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1. INTRODUCTION

In [11], Ohtsuki defined the structure of a ribbon colored Hopf alge-
bra and he reveal such a structure based on a non-semisimple example
coming from quantum sl,. He showed that a ribbon colored Hopf alge-
bra leads to a universal link invariant taking values in some quotient of
the colored Hopf algebra. In the example of quantum sl this universal
invariant recovers the ADO link invariant given in [1].

A non commutative version of the notion of a ribbon colored Hopf
algebra called a G-coalgebra was introduced by Turaev with the goal
of producing Homotopy Quantum Field Theories (HQFTSs), see [12].
Virelizier showed that certain G-coalgebras gives rise to universal in-
variants of a G-link (i.e. a link with a flat connection in a principal G-
bundle over the complement of the link). Moreover, he shows that if the
G-coalgebra has a G-trace this universal invariant leads to a Hennings-
Virelizier invariant of 3 dimensional G-manifolds (3-manifolds endowed
with a flat G-bundle), see [13] and [12, Appendix 7.2]. Moreover, in
[14, Theorem 7.4], Virelizier shows that a G-trace exists when the G-
coalgebra has certain conditions (for example, when it is semisimple
and finite type). Constructing non-trivial G-manifold invariants in the
non-semisimple and non-finite type setting seems to require new tech-
niques which we propose here: we show that in a special case (when
(G is commutative and the G-coalgebra has certain conditions includ-
ing a modified symmetrized integral) Virelizier’s construction can be
re-normalized and leads to non-trivial G-manifold invariants. In par-
ticular, we show that unrolled quantum group associated to sly gives
rise to G-coalgebra with modified symmetrized integral and so an in-

variant of G-manifolds. The link invariant underlying this example is
1
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closely related to the universal link invariant defined by Ohtsuki in
[11]. This link invariant was previously used to produce a represen-
tation theoretic Reshetikhin-Turaev type 3-manifold invariants in [3].
Here we give an Hopf G-coalgebra approach to make a Hennings type
3-manifold invariants.

The main new concept of this paper is the notion of a modified
symmetrized integral on a G-coalgebra. This notion is related and
inspired by the theory of modified traces and symmetrized integrals
given in [2, 5, 6]. We show that modified symmetrized integrals exist
in the general context of Theorem 3.5. This general context is inspired
and modeled on topological unrolled quantum groups associated to
simple Lie algebras, see [4]. However, the work of [4] requires technical
topological completions where this paper uses more straightforward
algebraic techniques.

The outline and main results of the paper are described as follows.
In Section 2, when G is commutative, we describe Virelizier version of
the universal invariant of G-links and its corresponding 3-dimensional
G-manifold invariant which we call the graded Hennings-Virelizier in-
variant. In this context, a G-manifolds (M,w) is just the data of a
3-manifold with a cohomology class w € H'(M,G). In Section 3 we
give the notion of a (modified) symmetrized integral and show that such
an integral can be used to renormalize the graded Hennings-Virelizier
invariant. In Section 4 we show that Ohtsuki’s ribbon colored Hopf
algebra associated to sly leads to an example of the invariants defined
in this paper.

Acknowledgments. N.G. is partially supported by NSF grants DMS-
1664387 and DMS-2104497. He would also like to thank the Max
Planck Institute for Mathematics in Bonn for its hospitality during
work on this paper. N. P. H. would like to thank the fundamental
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2. VIRELIZIER INVARIANT OF (G-MANIFOLDS: THE ABELIAN CASE
Let K be an integral domain.

2.1. Ribbon Hopf G-coalgebra over abelian group. The notion
of a Ribbon Hopf G-coalgebra is a tool used to produce homotopy R-
matrices and examples of non commutative HQFTs. In this section we
give a simplified version of a Hopf G-coalgebra in the quasi-triangular
case which coincide with Ohtsuki’s notion of colored Hopf algebra [11].
In particular the group G is commutative and we use additive notation.

