
struction. Finally, we explain how the construction is applied when the modular
category is of the form H-mod for a finite-dimensional factorizable ribbon Hopf
algebra H. This will be used in Appendix C to show the equivalence with the
construction of [DGP].

2.1. Algebraic ingredients.

2.1.1. Modular tensor categories. A modular tensor category, or modular category
for short, is a finite ribbon category over k whose transparent objects are all iso-
morphic to direct sums of copies of the tensor unit.
Let us unpack this definition a little bit. A finite category is a linear category
% over k which is equivalent to the category A-mod of finite dimensional left A-
modules for some finite dimensional algebra A over k. A ribbon structure on a
linear category € is given by:
(7) atensor product ® : €xE — €, together with associativity isomorphisms;
(#) a tensor unit 1 € €, together with unit isomorphisms;
(ii) (Hlality morphisms é_g C X*®X — 1, coevy : 1 — X ® X*, and
evy : X ® X" = 1,coevy : 1 - X*® X for every X € 6;
(4v) braiding isomorphisms cxy : X ® Y - Y ® X for all X, Y € €;
(v) twist isomorphisms ¥x : X — X for every X € €.
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All these pieces of structure are subject to a number of conditions that can be
found in [EGNO]. For notational simplicity we will assume & to be strict, that is,
associativity and unit isomorphisms are identities.

An object X € € of a ribbon category is transparent if its double braiding with
any other object of € is trivial, meaning cy x o cxy = idxgy for every Y € €.

2.1.2. The coend &. A modular category € admits a coend
Xe%
& = / X"'®X €@,

which is defined as the universal dinatural transformation with source
("® ):BPx€—=F
(X,Y)— X*QY,

see [ML] for details. In particular, & is an object of € equipped with structure
morphisms ix : X* ®@ X — & for every X € € which are dinatural in X. The
coend & carries the structure of a braided Hopf algebra in € [Mal, Ly2], meaning
it is equipped with:
(i) aproduct p: L ZL — L and aunit n: 1 - Z;

(i) a coproduct A: & - £ ® & and a counit € : & — 1;

(#ii) an antipode S : & — Z.
Moreover, the coend & admits non-zero two-sided integrals and cointegrals, which
are unique up to scalar, see e.g. [KL, Sec. 4.2.3]. By definition, a two-sided integral,
or integral for short, is a morphism A : 1 — & satisfying

po(A®idg) =Aoe=po(idg ® A),
and a two-sided cointegral, or cointegral for short, is a morphism A® : &£ — 1
satisfying
(A ®idg) o A=n0A® = (idg ® A®°) o A.
Every modular category also admits an end

& = X®X*e6@,
Xew
which comes equipped with a dinatural family of morphisms jx : & - X® X*. The
universal properties of & and & imply that there is a unique morphism D : & — &,
called the Drinfeld map, such that for all XY € &

Y\
jyoDoix = X' X YY"

\x

Here we use standard diagrammatic calculus, with diagrams read from bottom to
top, see [DGGPR] for further conventions. As a consequence of modularity, D is
invertible. In fact, there are three a priori independent non-degeneracy conditions
on the braiding of a finite ribbon category. First, that there are no non-trivial
transparent objects, as used above in the definition of modularity; Second, that the
Drinfeld map is invertible; Third, that a certain functor to the Drinfeld center of €
is an equivalence. These conditions were shown to be equivalent in [Sh|, and hence
all three can be used to define modularity. Invertibility of D was the condition

Im general, the source of an integral and the target of a cointegral are given by an invertible
object other than the tensor unit, the so-called object of integrals. For modular categories, the
object of integrals is the tensor unit. See e.g. [DGGPR, Sec. 2| for more details and references.
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originally used in [Ly1].? However, the condition on transparent objects is the
easiest one to state.

2.1.3. Modified traces. Denote by Proj(€) the full subcategory of projective objects
of €. Then Proj(¥) is a tensor ideal in ¥, that is, it is absorbent with respect to
tensor products with arbitrary objects of &, and it is closed with respect to retracts.
In fact, Proj(®) is the smallest non-zero tensor ideal of € [GKP1, Sec. 4.4].

A modified trace on Proj(®€) is a family of linear maps

t:={tx : Endg(X) = k| X € Proj(¥)}
satisfying:

(i) Cyclicity: tx(go f) = ty(f o g) for all objects X, Y € Proj(%), and all
morphisms f € €(X,Y) and g € €(Y, X);

(it) Partial trace: txgy(f) = tx(ptr(f)) for all objects X € Proj(€) and
Y € €, and every morphism f € Endg(X ® Y), where the morphism
ptr(f) € Endg(X) is defined as

ptr(f) := (idx ® evy) o (f @ idy-) o (idx ® coevy).

One can show that, since € is modular, there exists a non-zero modified trace
on Proj(€), and that this trace is unique up to an overall scalar [GKP2, GR], see
also [GKP3, Cor. 5.6] for a much more general existence result. Moreover, this
modified trace induces a non-degenerate pairing €(X,Y) x €(Y, X) — k given by
(f,9) = ty(fog) forall X € € and Y € Proj(%) [GR, GKP3]. By contrast, the
standard categorical trace vanishes on Proj(%) as soon as € is non-semisimple.

Since € is finite, it has enough projectives and injectives. In particular, the
tensor unit 1 has a projective cover Py € Proj(€), equipped with a surjection
morphism 7 : P — 1. Since % is modular, and hence also unimodular, P; is in
addition the injective envelope of 1, see e.g. [DGGPR, Sec. 2] for more details. In
particular, there is an injection morphism 7; : 1 — P;. Note that ¢4 ony # 0 if and
only if € is semisimple. Both ¢; and 7; are unique up to scalars, and we link their
normalization to that of the modified trace via the condition

tP1(7711 O5]1> =1.

The fact that this expression is non-zero to begin with follows from the non-
degeneracy of the modified trace.

2.2. 3-Manifold invariants.

2.2.1. Lyubashenko-Reshetikhin-Turaev functor. Fix a non-zero integral A for Z.
Here we recall an extension F of the Reshetikhin-Turaev functor F of [Tu]. While
the source of Fg is the category #¢ of €-colored ribbon graphs, Fj is defined over
the category &, of so-called bichrome graphs [DGP, DGGPR].

Bichrome graphs are a generalization of standard ribbon graphs whose edges can
be of two kinds, red (carrying no labels), and blue (labeled as usual by objects of
€). For what concerns coupons, they can be, according to the edges intersecting
them, either bichrome (and unlabeled), or blue (and labeled as usual by morphisms
of €), while red coupons are forbidden. Furthermore, bichrome coupons only have
two possible configurations, namely (color available online)

N

2Actually, in [Lyl] the non-degeneracy of a certain Hopf pairing on & is used as the defining
condition, but this is easily seen to be equivalent to the invertibility of D [FGR, Prop. 4.11].
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with blue edges labeled by the coend & and the end &, respectively (see Sec-
tion 2.1.2). Blue coupons, on the other hand, can be arbitrary. Boundary vertices
can only meet blue edges.

To evaluate the functor F : #5 — € on morphisms, i.e. on bichrome graphs,
one carries out several steps, which we illustrate in the following example:

< &
T =

Remark that throwing away the blue part of the graph, as well as bichrome coupons,
and joining together each pair of red strands which did intersect a bichrome coupon,
results in a red link. Then, start by cutting a red edge of the bichrome graph for
each component of the red link, and drag the ends to the bottom, placing them side
by side, with the downward-oriented strand on the left, and the upward-oriented
one on the right. For n red components, this results in a so-called n-bottom graph,
with 2n red boundary vertices at the bottom. In our example, n = 1 and the result
of the above operation is

< <

~:
Il

The plat closure operation, which consists in joining together in pairs red strands
intersecting adjacent incoming boundary vertices, has to result in the original
bichrome graph. Next, choose objects Xi,...,X, (one for each of the n com-
ponents of the red link), label red edges correspondingly by Xj, for 1 < k < n, and
label bichrome coupons meeting these edges by the dinatural morphism ¢x, , in the
case of &Z, or jx,, in the case of &. In our example one obtains the graph

At this point, all edges and coupons are labeled, and forgetting the difference be-
tween red and blue we have a @-colored ribbon graph, that is, a morphism in X¢.
To this we can apply the Reshetikhin-Turaev functor Fg to obtain a morphism
in €. In the above example,

~ . . . — .
Fg(TXl) = (’LX1 ®71X1> o (ldxik ® coev iy, ®1dX1)-

By construction, the resulting family of morphisms (indexed by Xi,...,X,) is

dinatural, and via the universal property of & defines a morphism out of ¥®",

possibly tensored with other objects coming from blue boundary vertices. For our

bichrome graph 7' we obtain a morphism fg(7T) : & — £ ® &, which is uniquely
specified by the condition®

fg(T) o in = Fg(TXl)

3We compute these morphisms explicitly for general n-bottom graphs in Lemma 2.1 in the
case € = H-mod for a finite-dimensional ribbon Hopf algebra H.



MAPPING CLASS GROUP REPRESENTATIONS FROM NON-SEMISIMPLE TQFTS 9

This is the defining property of the coproduct of &, so that in fact fe(T) = A.
The final step is to pre-compose with the n-fold tensor power of the integral A, so
that in the example, Fy(T) : 1 = Z ® &£ is given by

FA(T)=AoA.
Note that while F), does depend on the choice of A, the category %, does not. The
notation is chosen merely to remind of the relevant functor. We refer to [DGGPR,
Sec. 3.1] for more details on bichrome graphs, the category %, and the definition
(and well-definedness) of Fj.
By construction, ¢ and %, have the same objects, and there is a commuting
(on the nose) diagram of functors
@% {)
[ =
(%A Fa

where the vertical arrow is the identity at the level of objects and the inclusion of
purely blue ribbon graphs into bichrome graphs at the level of morphisms.

2.2.2. Renormalized Lyubashenko invariant. We say a bichrome graph is closed if
it has no boundary vertices, and we say it is admissible if it has at least one blue
edge labeled by a projective object of €. Every admissible closed bichrome graph
T admits a cutting presentation, which is a bichrome graph Ty featuring a single
incoming boundary vertex and a single outgoing one, both positive and labeled by
V € Proj(€), and whose trace closure is T. If T is a closed admissible bichrome
graph and Ty is a cutting presentation, then the scalar

FA(T) = tv (Fa(Tv))
is independent of Ty and is a topological invariant of 7' [DGGPR, Thm. 3.3].

By suitably normalizing it, F\ can be used to define an invariant L, of admissible
decorated 3-manifolds. A decorated 3-manifold is a pair (M,T), where M is a
connected closed 3-manifold, and where 7' C M is a closed bichrome graph. A pair
(M,T) is admissible if T is.

To define the invariant, we need stabilization coefficients, which are defined as

Ay = Fp(O1) €k,

where O denotes a red +1-framed unknot. These coefficients are automatically
non-zero [KL| (see [DGGPR, Prop. 2.6 for a proof in the present notation), and
thus allow us to fix constants & and J given by

2 A
2 _ _ _ 2+
(3) P =AAL, G = .

Note that & involves a choice of square root.

Let (M,T) be an admissible decorated 3-manifold, and let L be a surgery pre-
sentation of M given by a red framed oriented link in S® with ¢ components and
signature o. We assume the bichrome graph T is contained in the exterior of the
surgery link L, so that we can think of them as simultaneously embedded in S3.
Then, as proved in [DGGPR, Thm. 3.8], the scalar

(4) L, (M,T) =2 145 F{(LUT)

is a topological invariant of the pair (M, T'). We will call Li, (M, T') the renormalized
Lyubashenko invariant of the admissible decorated 3-manifold (M,T"). The use of
modified traces to define renormalized 3-manifold invariants via link surgery was
pioneered in [CGP].
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2.3. Construction of TQFTs.

