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A B S T R A C T

Recent advances in circumstellar metal chemistry and laser-coolable molecules have spurred interest in the
spectroscopy and electronic properties of alkaline earth metal-bearing polyatomic molecules. We report the
microwave rotational spectra of two members of this important chemical family, the linear magnesium-
carbon chains MgC4H and MgC3N, detected with cavity Fourier transform microwave spectroscopy of a laser
ablation-electric discharge expansion. The rotation, fine, and hyperfine parameters have been derived from
the precise laboratory rest frequencies. These experimental results, combined with a theoretical quantum
chemical analysis, confirm the recent identification of MgC4H and MgC3N in the circumstellar envelope of
the evolved carbon-rich star IRC+10216. The spectroscopic data also provide insight into the structural and
electronic properties that influence the metal-based optical cycling center in this unique class of laser-coolable
polyatomics.

1. Introduction

Radio astronomical observations of the evolved carbon-rich star
IRC+10216 have revealed a rich metal chemistry in its inner layers
and circumstellar shell. Equilibrium and non-equilibrium processes are
thought to produce a large number of gas-phase molecules with highly
ionic metal-ligand bonds, including small cyanides, isocyanides and
acetylides [1–10]. Of these, the magnesium-carbon chains and clusters
are by far the most extensively characterized family of metal-bearing
circumstellar molecules. The identification of Mg(CC)nH, Mg(CC)n−1
(NC/CN), and HMg(CC)n−1(NC/CN) chains up to n = 3 [7,8,10–14];
their positively charged ions with n = 2–3 [15]; and the cyclic MgC2
metal dicarbide [16] in IRC+10216 provides strong support for an
ion–molecule radiative association–dissociative recombination path-
way that incorporates metal atoms into polyatomic molecules in the
circumstellar shell [17–19]. Although an extensive literature of optical
laboratory data exists for many of these Mg-bearing species [20–27],
high resolution microwave/mm-wave laboratory spectra are known
only for the smallest members: MgCCH [28–31], MgCN/MgNC/HMgNC [7,
11,32–34], and MgC2 [16]. The astronomical identification of the
longer-chain molecules by radio detection has therefore relied primar-
ily on quantum chemical calculations [13–15], motivating a renewed
effort to produce these species in the laboratory and measure their
rotational rest frequencies to high accuracy.
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Alkaline earth metal-containing molecules are also of fundamen-

tal interest in molecular physics. Ionic monovalent metal-ligand com-

pounds (ML, with L = OH, OCH3, CCH, etc.) are the most common

polyatomic candidates for direct laser-cooling applications because of

the unique electronic structure of the unpaired electron localized on the

metal atom [35,36]. This optically active electron interacts only weakly

with the rest of the molecule, giving rise to quasi-atomic metal-centered

electronic excitations with highly diagonal vibrational Franck–Condon

factors, which are necessary for efficient photon cycling schemes. Metal

acetylides are intriguing laser-cooling candidates in this class because

they can potentially accommodate multiple metal atoms whose inter-

actions can be tuned by simply elongating the chain with repeated

C�C units, i.e., M−(CC)n−M
2 [37,38]. Quantifying the precise structural

and electronic properties of long alkaline-earth metal-carbon chains is

therefore crucial to illuminating the chemical design principles of these

complex laser-coolable polyatomics [30].

Motivated by these astrophysical and fundamental considerations,

we have produced MgC4H and MgC3N in the laboratory with a laser

ablation-electric discharge supersonic expansion source and detected

their rotational spectra with a sensitive cavity Fourier transform mi-

crowave (FTMW) spectrometer. The precise spectroscopic constants de-

rived from the laboratory rest frequencies are consistent with those de-

rived from recent astronomical observations [13]. When combined with
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Fig. 1. Laser ablation-electric discharge expansion source. A solenoid valve releases a
pulse of precursor gas mixture synchronized with a laser pulse that ablates a rotating
cylindrical metal target positioned outside the valve. The entrained ablation products
continue through a stack of discharge electrodes and supersonically expand into the
vacuum microwave cavity.

a variety of additional laboratory assays and tests, and new theoretical
calculations, these measurements confirm beyond any reasonable doubt
the identification of MgC4H and MgC3N in IRC+10216. A compar-
ison of the structural and electronic properties inferred from their
rotational, fine, and hyperfine parameters with those of the shorter ana-
logues (e.g., MgCCH and MgCN) provides insight into the chemical and
electronic trends of this important family of metal-ligand molecules.

