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ABSTRACT

Large-amplitude vibrational motion influences the rovibrational structure of molecules that tunnel
between multiple wells. Reaction path (RP) Hamiltonians, and curvilinear coordinates more gen-
erally, are useful for modelling pure vibrational motion in these systems and provide a practical
framework for calculating accurate ab initio anharmonic vibrational energies and tunnelling split-
tings with perturbation theory. These computational tools also offer the means to address rotation-
vibration coupling associated with large-amplitude motion in rotating molecules. In this paper, we
incorporate the reducedaxis system (RAS) frameembeddingwithRPHamiltonians and second-order
vibrational Møller-Plesset perturbation theory (VMP2). Because the RP-RAS Hamiltonian eliminates
rotation-vibrationmomentumcoupling everywhere along aone-dimensional reactionpath, it iswell
suited for rovibrational VMP2 methods, the convergence of which relies critically on approximate
vibration-vibration and vibration-rotation separability. The accuracy of this combined RP-RAS-VMP2
scheme is demonstrated by comparisons with numerically exact variational calculations and VMP2
parameters based on traditional Eckart embeddings for reduced-dimension models of torsional
tunnelling inhydrogenperoxideand inversion tunnelling in cyclopropyl radical. The favourable com-
putational scaling of VMP2makes it a promising strategy for calculating accurate tunnelling-rotation
parameters for medium-sized and larger molecules in full dimensionality.

ARTICLE HISTORY

Received 1 December 2023
Accepted 5 January 2024

KEYWORDS

Tunnelling; perturbation
theory; rovibrational
structure; spectroscopy

1. Introduction

Molecules that tunnel between local energy minima pose
a unique challenge for theoretical calculations of rovibra-
tional spectroscopic parameters. Because the timescale
of large-amplitude vibrational motion can be compara-
ble to rotational motion, successful models of tunnelling
systems must simultaneously address both highly anhar-
monic vibrations and strong rotation-vibration coupling,
while also balancing computational accuracy and cost for
high-dimensional problems.

Curvilinear second-order vibrational Møller–Plesset
perturbation theory (VMP2) is an efficient and general

CONTACT P. Bryan Changala bryan.changala@cfa.harvard.edu Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA

method for calculating anharmonic vibrational frequen-
cies and energy splittings of tunnelling molecules [1].
Building on applications of isomerisation reaction path
(RP) Hamiltonians [2] in other closely related vibra-
tional mean-field-based studies [3–5], curvilinear VMP2
models have more recently been used with several
prototypical examples of large-amplitude vibrational
motion including H2O2 [6], CH3NO2 [1], and gauche-
1,3-butadiene [7]. Although the VMP2 rovibrational
parameters (i.e. rotational constants, tunnelling split-
tings, and tunnelling-rotation Coriolis constants) cal-
culated in these studies were found to be of sufficient

© 2024 Informa UK Limited, trading as Taylor & Francis Group



2 P. BRYAN CHANGALA

accuracy for spectroscopic and structure-determination
applications, the factors influencing the performance of
rovibrational VMP2 for large-amplitude motion, partic-
ularly the choice of molecule-fixed frame, remain incom-
pletely understood.

This paper investigates the combination of the reduced
axis system (RAS) [8] with RP VMP2 calculations to
generate rovibrational spectroscopic parameters for tun-
nelling molecules. The primary benefit of the RAS frame
is that it eliminates vibration-rotation momentum cou-
pling exactly along a one-dimensional contour, taken
here to be the intrinsic isomerisation reaction path.
In Section 2, we review briefly the general rovibra-
tional VMP2 framework and how it is combined with
a RP-RAS Hamiltonian. The success of this scheme is
then demonstrated with reduced-dimension models of
two important tunnelling molecules, hydrogen peroxide
(H2O2) and cyclopropyl radical (c-C3H5). We show that
the RAS embedding provides a systematic improvement
of the accuracy of rovibrational parameters compared
to various single-reference Eckart-frame embeddings.
Owing to the modest computational scaling of VMP2
methods [9–11], the RP-RAS framework is a promising
general approach for quantitative ab initio tunnelling-
rotation predictions for large molecules.