2.3.1. Admissible cobordisms. The TQFT associated to € will be defined on a
cobordism category that contains the same objects but fewer morphisms than the
one used for the original Reshetikhin-Turaev TQFT [Tu].

The category Cobg of admissible cobordisms has objects and morphisms defined
as follows. An object ¥ of Cobg is a triple (X, P, \) where:

(i) X is a closed surface;
(ii) P C X is a finite set of oriented framed points labeled by objects of €;
(i) A C Hi(X;R) is a Lagrangian subspace for the intersection form.
A morphism M : ¥ — %’ of Cobg is an equivalence class of admissible triples
(M, T,n) where:
(i) M is a 3-dimensional cobordism from X' to X”;
(44) T C M is a bichrome graph from P to P’;
(iii) n € Z is an integer called the signature defect.
A triple (M, T, n) is admissible if every connected component of M disjoint from
the incoming boundary 0_M 2= X' contains an admissible subgraph of 7. Two
triples (M,T,n) and (M’',T’',n') are equivalent if n = n’ and if there exists an
isomorphism of cobordisms f : M — M’ satisfying f(T) =T".

The composition M oM : £ — & of morphisms M’ : &/ = 8" M: ¥ - ¥ is
the equivalence class of the triple
(5) (M Usr M, T Ups T',n+ ' — (M. (M), X, M’*(A”)))
for the Lagrangian subspaces

M. (A) = {2’ € Hi (X R) | (ing, )s(2") € (ine_ )« (M)},
M™(X') == {a’ € Hi(Z";R) | (ing )+ () € (inrg )« (X))}
Here,
iy, 2 X —= M, iM+:Z/‘—>M, 5ya X M, iMjr:Z'/<—>M/
are the embeddings induced by the structure maps of M and M’, and p denotes
the Maslov index, see [Tu] for a detailed account of its properties.

One notable difference between Cobg and the full cobordism category is that in
Cobg not every object is dualizable. Indeed, the dualizable objects % = (X,P,\)
in Cobg are precisely those where each connected component of X contains at least
one vertex of P labeled by a projective object of &. If this condition is not satisfied,

the decorated cobordism giving the coevaluation® in the full cobordism category is
not admissible, and so it is not in Cobg.

2.3.2. TQFT wvia the universal construction. We can use the universal construction
of [BHMV] to extend an invariant of closed manifolds to a functor defined on
cobordisms. To start with, we generalize L, to an invariant of closed morphisms
of Cobg by setting

(6) Lig (M) := 6"Lg (M, T)
for every closed connected morphism M = (M, T,n), and by setting

k
Lo (M UL .. UMy) == [ ] L (M)
=1

for every tensor product of closed connected morphisms My, ..., M. Then, if ¥
is an object of Cobg, we consider vector spaces 7'(2) and 7”/(%) with basis given

4That is, the cylinder over ¥ with both boundary components declared as outgoing.
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by morphisms of Cobg of the form My, : @ — ¥ and M : & — @, respectively.
These vector spaces are paired via

() 7'(B)x7 () »k
(Mg, Mp) = Lg (M5 0 My).

State spaces are then defined as quotients with respect to the left and the right
radical of the pairing { , )y, namely

Vg (2) :=7(2)/radr(_, )z,  Vg(B):=7"(¥)/radr(_, )s.

We will denote equivalence classes in these quotients by square brackets. Now, if
M : % — %’ is a morphism of Cobg, its associated operators are simply defined as

Vg(M) : Vg (2) — Ve (Z') Vig(M) : Vig(B') = Vig(2)
[My] — [Mo My, [Mg] — [Mg o M].
Altogether, this defines a pair of functors
Vg : Cobg — Vecty, Vi : (Cobg)° — Vecty.

These functors are dual to each other in the sense that the vector spaces Vg (X)
and VL (X) are non-degenerately paired via (_, )y, and that for all M : & — 3,
[M3] € Vg(Z), and [MY,] € V(') we have

(7) (M, Vo (M) (My)) 5, = (Vi (M) (M), M3z -

It is shown in [DGGPR, Thm. 4.12| that Vg and Vi, are symmetric monoidal, so
that they define TQFTs on Cobg and (Cobg)°P, respectively.

2.3.3. Skein modules and algebraic state spaces. While the definition of the state
spaces Vg(X) and VL (X) in terms of equivalence classes of linear combinations of
decorated cobordisms is very convenient for the construction of the TQFT functors,
it is not at all obvious how to express these spaces in terms of the underlying
modular category €. We will do this in two steps, first introducing admissible
skein modules, and then passing to (quotients of) certain morphism spaces in %.

If ¥ = (£,P,)\) is an object of Cobgy and M is a connected 3-dimensional
cobordism from @ to X, then we denote with 7°(M; ) the vector space generated
by isotopy classes of admissible bichrome graphs T inside M from & to P. Similarly,
if & is non-empty and M’ is a connected 3-dimensional cobordism from X to &,
then we denote with Z”/(M’; 3) the vector space generated by isotopy classes of
(not necessarily admissible) bichrome graphs 7" inside M’ from P to @.

We say two vectors of 7/(M;X) are skein equivalent if, up to isotopy, they
are related by a finite sequence of local moves replacing parts of bichrome graphs
obtained by restriction to topological 3-balls with bichrome graphs having the same
image under the functor Fj.

On the other hand, for 7 (M; ¥) we introduce an extra condition for skein equiv-
alence. Namely, we say a local move is admissible if the complement of the topolog-
ical 3-ball inside which it takes place contains an admissible subgraph. We say two
vectors of 7' (M; X)) are admissibly skein equivalent, or skein equivalent for short, if
they are related by a finite sequence of admissible local moves.

We define the skein modules S(M; %) and S'(M’; %) as the quotients of 7" (M; )
and 77(M'; %) with respect to skein equivalence, respectively. Then the natural
linear maps

7:S(M; %) = Vg(2) 7' S'(M'; ) = Vi (D)
[T] — [M,T,0] [T'] — [M', T, 0]
are surjective [DGGPR, Prop. 4.11].
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Next, let us recall the algebraic model for state spaces associated with connected
objects of Cobg. For all g,m € N and every V. = (Vq,..., V) € €*™, let us
consider vector spaces®

Loy =BPLVI®..0V,08%), 2, =6N®..0V,ZL%1),

where P is the projective cover of the tensor unit 1. Using the injection morphism
71 : 1 — Pp from Section 2.1.3 and the inverse of the Drinfeld map D, these vector
spaces are paired via

(s Dgv: Ly xXgv =k
(@' 2) = tp (n oz’ o (idy, g..0v, @ (D71)®9) ox)
= (@' o ((i[dv,®..0v, @ (D71)®g) O X)e,s
where for every f € Hompg (P1,1) the scalar (f)., € k is defined by f = (f)c, &1 for
the projective cover morphism &7 : P, — 1. As proved in [DGGPR, Lem. 4.1], the

left radical rady,(_, )4y of the pairing (_, ), v is trivial. We define the algebraic
state spaces as

(8) Xgv = Zgyv/radr(_, _)gv, ;;,z = g/,Z‘
They are dual to each other by construction.

In the following we will use skein modules to give an isomorphism between state
spaces coming from the functors Vg and Vi, and their algebraic models. For every
natural number g, we consider a standard closed connected surface X; of genus
g equipped with a fixed Lagrangian subspace A\, C H1(X,;R). For every natural
number m and every m-tuple V.= (Vi,...,V,;,) € €*™, we denote with

(9) Eg,zz (EgaPZ7 )\9)

the object of Cobg whose decorations are specified by the subscript. We want to
describe isomorphisms

ng(Eg,Z) = Xg,zv V{g(zgyk) = IQ»Z

We start by fixing a genus g Heegaard splitting M,Us M ; of §3, which we represent
as in Figure 1. With respect to this configuration, we define the map

U Xy — S(My; Zy,v),
which sends [z] € X, v to the admissible bichrome graph contained in the bottom
handlebody in Figure 1. One can check that this assignment is independent of the

choice of a representative © € ;v of the class [z]. Denote by ® the map obtained
by composing with the projection m,

¢ = [XQM = S(Mg? 2yv) 5 V%(EQ,Z)]

It has been shown in [DGGPR, Prop. 4.17] that ® is an isomorphism. Similarly,
one defines the map

v’ X;,K — S/(M;; Xov),
which sends ' € X;,v to the bichrome graph contained in the top handlebody in
Figure 1. The composition with 7/ results in an isomorphism

(10) ' = [Xy 5 8 (Mg Byv) ™ Vig(Bgv)]

5In [DGGPR] we used €(P1, %9 @ V1 ®...0 Vi) and €(ZPIR@ V1 ®...® Vi, 1) instead, i.e.
we placed (co)ends as first tensor factors, rather than last. The morphism spaces we use here are
isomorphic (via the braiding) and turn out to be more convenient when relating to Lyubashenko’s
mapping class group representations.
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FIGURE 1. Isomorphism between algebraic and skein models.

Let M : X, — %, v be a morphism of Cobg of the form M = (M, T,n). In
order to compute its action on z € X, v, we need to find the unique y € Xy v
satisfying

B(y) = Ve (M) (0(2)) € Vee(By).
Below we will be interested in projective actions, which allow us to ignore the
signature defect. Up to a scalar, y is then determined by the proportionality relation

[Mg’a \Il(y)v 0] o8 [Mg UEg Ma \I/(IC) UPL Tv O}
Similarly, in order to compute the right projective action of M on 2’ € X[, 1., we
need to find some vy’ € X;M satisfying

(M, ¥'(y"),0] o [M Ug,, M,,T Up,, ¥'(z'),0].

2.4. Hopf algebra case.

2.4.1. Factorizable finite-dimensional ribbon Hopf algebras. Let us translate all the
main ingredients of the construction in Hopf algebraic terms when ¢ = H-mod for
a finite-dimensional ribbon Hopf algebra H over k. We recall that this means H
comes equipped with:
(i) a product pp: H® H — H and a unit n: 1 — H;

(i) a coproduct A: H — H ® H and a counit € : H — 1;

(#ii) an antipode S : H — H;

(iv) an R-matric R € H® H and a ribbon element v € H.
These data should satisfy several axioms, see [Ka, Def. VII.2.2 & XIV.6.1]. We
adopt some standard notational conventions, like the short notations for product
and unit

wrey) =zy, n(l)=1

for all x,y € H, and Sweedler’s notation for the coproduct

Az) = z0) ® 2(2)
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for every x € H, which hides a sum. The R-matrix R = R’ ® R” determines a
Drinfeld element uw € H defined by

u:=S(R")R'.
Remark that here too a sum is hidden. Then, the Drinfeld and the ribbon element
determine a pivotal element g € H defined by
(11) g:=uv '

The finite category € = H-mod of finite-dimensional left H-modules supports
the structure of a ribbon category. The monoidal structure is induced by the co-
product A and the counit € as explained in [Ka, Sec. X1.3.1], and the left rigid struc-
ture is induced by the antipode S as explained in Example 1 of [Ka, Sec. XIV.2].
Furthermore:

(i) The pivotal element g defines, for every V € €, the right duality mor-
phisms e_{lv :VeV* —kand c@vv :k — V*®V determined by

vy (v® ) =p(g-v),  coevy(l) = Z ' @ (g7 v)

forallv eV, ¢ € V*, where {v; e V|1<i<n}, {¢' € V*|1<i<n}
are dual bases;
() The R-matrix R defines, for all VW € €&, the braiding isomorphism
cyvw VW = W ®V determined by
cyww@w):=(R"w)® (R -v)

forallveV,we W,
(#4) The ribbon element v defines, for every W € &, the twist isomorphism
Yw : W — W determined by

I (w) :=v 1w
for every w € W.