A Hopf G-coalgebra is a family H = {H, },c¢ of K-algebras (with a
product m, : H, ® H, — H, and a unit 7, : K — H, for each a € G)
endowed with a comultiplication A = {Ay, : Hopp — Hy @ Hp}opec,
a counit € : Hy — K and an antipode S = {S, : H, = H_,},c¢ which
satisfy (see [11, 12, 14]):
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(1) A is coassociative: for any a,b,c € G,
(Aa,b ® IdHC) o Aa—l—b,c - (IdHa ®Ab,c) o Aa,b—i—cv

(2) € is a counit: (Idg, ®e) o Ayp = (¢ ® Idn,) 0 Ag, = Idg,,
(3) S is a family of bijective antipode: for any a € G,

Mg © (S—a ® IdHa> © A—a,a =Ta©E =My0 (IdHa ®S—a) o Aa,—m

(4) A and ¢ are algebra maps (for the standard algebra structure
of H, ® H, and K).

Let us now recall some definitions from [14, 8].

Definition 2.1 (pivotal structure). Let H = {H,},c¢ be a Hopf G-
coalgebra.

(1) A G-grouplike element is a family {z, € H,}.,eq such that
Ao p(Tatp) = 4 ® xp, for all a,b € G and e(xp) = 1.

(2) A pivot for H is a G-grouplike element {g, }.ec such that, for
all a € G for any € H,, S_,S,(z) = g,rg;'. If H has a pivot
we say it is a pivotal Hopf G-coalgebra.

Definition 2.2 (quasitriangular structure). Let 7 : H,®H, — H,@H,
be the linear map defined by » ® y — y ® x. A Hopf G-coalgebra
H = {H,}.c¢ is quasitriangular if it has an R-matrix, which is a
family of invertible elements R = {R,, € H, ® Hy } 4 pec satistfying for
any a,b,c € G

(1) Ra,b-Aa,b(x) = T<Ab,a(x)>‘7€a,b for any r € Ha+b7

(2) (IdHa ®Ab,c)Ra,b+c = (Ra,c>1b3<Ra,b)1207

(3) (Aa,b ® IdHc)Ra+b,c - (Ra,c)lbg (Rb,c)agg
where (Rac)ys = 7a @ 1p @ ¢, (Rap)ig. = Ta @ 5y @ 1 and (Rec) 103 =
1, ® 1, ® s uses the notation r, ® s, (with an implied summation) for
the element R,;, € H, ® H,.

In [14], Virelizier defines a ribbon Hopf G-coalgebra using a ribbon
element (a similar style of definition is given in [11]). Here we give
an equivalent definition in terms of the pivotal structure and a twist
element.

Definition 2.3 (ribbon structure). A pivotal quasitriangular Hopf G-
coalgebra is ribbon if for any a € G the element 6, = my(7((g, ®
14)Ra.q)) satisfies

(1) Qa = ma(<1a X ga_l)Ra,a)-

Definition 2.4 (symmetrized integral). A symmetrized integral for a

pivotal Hopf G-coalgebra is a family of linear forms u = {u, € H; }oee
such that

(2) (tta ® gv) Dap(x) = prass(x)1y for x € Hoyy,
(3) ta(7y) = pa(yz) for z,y € H,
(4) t—a(Sa(x)) = po(x) for x € H,,.
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A symmetrized integral is twist non degenerate if the scalar

10(g000) 110(g5 05 ")

1S non zero.

It is known (see [14]) that if H is ribbon and finite type (i.e. dim(H,) <
oo for all @ € G), then H has a unique up to a scalar symmetrized in-
tegral closely related to the right integral. However, the finiteness is
not a necessary conditions as we shall see in Section 4.

2.2. The universal invariant of G-links. Let H = {H,},cq be
a ribbon Hopf G-coalgebra and let HHyo(H,) = H,/[H,, H,] where
[H,, H,] is the subspace of H, spanned by zy — yx for z,y € H,.

Definition 2.5. A G-link is a couple (L,w) where L is an oriented
framed link embedded in R? and w is a map from the set of components
of L to G. To reduce some technicalities, we will consider G-links with
ordered components.