2. Methods

2.1. Rovibrational VMP2Hamiltonians

We construct tunnelling-rotation effective Hamiltoni-
ans using a rovibrational extension of curvilinear VMP2
described in Ref. [1]. Briefly, a zeroth-order vibrational
wavefunction is formed by a simple Hartree product,

�(q) = φ1(q1)φ2(q2)φ3(q3) . . . ,

where q = (q1, q2, . . .) are arbitrary, curvilinear inter-
nal coordinates. This product wavefunction is variation-
ally optimised, leading to the well known vibrational
self-consistent field (VSCF) equations [12, 13]. The
one-dimensional VSCF ‘modals’, φi(qi), and their cor-
responding virtual wavefunctions form a complete,
orthonormal, anharmonic vibrational basis set. In our
implementation, we expand the φi(qi) modals with
an underlying discrete variable representation (DVR)
basis set and evaluate all vibrational integrals using the
usual DVR quadrature approximation [14]. The poten-
tial energy surface (PES) and rovibrational kinetic energy
operator (KEO) therefore only need to be evaluated
numerically over a discrete grid in q space.

The VSCF zeroth-order solution is exact in the limit of
completely uncorrelated vibrations. The effects of weak
vibrational correlation can be efficiently recovered by

VMP2, i.e. second-order Rayleigh-Schrödinger pertur-
bation theory within the configuration space of virtual
VSCF modals [9–11, 15]. By folding in the rovibrational
and rotational KEO terms into the perturbation pro-
cedure, effective rotational Hamiltonians (or multi-state
rovibrational Hamiltonians) are constructed [1], inmuch
the same way as in standard second-order vibrational
perturbation theory (VPT2) [16, 17] based on a har-
monic oscillator-rigid rotor zeroth-order model of the
Watson Hamiltonian [18].

The accuracy of the rovibrational VMP2 predictions
relies on the separability of the vibrational degrees of
freedom from each other and rotations. Fortunately, the
VSCF-VMP2 scheme does not require any particular
choice of vibrational coordinate system or frame embed-
ding, which are together defined by the functions �xa(q)
that specify the Cartesian positions of each atom a in
the molecule-fixed frame. (It is assumed that �xa(q) are
always in a centre-of-mass frame.) The internal coordi-
nate system and frame embedding can thus be chosen
to minimise vibration-vibration coupling and vibration-
rotation coupling, respectively. For semi-rigidmolecules,
which undergo small-amplitude displacements from a
single equilibrium geometry, normal mode coordinates
calculated by the traditional GF method [19] (be they
defined with respect to either rectilinear or curvilin-
ear displacements) are a good internal coordinate sys-
tem because the harmonic normal mode Hamiltonian is
vibrationally separable, while the Eckart axis system [20]
is a good choice of frame because it approximately decou-
ples vibrations and rotations near the equilibrium geom-
etry.

More sophisticated coordinate systems and frame
embeddings are required to achieve approximately sep-
arable vibrations and rotations for large-amplitude tun-
nelling molecules, which are of interest in this paper.
We turn to a RP coordinate system to minimise pure
vibrational coupling and aRAS frame embedding tomin-
imise vibration-rotation coupling. These two pieces of
the RP-RAS Hamiltonian are discussed in the following
sections.

2.2. RP coordinate system

The RP coordinates (s, d) are defined with respect to an
arbitrary set of n ‘primitive’ internal coordinates, q =
(q1, q2, . . . , qn)T (e.g. valence bond or Z-matrix coordi-
nates), via the non-linear transformation

q(s, d) = r(s) + T(s)d,

where s is the reaction path arc-length, and d =
(d1, . . . , dn−1)

T are the n−1 orthogonal normal modes
whose displacement vectors are defined by the n × (n −
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1) matrix T(s) at each point along the path. The reac-
tion path contour q(s, d = 0) = r(s) satisfies the usual
steepest descent (or ascent) equation [2],

dr(s)

ds
= ± Gf√

fTGf
, (1)

where f is the potential energy gradient with respect to
q, and G is the vibrational block of the inverse curvilin-
ear metric tensor [19, 21]. It is convenient to find path
solutions to Equation (1) by first reparameterising r(s)

as a function of one the primitive internal coordinates
themselves. This proxy coordinate, q∗, is chosen to be that
which most closely resembles the path, e.g. the dihedral
angle associated with large-amplitude torsional motion.
The derivatives dr(q∗)/dq∗ are derived fromEquation (1)
and the chain rule applied to the identity r∗(s(q∗)) = q∗.
For the applications below, a numerical solution for r(q∗)
is approximated by a cubic spline function. A fixed num-
ber of spline nodes are placed equidistantly in q∗ between
two fixed boundary points (usually stationary points of
the PES). The initial guess value for r(q∗) at the interior
nodes is a simple linear interpolation between the bound-
ary points. The node values are then iteratively refined
using a local quadratic approximation of Equation (1)
about each node point, updating it via a Newton-like
method [22]. We find that this iterative spline solution
rapidly converges in as few as one or two iterations
(depending on the choice of primitive coordinates).