The coend & = fve% V* ® V is given by the coadjoint representation coad,
which is obtained from the dual vector space H* by considering the left H-action

(@ - ) (y) := (coads (9))(y) = ©(S(z))yz(2))
for all z,y € H and ¢ € H*, compare’® with [Lyl, Thm. 3.3.1]. For every V € &,
the structure morphism iy : V* ® V — coad is given by
iv (9 ® 0)(@) = (@ - )

forall x € H, ¢ € V*, and v € V. Similarly, the end & = fve% V ® V* is given
by the adjoint representation ad, which is obtained from the vector space H by
considering the left H-action

z -y = ady(y) = z1)yS(2(2)
for all z,y € H, see [FGR, Prop. 7.2]. For every V € €, the structure morphism
Jjv rad = V ® V* is given by

ngz

1
for every x € H, where {v; € V | 1 <i < n} and {p' € V* |1 < i < n} are dual
bases.

n

<.

6Lyubashenko actually computes the coend of a different (but isomorphic) functor, while we
use the one of [Ke2, Lem. 3].
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The M-matric M € H® H, also known as the monodromy matriz, is defined by
M := Ro1Ry2,
where R = R'®@R"” and Ry; = R” @ R’. The M-matrix M = M’'® M" determines
a Drinfeld map D : H* — H defined by
D(p) := o(M")M"

for every ¢ € H*, as first considered in [Dr, Prop. 3.3]. We say H is factorizable
if the Drinfeld map is an isomorphism. Remark that the Drinfeld map is an inter-
twiner D: coad — ad of H-modules, and that the categorical Drinfeld map defined
in Section 2.1.2 coincides precisely with it, see [FGR, Rem. 7.7]. This means that
% = H-mod is modular if and only if H is factorizable.

The coend & admits the structure of a braided Hopf algebra in €, which we
denote H [Mal]. This is given by

(e @ ¥)(x) = p(z@) R)Y(S(R))zw R, n(1)(z) = e(),
Alp)(z ®@y) = ¢(yz) E(p) = (1),
S(p)(@) = p(S(R)S(x)S(u) "' R")
for all ,v € H and x,y € H. The Hopf pairing w of [Ly2, Thm. 3.7] is given by

w(e @ 1) = (M) (S(M"))

for all p,v € H*.

A two-sided integral A : k — & = coad is determined by a standard right integral
of H, which means a linear form A : H — k satisfying

/\(56(1))25(2) = )\(56)1
for every x € H (see [Ra, Def. 10.1.2]), by setting
A(1) = A
Similarly, a two-sided cointegral A°° : & — k is determined by a standard two-sided
cointegral of H, which means an element \°° € H satisfying
A = e(2) A\ = \Cx

for every x € H (see [Ra, Def. 10.1.1]), by setting

A% () == (A7)
for every ¢ € H*.

The choice of a right integral A of H (which is unique up to a scalar) gives rise
to a modified trace t on Proj(%) thanks to [BBGa, Thm. 1], which is uniquely
determined by

tr (f) = Agf(1))
for every f € Endy(H), where H denotes the regular representation, and where g
denotes the pivotal element defined in (11).

For all gym € N and every V. = (Vi,..., V) € €*™, the algebraic pairing

(s )gv : Xy y x Lyv — k of Section 2.3.3 is given by

(@, 2)gy = (@' o ((dvis..0v,, ® (D7) 0w).,

for all x € Homp (P, Vi®...0V;,®ad®?) and 2’ € Hompy (V1 ®. ..@V,,®coad®?, 1),
where for every f € Homp (P;, 1) the scalar (f)., € k is defined by f = (f).,e; for
the projective cover morphism ¢; : P; — 1. Note that [DGGPR, Lem. 2.10] allows
us to express D! : ad — coad as

DM (z) = ¢ ASTHz)S(R)SH(M)S(w) 'R - A(M' )
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for every x € ad, where ¢ = A\(v)A(v™1). Indeed, this follows from the remark that
¢ : coad — ad” is simply given by (S~1)*.
2.4.2. Equivalence with renormalized Hennings. For every object W € € = H-mod,
let us consider the functor
(@ V"W (P xE)" > F
sending every object (U1, V1,...,U,, V,) € (€°P x €)*™ to the object
U7 oVi®...0U; @V, W €%.

If Z € € is another object, which can also be interpreted as a constant functor
Z : (B°P x €)*™ — €, let us consider an n-dinatural transformation

a: (e _)"eWwW=Z,
which means « determines a dinatural transformation
7 (0 _ )"@W)oo=>Zoo
for the permutation functor
o: (E*")P x " — (P xB)*"

sending every object ((Uy,...,Un), (V1,...,V4)) € (€X™)°P x €™ to the object
(U1, V1), ..., (Un, Vp)) € (8°P x €)*". By universality of the coend &, the trans-
formation « produces a unique morphism (compare with [DGGPR, Sec. 3.1 &

Eq. (26)])
(12) fe(a) : coad®" @W — Z,
satisfying
fgg(a) o (ivl R...Q1y, ® idw) = Q... V)
for all Vi,...,V,, € €. In the next lemma, we compute the unique morphism fgz ()
in the case € = H-mod.

Lemma 2.1. For € = H-mod, the morphism fg(a) of (12) is given by
fg(a) = Q(H,.. H)° ((idH* (4 ’r))®n X ldw) R
where H denotes the regular representation and n: 1 — H denotes the unit of H.

Proof. For every

<® cpk> ®w € coad®” @W

k=1
and every x € H we have

T OH,... H) <<®(90k ® 1)) ® w)
k=1
= o, H) ((@(%(S(I(zk—n)_) ®$(2k))> ® ((2n+1) 'w)>

k=1

3

= QH,....H) ((@(@k(s(m(zkm)_w(%)) ® 1)) ® (T(2n+1) 'w)>

k=1
= O(H,...,H) <<®(Coadx(m(¢k) ® 1)) ® (x(n+1) w)) )
k=1

where the first equality follows from the fact that g, gy : (H*@H)®" QW — Z
is an intertwiner, and the second one from the n-dinaturality of a. This proves that

om,...m © ((idg- ®n)®" @idw)

3
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defines an intertwiner fz(a) : coad®” @W — Z. Now the claim is checked by
showing that

for all V4,...,V,, € €. For every

<®(90k ® Uk)) Q@w € (@(V,: ® Vk)> QW

k=1 k=1
the n-dinaturality of v implies

AV, Vi) ((@(@k ®vk)) ® w) = Q(H,...,H) ((@(‘Pk(_ CUg) ® 1)> ® w>
k=1 k=1
= Q(H,....H) <<® (v, (P @ vg) @ 1)) ® w) :

k=1
O

Thanks to Lemma 2.1, when ¥ = H-mod we can make the algorithm for the
computation of the Lyubashenko-Reshetikhin-Turaev functor of Section 2.2.1 more
explicit. Indeed, in order to evaluate Fa(T') for a bichrome graph T with n red
components, we can first consider an n-bottom graph presentation T of T. Next,
we can label all red components by the regular representation H and forget the
difference between red and blue, thus obtaining a ribbon graph T( H,..,H)- At this
point, we can simply pre-compose Fg(T( H,..H)) with” the n-fold tensor power of
A®1 € H*® H. This demonstrates that the renormalized Lyubashenko invariant of
equation (4) agrees with the renormalized Hennings invariant introduced in [DGP).
Moreover, in Appendix C we prove that the TQFT construction of [DGGPR] re-
viewed here recovers the one of [DGP] in the setting of Hopf algebras.

3. MAPPING CLASS GROUP REPRESENTATIONS FROM TQFTSs

In this section, we analyze the definition of the projective mapping class group
representations associated with the TQFTs Vg and Vi, and we realize the corre-
sponding actions of Dehn twists by curve operators. For a choice of generators we
compute the action on the algebraic state spaces X;y.

3.1. Mapping class group of a decorated surface. Let us start by introducing
some terminology and some notation. A decorated surface is a pair (X, P), where
X is a connected closed surface, and where P C X is a blue set, that is, a finite
set of oriented framed (blue) points labeled by objects of €. If f : ¥ — X' is
a diffeomorphism of surfaces, and if P C X is a blue set, then we denote with
f(P) C X’ the blue set whose labels and framings are obtained from those of P
by pushforward. Then, if (X, P) is a decorated surface, we consider the set of
diffeomorphisms of X preserving P,

DIff(¥, P) i= {f € Diff(%) | f(P) = P},
which is a group with respect to composition. We denote with Diffo(X, P) the

subgroup whose elements f are isotopic to ids within Diff (X, P), and we define the
mapping class group of (X, P) to be the quotient group

Mod (X, P) := Diff(¥, P)/Diffo(%, P).

"In general, when T has incoming boundary vertices, we should actually pre-compose with the
tensor product between (A ® 1)®” and the identity of the corresponding labels.



18 DE RENZI, GAINUTDINOV, GEER, PATUREAU-MIRAND, AND RUNKEL

Remark that Mod(X, P) fits into the generalized Birman exact sequence
1— B(X, P) — Mod(X, P) — Mod(X¥) — 1,

where B(X, P) denotes the colored framed braid group, which itself fits into the
exact sequence

1—-PB(X,P)—»B(X,P) > 6(P)—1
compare with [FM, Thm. 9.1]. Here, &(P) is the colored symmetric group of
all permutations of P which preserve colors (i.e. the labels of the blue set), and
PB(X, P) is the pure framed braid group. It is useful to fix names for a few elements
of the group B(X, P). For all integers 1 < i < j < m satisfying V; = V; we set

Vil Vi \ ) T V. Vier |V
(13) Ti,j = \ EB(Z,P)
For all integers 1 < i < j < m we deﬁne
Vi| Vi ' / Vitr |V
(14) w; ;= ? € PB(X, P),
and finally for every integer 1 < i < m we set
Vil Vi I Vier [V

(15) v = V;r) € PB(X, P).

The Reshetikhin-Turaev functor Fg assigns to these elements endomorphisms
Fg(z; ), Fg(w; ;), Fe(v;) € Endg(Vi ® ... ® V).
For example,
Fg(wi2) = (cvy, v 0 cvy 1) ®idvze--0v,,
Fg(v1) =9y, ®idv,g...0v,, -
3.2. Projective representations from mapping cylinders. If ¥ = (X, P, \) is

a connected object of Cobe, then the mapping cylinder of an element f € Diff (X, P)
is defined as the morphism ¥ x If: ¥ — ¥ of Cobg given by

(XY xIf,Px1,0),

where the cobordism X' x Iy has incoming and outgoing boundary identifications

(f,0): X — X x {0}, (idsg,1): X — X x {1},
respectively. It is easy to check that
(16) (E XHf/)O(E XHf)NEXHf/Of
as morphisms of Cobg, where ~ denotes the equivalence relation determined by
forgetting about signature defects. Let us stress that in general the composition (5)
will produce a non-trivial signature defect, because a mapping cylinder, as well as

any other morphism of Cobg, is not required to preserve the Lagrangian subspaces
of its source and target under push-forward and pull-back.
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If [f] = [f'] in Mod (X, P), then any isotopy h : X x I — X between f’o f~1 and
idy determines an isomorphism between the cobordisms X' x Iy and X' x I, This
means we obtain a map

pz : Mod(X, P) —» GLg (Vg (X))
[f] = V(2 x If).
Since (16) only holds up to signature defects, as a consequence of the composition
rule (5), for a pair of elements [f],[f’] € Mod(X, P) the linear map pg[f’ o f] may
differ from pg[f'] o pg[f] by a power of 4, as defined in (3). Therefore, if § # 1,
the map pg is not a group homomorphism, but instead only defines a projective
representation. We denote the resulting group homomorphism by

Bg = |Mod(Z, P) 2% GLy (Ve (Z)) — PGLk(Vg(E))].