Let L be a G-link and denote the color of its i**-component by a; € G.
The universal invariant of L is an element J(L,w) € ), HHo(H,,)
obtained as follows. Let D be a regular planar diagram of L where each
component has a marked point. For each crossing, cup and cap put
beads colored with elements of the algebra determined by the following
diagrams:

7

\ S—a;(r—a, )%a, y Ta.
Tai Sa; Ta; —aj (s,aj)
\ / \

/

fo

where the ¢ and j refer to the ordering of the components of L and
as above we write r,, ® sq; for Rg,q;- The four remaining possible
orientations at a crossing are obtained by reversing simultaneously the
orientation of the two strands in the figure above. For each component
of D (starting at the marked point) we multiply these colored beads
with the following rules:

(5) = wy and =

Also beads can freely move around cap and cup with any orientation

(6)mzm and UEU
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and it can pass through a crossing. For the *" component, from
this process we obtain an element in H,, and consider its image in
HHy(H,,) = H,,/[H,,, H,,]. We define the collection of these images
as J(D,w) € Q;_, HHy(H,,) where n is the number of components
of L. The following theorem is a graded version of Lawrence-Ohtsuki
universal invariant ([10, 11]).

Theorem 2.6. The element J(D,w) is a diffeomorphism invariant of
the G-link (L,w). We call this invariant the universal H invariant of
L and denote it by J(L,w).

Proof. First, because we quotient by the subspace [H,,, H,,] for each
i, the element J(D,w) does not depend on the choice of the marked
points on each component. We need to check that if D and D’ are two
regular planar diagram of L then J(D,w) = J(D',w). It is well known
that D and D’ are related by isotopy in R? and a finite sequence of
Reidemeister II and III moves and the move:

O

(7) <© _

Thus, to prove the theorem we need to show these moves can be trans-
lated into identities satisfied by the ribbon Hopf G-coalgebra H. To
show the assignment is invariant under isotopies in R? it is enough to
show it satisfies the move:

HHNV\HH

This move follows directly from the definition of the universal invariant
on cups and caps.

From Proposition 1.4 of [11], the quasitriangular structure of H im-
plies

(8) Rill, = (111 & Sbil)Ra,fb = (Sfa & 1b)R7a,ba

a,

(9) (Rab)128(7—‘)'11,6)1173(7?’17,0)1123 = (vac)a23 (Ravc)1b3(Ravb)1Qc’

(10) (Sa & Sb)Ra,b = 72'fa,fb-

These relations imply that the Reidemeister II and III moves with all
orientations of strands hold.

Finally, we need to prove Move (7). Since H is ribbon then the
condition in Definition 2.3 implies that the universal invariant satisfies

the move: t
0~ 0
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After applying this move to the first loop in the first diagram of Equa-
tion (7) we can apply Reidemeister 1T and IIT moves to unknot the
diagram. U

We now give two well known properties of the universal invariant,
analogous propositions have been proved in related situations, see [13]
and [4].

Proposition 2.7. Let (L,w) and (L',w") be G-links such that (L', w")
is be obtained from (L,w) by reversing the orientation of the i™ compo-
nent and changing the corresponding value of w to its opposite. Then
J(L', ') is obtained from J(L,w) by applying the antipode to the i™
factor.

Proof. This proposition was proved in a special case of certain unrolled
quantum groups in [4, Lemma 5.4]. The proof of [4, Lemma 5.4] works
word for word in the context of this paper after adding the grading on
the antipode map, pivotal element and the R-matrix. O

Proposition 2.8. Let (L,w) be a G-link and (L',w') be obtained from
L by replacing the i component colored by a + b € G by two parallel
copies colored by a and b respectively. Then J(L',w') is obtained from
J(L,w) by applying the coproduct A,y to the i factor.

Proof. To prove this proposition it is enough to check on elementary
diagrams consisting of a cup, cap or crossing. For a crossing the rela-
tions (2) and (3) of Definition 2.2 imply the desired equality of beads.
For a cup of cap the equality on beads follows from the fact that the
pivotal element is grouplike. O

2.3. Invariant of G-manifolds. From now on we assume K is an
algebraic closed field. A G-manifold is a pair (M,w) where M is an
oriented closed 3-manifold and w € H'(M,G). A surgery presentation
of a G-manifold M is a G-link L in S? such that S? is homeomorphic
to M. Note, we put an ordering on the components of L. Such a link
is G-colored where the color of the i'® component of L is defined by the
value of w on its oriented meridian in S* \ L C M and denoted by a;.