Once the reaction path curve r(q∗) is calculated, the
orthogonal normal mode displacement vectorsT(q∗) are
derived using the orthogonally projected Hessian along
the path [2, 21, 23]. In practice, we calculate T(q∗) at,
say, 10 to 20 equally spaced positions, and then fit these
with a power or Fourier series with respect to q∗. The
orthogonal normal mode coordinates di are scaled as
dimensionless normal coordinates, i.e. those in which
the harmonic potential energy curve is 1

2ωid
2
i , where ωi

is the projected harmonic frequency of the mode. This
definition ensures that the VSCF product wavefunction,
� = φ0(q

∗)φ1(d1)φ2(d2) . . ., implicitly accounts for the
adiabatic change of the orthogonal normal mode fre-
quencies along the reaction path even though the orthog-
onal wavefunctions φi(di) have no explicit dependence
on q∗.

The RP coordinate system smoothly interpolates
between the conventional normal modes of each sta-
tionary point along the path. For periodic paths (e.g. an
internal rotation), each segment of the reaction path is
bounded by two stationary points (one saddle point and
one local minimum), and these two points are used as
the fixed boundary condition of the cubic spline solu-
tion for each segment. For aperiodic coordinates (e.g. a
double-well inversion motion), the segments of the path

between stationary points are uniquely defined, but the
terminal segments do not have a unique choice of bound-
ary point. In this case, we simply choose a value of q∗ with
a sufficiently high distortion energy and minimise the
energy with respect to all other primitive q internal coor-
dinates. The steepest descent solution beginning at this
initial geometry rapidly converges to a quasi-minimum
energy path along the bottom of the PES valley leading
to the nearest minimum, and the path solutions in the
regions of interest change negligibly with adjustments to
the initial boundary condition.

2.3. RAS embedding

Vibrational and rotational motion are non-separable
owing to Coriolis coupling in the molecular KEO. Quan-
tifying the magnitude of rovibrational coupling can be
a subtle question [24, 25], but for this discussion we
simply focus on the off-diagonal matrix elements of the
curvilinear metric tensor, gαi, between rotation about the
molecular axis α and displacement of internal coordinate
qi. For a coordinate system defined by �xa(q), these tensor
elements are

gαi =
N

∑

a=1

ma

(

�xa × ∂�xa
∂qi

)

α

,

where a = 1, . . . ,N labels the N atoms with masses
ma [26]. The well known Eckart conditions [20] require
that �xa(q) satisfy

N
∑

a=1

ma(�xa,0 × �xa) = 0, (2)

at a fixed reference geometry �xa,0 = �xa(q0) usually cho-
sen to be the equilibrium geometry in its principal axis
system. Differentiation of Equation (2) ensures that gαi =
0 at the reference geometry and therefore remains small
for small-amplitude vibrations about it.1 It will be use-
ful later to note that an equivalent definition of the
Eckart frame is that inwhich themass-weighted squared-
distance between �xa(q) and the reference geometry �xa,0,
i.e.

N
∑

a=1

ma|�xa,0 − �xa|2, (3)

is minimised with respect to rotations of �xa [27–29].
The benefit of the Eckart conditions diminishes for

large-amplitude displacements, inwhich case Equation (2)
no longer guarantees that gαi remains small. An early
solution to the large-amplitude problem was introduced
by Sayvetz [30]. Here, we adopt the closely related
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approach of Pickett [8], who observed that amore general
choice of molecule-fixed frame, the so-called reduced
axis system, or RAS, can be chosen to satisfy gαi = 0 for
arbitrary displacements of a single large-amplitude vibra-
tion, q∗. For example, in one dimension, given some ini-
tial frame embedding defined by �xa(q∗) for which gαi �=
0, we define a 3 × 3 orthogonal rotationmatrixR(q∗) that
moves �xa into a new frame �xa′ = R(q∗)�xa(q∗). The three
independent constraints

N
∑

a=1

ma

(

R(q∗)�xa(q∗) × ∂(R(q∗)�xa(q∗))
∂q∗

)