However, one can obtain a linear representation of a central extension of the map-
ping class group, see Appendix A.
For Vi, we get a corresponding map

(17) Pl : Mod(Z, P) = GLy(VL(%))
[f]1= Vg(2 x I~}

and group homomorphism
(18) T = | Mod (5, P) 2% GLy(Vi(2)) — PGLk(Vfg(E))].

The inverse in (17) is needed for pg to be a group homomorphism, as the source
category for V%, is (Cobg)°P.

Because of the duality (7) between Vg and Vi, with respect to the pairing
(_, )z, for every [f] € Mod(X, P) we have

(19) Pelfl = (palf]) "

3.3. Dehn twists and curve operators. If & = (X, P, \) is a connected object of
Cobg, and v C ¥ is a simple closed curve, then let us denote with 7, € Diff (¥, P)
the Dehn twist along . This is the self-diffeomorphism of X restricting to the
identity outside of a tubular neighborhood of ~, and given by
StxT—S'xI
((cos(¥),sin(¥)),t) — ((cos( + 27t), sin(F + 27t)), t)

in local coordinates around -y, up to appropriately smoothing at transitions points.
There are, up to isotopy, two orientation-preserving ways to embed the above neigh-
borhood into X, related by (¥,t) — (=¥, —t). However, both of these describe the
same diffeomorphism. This is the reason why it is not necessary to orient 7. In-
stead, we could choose to replace 27t with —27t, which determines a left-handed
Dehn twist, as opposed to the right-handed one defined above, see [FM, Sec. 3.1.1].
The two possible Dehn twists thus obtained are inverse with each other.

Let v4+ denote the red knot v x {%} inside X' x I with framing 41 relative
to the surface X x {%} The curve cylinder associated with v+ is the morphism
% x 1, : & — % of Cobg given by

X xI,, = (xI,(PxI)U~4,0).

It is a classical remark, see for instance the proof of [Lil, Thm. 2|, that there exists
an isomorphism of cobordisms

(20) UL = (X x I)(v%),
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where the cobordism (X x I)(v4) is obtained by performing 2-surgery on X' x I
along v+, with both incoming and outgoing boundary identifications induced by
idy. Combining this with [DGGPR, Prop. 4.10] we immediately get

(21) Ve (Z x HT$1) =Ve((X x I)(5), P x I,0) = D7 16™F Vg (X x L)

for some m+ € Z. Remark that this exponent is determined by the composition
rule (5), which intervenes in [DGGPR, Prop. 4.10].

Remark 3.1. If the homology class of v belongs to the Lagrangian A, then m+ = +£1,
and thus, thanks to (3), we get

V(2 x La1) = A'Vg (2 x L)
For a proof of this, see Appendix B.

Let us also give a slightly different argument relating Vg (2 XHT$1) to Vg (X x1,,)
(and ditto for Vi) which uses algebraic properties of the TQFT rather than the
topology of surgered manifolds. Denote the image of Vg (X x I, ) € GLx(Vg (X))
in the projectivization by [Vg(Z x I, )] € PGLx(Vg(X)). Then:

Lemma 3.2. If (X, P) is a decorated surface and v C X' is a simple closed curve,
then pg(757") = [Vo (T x I,;)] and pig(757) = [V (T x I,,)].

Proof. We will only treat pg(7,) and pg(7,) explicitly, since the corresponding
statement for 7.° I can be seen analogously.

As recalled in Section 2.3.3, if M is a fixed connected cobordism from & to X,
then every vector of V(X)) can be represented by a linear combination of bichrome
graphs T inside M from @ to P. In choosing M, let us make sure v bounds a disc in
it. Then the Dehn twist 7, extends to a self-diffeomorphism 7, of the 3-manifold M,
which defines an isomorphism between the cobordism M and the cobordism 7., (M)
whose underlying 3-manifold is still M, but whose outgoing boundary identification
is 7, o fur, where fas is the outgoing boundary identification of A/. This means

(Ma T, 0) = (’F’Y(M)vi—’}’(T)vO)

as morphisms of Cobg. But now, identifying the outgoing boundary of 74(M) to
the incoming boundary of X' x I using the diffeomorphism

oM (Fyofa) ™ (74,0)

x  x {0}

is the same as using

oM DLy 5 1920, oy
This means
T(M)Up (¥ x 1)) = M Us (X x 1)
as cobordisms. However, the signature defect determined by the composition rule
(5) for the morphism
(% x1,,) o (7 (M), 7(T),0)
might be non-trivial in general. This is why we only have
(2 x1I)o(M,T,0) = (2 x I ) o (7(M),7,(T),0) ~ (M, 7(T),0),
where ~ was introduced in (16). But now
p‘g(T“f)([Mv T, OD = [(E X H‘m) © (M7 T, 0)]

V2 (T),00 W VT 0] = Vi (5 1, (M. T 0)
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.Vl. .Vk.

SR>

FIGURE 2. Skein equivalence inside a neighborhood of the disc
bounded by 7 in M, which contains portions of edges of T' labeled
by some objects Vi,...,V; € € (red edges could also appear).

as elements of Vg (). Step (x) is obtained by first adding an unknotted red com-
ponent of framing —1, at the cost of multiplying by A~!, and then applying the
slide property of [DGGPR, Prop. 3.7], see Figure 2.

This shows the statement for pg (7, ), while the claim for pi (7,) follows from the
duality relations (7) and (19). O

3.4. Action of generators on algebraic state spaces. In this section we de-
scribe one of the main outcomes of this paper, namely the projective action of a set
of generators of the mapping class group of our chosen standard surface (X, Py)
from (9) on the algebraic state space X{ y as in (8).

We use the isomorphisms @ from (10) to transport pf, as given in (17) from
V& (24,v) to X{ 1. That is, we define the map

(22) pPX - MOd(Eg, Pz) — GLk(Xlg,Z)
by requiring the following diagram to commute for all [f] € Mod(X, P):
px(f)

/ /
Xg:! ’ XQ,Z

él F

Ve (Zgv) - Ve (Zgv)
€

As for pf,, in general only the projectivization
(23) Px : Mod(Y,, Py) — PGLy(X] v)

of px is a group homomorphism.

Note that while the underlying vector space X{ , = (Vi ®...® Vi, © Z%9,1)
and the group homomorphism px only depend on &, the original map px also
depends on the choice of the Lagrangian subspace of the standard object X v .

We now turn to the explicit computation of px for a set of generators of the
mapping class group. We start with a few preliminary definitions which closely
follow [Lyl]. The monodromy Q: ¥ @ & — £ ® £ is the unique morphism of €
satisfying, for all X, Y € €, the identity

(24) Qo (’LX ® Zy) = (ZX X Zy) o (ldx* ® (Cy*ﬁX o nyy*) & ldy) .
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Similarly, if X is an object of €, the left partial monodromy Qp, x : XL = XQFL
is uniquely determined, for every Y € €, by

(25) O x o (idx ®iy) = (idx ®iy) o ((cy- x ccx,y+) ®idy),

and if Y is an object of €, the right partial monodromy Qry : QY - L ®Y is
uniquely determined, for every X € €, by

(26) QR,Y o (iX (24 ldy) = (iX [029] ldy) o (1dX* X (CY,X o nyy)) .

Next, the S- and T-transformation 8,7 : & — &£ are uniquely specified, for every
X €9, by

(27) SOiX=(€®idg)OQO(ix®A),

(28) T oix =ix o (idx+ ® ¥x).

A graphical presentation of the above equalities as skein equivalences is given in
Figure 3 using n-bottom graphs (possibly up to pre-composing with braidings to
reorder red vertices to the left), which evaluate to dinatural transformations as
outlined in Section 2.2.1 (or to morphisms in € if n = 0). The symbol = means
that both sides evaluate to the same dinatural transformation (respectively mor-
phism). For example, both sides of the skein equivalence for Qy, x evaluate to the
same family of morphisms {ny : X @ Y*®Y — X ® Z}ycs which is dinatural
in Y. This definition of skein equivalence is slightly more general than the one
used in [DGGPR, Sec. 4.2], where only blue boundary vertices were allowed, and
no n-bottom graphs with n > 0. Note that, in order to arrive at the bichrome
presentation of &, one needs to use that the counit € and the integral A of & can
be expressed as a red cap and cup respectively.

FIGURE 3. Graphical representation of the definitions in (24)—(28).
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| + |
Vie1 i
& .
:ﬂ'"'“. —
— . : (697
Sij | j S | k

FI1GURE 4. Simple closed curves used in the description of genera-
tors of the mapping class group: ax, 3;,7;,0;,; C X, for all integers
I1<i<m,1<j<g,and2<k<y.

It will also be useful to fix names for # : ¥ ® & - £ ® & defined by
(29) ?/:zﬂo(?f@?]),
as well as for its left and right partial versions #1, x : X ® & - X ® & and
IRy : QY - Z®Y defined, for all X,Y € €, by
(30) Hx =QLxo(Wx®T),
(31) Hry =Ry o (T ®@Vy).
As explained in [Ly1, Sec. 4.5], and using the notation in Section 3.1 and Figure 4,
the mapping class group Mod(X,, Py) is generated by:
- x;,; for all integers 1 < ¢ < j < m satisfying V; = Vj;
- w; ; for all integers 1 <4 < j < my
- v; for every integer 1 < i < m;
- Hy, := 1.} for every integer 2 < k < g;
Sj = T,, o7, o Ty, for every integer 1 < j < g;
- Ty = Tﬂ/_jl for every integer 1 < j < ¢;
- H; = T(;_ii for all integers 1 <i<m, 1< j<g.
Lyubashenko considers some additional generators corresponding to inverse Dehn

twists around simple closed curves which are homologous to v; for all 1 < j < g.
However, these extra generators are redundant, as follows from [Li2, Lem. 5].

Proposition 3.3. The map px : Mod(Y,, Py) — GLk(X, /) satisfies

px(zig)(a’) = 2’ o (Fg(i;) ™' ®idges)

px(wij)(@') = 2" o (Fg(wi ;)™ ®@idges)
px(vi)(a’) = 2" o (Fg(vi) ™! ®idges)

px(Hy)(z") = 6 -2’ o (idy,@..0v,erer—2 @ @ idges—)
px(S) (@) = D716% -2’ o (idy, .0V, 0zei1 @S @idgess)
px(Tj)(a') = 0% -2’ o (idy, 5. eV, 0zei-1 ® T @idgss-;)

px(Hij)(a') = 6% -2’ o ([dv,e..0vi, ® i vie. evaezrsi-1 @ idgss)

forevery ' € X\, =€(V1®...0V, ® Z%9.1), and for some ay,bj,c;,d; ; € Z.

Proof. The action of generators z; ;, w; j, and v; follows directly from the defini-
tions. Remark that no coefficient appears here, because all these mapping classes
restrict to the identity outside of a disc containing Py, and therefore they all induce
the identity endomorphism of H;(Xg;R).
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e s

{; ‘f‘ 1]

~ 2 ~
FIGURE 5. Skein equivalence for the action of Hy.

1

FIGURE 6. Skein equivalence for the action of S;.