2. Experimental

MgC4H and MgC3N were produced in a laser ablation-electric dis-
charge expansion source at conditions similar to those of other closely-
related alkaline earth metal-bearing molecules recently studied in our
laboratory, including MgCCH [30] and MgC2 [16] (see Fig. 1). A dilute
mixture of organic precursors in neon (<0.1% acetylene, diacetylene,
or acetonitrile) was expanded into a large vacuum chamber through
a pulsed solenoid valve operating at a 5 Hz repetition rate with a
<500 ½s pulse length. After the gas exits the valve, it passes a rotat-
ing magnesium rod that was ablated by a 5 ns, 20–40 mJ pulse of
532 nm radiation generated from an Nd:YAG laser. The timing is such
that the ablation plume is entrained into the expanding gas and then
passes through two cylindrical copper electrodes separated by 1 cm
and biased with a 700–900 V potential, which drives a 20–40 mA
discharge current. The discharge increased the MgC4H and MgC3N
yields by up to a factor of 5 relative to ablation alone likely due to
the enhanced reactivity of electronically excited Mg∗ atoms or Mg+

cations [30,31,39,40].
The rotational spectra were measured with a cavity FTMW spec-

trometer operating from 5 to 26 GHz [41,42]. The cavity is aligned
co-axially with the supersonic expansion and surrounded by three pairs
of Helmholtz coils tuned to cancel the Earth’s magnetic field, which
causes Zeeman splitting and shifts of the rotational transitions of open-
shell molecules. Residual magnetic fields near the cavity boundaries
are estimated to be less than 50 mG, and the rest frequencies of the
rotational transitions were measured to an accuracy of 2 kHz.

Using the spectroscopic parameters of putative MgC4H and MgC3N
derived from astronomical observations (which span 30–110 GHz
[13]), rest frequencies of both molecules in the 5–26 GHz bandwidth of
the cavity spectrometer were predicted to an accuracy of 100 kHz, suf-
ficiently small to be searched for at a single position of the microwave
cavity, which has very high sensitivity but a narrow instantaneous
bandwidth, i.e. < 0.5MHz. Microwave features of both MgC4H and

Fig. 2. Cavity FTMW measurements of MgC4H. The N and J quantum numbers are
indicated above each panel, which is plotted with respect to the frequency offset from
the center frequency shown. These transitions exhibit a larger Doppler splitting due to
the co-axial cavity-expansion geometry and a smaller hyperfine splitting from the Fermi
contact interaction of the H nuclear spin (I = 1∕2). The hyperfine doublets are labeled
by the total angular momentum quantum number F (Ă = ą + Ć). From top to bottom,
the spectra are the result of 7min, 12min, and 70min of integration, respectively.

MgC3N were readily observed after optimizing the experimental condi-
tions for the production of MgCCH. Various assays were then performed
to better constrain the chemical composition and properties of these
carriers. Both required the ablation laser to be on, indicating they
contain magnesium. The MgC4H transitions were observed with both
acetylene and diacetylene precursors, but with a larger signal intensity
(up to a factor of 2) from the latter. The optimal concentration of either
precursor was 0.15% in neon. The MgC3N transitions required the pres-
ence of acetonitrile as a nitrogen source. A 1:1 acetonitrile:acetylene
mixture (both 0.08% in neon) optimized the MgC3N signal, which
was slightly more intense than that without acetylene (i.e. a pure
0.08% acetonitrile precursor). Both MgC4H and MgC3N transitions
were sensitive to applied magnetic fields, displaying characteristic
Zeeman splittings when one of the Helmholtz coils was turned off,
as expected for an open-shell molecule. By examining the dependence
of the signal on the microwave excitation power, we estimated that
MgC4H has a dipole moment comparable to MgCCH (calculated to be
2.3 D and 1.7 D, respectively [43,44]) and that MgC3N has a dipole
moment comparable to MgNC (calculated and measured to be 6.4 D
and 5.3 D, respectively [13,26]). Accounting for the dipole moments
and molecular partition functions at the typical rotational temperature
of 2 K in the expansion, we estimate MgC4H and MgC3N to be a factor
of 10–100 less abundant than MgCCH and MgNC, respectively, at the
ablation-discharge expansion conditions optimized for MgC4H/MgC3N
production, as described above. It is worth noting that a prior attempt
to produce MgC3N (and CaC3N) in another laboratory equipped with a
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similar laser ablation expansion source, but using BrC3N, IC3N, or HC3N
precursors, resulted in no detectable rotational transitions [45]. As the
authors of that study pointed out, a possible explanation in this instance
is the formation of divalent M(C3N)2 molecules instead, following
thermochemical arguments. Given our own observations of MgCCH,
MgNC, and MgC4H from HCCH, CH3CN, and HC4H precursors, respec-
tively, we would expect MgC3N to be detectable in our source with
an HC3N precursor, even with laser ablation alone (i.e. no discharge).
Thus, it may also be the case that, despite comparable laser ablation
pulse energies, the use of a picosecond pulse in the prior experiments
(compared to the nanosecond pulses used here) might influence the
population of Mg∗/Mg+ atoms, which appear to be important to the
formation of monovalent alkaline earth metal-ligand molecules [40],
or otherwise affect the precursor chemistry.