α

= 0 (4)

for each molecule-fixed axis α define a set of cou-
pled differential equations for the three independent
matrix elements of the orthogonal matrix R(q∗). In other
words, R(q∗) rotates the molecule to exactly cancel the
vibrational angular momentum that would be gener-
ated by motion of q∗ in the original frame. In cases for
which axial or planar symmetry is conserved everywhere
along the one-dimensional q∗ path, two components
of Equation (4) are trivially satisfied, and the problem
reduces to a single differential equation for the rota-
tion angle about the unique axis [8]. In both the general
and these special cases, it is straightforward to compute
R(q∗) by numerical integration or power series solution
of Equation (4), so long as the functions �xa(q∗) and their
derivatives can be calculated [8].

The RAS conditions ensure that Coriolis coupling
between the large-amplitude coordinate q∗ and each
rotation axis is identically zero everywhere along a
one-dimensional path, which we choose here to be
the RP defined above. To remove Coriolis coupling
with the small-amplitude orthogonal displacements, di,
we further require that modified Eckart conditions
are also satisfied with respect to these displacements
and a moving reference geometry defined by the ini-
tial RAS rotation along the reaction path, i.e. the
geometry �xa′(q∗, d = 0) = R(q∗)�xa(q∗, d = 0) that sat-
isfies Equation (4). These moving Eckart conditions
are imposed by adapting the mass-weighted squared-
distance expression above (Equation (3)) to account for
a moving reference geometry,

N
∑

a=1

ma|�xa′(q∗, d = 0) − �xa′(q∗, d)|2. (5)

The molecule-fixed frame coordinates that minimise
this quantity for arbitrary d are found using quater-
nion algebra [29], which is straightforward to adapt to
a moving Eckart reference geometry [1, 6]. This final
RAS frame ensures that gαi = 0 for both the large- and
small-amplitude coordinates everywhere along the one-
dimensional RP.

In the original formulation of the RP Hamilto-
nian [2], the RAS conditions were automatically satis-
fied because the RP was derived from the beginning
with respect to mass-weighted Cartesian energy gradi-
ents, which induce zero angular momentum owing to
the rotational invariance of the potential energy, while
the moving Eckart conditions were explicitly met by sim-
ple constraints placed on the orthogonal normal modes
defined with respect to mass-weighted rectilinear dis-
placements (Equations 4.3 and 4.4 in [2]). Rovibra-
tional calculations based directly on this conventional
RP Hamiltonian, e.g. the variational vibrational con-
figuration interaction (VCI) calculations of H2O2 by
Carter et al. [5], therefore already offer a demonstra-
tion of the benefits of the RP-RAS approach to rotat-
ing molecules undergoing large-amplitude motion. The
consideration of general curvilinear primitive coordinate
systems (and the resulting RP displacement coordinates)
as the starting point here requires the somewhat more
elaborate procedures discussed above to meet these same
conditions.

3. Results

Wenow illustrate the application of theRP-RASHamilto-
nian for rovibrational VMP2 parameters using reduced-
dimension models of two examples of large-amplitude
tunnelling motions: internal rotation in hydrogen per-
oxide and inversion tunnelling in cyclopropyl radical.
The primary aim is to compare whether the RAS frame
embedding has a significant effect on the accuracy of
VMP2 predictions relative to standard Eckart embed-
dings using various reference geometries. Reference val-
ues for the effective Hamiltonian parameters for these
small model systems are easily computed with highly
converged, numerically exact variational calculations
(using the same underlying DVR basis sets for meaning-
ful comparison). The variational and VMP2 calculations,
as well as all of the preliminary RP and RAS calculations,
are performedwith theNitrogenprogrampackage [31],
which implements a number of automatic differentia-
tion tools that simplify the somewhat elaborate chain of
RP, RAS, and Eckart coordinate system transformations
described above. The PES functions are taken from pub-
lished sources or calculated in this work as described
below for each example.