For what concerns Hj, we have the skein equivalence represented in Figure 5.
Here, the left hand side represents the vector ¥ x I(4,)_ o ®'(z’), which is pro-
portional to ®'(px(Hy)(z')) thanks to Lemma 3.2. Remark that the inverse in
Hy, = 7,,! cancels with the one in the definition (17) of pf;. The form of the propor-
tionality coefficient follows from equation (21), and from the fact that Ay = P§+!,
see (3).

Similarly, to compute the action of S;, we recall its definition as a composition
of three Dehn twists, and we use the skein equivalences of Figure 6. We point out
that the second “=" there is not actually a skein equivalence as defined in [DGGPR,
Sec. 4.2], but rather a non-local version of the notion that takes place inside a solid
torus, and that uses the edge slide property [DGGPR, Prop. 3.7, Fig. 26]. Remark
also that because of the absence of inverses in the definition of S; the red knots on
the left hand side are +1-framed. The residual factor of @' in the proportionality
coefficient follows from the fact that the number of Dehn twists required by S; is
three, while the number of red knots removed by the first skein equivalence is only
two.
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- -
.o.c'/\/) = A_ - <~

FIGURE 7. Skein equivalence for the action of T}.

FIGURE 8. Skein equivalence for the action of Hj ;.

For Tj, we consider the skein equivalence of Figure 7, and for H;; the one of
Figure 8. (]

Remark 3.4. The integers ag, b;,cj,d; ; in the statement of Proposition 3.3 arise
from the composition rule (5) in Cobg, and thus depend on the choice of the La-
grangian subspace Ay C H1(Xy;R) of B4 . They do not affect the projectivization
Px, so we will not compute them here. Remark however that if M, 5'7 denotes the
cobordism from X, to @ corresponding to the top handlebody in Figure 1, and if
Ag = ker(iy), for the embedding i, : Xy — Mé induced by the structure map of
M 5'7, then ap = ¢; = d; ; = 0. This follows immediately from Remark 3.1, and from
the proof of Proposition 3.3.

4. EQUIVALENCE WITH LYUBASHENKO’S PROJECTIVE REPRESENTATIONS

In this section we show that the projective representation py defined via TQFT
in (18) is equivalent to the representation given in Lyubashenko’s original work
[Lyl]. Lyubashenko considers the vector spaces

Liv =€V1®...0V,,, %)
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and defines a group homomorphism
P, Mod(Xy, Py) = PGL(Lg v ).

After briefly recalling the construction of p;,, we will give an explicit isomorphism
X, v — Lg v and show that it intertwines the two projective actions. This is our
second main result.

4.1. Lyubashenko’s representations. For all objects V, X, Y € € we consider
the isomorphisms

Ny :B(X, Y@V > BXV,Y)
f e (idy ®évy) o (f @idy)
Uy :8(XeV,Y) = EX,Y V)
e (f ®idye) o (idy ® coevy)

induced by the pivotal structure of €. Lyubashenko’s representation is defined in
terms of generators, and we start by recalling from [Lyl, Sec. 4] the linear map
pr(f) assigned to each generator f of Mod(X,, Py) as given in Section 3.4. For
every £ € Ly y,

Remark that Lyubashenko actually considers inverse braiding and inverse twist
morphisms, which is why our formulas for the first three kinds of generators are
inverse with respect to those in [Lyl, Sec. 4]. We also point out that Lyubashenko
works with a bigger group, since he allows mapping classes which only preserve
Py as a set, but not as a @-colored one. Consequently, he considers more general
braiding morphisms, which allow him to list just two kinds of framed braid gener-
ators. Since we only consider mapping classes which preserve €-colorings, we have
restricted Lyubashenko’s representation accordingly. In terms of these linear maps,
it is shown in [Lyl, Ly3] by verifying the relevant relations that:

Theorem 4.1. There is a unique homomorphism py, : Mod(Xy, Py) — PGL(Lgv)
which satisfies py,(f) = [pr(f)], where f runs over the set of generators in (32).

Remark 4.2. Since Lyubashenko describes the projective representation py, in terms
of generators f of Mod(X,, Py), he only defines the corresponding linear endomor-
phisms pr,(f) € GL(L,,v ), and one does not obtain a specific choice for an extension
to a complete lift pr, : Mod(Xy, Py) — GL(Lg v) of pr,. Indeed, different realiza-
tions of an arbitrary element of Mod (X, Py) as a combination of generators would
give linear maps that differ by scalars. However, in Section 3.4 we saw that the
TQFT approach naturally provides (and even starts from) such lifts, and that dif-
ferent choices of Lagrangian subspaces lead to different lifts.

4.2. Radford copairing. In order to give the isomorphism between X{ - and Ly v
we will use the Radford copairing R : 1 — £ ® £, which is defined as

(33) R :=AoA.
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As we have seen in Section 2.2.1, in terms of bichrome graphs the definition of the
Radford copairing amounts to the skein equivalence

< < < <

(34) =

We use the shorthand notation (™ : 1 — Z®" @ Z®" for the morphism of €
defined inductively by

30 .— id;, P .— (idg ® (=1 ® idg) 0R.
Similarly, for all X,Y € € and every f € €(1,X ® Y), we use the abbreviation
%}") 1= X @ PP @ £ @Y for the morphism
R = (idx ® 2™ ®idy) o f.

The following properties of the Radford copairing will be needed to prove the equiv-
alence of projective representations.

Lemma 4.3. The Radford copairing is non-degenerate and satisfies

(35) (Q®idge:) o Z?) = (idge: @ Q) o 2?2
(36) (QLJ( ®idg®y)o<%f = (idX®g®QR7y)O%f
(37) (S®idg)o R = (dg ®S) o R

(38) (T ®idg)o R =(idg ®T)o R

for all XY € € and every f € €(1,X QY).

Proof. Non-degeneracy follows from [KL, Cor. 4.2.13].

Next consider Equation (35). Using the skein equivalence for 2 of Figure 3 and
the one for # of (34), the two sides of the identity in (35) are skein equivalent to
the two sides of

A 21 1z Jz 21 o Iz v
]
\ \

which are equal to each other, as they are related by an isotopy. All other identities
are shown in the same way. We only state the relevant skein equivalences and
isotopies.
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- Equation (36):
x| & 7 1y x| & 7z vy x| « 7 Ty

- Equation (37):
1 o 1 o

\| |U

- Equation (38):
1 1o 1 1o 1 1o

URUAU

In the last step we used dinaturality of the bichrome coupon. (I

4.3. Equivalence of representations. Consider the linear map
p: Xy 2 Loy
' (JJ/ ® idg@g) o (idV1®...®Vm X %(g))

Since the copairing is non-degenerate (see Lemma 4.3), the map ¢ is invertible. Let
us write ¢* for the induced group isomorphism

¢ PGL(X] /) = PGL(Lg,v)
[fl+ [pofop™l.

Theorem 4.4. The isomorphism ¢ intertwines the projective representations px
and py,, that is, ¢®4 fits into the commutative diagram

Px

MOd(E!h PZ)



MAPPING CLASS GROUP REPRESENTATIONS FROM NON-SEMISIMPLE TQFTS 29

Proof. It is enough to show that for each generator f of Mod(X,, Py) used in
Proposition 3.3 and (32) we have

popx(f) o< pr(f) o
For the actions of generators z; j, w; j, v;, this is immediate. For the others, we
use Lemma 4.3. Let 2’ € X{ y, be arbitrary. Using (35) and (38), we see

¢ (px (Hi) (@) o< ¢ (' 0 (idvy . v, @zer—2 ® # @idges—t))
= (idg@g—i X % X idg@k*2) o <P(x/)

= pL(Hy) (p(z')) -
The computation for generators S; and Tj is analogous:

¢ (px(95)(@) oc ¢ (2" 0 (dvig..0v, ezei1 ® S ®idges-s))

(i) (idg@gfj (2] <§) ® idg@j*l) o @(xl)
= pL(S)) ((2'))

¢ (px(T;)(2") o< ¢ (2" o (idvy 0.0V, 0701 ® T @idges—s))
(38)

= ([dgos— ® T @ idge;-1) o p(a')

= pu(Ty) (p(a")
Finally, for the generator H; ; we use (38) as well as (36) with
X=Vi®.. . 0V,eL¥ ! Y=g lgVe. oV, f=x9Y .
COeVYV,; ®...Q Vi

Then
¢ (px(H; ;)(2"))

¢ (2" 0 (idrig..aviis ® T ve. ov.ezei-1 ®idges—))
= .., ((dzors @ Trzor1ovz0..007) © Uns..ov, (0(2)))

= pL(Hi ;) (p(2)),
where we used the naturality of the twist to deduce that

(ﬁx@idy)of:(id)(@’lgy)of. U

Remark 4.5. When € = H-mod for a factorizable ribbon Hopf algebra H, ex-
plicit formulas for Lyubashenko’s projective representations can be found in several
places. The case of genus g = 1 was first discussed in [LM, Thm. 4.4] (using the
adjoint representation instead of the coadjoint one) and in [Kel, Sec. 2.5], see also
[FGR, Rem. 8.3] for the corresponding equations in our conventions. The higher
genus case g > 1 was studied in [F'SS, Sec. 4] (using the category H-bimod instead
of H-mod) and in [Fa, Thm.5.12].

5. DEHN TWISTS FOR THE SMALL QUANTUM GROUP

In this section, we consider the particular modular category € = U,sl,-mod
coming from the representation theory of the small quantum group U,sls, and we
prove that the action of Dehn twists on state spaces of closed surfaces without
decorations has infinite order. This is in contrast with the Reshetikhin-Turaev
TQFT for the semisimple modular category obtained as a subquotient of &, as the
action of all Dehn twists has finite order there. A closely related observation on the
infinite order of Dehn twists was made in [BCGP] for the non-semisimple graded
TQFTs obtained from the so-called unrolled quantum group Ufslg.
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5.1. Small quantum group. Let us set ¢ = e** for some odd integer r > 3. For
every natural number k£ € N we introduce the notation

{k} :
(khi=d" =" W=y W= ]]0
o U
The small quantum group U,sly, first defined in [Lu], can be constructed as the
C-algebra with generators {E, F, K} and relations
E"=F"=0, K'=1,

K—-K™!
KEK'=¢’E, KFK '=q?F, [EFl=—"7,
q9—q
and with Hopf algebra structure obtained by setting®
A(E)=EQK+1®FE, e(E) =0, S(E) = —EK™,
AF)=K '@ F+F®l, e(F) =0, S(F) = —KF,
AK)=K®K, e(K) =1, S(K)=K".

A basis of Uysly is given by
{E“F’K®| 0< a,bc<r—1},

as proved in [Lu, Thm. 5.6]. Furthermore, the Hopf algebra U,sla supports a ribbon
structure. Indeed, an R-matrix R € Uysly ® Uysly and its inverse are given by

r—1
1 {1} aten ope
R=- ——q 2 ‘K’E* @ K°F*
r Z [a]! e © ’
a,b,c=0
r—1
R—l — 1 {_1}aq—%+chEaKb ® FeKe©
r [a]! ’
a,b,c=0

while a ribbon element v € U sls and its inverse are given by

.r—1 r—
N ey
\/,F a,b=0 [a]'

r—l —

a(a D, (= 1)(a+b 1)2

FKYE®.