3. Theoretical methods

The structural and electronic properties of MgC4H and MgC3N
were computed with coupled-cluster quantum chemical methods in
Cfour [46,47]. The optimized geometries and first-order properties
were calculated with analytic derivative techniques for coupled-cluster
theory with single, double, and perturbative triple excitations
[CCSD(T)] with both unrestricted (UHF) [48–50] and restricted open-
shell (ROHF) [51,52] reference wavefunctions and correlation-
consistent polarized core-valence basis sets with double, triple, and
quadruple � functions (cc-pCVXZ, X = D, T, Q) [53–55]. All electrons
except those occupying the inner-core Mg 1s orbital were correlated.
As discussed further below, the quadratically convergent self-consistent
field (QCSCF) code in Cfour [56] was used to address inconsistent
convergence of UHF solutions using a standard DIIS algorithm [57].
Vibrational zero-point corrections to the ground-state rotational con-
stants were derived with second-order vibrational perturbation theory
(VPT2) [58] using cubic force fields calculated by finite differences.

4. Results

The laboratory rest frequencies of MgC4H and MgC3N are listed in
Tables 1 and 2. Some examples of the measured line profiles for MgC4H
are shown in Fig. 2. An effective Hamiltonian for a 2� electronic
state including rotational (B), centrifugal distortion (D), spin-rotation
(
), Fermi contact (bF ), spin-dipole (c, MgC3N only), and electric
quadrupole coupling (eQq, MgC3N only) parameters was fit to the mea-
sured lines using the SPFIT/SPCAT programs [59]. The small hyperfine
parameters in MgC4H produced observable splittings only for transi-
tions with N d 3, and its spectrum could be fit to the measurement
uncertainty with a Fermi contact term only, fixing c = 0. MgC3N
exhibits much larger hyperfine splittings at low N owing to the electric
quadrupole moment of the 14N nucleus (I = 1). The partial collapse of
the quadrupole splitting at high N led to congestion of MgC3N transi-
tions above 14 GHz, which were excluded from the laboratory analysis
because the hyperfine-weighted line center could not be confidently
determined (see Fig. 3). The spectroscopic parameters derived from a
laboratory-only data set and a combined laboratory-astronomical data
set incorporating the 30–110 GHz transitions reported in Ref. [13] are
summarized in Table 3. Although the astronomical frequencies have
much larger measurement uncertainties (0.1–1.0 MHz) than the labo-
ratory frequencies (2 kHz), the higher frequency range of the former
helps to reduce the uncertainties of the derived B and D parameters.
The rest frequencies calculated with the combined fit parameters for the
strongest transitions below 40 GHz have a predicted uncertainty of <1–
10 kHz. The raw line lists and fitting files are available in a permanent
online data repository [60].

The optimized geometry and first-order electronic properties of
MgC4H and MgC3N at the CCSD(T)/cc-pCVQZ level of theory are
summarized in Table 4, which includes results for both UHF and
ROHF reference wavefunctions. The ïŜ2ð expectation value of the UHF

Table 1
The laboratory rest frequencies of MgC4H.