3.1. Torsional tunnelling in hydrogen peroxide

Hydrogen peroxide, H2O2, is a classical example of large-
amplitude internal rotation tunnelling [6, 32–43]. It has
two mirror-image bent equilibrium configurations sep-
arated by a planar trans transition state (TS) with a
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Figure 1. Rovibrational coupling coefficients in different H2O2 frame embeddings. The g metric tensor component between the anti-
symmetric HOO bending normal mode (bu symmetry) and rotation about the a (solid line) and b (dashed line) axes is plotted along
the reaction path parameterised by the τ (HOOH) torsion angle. (This mode does not couple to the c axis by symmetry.) The equilib-
rium Eckart, TS Eckart, and RAS frames are shown in the left, middle, and right panels, respectively. The a and b axes correspond to the
instantaneous principal axes at the reference geometry indicated by the arrow.

low energy height (∼ 390 cm−1) and a much higher
cis barrier (∼ 2500 cm−1) [39]. The present calculations
use the high-quality PES calculated by Małyszek and
Koput [43]. Following the procedures outlined above, the
isomerisation RP Hamiltonian was calculated beginning
with a primitive internal coordinate system comprising
the six valence coordinates: the three sequential bond
lengths, the twoHOObond angles, and theHOOHdihe-
dral angle, τ . Three different frame embeddings were
used for rovibrational VMP2 calculations: (i) a standard
Eckart frame using one of the two equivalent minima as
the reference geometry (‘equilibrium Eckart’), (ii) a stan-
dard Eckart frame using the trans transition state as the
reference geometry (‘TS Eckart’), and (iii) the RAS frame.
(The RAS frame defined by Equation (4) requires an arbi-
trary initial point for integration, which was chosen here
to be the principal axis system of the trans TS geometry
at τ = 180◦.) Figure 1 shows a representative subset of
the rovibrational coupling coefficients gαi along the RP
in each of these frames.

The variational and VMP2 rovibrational parameters
were calculated with these Hamiltonians after freezing
the two highest-frequency RP normal modes (i.e. the
symmetric and antisymmetric OH stretches) to zero dis-
placement. Table 1 summarises the rotational constants
A, B, and C for the lower (A0, etc.) and upper (A1, etc.)
components of the ground-state torsion tunnelling dou-
blet. The reference values were derived by least-squares
optimising a rigid rotor Hamiltonian, H = AJ2a + BJ2b +
CJ2c , to the variational energies of each tunnelling com-
ponent for J ≤ 2. The absolute value of each rotational
constant is reported for the variational reference results,
and the difference of the corresponding parameter is
shown for the three sets of rovibrational VMP2 predic-
tions. The ‘single-state VMP2’ rotational constants are
calculated with VSCF solutions optimised separately for

Table 1. Effective rotational constants of the lowest tunnelling
doublet of a four-dimensional model of H2O2.

Single-state VMP2

Parameter Referencea Equilibrium Eckart TS Eckart RAS

A0 10.31208(6) +100.58591 −0.00368 +0.00042
B0 0.87584(8) +0.31496 −0.00013 −0.00001
C0 0.83879(8) −0.48584 −0.00014 −0.00004
A1 10.30609(7) +127.95791 −0.00619 +0.00051
B1 0.87379(9) +0.37219 −0.00029 +0.00005
C1 0.84188(9) −0.57567 −0.00009 +0.00001

Note: All values are in cm−1 .a Reference values derived from rigid-rotor fits to
variational J ≤ 2 energies. The standard 1σ least-squares fit uncertainties
are shown in parentheses in units of the last digit.

each of the lower and upper tunnelling states. Their val-
ues are determined directly from the rovibrational VMP2
contact transformation (see Ref. [1]) without the need for
least-squares fitting.

The rovibrational VMP2 predictions using the three
different frame embeddings show systematic differences
in performance. The Eckart frame referenced to the
equilibrium geometry at τ ≈ 112◦ has nonphysically
large errors owing to a Coriolis singularity near τ ≈
290◦, as is apparent in Figure 1. At this geometry, the
Eckart conditions havemultiple solutions, which demon-
strates a general difficulty for standard Eckart embed-
dings with large-amplitude motion. This problem is
partially circumvented in the TS Eckart frame, where
the reference configuration is the trans TS at τ = 180◦.
It shows the same type of singularity, but it occurs
at τ = 0◦. The present calculations avoid this singu-
larity by using a τ DVR grid that extends only from
5◦ to 355◦, and the TS Eckart frame in fact already
provides highly accurate vibrationally averaged rota-
tional constants for both ground-state tunnelling compo-
nents, the fractional errors being of order 10−3 to 10−4.
The RAS frame, nonetheless, shows further systematic
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improvement, with errors decreased by another order
of magnitude. All three VMP2 calculations yield iden-
tical values for the tunnelling doublet splitting because
the pure vibrational part of the Hamiltonian is invari-
ant to the molecule-fixed frame embedding. The VMP2
tunnelling energy for the four-dimensional RP Hamil-
tonian is 14.395 cm−1, in excellent agreement with the
variational reference value, 14.400 cm−1.