(39)

a,b=

The formulas for v and v=! can be obtained by adapting the proof of [FGST,
Thm. 4.1.1]. A pivotal element g € qulg which is compatible with the ribbon
structure is given by g := K, as explained in [Ka, Prop. XIV.6.5]. Compare with
[Kel, Sec. 3|, where the term balancing element is used, and remark that Kerler
considers a different antipode, which explains why he obtains the inverse of our
pivotal element. A right integral A : U,sly — C is given by

r3

A (EanKC) = W(Sa,rfléb,rfléc,h

see [Lyl, Prop. A.5.1], and a two-sided cointegral A € Uysly is given by?

2r—2 T
A0 — {1} ZET 1Fr 1Ka
’I’ a=0
8Lusztig considers the opposite coproduct, while we are using the one of [Ma2, Ex. 3.4.3].

9Lyubashenko uses a different coproduct, which explains why our formula defines a right inte-
gral, instead of a left one.
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see [Lyl, Prop. A.5.2]. It is proved in [Ly1, Cor. A.3.3] that the ribbon Hopf algebra
Ugsly is factorizable. This can also be checked directly by looking at the M-matrix
M € Uysly ® Ugsly given by

1 r—1
M=-
=D
a,b,c,d=0
see for instance [Ma2, Ex. 3.4.3]. Now it follows that the category of finite-

dimensional representations € = Uqﬁlz—mod is a modular category. A direct com-
putation gives the stabilization parameters

b—d)17(1[{C‘Eva‘EJ)[{d};va7

{[1]}'(Ez;;)qa(“”;b‘“> —~2cd—(b+o)(
al. .

r—1 3 r+43

A_=\v)=i 2 r2qgz, Ay =XvH=i"2 rig
which determine the modularity parameter

CZ: A7A+ :T3.

We fix the square root ‘
D — s
of ¢, which uniquely determines the coefficient

r—1 r—3

=i 2 q2,

as well as the corresponding normalization of Li,. The projective cover P; of the
trivial U,slp-module 1 = C is the indecomposable projective U,sly-module with
basis {ao, T, yr,bo € Py | 0 < k < r — 2} and left Uysly-action given, for every
integer 0 < k <r —2, by

K -ag = ag,
E-ao :0,
F'(ZQ :0,
K.z, = q72k72xk7

E-xp = —[k‘“k + 1]{,13]{,1,

Foap = Tr+1 O0<k<r—2
ao k=r—2,
Kye=q 2y,
k=0
E'yk: ap )
—[k][kj-‘rl]yk_l 0<k’<7‘—2,
F -y = Yk,
K - by = by,
E'boil’r—z
F by =1yo

where z_; := y,_1 := 0, compare with [FGST, Sec. C.2]. We denote with h €
Endg(P;) the nilpotent endomorphism given by
(40) h(ao) = h(zx) = h(yx) =0,  h(bo) = ao

for every integer 0 < k < r — 2, and we remark that the non-degenerate modified
trace t determined by \ satisfies

tP] (h) 7& 0.

This follows from the fact that Endg(P;) is linearly generated by idp, and h, and
that h? = 0.
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CI1CJ =]
&&= X

FIGURE 9. Bichrome graphs T, and T, ¢,.

5.2. Infinite order of Dehn twist actions. We are now ready to prove the
announced property.

Proposition 5.1. If € = U,sl,-mod, 3 = (¥, 3, \) is a connected object of Cobg,
and v C X is an essential simple closed curve, then pg(T,) has infinite order in
PGLc (Vg (2)).

Proof. Let us first suppose 7 is non-separating. Then there exists a simple closed
curve 5 C Y intersecting - exactly once. Let M be a connected cobordism from & to
X such that  bounds a disc in M, and let us consider the vector [M,Tp,0] € Vg(X),
where T3 is the blue knot obtained from 5 by choosing framing tangent to X' and
label Py, and by pushing the result in the interior of M. Also, let TB denote the blue
graph obtained from T by adding a blue coupon labeled by the endomorphism h
of P; from equation (40). A computation based on the skein equivalence of Figure 2
and the action of the inverse'® ribbon element (39) on P; shows that

(41)  Ve(® xI,)[M,Tp, 00 = 6™ - (M, T5,0 + (r = 1)(q — )M, T5,0]),
(42)  Ve(Z x L.))[M,T5,0] = 6™ - [M, T3,0],

for some m € Z. We will now check that [M,Ts,0] and [M,Tp,0] are linearly
independent. This implies that Vg (X x I, ) acts as a Jordan block of rank 2 on
the span of these two vectors, and hence has infinite order even in PGLy (Vg (X)).

To show linear independence, we first note that [M, T, 1, 0] is a non-trivial vector
of Vg(X%). Indeed, if M’ is a cobordism from X to @ such that M Us M’ = S3
then, in the notation of equation (6), for some n € Z we have

<[M/v®70]7 [M7T670]>)>3 = L%(S37Tﬁvn> = (SntPﬂ(h) # 0.

This means [M, Tg,O] # 0. If [M,Tp,0] were zero, then (41) would imply that
[M, Tg,O] = 0, which is a contradiction. If [M,Tp,0] were non-zero, but propor-
tional to [M,T}3,0], then (41) and (42) would assign to [M,Ts,0] two different
eigenvalues. Thus [M, T3, 0] and [M, Tﬂ,()] are linearly independent.

Next, let us suppose - is separating. Then there exist non-empty submanifolds
X1, XYy C X of strictly positive genus with disjoint interior and common boundary .
Let M be a connected cobordism from @ to X such that v bounds a disc in M,
and let us consider the vector [M, T}, 1,,0] € Vg(X), where Ty, , is the bichrome
graph represented in the right-hand side of Figure 9 for morphisms

fii=t  foi=C?-Dog,oD o,
where ¢ : P) — & and 7 : & — P are injection and projection morphisms satisfying

mot = idp, where D : & — & is the Drinfeld map, where ¢, : &* — & is

10Recall our convention on ribbon twist in Sec. 2.4.1.
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FIGURE 10. Bichrome graph Ty, ;, UT..

the isomorphism satisfying w o (idg ® ¢.,) = G_X>73>, and where ( is the modularity
parameter. Remark that ¢ and 7 exist because, as explained in [Os], P; is a direct
summand of multiplicity Tgl in &, which is the adjoint representation of qulg. On
the other hand, the existence of ¢, follows from the non-degeneracy of w. Note also
that, while it is possible to simplify the expression for fs5, this more complicated

form is convenient for the computation below. Let T%, s, denote the bichrome graph

obtained from Tfl’ #» by adding a blue coupon with label i, the endomorphism of P;.
Similarly to the calculation in (41), one can check that for some m € Z,

Vio (B I )[M, Ty, g, 0] = 87 - (IM, T, 1, 0]+ (r = (g — a )M Ty 1., 0]),
V%(E X HTA,)[Mv Tfl,fmo] =" [Mv Tfl,fmo]'

As before it is enough to check that [M, Tf1, #2,0] # 0 in order to conclude that
Vg (2 x I,,) has infinite order in PGLy(Vg(X2)). If M’ is a cobordism from X to
@ such that M Us, M’ 22 S3, then for some n € Z we have
<[M/7T4:70]a [Mv Tf11f230]>§3 = L%(S?’val,fz UTL,TL)

) .,

= §"tp (h) #0,
where thj is the bichrome graph represented in the left-hand side of Figure 9, and
where Ty, r, UT, is the one represented in Figure 10. In step (*) we use that by

[DGGPR, Lem. 4.3, Cor. 4.6, the inverse of the Drinfeld map D : & — & can be
written as an evaluation of a bichrome graph, namely

<z
Fy =(D7 L
&
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A cutting presentation of the admissible closed bichrome graph represented in Fig-
ure 10 is then evaluated by Fj to

APPENDIX A. EXTENDED MAPPING CLASS GROUP REPRESENTATIONS

In this appendix, we explain how to upgrade the projective representations
Pg : Mod(X) — PGLg (Ve (X)), 0y : Mod(X) — PGLE(VL (D))
to linear representations of a centrally extended version of mapping class groups.
This central extension is determined by the composition law for morphisms of the

admissible cobordism category Cobg. 5
If ¥ = (X, P,)\) is a connected object of Cobg, then we consider

Diff(%) := {(f,n) € Diff(X) x Z | f(P) = P},
which is a group with respect to the extended composition
(Fn') o (fin) i= (f o fon 40" = p(fN). A S/ V),
we denote with Diffo(%) the subgroup whose elements (f,0) are isotopic to (ids, 0)
within Diff (X)), and we define the extended mapping class group of ¥ to be the
quotient group ~ ~ ~
Mod(¥) := Diff (¥)/Diffo ().
The mapping cylinder of an element (f,n) € Diff(2) is defined as the morphism
% xIsn) % — X of Cobg given by
(X xIp,Px1In).
It is easy to remark that
(2 % Igrnn) © (B X Tpm) = 2 % L myo(sm
as morphisms of Cobg. This means we have a group homomorphism
Pz : Mod(Z) = GLy (Vg (X))
sending every extended mapping class [f,n] € Mod(Z) to the operator
Vg(Z xI(n) € GLg(Ve (X)),
and similarly we have a homomorphism
Py : Mod(2) = GLi (Vi (R))
sending every extended mapping class [f,n] € Mod(Z) to the operator
V(2 X I5.n)) 7" € GLe(Vig(Z)).
These representations satisfy
P = (Pg) ™!
with respect to the pairing (_, )g.
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APPENDIX B. MASLOV INDEX FOR MERIDIONAL DEHN TWISTS

In this appendix, we fix a connected object £ = (X, P,\) of Cobg, a simple
closed curve v C Y, and we compare linear endomorphisms of the state space
Vg (X) determined by two different endomorphisms of ¥ introduced in Section 3.3,
the mapping cylinder ¥ x ]IHﬂ and the curve cylinder ¥ x I,_.

Lemma B.1. If the homology class of v belongs to the Lagrangian subspace A of
Hy,(X;R), then
Ve (X x H7—$1) = A;l\fqg(z X ]I’Y:;:)'

Proof. In [DGGPR, Sec. 4.4], a connected object X5 of Cobg, together with mor-
phisms Ay, By : @ — X9, is introduced. Let us recall their definition here. First,
we have

Yo = (Sl X 51797)\7,1),
where \,,, C H;(S! x S*;R) is the Lagrangian subspace generated by the homology
class m of the meridian {(1,0)} x S!. Next, we have

Ay = (S' x D2, K,0),

where the overline stands for orientation reversal, and where K ¢ S! x D2 is the red
knot S1 x {(0,0)} with framing determined by the longitude S* x {(1,0)}. Finally,
we have

By = (D* x S*,2,0).

We will use these morphisms to relate ¥ x HT$1 and ¥ x I,_. In order to do this,
we first need to fix some notation. Let N(y+) denote an open tubular neighborhood
of the red knot v4 inside X' x I. Let (X x I) \ N(v+) denote the corresponding
cobordism from (S! x S1) X to ¥, with incoming boundary identification sending
the meridian {(1,0)} x S* of S! x S! to the meridian of ON(y+) determined by
N(v4+), and the longitude S! x {(1,0)} of S! x S* to the longitude of ON(y4)
determined by the framing of y1. Then, let (¥ x I) N N(71): T U — X denote
the morphism of Cobg given by

(% x I)~ N(y1), P x I,0).

Because of the composition rule (5), computing ((¥ x I) \ N(y1)) o Ay and
((Z xI)\N(v+))oBs requires understanding Maslov indices of Lagrangian subspaces
of Hi(S! x S;R). Recall that, if w is a symplectic form on a vector space H, and
if A1, A2, A3 C H are Lagrangian subspaces with respect to w, then u(A1, A2, A3) is
defined as the signature of the symmetric bilinear form { , ) on (A 4+ A2) N A3
determined by

(a, by :=w(az,b)
for all a = a1 +az,b = by +by € (A1 +A2)N A3, where a;,b; € A; for alli € {1,2}. As
explained in [Tu, Sec. IV.3.5], the Maslov index pu is completely antisymmetric in
all its entries. In our case, the symplectic intersection form rh on the 2-dimensional
space H1(S1 x S1;R) is completely determined by ¢ m = 1, where ¢ denotes the
homology class of the longitude S* x {(1,0)}.