In [13], Virelizier proves the following theorem, we give a sketch
of the proof because similar ideas will be used below when we re-
normalize this invariant. Let H be a ribbon Hopf G-coalgebra with a
twist non-degenerate symmetrized integral (we assume po(gy 10 ") ™" =
to(gobo) = 6 for some non zero element § € K, which is always possible,
up to rescaling, since K has square roots).

Theorem 2.9. For each G-manifold (M,w) the assignment

HV(M,) = 57 () i (J(L,) € K,
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is an tnvariant of G-manifolds where s € 7 is the signature of the
linking matriz of L.

Proof. Any two presentations of M are related by isotopy, orientation
reversal of components of L and colored Kirby I and IT moves which
are a stabilization with 1 framed 0-colored unknot and sliding along a
component of L, respectively. The colored Kirby II move is represented

by

R zal
To prove the theorem we will show HV is unchanged under these op-
erations.

Since p0S = p then Proposition 2.7 implies HV is invariant by orien-
tation reversal of a component of L. A Kirby I move increases the signa-
ture of L by 41 and also multiplies the invariant by jo((gofo)™!) = 6+
Thus, HV is globally unchanged under a Kirby I move. Finally, invari-
ance by a colored Kirby II move follow from Proposition 2.8 and the
first property of the symmetrized integral. Remark that the invariance
under this move only uses that the components colored with a + b and
a on the picture and are evaluated with the symmetrized integral. [J

We call HV the graded Hennings-Virelizier invariant. When the
grading is trivial (i.e. G = 0) then HV is the Hennings invariant
defined in [9]. As we will see in Section 4 there is a Ribbon Hopf
C/27Z-coalgebra U, associated to sly, with a twist non-degenerate sym-
metrized integral. The degree zero restriction of the invariant HV as-
sociated to U is the Hennings invariant associated to usual quantum
group of sl,. However, in this example HV vanishes in non-integral
degree. Next we will discuss how to modify the integral so that one
can produce a non-zero invariant where it previously vanished.

3. THE MODIFIED SYMMETRIZED INTEGRAL AND MODIFIED
INVARIANT

3.1. Ambidexterity of the symmetrized integral. Let H be a fi-
nite type pivotal Hopf G-coalgebra with a symmetrized integral p.
For a linear endomorphism f of a finite dimensional K-vector space
V @ W we denote by ptri,(f) € Endg (V) the right partial trace of f
given by ptrli (f)(v) = X,(Idy ®@w})(f(v ® w;)) for any basis {w;} of
W with dual basis {w;}. We define similarly the left partial trace of f
denoted ptr(f) € Endg(W). Remark that denoting by tr’ the usual
linear trace, we have tr{s (ptry, (f)) = trfi (ptri (f)) = triew (f) € K.
Let L, : H, — H, be the left multiplication by x € H,.
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Proposition 3.1. Leta,b € G and f € Endg(H,®H,;) be a morphism
of Hyrp-module (i.e. f(Agp(x).y ® 2) = Aup(z)f(y®2)). Then

(11)  pa(ptrgy, (Id®Lg,) f)(La) = m(ptrs, ((Ly @ 1d)f)(1y))

Proof. The proof is based on the theory of modified trace: The guiding
principle is that by [2, 8] the symmetrized integral is the modified
trace and we transpose the partial trace property of modified trace to
a property for the symmetrized integral.

In this proof we use the notation and result of [8]. Let € be the
pivotal category of left H-modules (an object of € is a finite dimen-
sional K-vector space equipped with a structure of left H,-module for
some a € (). For a € G, the action of left multiplication on H,
makes H, into a projective object of €. A cyclic trace on the sub-
category of projective object Proj of € is a family of linear function
{tp : Endg(P) — K} pep,; satisfying tp(fg) = to(gf) for any f: Q —
P and g: @ — P. By [2, Proposition 2.4] and Definition 2.4 (2), there
is a unique cyclic trace t such that for any a € G and f € Endy(H,)
we have ty, (f) = a(f(14)). Definition 2.4 (1) implies that u is a right
symmetrized G-integral, thus by [8, Theorem 1.1], t is a right modified
trace thus satisfies the right partial trace property which implies that
for any f € Endy(H, ® Hy),