3.2. Inversionmotion in cyclopropyl radical

The cyclopropyl radical, c-C3H5, is formed by homolytic
cleavage of the CH bond of cyclopropane. It has two
mirror-image equilibrium configurations with the α-
H atom bent above or below the C−C−C plane by
±40◦ [44–49]. These two minima are separated by a C2v

TSwith a barrier height of approximately 1000 cm−1, giv-
ing rise to a ground-state inversion tunnelling splitting
of 3–4 cm−1 [44]. A three-dimensional model PES for
cyclopropyl was constructed by fitting a grid of single-
point energies calculated at the CCSD(T)/cc-pVDZ level
of theory [50–52]. The grid included the α-CH bond
length (r ∈ [0.8 Å, 1.2 Å] in steps of 0.08Å), the inver-
sion bending angle (θ ∈ [−60◦,+60◦] in steps of 5◦), and
the perpendicular CH ‘wagging’ angle (φ ∈ [60◦, 120◦]

Figure 2. The bending coordinates (θ , φ) in the reduced-
dimension model of c-C3H5. The C3 skeleton defines the yz plane.

in steps of 10◦). (The angle coordinates are defined in
Figure 2.) At each point, all other structural parameters
were optimised to the minimum constrained energy. The
energy grid was then used to fit to a sextic polynomial
in the (r, θ ,φ) coordinates (rms fit residual = 8 cm−1).
The RP-RAS coordinate system was calculated in this
reduced-dimension model as described above using the
C2v TS geometry (i.e. θ = 0◦, φ = 90◦) as the RAS initial
integration point. The equilibrium and TS Eckart frames
are free of the types of singularities observed in the H2O2

example because the c-C3H5 Eckart axes remain more or
less aligned with respect to the heavy C3 skeleton for all
values of the inversion coordinate θ .

The rotational constants for the ground-state inver-
sion doublet are summarised in Table 2. The first set of
predictions is based on the single-state VMP2 rotational
Hamiltonians calculated in the samemanner as forH2O2.
The two tunnelling components in cyclopropyl, how-
ever, have a symmetry allowed a-type off-diagonal Cori-
olis interaction, parameterised as F01(JbJc + JcJb) [8].
The single-state VMP2 effective Hamiltonians neglect
this vibrationally off-diagonal interaction, but it can
be captured by a two-state VMP2 Hamiltonian that
includes both tunnelling components simultaneously [1].
In this case, the unreduced two-state rovibrational VMP2
Hamiltonians are explicitly diagonalised and the rovibra-
tional energies (J ≤ 2) are used to re-fit the same reduced
two-state Hamiltonian used for the variational reference
values, i.e.

H =
[

A0J
2
a + B0J

2
b + C0J

2
c F01(JbJc + JcJb)

F01(JbJc + JcJb) 
E + A1J
2
a + B1J

2
b + C1J

2
c

]

.

(6)

The errors of these two-state results are included in
the last three columns of Table 2. The RAS embed-
ding shows the best performance, particularly for the
‘proper’ two-state Hamiltonian, the RAS errors of which
are generally an order ofmagnitude smaller than either of
the single-reference Eckart frames. The fractional accu-
racy is below 10−4 for both the rotational constants and
the F01 tunnelling-rotation parameter. The tunnelling

Table 2. Effective rotational constants of the lowest tunnelling doublet of a three-dimensional model of c-C3H5.

Single-state VMP2 Two-state VMP2

Parameter Referencea Equilibrium Eckart TS Eckart RAS Equilibrium Eckart TS Eckart RAS

A0 23706.558(3) –2.494 –3.232 –0.917 −0.359(8) −1.077(7) +0.055(3)
B0 20754.466(3) +6.902 +2.333 +0.771 +5.210(8) +0.501(7) +0.053(3)
C0 13204.788(2) –0.597 +1.004 +0.497 −1.202(6) +0.065(5) −0.121(2)
A1 23712.575(3) +1.150 +1.099 +1.059 −1.168(8) −1.214(7) +0.037(3)
B1 20748.090(3) +4.315 –0.715 –0.581 +5.170(9) +0.358(7) +0.026(3)
C1 13208.502(3) –2.918 –1.781 –0.829 −1.239(10) +0.040(8) −0.121(4)
F01 156.884(179) – – – +1.160(487) +1.722(400) +0.005(179)