On one hand, we have

B x Ly = (2 x 1)~ N(y) o (A2 Uidy).
Indeed, we claim that the signature defect of the composition is given by
_/J“()\mv )"ma )\ZZFm) =0,

where \pz, C Hi(S' x S';R) is the Lagrangian subspace generated by ¢ Fm. To
compute the first entry, remark that A,, is the kernel of the embedding induced
by the outgoing boundary identification of the cobordism S' x D2. To compute
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the third entry, remark that the pull-back of A to H;(S! x S';R) induced by the
cobordism (X x I) \ N(y¢) contains ¢ F m, because A contains the homology class
of the curve 7 by hypothesis, which is homologous, in (X' x I) \ N(ys), to the
longitude of ON(v4) obtained as sum of the framing of v+ with the meridian of
N(vz), provided the latter is taken with sign £1. Then, since Lagrangian subspaces
of Hi(S* x S*;R) are 1-dimensional, this proves the claim.

On the other hand, thanks to the isomorphism (20), we have

X xL = (¥ xI)(yg), P x1,0),
while
(B % T) ~ N(75)) 0 (Bz Uidz) = (£ x I)(v2), P x I,nz),
for some ny € Z. Then, it follows from [DGGPR, Prop. 4.10] that
"FVg (X x HT$1) =Vg((Z xI) N\ N(vg)) o Vg (B2 Uidy)
=2 e (2 xI) N N(75)) o Vg (A2 Uidy)
=2 'Vg(Z x L,).
It remains to show that Ax = 26"+, i.e. that no = F1. We claim that
ny = _N(/\Ea Ams /\E:Fm)
where A\, C H;(S! x S;R) is the Lagrangian subspace generated by £. To com-
pute the first entry, remark that A, is the kernel of the embedding induced by

the outgoing boundary identification of the cobordism D? x S'. Now we have
()\Z + >\m) N >\Z$m = )\Z$m7 and

LFmALFm)y=(Fm)h({Fm)=Fmh ==l
This means
nx = F1L. U
APPENDIX C. EQUIVALENCE FOR HOPF ALGEBRAS

In this appendix, we consider € = H-mod for a finite-dimensional factorizable
ribbon Hopf algebra H over k, and we prove that the construction of [DGGPR]
agrees with the one of [DGP]. More precisely, let %, denote the category of
bichrome graphs defined in [DGP, Sec. 2.2], and let us consider the functor

‘%P Bpr — R

which preserves blue edges and coupons, labels red edges by the regular represen-
tation H, and replaces bichrome coupons, as recalled in Section 2.2.1, with those
defined in [DGP, Sec. 2.2] like

coad coad
| ad H H

where « € | ) and o’ € | 1] coad) are defined as

H H coad
ad

Next, let F\ : &) — € denote the Hennings-Reshetikhin-Turaev functor defined in
[DGP, Sec. 2.2].
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Proposition C.1. The diagram

!%A FA
ngl €
%)\ Fy

commutes.

Proof. The commutativity of the diagram is clear on objects. We check it now
on morphisms. Let us consider a ribbon graph T : (¢,V) — (¢/,V’) with n red
components in &,. Thanks to Lemma 2.1, we have

(43) FA(T) = Fe(Tim,..m) o (A® 1) @idp, v)) »

where T is an n-bottom graph presentation of T', where T, (H,...,1r) is obtained from
T by labeling all its red edges by the regular representation H, and where Fi
denotes the Reshetikhin-Turaev functor, which can be evaluated against T( H,...,H)>
forgetting the difference between red and blue. On the other hand, we can turn the
n-bottom graph presentation T into an n-string link graph presentation as follows
J v, ol H] J v/ v/,

m

\%1 Vin
where 3 is the H-labeled red 2n-braid

Remark that, strictly speaking, T is not a morphism of %, and so F gg(T) is not
actually defined. What we mean by this notation is that Fg(T) is obtained from
T by following the procedure for the definition of Fg. Now

(44)  FA\(Fa(T)) = Fs(Fa(T)) o ((Fe(B) o A\*" ©1°™)) @ idp, 1)) »

where again Fg can be evaluated against F@(T), forgetting the difference between
red and blue. We now compare this expression with (43). First of all, the fact that

Fg(Fa(T)) = Fe(T(n,...im)
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is clear from the definition of Fg. Furthermore, we claim the braid S contributes
trivially to the computation of Fy(F%(T)). Indeed, this is a direct consequence of
the following general argument: for all objects U, V., W € & let us denote with

UVe "@ QW:€Px€—¢

the functor sending every object (X,Y") of €°P X € to the object UQVRX* QY @W
of €. Let Z € € be an object and

a:URVe _*"©0_ W=7

be a dinatural transformation. Then, let us consider the dinatural transformation
ac:U®_"®@_oVeoW=32Z

whose component o, x : U R X* @ X ®V ® W — Z is given by

1z

[ ox |
acx = UV xTw
N
X[

for every object X € €. Then, for all u € U, v € V, and w € W, we have

g (URARLIRVR W) =ay (u@R"-v@)\(S( El))_)@)REQ)@w)
=ag (u@R” v @ANS(R(yy) _R{)) ©1 ®w)
—ay (u © R v @ NS (Rly)S(Ry) )@ 1@ w)

= an (u® R v @ A(S(R))S(Riy) ) @10 w)
=ag(uRVAAR1Rw),

where the second equality follows from the fact that « is dinatural, and the third
and fourth ones from the identities

May) = A(S*(y)x), 1SRy @R =11

respectively, which hold for every z,y € H. This argument allows us to ignore all
crossings belonging to the braid 3, and it can be applied one red component at a
time. Start from the middle one with respect to the source of the braid S, then
move on to the one embracing it, and so on until all crossings have been considered.
We thus conclude that Fi(T) from (43) indeed equals F)(Fg(T)) in (44). O

Finally, if we temporarily adopt the notation Cob% for the admissible cobordism
category recalled in Section 2.3.1, and if Cobg denotes the one defined in [DGP,
Sec. 3.3], then the functor Fg : Zx — X, induces a functor

Foop : Cob{—; — Cobg.

Let us also temporarily adopt the notation VL for the TQFT recalled in Sec-
tion 2.3.2, and let VI denote the one defined in [DGP, Sec. 3.3

Proposition C.2. The diagram

Cob% N
FCobl Vecty
Cobg Ve

commutes.
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Proof. The claim follows from the explicit identification of state spaces of [DGGPR,
Sec. 4.7], which uses a slightly different convention with respect to the one recalled
in Section 2.3.3, and from the one of [DGP, Sec. 3.7]. Remark that the latter
uses the pre-dual coadjoint representation X instead of ad. As a vector space, X
coincides with H itself, just like ad, but it carries the left H-action defined by

Ty = x@)ysfl(z(l))
for all x,y € H, see [DGP, Sec. 3.1]. However, the inverse antipode S~! :ad — X

defines an isomorphism between the two representations. Then, in order to finish
the proof, we just need to relate the pairing (_, 4>§‘7V of [DGGPR, Sec. 4.1] to the

pairing (_, 7)3‘/ of [DGP, Sec. 3.1]. Let us consider the linear isomorphism
Fy :G(P,ad® @V) = G(H, X% V)
which sends = € €(Py,ad®? @V) to
(StoptoDtoptoD H¥®idy)ozom € G(H, X' V),

where p : ad — coad is the Radford map sending x € ad to A(S(z) ) € coad, and
where 7y : H — P is the projection onto the indecomposable summand containing
the cointegral A®® € H. Remark that the isomorphism hyx : X — coad used in
[DGP, Sec. 3.1] to define {_, _>I;V is given by po Do po S, and that the injective
envelope morphism 7; : 1 — Py satisfies 7;(1) = 73 (A°°). Then, we clearly have

(@' w)gy = (@', Fa())gy- O

REFERENCES

[BBGa|]  A. Beliakova, C. Blanchet, A. Gainutdinov, Modified Trace is a Symmetrised Integral,
to appear in Selecta Math.; arXiv:1801.00321 [math.QA].

[BBGe| A. Beliakova, C. Blanchet, N. Geer, Logarithmic Hennings Invariants for Restricted
Quantum sl(2), Algebr. Geom. Topol. 18 (2018), No. 7, 4329-4358; arXiv:1705.03083
[math.GT].

[BCGP] C. Blanchet, F. Costantino, N. Geer, B. Patureau-Mirand, Non-Semisimple TQFTs,
Reidemeister Torsion and Kashaev’s Invariants, Adv. Math. 301 (2016), 1-78;
arXiv:1404.7289 [math.GT].

[BHMV] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological Quantum Field Theories
Derived from the Kauffman Bracket, Topology 34 (1995), No. 4, 883-927.

[CGP] F. Costantino, N. Geer, B. Patureau-Mirand, Quantum Invariants of 3-Manifolds via
Link Surgery Presentations and Non-Semi-Simple Categories, J. Topol. 7 (2014), No.
4, 1005-1053; arXiv:1202.3553 [math.GT].

[DGGPR| M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand, I. Runkel, 3-Dimensional
TQFTs from Non-Semisimple Modular Categories, arXiv:1912.02063 [math.GT].

[DGP] M. De Renzi, N. Geer, B. Patureau-Mirand, Renormalized Hennings Invariants and
2+41-TQFTs, Comm. Math. Phys. 362 (2018), No. 3, 855-907; arXiv:1707.08044
[math.GT].

[Dr] V. Drinfel’d, Almost Cocommutative Hopf Algebras, (Russian) Algebra i Analiz 1
(1989), No. 2, 30-46; translation in Leningrad Math. J. 1 (1990), No. 2, 321-342.

[EGNO] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor Categories, Math. Surveys
Monogr. 205, Amer. Math. Soc., Providence, RI, 2015.

[Fal M. Faitg, Projective Representations of Mapping Class Groups in Combinatorial
Quantization, Comm. Math. Phys. 377 (2020), no. 1, 161-198; arXiv:1812.00446
[math.QA].

[FGR] V. Farsad, A. Gainutdinov, I. Runkel, SL(2, Z)-Action for Ribbon Quasi-Hopf Algebras,
J. Algebra 522 (2019), 243-308; arXiv:1702.01086 [math.QA].

[FGST| B. Feigin, A. Gainutdinov, A. Semikhatov, I. Tipunin, Modular Group Representations
and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group
Center, Comm. Math. Phys. 265 (2006), No. 1, 47-93; arXiv:hep-th/0504093.