N 2 J 2 F 2 N J F Frequency (MHz)a Obs. − Calc. (kHz)

2 2.5 3 1 1.5 2 5528.2833 0.7
3 2.5 3 2 1.5 2 8286.7583 1.0
3 2.5 2 2 1.5 1 8286.7812 2.8
3 3.5 4 2 2.5 3 8291.2930 1.5
3 3.5 3 2 2.5 2 8291.3098 −2.8
4 3.5 4 3 2.5 3 11049.7634 −7.3
4 3.5 3 3 2.5 2 11049.7818 −0.5
4 4.5 5 3 3.5 4 11054.2951 −0.3
4 4.5 4 3 3.5 3 11054.3074 0.4
5 4.5 5 4 3.5 4 13812.7767b 4.5
5 4.5 4 4 3.5 3 13812.7767b −2.9
5 5.5 6 4 4.5 5 13817.2959b 3.3
5 5.5 5 4 4.5 4 13817.2959b −4.1
6 5.5 6 5 4.5 5 16575.7681b 4.7
6 5.5 5 5 4.5 4 16575.7681b −0.4
6 6.5 7 5 5.5 6 16580.2859b 4.3
6 6.5 6 5 5.5 5 16580.2859b −0.8
7 6.5 7 6 5.5 6 19338.7484b 4.7
7 6.5 6 6 5.5 5 19338.7484b 0.9
7 7.5 8 6 6.5 7 19343.2618b 1.2
7 7.5 7 6 6.5 6 19343.2618b −2.5
8 7.5 8 7 6.5 7 22101.7115b −0.5
8 7.5 7 7 6.5 6 22101.7115b −3.4
8 8.5 9 7 7.5 8 22106.2289b 1.0
8 8.5 8 7 7.5 7 22106.2289b −1.9

a The measurement uncertainty is 2 kHz.
b Hyperfine splitting is unresolved. The mean transition frequency is reported.

Table 2
The laboratory rest frequencies of MgC3N.

N 2 J 2 F 2 N J F Frequency (MHz)a Obs. − Calc. (kHz)

3 2.5 2.5 2 1.5 1.5 8 283.0704 2.0
3 2.5 3.5 2 1.5 2.5 8 283.2305 0.8
3 3.5 2.5 2 2.5 1.5 8 287.3963 1.3
3 3.5 3.5 2 2.5 2.5 8 287.4446 0.6
3 3.5 4.5 2 2.5 3.5 8 287.5473 −0.8
4 3.5 2.5 3 2.5 1.5 11 044.8171 −0.4
4 3.5 3.5 3 2.5 2.5 11 044.8722 −2.0
4 3.5 4.5 3 2.5 3.5 11 044.9466 0.1
4 4.5 3.5 3 3.5 2.5 11 049.2159 0.2
4 4.5 4.5 3 3.5 3.5 11 049.2402 −1.8
4 4.5 5.5 3 3.5 4.5 11 049.2966 −1.5
5 4.5 4.5 4 3.5 3.5 13 806.6394 −3.7
5 4.5 5.5 4 3.5 4.5 13 806.6873 3.4
5 5.5 4.5 4 4.5 3.5 13 810.9914 −4.5
5 5.5 5.5 4 4.5 4.5 13 811.0202 6.8
5 5.5 6.5 4 4.5 5.5 13 811.0485 −0.1

a The measurement uncertainty is 2 kHz.

reference wavefunction is <1.2 for both MgC4H and MgC3N, which is
evidence of significant spin contamination that is only partly removed
in the correlated wavefunction. (The exact value for a doublet state is
3∕4.) The UHF and ROHF optimized bond lengths show differences of
up to <0.008 Å, while the difference in quantities that depend on the
unpaired spin density are even more pronounced. For example, the UHF
and ROHF predictions for the magnetic hyperfine coupling constants
(bF and c) for both H and 14N differ substantially in absolute magnitude
and sign. Molecular properties that depend on the total electron density
such as the electric dipole moment and electric quadrupole coupling
constant of 14N exhibit much smaller UHF-ROHF differences.

In the course of this work, it was observed that two different UHF
solutions could be converged depending on the choice of SCF algorithm
(DIIS or QCSCF) and basis set. The results in Table 4 correspond
to the spin-contaminated solution, which was always found by the
QCSCF solver and appears to be the rigorous variational minimum.
For MgC3N with the cc-pCV(D,T,Q)Z basis sets and MgC4H with the
cc-pCV(D,T)Z basis sets, a conventional DIIS algorithm converged a
weakly spin-contaminated solution (ïŜ2ðCC − 3∕4 < 10−3). This weakly
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Table 3
The spectroscopic constants of MgC4H and MgC3N.