Note: All values are in MHz. a Reference values derived from fitting the two-state model (Equation (6)) to the variational J ≤ 2 energies. The standard 1σ least-
squares fit uncertainties are shown in parentheses in units of the last digit.
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splittings calculated with either the single-state VMP2
(78,135MHz) or two-state VMP2 (78,140MHz) models
are also in excellent agreement with the variational ref-
erence value (78,151MHz). [Note that the nominal fit
uncertainties reported in Table 2 for the reference and
two-state rotational parameters do not necessarily reflect
themeaningful limit of comparison. For example, the dif-
ference between the reference and two-state RAS-VMP2
values for F01 is ∼ 35× smaller than the nominal 1σ
fit uncertainty, but this uncertainty reflects a systematic
deficiency of the fitted model (i.e. neglect of centrifugal
distortion) that is entirely common to the two fits.]

4. Discussion

The model results demonstrate that the RP-RAS Hamil-
tonian is well suited for rovibrational VMP2 calculations.
Although the simpler TS Eckart embedding for both
H2O2 and c-C3H5 is by no means a poor choice (at
least for the ground-state rotational parameters), the RAS
embedding generally decreases the errors of these param-
eters by an order of magnitude. Reduced-dimension
models were used in this study so that reference vari-
ational results could be computed without significant
computational effort, but a full-dimensional treatment
will ultimately be needed for quantitative predictions
that are useful for high-resolutionmicrowave and optical
spectroscopy. (For example, the tunnelling splitting of the
4-D H2O2 model is 14.4 cm−1, which is 30% larger than
the full-dimensional value (11.0 cm−1) for this PES [43].
Themeasured value is 11.4 cm−1 [39].) Full-dimensional
VMP2 calculations can be extended to larger systems
by using truncated many-body expansions of the molec-
ular Hamiltonian [53, 54], which have performed well
in our previous applications of VMP2 to non-rigid
molecules with up to 24 vibrational modes [1, 6, 7] and
in other VSCF-VCI applications with large-amplitude
motion including that of H2O2 and CH3OH [3–5]. (Such
many-body expansions not yet been implemented into
the code for the present RP-RAS-VMP2 calculations.)
The VMP2 approach also performs well for vibrationally
excited states, so long as they are isolated or belong to a
small polyad of interacting states that can bemodelled by
a modestly sized multi-state effective Hamiltonian [1, 6].
Nonetheless, given that both TS Eckart and RAS embed-
dings have fractional errors of 10−3 or smaller, which is
approximately the minimum error for ab initio rotational
parameters achievable by electronic structure calcula-
tions of medium-sized molecules [55], it is reasonable to
questionwhether the RASHamiltonian is worth the extra
effort.

The singularities observed in the H2O2 rovibra-
tional KEO coefficients (Figure 1) illustrate one of the

comparative advantages of the RAS frame. The posi-
tion of the singularity in the equilibrium Eckart frame
made it entirely unsuitable for large-amplitude torsion
calculations. This issue could be avoided for the TS
Eckart embedding only because we have focussed on
the ground-state tunnelling-rotation parameters, and the
location of the singularity (τ = 0◦) is energetically unim-
portant for these predictions. This approximation cannot
be made, however, for torsionally excited states that sam-
ple all values of τ . The RAS frame removes most of
these difficulties, but we must point out, however, that
our implicit choice of boundary condition for the RAS
rotation matrix R(τ ) has a discontinuity at τ = 0◦, i.e.
R(0◦) = −R(360◦). Torsionally excited calculations in
the RAS framewould need to either introduce a non-zero
average value for some giα tensor elements or introduce
modified periodic boundary conditions [8]. These con-
siderations are relevant to other related embeddings for
periodic motion including the internal-axis and ρ-axis
systems [56–58], and these ideas could be incorporated
into the rovibrational VMP2 framework. Other types of
multi-reference Eckart frames [59, 60] provide a simi-
lar route to approximate rotation-vibration separability
with large-amplitude motion, and it would be interesting
to evaluate how well rovibrational VMP2 performs with
these types of embeddings.