tiem, (f) = tu, (ptrfy, ()

where ptrflb is the partial trace in ¥ which uses the pivotal structure of
%. Now Definition 2.4 (3) implies that p is also a left symmetrized G-
integral (i.e. (H, g) is unibalanced) thus t satisfies the left partial trace
property: te,em,(f) = tu,(ptrfy, (f)). Since in € the left and right
categorical partial trace are given by the vector space partial trace
precomposed with the action of g; ! and g, respectively, combining the
two equalities gives the desired identity. U

Remark 3.2. Even if the grading is trivial and H is an ordinary uni-
balanced unimodular Hopf algebra, we do not know a proof without
using modified traces of Proposition 3.1 which shows an unexpected
result about the integral.

3.2. The modified symmetrized integral. Let
Agy,ay - Hyn 00— H, @ - @H,,
be the (n — 1)-fold coproduct. For example,

A611,(127113 = (AaLaQ ® IdHas) © Aa1+a2,a3 = (IdHa1 ®Aa2,as) © Aal,a2+a3'

Let C(H,, ®---®H,,) be the subspace of ®7_;H,, of all elements which
commute with the image of A, ,., in other words all z € ®]_ H,,
such that

T, an(Y) = Day,.an (Y)2
for all y € Hyn , (note here if n =1 then A,, = Idgn, ).
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Lemma 3.3. Recall L, : H, — H, is the left multiplication by v € H,.
Then

Mng;ll ® Id(C(Hal Q- ® Han)) C C(Haz Q- ® Han)
and 1d ®NanLgan (C(Hal Q- Han)> C C(Htu @ Han—l)

Proof. We prove the first inclusion, the second is similar. In this proof
we use implied summation when using coproducts. Let y € Hy»
we use the following notation:

®?:Oyi = Afa1,a1,a2,...,an (?J) = ((Afahal ® Id®?:2Hai)A0,a2 ,,,,, an) (y)

is an element of H_,, ® H,, ® (®,H,,). Then the defining property
of the antipode imply

1h,, © (Das..an(¥) = S—a, (W0)1 @ (@19ui) = 1155, (Y0) @ (Dfoyi)-

We use this equation in the first and last equalities of the following
calculation: for ®7 ,z; € C(®,H,,) with x; € H,, we have

far (90, 1) Dy, 0 (1) (D7) ZMal(g; S- al(yo)m%)( i—2¥i)-(®i;)
= [tay (9a, S—a1 (Y0)T191) (®]o7:) . (R7_oyi)
= ta; (S5, (Y0) gy 0151 (R7p:) - (D7_ovs)
zua1(9a1 xlyls Hyo) | (@5=a2:) . (25=oi)

where the second equality comes from the fact that @7, z; is in C(®! ,H,,),
the third from the property of the pivot and the forth from the cyclic
property of the integral. O

Definition 3.4. Let X C G and set G = G'\ X. A modified sym-
metrized integral on G’ is a family of K-linear maps

W= {4, C(H,) > Keeor
satisfying for any a,b € G’
ftaLiy-1 @ py, = iy, @ iy Ly, on C(H, @ Hy).
Theorem 3.5. Assume K is an algebraically closed field. Let H, be

finite dimensional and semi-simple for all a € G'. Then there exists a
family {z, € C(H,)} e such that
fa(x) = tryy, (Lsyz) for all x € H,.

Furthermore, there is a modified symmetrized integral on G’ defined by
(1(2) = pa(za2) = tryy, (Ls2.) for all z € C(H,).

Proof. Since K is an algebraically closed field then for each a € G’
the algebra H, is a product of matrix algebra. Since any linear form
on M, (K) can be realized by M tr]ﬁn(K)(LNLM) for a unique N €
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M, (K) we have p, is equal to x trﬂéa(Lzax) for some unique z, € H,.
Property (2) of Definition 2.4 implies that z, € C(H,).