Parameter MgC4H MgC3N

Laba Astrob Combinedc Laba Astrob Combinedc

B 1381.5071(1) 1381.512(4) 1381.50723(6) 1380.8873(2) 1380.888(1) 1380.88767(7)
D × 103 0.069(12) 0.074(2) 0.0712(5) 0.067(5) 0.0760(5) 0.0760(3)


 4.513(1) 4.7(1) 4.513(1) 4.382(2) 4.35(4) 4.382(2)
bF 0.91(9) – 0.92(9) −0.20(3) – −0.19(3)
c [0.0] – [0.0] 0.56(6) – 0.56(6)

eQq – – – −4.15(8) – −4.17(8)

rmsd 1.2 – 1.2 1.3 – 1.0
Nlines

e 17 34 16 57

Note — All values are given in MHz with 1� uncertainties in parentheses in units of the last digit.
a Laboratory data fitted only.
b Astronomical parameters from Ref. [13].
c Laboratory and astronomical data fitted together.
d Dimensionless rms of the residuals normalized to their respective measurement uncertainties.
e Number of independent transition frequencies included in the fit.

Table 4
Calculated properties of MgC4H and MgC3N.

Parameter MgC4H MgC3N

UHF ROHF UHF ROHF

rMgC1
/Åa 2.04545 2.04425 2.06424 2.06273

rC1C2
/Å 1.22189 1.22975 1.21910 1.22679

rC2C3
/Å 1.37979 1.37345 1.38310 1.37721

rC3C4∕C3N
/Å 1.20434 1.21147 1.15586 1.16256

rC4H
/Å 1.06149 1.06171 – –

Be/MHz
b 1379.240 1376.409 1378.374 1375.641

�Bvib/MHz
b – 2.445b – 2.629b

�e/a.u.
c 0.841 0.834 2.518 2.494

�Mg/a.u.
d 0.99198 0.93520 1.06112 0.99916

�C1
/a.u. 0.10955 0.12629 0.10848 0.12546

�C2
/a.u. 0.04303 0.01695 0.04383 0.01705

�C3
/a.u. −0.02659 0.00334 −0.02551 0.00305

�C4∕N
/a.u. 0.02412 −0.00051 0.02044 −0.00055

�H/a.u. −0.00387 0.00018 – –

ïŜ2ðSCF
e 1.196 0.750 1.161 0.750

ïŜ2ðCC 0.815 0.750 0.806 0.750

bF /MHz
f −17.277 0.803 6.595 −0.178

c/MHz 6.640 0.053 −6.464 0.553
eQq/MHz – – −4.305 −4.170

Note — The optimized geometries and electronic properties were calculated at the UHF-
or ROHF-CCSD(T)/cc-pCVQZ level of theory, except where otherwise noted.
a The bond lengths with C1, C2, etc., labeling the C atoms beginning with that closest
to Mg.
b Be is the equilibrium rotational constant. �Bvib = B0−Be is the zero-point vibrational
correction. The �Bvib values were calculated with VPT2 using the cc-pCVTZ basis set.
c The equilibrium electric dipole moment.
d The unpaired spin densities evaluated at sequential nuclei.
e ïŜ2ðSCF is the SCF expectation value of Ŝ

2, and ïŜ2ðCC is the projected expectation
value ï0|Ŝ2 exp(T̂ )|0ð, where T̂ is the coupled-cluster excitation operator.
f bF and c are the Fermi contact and spin-dipole hyperfine coupling constants for
H/14N. eQq is the electric quadrupole coupling constant for 14N.

contaminated UHF reference wavefunction yielded optimized CCSD(T)

bond lengths that differed from the ROHF-CCSD(T) values by 10−4 Å or

less. Nonetheless, despite the similar optimized structures, the unpaired

spin density of the weakly contaminated UHF-CCSD(T) wavefunction

still differed substantially from that of the ROHF-CCSD(T) wavefunc-

tion. The values of the bF and c parameters of MgC3N with the former,

for example, were 1.426 MHz and 2.157 MHz, respectively, which are

considerably larger than the ROHF predictions in Table 4. (The weakly

spin contaminated UHF solution could not be found for MgC4H with

the cc-pCVQZ basis set.)