An important conceptual and computational advan-
tage of the RP-RAS Hamiltonian is that it brings
the microscopic molecular Hamiltonian much closer
to the empirical reduced effective Hamiltonian used
implicitly when fitting experimentally measured spec-
troscopic transition frequencies. For example, for the
two-state tunnelling-rotation Hamiltonian used here for
cyclopropyl (and, indeed, for many other inversion-
tunnelling and ring-puckering systems, e.g. dimethy-
lamine [61], gauche-1,3-butadiene [7], glycinamide [62],
ammonia [63], ethylene glycol [64], cyclopentene [65],
and tetrahydrofuran [66–68]), the choice of a F01(JbJc +
JcJb)-type interaction term instead of a momentum-type
interaction (∼ Ja∂θ ) can also be viewed as a choice
of Hamiltonian reduction equivalent to defining the
molecule-fixed axes as those of the RAS frame, hence
the name ‘reduced’ axis system [8]. Rotational quantum
numbers [69, 70] and various vector- and tensor-valued
properties that are definedwith respect tomolecule-fixed
axes (e.g. dipole moments, spin-rotation coupling ten-
sors, electric field gradients, and other hyperfine parame-
ters) are therefore influenced by this choice of reduction,
and computing and interpreting these quantities requires
a careful consideration of the implicit or explicit axis
system of a given effective Hamiltonian. As described
above, the reduced tunnelling-rotation parameters for
the two-state cyclopropyl Hamiltonians in Table 2 were
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derived by first diagonalising the unreduced Hamilto-
nian provided directly by VMP2 [1] and then re-fitting
the eigenenergies with the reduced form of the Hamilto-
nian (Equation (6)). The difference or similarity of the
unreduced VMP2 rotational parameters with the fitted
reduced values quantifies how close each embedding cor-
responds to the implicit axes of the empirical RAS effec-
tive Hamiltonian. For the cyclopropyl example, the equi-
librium Eckart, TS Eckart, and RAS embeddings have
unreduced F01 values of 215.5, 179.9, and 156.1MHz,
respectively, which are to be compared with the vari-
ational reference value of 156.9MHz. As anticipated,
the unreduced F01 parameter for the RAS embedding is
nearly equal to the reference reduced value because the
microscopic RP-RAS Hamiltonian already closely mir-
rors the axis system implicit in the empirical Hamilto-
nian.

The VSCF zeroth-order solution clearly provides a
suitable starting point for perturbation theory-based
effective Hamiltonians, but it is worth considering
whether even simpler zeroth-order wavefunctions could
be used. For example, instead of solutions to the one-
body VSCF mean-field Hamiltonians, one could adopt
solutions to one-dimensional ‘cuts’ alongRP coordinates.
We do not explore this alternative further here, but one
potential difficulty with this approach could be deciding
where to take the cut (which is a stronger restriction of
the zeroth-order wavefunction than that of VSCF). For
large-amplitude motion between two equivalent wells,
for example, cuts centred at either equilibrium geome-
try might neglect aspects of the full molecular symmetry,
while taking cuts at a symmetrically located TS might
ignore the more relevant features of the PES near the
equilibrium geometry where the ground-state wavefunc-
tion has most of its amplitude. From this perspective,
VSCF is a convenient hands-off procedure for perform-
ing ‘averaged cuts’ that preservemolecular symmetry and
weight the most important geometric configurations. In
a similar vein, while the focus of this study is the com-
parative performance of different embeddings on VMP2
predictions, it would be interesting to explore alterna-
tives to the RP coordinate system itself, e.g. one based
on instanton paths that provide a semi-classically optimal
description of tunnelling [71], or to coordinate systems
for two or more simultaneous large-amplitude degrees of
freedom [72, 73].

5. Conclusions

The RP-RAS Hamiltonian provides an efficient represen-
tation of molecular motion in which one-dimensional
large-amplitude motion, small-amplitude displacements,
and molecular rotations are highly mutually separable.

The RAS embedding systematically improves the accu-
racy of rovibrational parameters calculated by curvi-
linear VMP2 compared to those with Eckart frames
referenced to equilibrium or TS geometries. The close
relationship between the microscopic RP-RAS Hamil-
tonian and the empirical effective Hamiltonians com-
monly used for tunnelling-rotating molecules may sim-
plify the calculation and interpretation of vibrationally
averaged ground-state properties. The modest compu-
tational cost of VMP2 makes this a promising scheme
for high-accuracy ab initio tunnelling-rotation calcula-
tions of largemolecules not otherwise achievable bymore
expensive nuclear motion methods.

Note

1. This local condition can also be met with other related
embedding schemes that differ from the Eckart frame for
non-infinitesimal displacements [74].
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