For the second assertion we need to show that p/ is a modified sym-
metrized integral on G'. Let a,b € G’ and x =2’ ® 2" € C(H, ® H,)
(summation symbol omitted). Then let 7 = (2,82).2 € C(H,®H,;) so
that Lz is an endomorphism of the H,,;,-module H, ® H; as in Propo-
sition 3.1. Applying the proposition, we get following equivalences of
equalities:

"

and the proposition follows. O

Remark 3.6. The central elements z, are determined via a basis {z;}
of the center C'(H,) in which z; is the element corresponding to the
identity matrix of i*"-factor in the decomposition H, = [, End(V;),
V; o~ K™ are irreducible representations of H,. Remark that tr%b([]%) =
dimg (End(V;)) = n?. In particular, if K has characteristic 0 then
2o =D %zl where d; is an element of K (note d; can be interpreted
as the modified dimension of V;, see [8]). Note puq(z;) = n;d; then
po(zi) = di and pip (1) = pa(za) = 32, 3.

3.3. The modified invariant. For this section let H be a ribbon Hopf
G-coalgebra with a twist non-degenerate symmetrized integral and a
modified symmetrized integral ' = (1), )aecr-

An admissible G-manifold is a G-manifold with the requirement that
the cohomology class w € H'(M,G) ~ Hom(H,(M), G) has a value in
G’ ie. Im(w) NG" # @. A surgery presentation L of a G-manifold
is called computable if there exists a component L; of L such that
w(m;) € G’ where m; is a meridian of L;.

Lemma 3.7. Let M be an admissible G-manifold. There exists a com-
putable surgery presentation of M.

Proof. Consider any link presentation L of M. Since Im(w) C G is
generated by its values on the meridians of L, there exists a sequence
ai,...a € G such that ij:l a; € G" with a; = w(m;;) where m;
is a meridian of the i""-component of L. We will show that a series
of Kirby moves can be applied to L to obtain the desired computable
presentation as follows. Isotope L so that all the strands with the colors
a; are in a small ball as in the left side of the diagram in Equation (12).
Now do two Kirby I moves to create both a +1 and —1 framed 0-colored
unknot. Sliding one of these unknots over the other we obtain a Hopf
link where one of the components is zero framed. Sliding the strands
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colored with the a;’s over this zero framed component we obtain the
right side of Equation (12):

(12) a ¥ ...ak Ho/lﬂi... l\
U

Let L be a G-link with n components. A k-string G-link T" with ¢
closed component is a (k, k)-pure framed oriented tangle with k + ¢
ordered components colored by elements of G. Its closure 7' is a G-
link in S® with k + ¢ components obtained by taking the braid closure
(which is well defined up to isotopy). We define as in Section 2.2 a
universal invariant J(7") by multiplying the beads along components.
The proof of the following proposition follows in the same way as the
proof of Theorem 2.6.

Proposition 3.8. Let T as above, let HI = H,, if the i component of
T is open and HY = HHy(H,,) if the i component of T is closed. The
element J(T) € @, HI is an isotopy invariant of T. Furthermore,
let ¢l : H,, — HHy(H,,) be the map that send x to the class of g,z
then we have

d®*(J(T)) = J(T)

Suppose (M, w) is an G-manifold with surgery presentation L. Let
T; be a 1-string G-link whose closure is L. Then the universal invariant
of Tj is given by

7—1 n
J(T;,w) € (QHHy(H,,) © Hy, ® (X) HHo(H,,).
i=1 i=j+1
Lemma 3.9. We have

7j—1 n
<® Ha; @ IdHaj ® ® :uai> (J(Tj,w)) € C(Haj)-
i=1 i=j+1

Proof. Consider a n-string G-link T" whose braid closure of the n — 1
right-most strands produces T;. Then one can prove (see for example
[4, Theorem 5.1]) that J(T') € C(Q);_, H,,). Then applying n—1 times
Lemma 3.3 we have the above property. O

Remark 3.10. Applying p,, to g,, times the element of the previous
lemma produces 0°*HV(M,w). Suppose now that for a € G', H, is
semi-simple and all its irreducible representations have zero quantum
dimension (where the quantum dimension is defined as the trace on the
action of g,). Then it follows that g,C(H,) is in the kernel of p,. In
this situation, we get that HV (M, w) = 0 for any admissible G-manifold
(M,w). This motivate the renormalized invariant of Theorem 3.11.
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Now let (M, w) be an admissible G-manifold with computable surgery
presentation L. Suppose the coloring of the j* component of L is in
G’ then set

7j—1 n
HV' (M, w) = 67* @) ta; @ iy, @ @) tta, (J (T, w)).
i=1 i=j+1
Theorem 3.11. HV'(M, w) is an invariant of the admissible G-manifold

(M,w).