Fig. 3. Cavity FTMW measurements of MgC3N. The center frequencies and (N , J , F )
quantum numbers are labeled as in Fig. 2. Each spin-rotation transition is split into
three 14N nuclear hyperfine components (I = 1), which are incompletely resolved (and
unassigned) for transitions above 14GHz. The top and bottom spectra are the result of
130min and 230min of integration, respectively.

5. Discussion

The combined laboratory, theoretical, and astronomical evidence
unambiguously confirms the identification of MgC4H and MgC3N in
IRC+10216 by Cernicharo et al. [13]. The next longer chains, MgC6H
and MgC5N, have also been detected by radio astronomy in this
source [14]. If the MgCCH:MgC4H H 101:1–102:1 abundance ratio
in our laser ablation-electric discharge holds for MgC4H:MgC6H (and
similarly for MgC5N), then it should be possible to detect both of
the longer species at similar experimental conditions, particularly as
the laboratory rest frequencies in the cm-wave band can be predicted
with relatively small uncertainties (≪1 MHz) using the astronomically
derived spectroscopic constants.

The structural and electronic properties of MgC4H and MgC3N
demonstrate that their ionic metal-carbon bonding is very similar to
that of their smaller chain analogues. Although the lack of isotopic
data prevents a complete structural analysis at this juncture, if we
constrain all bond lengths other than the Mg–C bond to their opti-
mized ROHF-CCSD(T)/cc-pCVQZ values, then the semi-experimental
equilibrium rotational constants, Bse = B0 − �Bvib, derived from
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the measured B0 values and theoretical vibrational corrections (Ta-
ble 4) imply that the semi-experimental equilibrium metal-carbon bond
lengths are rse(Mg–C4H) H 2.039Å and rse(Mg–C3N) H 2.057Å. These
are similar to the Mg–C bond length in MgCCH (rse = 2.0369(7)Å [30])
and somewhat shorter than that in MgCN (<2.072Å [32,61]). In the
(usually very good) approximation that the spin-rotation constants
(
) are dominated by second-order spin–orbit contributions [62], the
ratio 
∕B can also be compared between different Mg-bearing chain
molecules to assess changes between the electronic state manifold of
the unpaired �(sp) electron centered on the Mg atom. The 
∕B values
of MgC4H and MgC3N are 3.27 × 10−3 and 3.17 × 10−3, respectively,
while the values for MgCCH and MgCN are 3.36 × 10−3 [29–31] and
2.95 × 10−3 [32]. The small spread (<10%) of these ratios illustrates
that the unpaired Mg-centered electron in each of these molecules
experiences a similar electronic environment.

The strong localization of the unpaired electron is also reflected by
the small magnitude of the magnetic hyperfine parameters of the H and
N nuclei, which are farthest from the Mg radical center. The good agree-
ment between the calculated ROHF-CCSD(T) hyperfine parameters and
the measured bF (H), bF (N), and c(N) values highlights the importance
of beginning with a ROHF determinant and the high sensitivity of
these properties to even small amounts of spin contamination. The
unpaired spin densities at each nucleus, reported in Table 4, decay
approximately exponentially with distance from the Mg atom, a pattern
similar to that observed experimentally in isotopologues of MgCCH,
CaCCH, and SrCCH [30]. This behavior bolsters the idea that biradical
electronic interactions in M–(C�C)n–M

2 chains can potentially be tuned
over several orders of magnitude by varying the number of C2 linker
units. Controlling this coupling will have an important influence on
the optical cycling properties of hypermetallic polyatomic molecules
for next-generation laser-cooling applications [37,38].

6. Conclusions

The linear magnesium-carbon chains MgC4H and MgC3N were de-
tected and characterized at high-resolution in the laboratory by cavity
FTMW spectroscopy. A parallel quantum chemical analysis highlighted
the influence of spin contamination on accurate predictions of their
structural and magnetic hyperfine parameters. This study lays the
foundation for a number of follow-up investigations targeting their
substituted isotopic species, positively and negatively charged ions, and
hypermetallic derivatives. The characterization of these molecules will
provide the spectroscopic data needed to critically assess the chemical
evolution of metal-carbon chains in astrophysical environments and
the suitability of their unique electronic structure for applications in
fundamental molecular physics.
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