[FM] B. Farb, D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical
Series 49, Princeton University Press, Princeton, NJ, 2012.


http://doi.org/10.1007/s00029-021-00626-5
http://arXiv.org/abs/1801.00321
http://doi.org/10.2140/agt.2018.18.4329
http://arXiv.org/abs/1705.03083
http://arXiv.org/abs/1705.03083
http://doi.org/10.1016/j.aim.2016.06.003
http://arXiv.org/abs/1404.7289
http://doi.org/10.1016/0040-9383(94)00051-4
http://doi.org/10.1112/jtopol/jtu006
http://doi.org/10.1112/jtopol/jtu006
http://arXiv.org/abs/1202.3553
http://arXiv.org/abs/1912.02063
http://doi.org/10.1007/s00220-018-3187-8
http://arXiv.org/abs/1707.08044
http://arXiv.org/abs/1707.08044
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=10&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=10&option_lang=eng
http://doi.org/10.1090/surv/205
http://doi.org/10.1090/surv/205
http://doi.org/10.1007/s00220-019-03470-z
http://arXiv.org/abs/1812.00446
http://arXiv.org/abs/1812.00446
http://doi.org/10.1016/j.jalgebra.2018.12.012
http://arXiv.org/abs/1702.01086
http://doi.org/10.1007/s00220-006-1551-6
https://arxiv.org/abs/hep-th/0504093
http://doi.org/10.1515/9781400839049
http://doi.org/10.1515/9781400839049

40

[FSS]

[GKP1]

[GKP2|

[GKP3]

[GPT]

[GR]

[Hel
[Kal
[Kel]

[Ke2|

[KL]

[Li1]
[Li2]
(L]

[Ly1]

[Ly2]
[Ly3]
(LM]
[Mal]
[Ma2]
[ML]
(Mu]
[Os]
[Ral
[RT1]
[RT2|
[Sh]

[Tu]

DE RENZI, GAINUTDINOV, GEER, PATUREAU-MIRAND, AND RUNKEL

J. Fuchs, C. Schweigert, C. Stigner, Higher Genus Mapping Class Group Invariants
From Factorizable Hopf Algebras, Adv. Math. 250 (2014), 285-319; arXiv:1207.6863
[math.QA].

N. Geer, J. Kujawa, B. Patureau-Mirand, Generalized Trace and Modified Dimen-
sion Functions on Ribbon Categories, Selecta Math. 17 (2011), No. 2, 435-504;
arXiv:1001.0985 [math.RT].

N. Geer, J. Kujawa, B. Patureau-Mirand, Ambidextrous Objects and Trace Functions
for Nonsemisimple Categories, Proc. Amer. Math. Soc. 141 (2013), No. 9, 2963-2978;
arXiv:1106.4477 [math.RT].

N. Geer, J. Kujawa, B. Patureau-Mirand, M-Traces in (Non-Unimodular) Pivotal Cat-
egories, arXiv:1809.00499 [math.RT].

N. Geer, B. Patureau-Mirand, V. Turaev, Modified Quantum Dimensions and Re-Nor-
malized Link Invariants, Compos. Math. 145 (2009), No. 1, 196-212; arXiv:0711.4229
[math.QA].

A. Gainutdinov, I. Runkel, Projective Objects and the Modified Trace in Fac-
torisable Finite Tensor Categories, Compos. Math. 156 (2020), No. 4, 770-821;
arXiv:1703.00150 [math.QA].

M. Hennings, Invariants of Links and 3-Manifolds Obtained from Hopf Algebras, J.
London Math. Soc. (2) 54 (1996), No. 3, 594-624.

C. Kassel, Quantum Groups, Graduate Texts in Mathematics 155, Springer-Verlag,
New York, 1995.

T. Kerler, Mapping Class Group Actions on Quantum Doubles, Comm. Math. Phys.
168 (1995), No. 2, 353-388; arXiv:hep-th/9402017

T. Kerler, Genealogy of Nonperturbative Quantum-Invariants of 3-Manifolds: The
Surgical Family, in Geometry and Physics (Aarhus, 1955), 503-547, Lecture Notes in
Pure and Appl. Math. 184, Dekker, New York, 1997; arXiv:q-alg/9601021.

T. Kerler, V. Lyubashenko, Non-Semisimple Topological Quantum Field Theories
for 3-Manifolds with Corners, Lecture Notes in Mathematics 1765. Springer-Verlag,
Berlin, 2001.

W. Lickorish, A Representation of Orientable Combinatorial 3-Manifolds, Ann. of
Math. (2) 76 (1962), No. 3, 531-540.

W. Lickorish, A Finite Set of Generators for the Homeotopy Group of a 2-Manifold,
Proc. Cambridge Philos. Soc. 60 (1964), No. 4, 769-778.

G. Lusztig, Finite Dimensional Hopf Algebras Arising from Quantized Universal En-
veloping Algebras, J. Amer. Math. Soc. 3 (1990), No. 1, 257-296.

V. Lyubashenko, Invariants of 3-Manifolds and Projective Representations of Mapping
Class Groups via Quantum Groups at Roots of Unity, Comm. Math. Phys. 172 (1995),
No. 3, 467-516; arXiv:hep-th/9405167.

V. Lyubashenko, Modular Transformations for Tensor Categories, J. Pure Appl. Al-
gebra 98 (1995), No. 3, 279-327.

V. Lyubashenko, Ribbon Abelian Categories as Modular Categories, J. Knot Theory
Ramifications 05 (1996), No. 3, 311-403.

V. Lyubashenko, S. Majid, Braided Groups and Quantum Fourier Transform, J. Al-
gebra 166 (1994), no. 3, 506—528.

S. Majid, Braided Groups, J. Pure Appl. Algebra 86 (1993), No. 2, 187-221.

S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathe-
matics 5, Springer-Verlag, New York-Berlin, 1971.

J. Murakami, Generalized Kashaev Invariants for Knots in Three Manifolds, Quantum
Topol. 8 (2017), No. 1, 35-73; arXiv:1312.0330 [math.GT|.

V. Ostrik, Decomposition of the Adjoint Representation of the Small Quantum sla,
Comm. Math. Phys. 186 (1997), No. 2, 253-264; arXiv:q-alg/9512026.

D. Radford, Hopf Algebras, Series on Knots and Everything 49, World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2012.

N. Reshetikhin, V. Turaev, Ribbon Graphs and Their Invariants Derived From Quan-
tum Groups, Comm. Math. Phys. 127 (1990), No. 1, 1-26.

N. Reshetikhin, V. Turaev, Invariants of 3-Manifolds via Link Polynomials and Quan-
tum Groups, Invent. Math. 103 (1991), No. 1, 547-597.

K. Shimizu, Non-Degeneracy Conditions for Braided Finite Tensor Categories, Adv.
Math. 355 (2019), 106778; arXiv:1602.06534 [math.QA].

V. Turaev, Quantum Invariants of Knots and 3-Manifolds, De Gruyter Studies in
Mathematics 18, Walter de Gruyter & Co., Berlin, 1994.


http://doi.org/10.1016/j.aim.2013.09.019
http://arXiv.org/abs/1207.6863
http://arXiv.org/abs/1207.6863
http://doi.org/10.1007/s00029-010-0046-7
http://arXiv.org/abs/1001.0985
http://doi.org/10.1090/S0002-9939-2013-11563-7
http://arXiv.org/abs/1106.4477
http://arXiv.org/abs/1809.00499
http://doi.org/10.1112/S0010437X08003795
http://arXiv.org/abs/0711.4229
http://arXiv.org/abs/0711.4229
http://doi.org/10.1112/S0010437X20007034
http://arXiv.org/abs/1703.00150
http://doi.org/10.1112/jlms/54.3.594
http://doi.org/10.1112/jlms/54.3.594
http://doi.org/10.1007/978-1-4612-0783-2
http://doi.org/10.1007/978-1-4612-0783-2
http://doi.org/10.1007/BF02101554
http://doi.org/10.1007/BF02101554
http://arXiv.org/abs/hep-th/9402017
https://www.crcpress.com/Geometry-and-Physics/Pedersen-Andersen-Dupont-Swann/p/book/9780824797911
https://www.crcpress.com/Geometry-and-Physics/Pedersen-Andersen-Dupont-Swann/p/book/9780824797911
http://arXiv.org/abs/q-alg/9601021
http://doi.org/10.1007/b82618
http://doi.org/10.1007/b82618
http://doi.org/10.2307/1970373
http://doi.org/10.2307/1970373
http://doi.org/10.1017/S030500410003824X
http://doi.org/10.1090/S0894-0347-1990-1013053-9
http://doi.org/10.1007/BF02101805
http://doi.org/10.1007/BF02101805
http://arXiv.org/abs/hep-th/9405167
http://doi.org/10.1016/0022-4049(94)00045-K
http://doi.org/10.1016/0022-4049(94)00045-K
http://doi.org/10.1142/S0218216596000229
http://doi.org/10.1142/S0218216596000229
http://doi.org/10.1006/jabr.1994.1165
http://doi.org/10.1006/jabr.1994.1165
http://doi.org/10.1016/0022-4049(93)90103-Z
http://doi.org/10.1017/CBO9780511613104
http://doi.org/10.1007/978-1-4612-9839-7
http://doi.org/10.1007/978-1-4612-9839-7
http://doi.org/10.4171/QT/86
http://doi.org/10.4171/QT/86
http://arXiv.org/abs/1312.0330
http://doi.org/10.1007/s002200050109
https://arxiv.org/abs/q-alg/9512026
http://doi.org/10.1142/8055
http://doi.org/10.1142/8055
http://doi.org/10.1007/BF02096491
http://doi.org/10.1007/BF01239527
http://doi.org/10.1016/j.aim.2019.106778
http://doi.org/10.1016/j.aim.2019.106778
http://arXiv.org/abs/1602.06534
https://www.degruyter.com/view/product/461906
https://www.degruyter.com/view/product/461906

MAPPING CLASS GROUP REPRESENTATIONS FROM NON-SEMISIMPLE TQFTS 41

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ENGINEERING, WASEDA UNIVER-
SITY, 3-4-1 OKUBO, SHINJUKU-KU, Tokyo, 169-8555, JAPAN
Email address: m.derenzi@kurenai.waseda.jp

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ZURICH, WINTERTHURERSTRASSE 190, CH-
8057 ZURICH, SWITZERLAND
Email address: marco.derenzi@math.uzh.ch

InsTiTUT DENIS PoissoN, CNRS, UNIVERSITE DE ToURS, UNIVERSITE D’ORLEANS, PARC
DE GRANDMONT, 37200 Tours, FRANCE

NartioNnaL REsearRcH UNIVERSITY HIGHER ScHooL ofF Econowmics, USACHEVA STR., 6,
Moscow, Russia
Email address: azat.gainutdinov@lmpt.univ-tours.fr

MatHeEMATICS & STATISTICS, UTAH STATE UNIVERSITY, LOGAN, UTAH 84322, USA
Email address: nathan.geer@gmail.com

Univ. BRETAGNE - Sup, UMR 6205, LMBA, F-56000 VANNES, FRANCE
Email address: bertrand.patureau@univ-ubs.fr

FACHBEREICH MATHEMATIK, UNIVERSITAT HAMBURG, BUNDESSTRASSE 55, 20146 HAMBURG,
GERMANY
Email address: ingo.runkel@uni-hamburg.de



	1. Introduction
	1.1. Background
	1.2. Non-semisimple TQFTs
	1.3. Projective representations of mapping class groups
	Acknowledgements
	Conventions

	2. TQFTs from non-semisimple modular categories
	2.1. Algebraic ingredients
	2.2. 3-Manifold invariants
	2.3. Construction of TQFTs
	2.4. Hopf algebra case

	3. Mapping class group representations from TQFTs
	3.1. Mapping class group of a decorated surface
	3.2. Projective representations from mapping cylinders
	3.3. Dehn twists and curve operators
	3.4. Action of generators on algebraic state spaces

	4. Equivalence with Lyubashenko's projective representations
	4.1. Lyubashenko's representations
	4.2. Radford copairing
	4.3. Equivalence of representations

	5. Dehn twists for the small quantum group
	5.1. Small quantum group
	5.2. Infinite order of Dehn twist actions

	Appendix A. Extended mapping class group representations
	Appendix B. Maslov index for meridional Dehn twists
	Appendix C. Equivalence for Hopf algebras
	References