Proof. Given a computable G-link L with one marked point on one
component colored by an element of G’, consider the complement of
a small 3-ball centered at the marked point. It is diffeomorphic to a
1-string G-link whose closure is L. Let denote by HV'(L) the image of
this 1-string G-link by the map of Lemma 3.9. The scalar HV'(L) only
depends of the isotopy class of L. Property of y/ implies that moving
the marked point from one G’-colored component to an other does not
change HV'(L). The proof of Theorem 2.9 implies the scalar HV'(L) is
also invariant by Kirby I moves between computable links. Moreover,
it is also invariant by any Kirby II moves when one slides any strand of
a component that does not have the marked point. We call such Kirby
IT moves admissible.

Let L°, LY be two computable G-link with marked points m, and
my, respectively. Then L and LY are related by a sequence of ambient
isotopies and Kirby I and II moves which correspond to a sequence of
G-links L', L% --- ,LN~!. Here it is possible that these Kirby moves
are not admissible (two problems can happen: no G’ color or one of the
moves could slide over the strand with the marked point). However,
we will show this sequence can be used to produce a new sequence that
only contains admissible Kirby moves. For this we perform a series
of admissible Kirby moves similar to the moves depicted in Equation
(12): close to a strand of LY colored with an element of G’ do two
Kirby I moves and a Kirby II move to create a Hopf link with a zero
and a +1 framed component. Slide the G’ colored strand of L° over
the zero framed component to create an link with a new G’ colored
unknot (as in the right side of Equation (12)). Move the marked point
myo to this unknot to create a new admissible link presentation contains
L° as a sublink. Now we can perform the same Kirby moves ignoring
the newly created Hopf link to get a sequence of admissible Kirby
moves L0 — L1 ..., LN. By construction LV is the link L with a
Hopf link stabilization as depicted in the right side of Equation (12)
with a marked point on the zero framed component of the Hopf link.
Move this marked point to the marked point my on the sublink LY.
Preform the reverse admissible Kirby moves to remove the Hopf link
of LV and obtain LY. Since all moves are admissible we have that
HV'(L%) = HV'(LY). O
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4. EXAMPLES FROM QUANTUM GROUPS

Here we show the unrolled quantum group associated to sl gives rise
to ribbon Hopf coalgebra with a modified symmetrized integral. We
first describe a Hopf algebra that embed into the topological unrolled
quantum group Ufsly of [4].

Let ¢ > 3 be an integer, let ¢ = ¢/ged(,2) and € = e 7. We
use the notations & = exp(2inz/l), {z} = £ — % and {n}! =
{n}{n —1}..{1}.

Let UX be the C-algebra with generators E, F, K where a € C

with relations: for any «, 8 € C,

KK’ = Kt K°EK *=¢*E, K“FK™® =¢F,
K—-K! : ,
K():l, [E,F]:F, Ee :O:FE

The algebra UX is a Hopf algebra where the coproduct, counit and
antipode are defined by

A(E)=1®2E+E®K, e(E)=0, S(E)=-EK™,
AF)=K'®@F+F®1l, ¢eF)=0  S(F)=-KF,
A(KY) = K*® K° (K% =1, S(K*) =K

The Hopf algebra U¥ is pivotal with pivot g = K'=. Let G = C/2Z.
For a € G, set U, = UK /(K"? — £*/2). The Hopf algebra structure
of UX induces a structure of pivotal Hopf G-coalgebra on the family
U = {U,},co- We denote the coproduct, counit and antipode of U by
A={Auptopeq: € and S ={S.},cq, respectively.

In [11], Ohtsuki proved a version of the following theorem for a col-
ored Hopf algebra closely related to U.

Theorem 4.1. The Hopf G-coalgebra U is ribbon with R-matrix
7?fa,b = Ha,b,]éa,b € Ua X Ub7

— {1} )
with Rap =Y &7 E"@FeU,oU,

01
Z g Amatp)(mate) [rftmy ) frotm « U @ U,

m1,ma=0

1
and where Hop = 7

a b

does not depends of a, 3 € C congruent to 5, 3

respectively modulo 7.

Proof. In this proof we use the topological ribbon Hopf algebra L/{gl sly
defined in [4, Examples 2.3 and 2.7 and Section 3.2]. For a € C/2Z, let

I, = (€ — &)Ut sly the ideal of Ul sl,. The assignment E — E,
F s F and K+ €21 extends to an embedding of the Hopf algebra
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UK into Z//{glﬁ[g which induces an embedding of (topological) Hopf G-

coalgebra {U, — L/{g{ sly /I, }aec. We will use this embedding to define
a ribbon structure on U as follows.
The R-matrix element of Z/{HB[Q is given by

1 — o~
R = g2el Z (0 ® F" e U slbo U sl,.

{n }'
We get the R—matrlx of the Hopf G-coalgebra U by applying the dis-
crete Fourier transform in [7, Proposition 4.6] as follow: Let a,b €
C/2Z and «, B € C such that a = 2,0 = 2 modulo 2Z. The func-
tion £2(H-2)®H=5) is ¢'_periodic on (a,b) = (a, 3) + Z?* thus it can be

expressed as a polynomial in K ® 1 = £27%! and 1 @ K = 1924,
r-1
f(ab)(§ (H=)® (H_ﬁ)) = Z Cryma K™ @ K™,
m1,m2=0

where

-1
1

lemg == 672 Z €_2m1(a+i1)_2m2(5+i2)€2i1i2

i1,i2=0

-1 -1

1 —2mia—2msof3 § :5—2m111 § 5 (i1—m2)i
6/2
11=0 12=0
-1
—2mia— 2mgﬁ§ : —2myi1 p!
£,2€ € 65011 —m2
i1=0

_ l —2mia—2mafl —2mims
= ¢ 3 :

The third equality holds as €2 is a primitive ' root of unity. Let

-1
Haop = % Z 5*2(m1+5)(m2+0¢)Kﬁ+m1 ® KT ¢ U, @ Uy,
m1,m2=0

then (see [4, Proposition 4.3]), &20®H = 9, € @5[2/1,1@?//{3{5[2/11,.
Hence, the image of R in Z/{EHSIQ/ICL@ Z/{EHEIQ/[}, belongs to U, ® U, and
is equal to Rgp.

Since R is the universal R-matrix of the topological ribbon Hopf
algebra U{" with pivot K 1= the properties for (Rq)apec defined in

Definition 2.2 and Equation (1) are direct transposition of the proper-
ties of R. O

Now we consider a finite type sub Hopf G-coalgebra of U: For a €
C/2Z, let U, be the subalgebra of U, generated by E,F' and K. By
the PBW theorem this algebra is finite with dimension ¢ and has a
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basis {E™EFrr K" Yoo, oo . The family U = {U, }ueq forms a
finite type unimodular pivotal sub Hopf G-coalgebra of U (which is
not ribbon), see [8]. Its symmetrized integral i1 is given in the PBW
basis by sending all vectors to 0 except fig(E“~'F*~1) = 5 for some
arbitrary non zero constant independent of a € G.

By Theorem 3.5, there exists a unique z, € C(U,) such that fi,(z) =
trG. (L.,») and there is a modified symmetrized integral 7’ given for

a€ G\{0,1} by pi',(x) = tr%a(ngx) = lia(24).

Theorem 4.2. The pivotal Hopf G-coalgebra (U, g) has a symmetrized
integral p1 given by

EreFrer K6 0 if ng#£0 —1ornp A0 —1
(13) o orng € C\ £Z,
EZ’—IFE’—IKné — gn%an’

for an arbitrary non zero constant n. Furthermore U has a modified
symmetrized integral on G' = C/2Z\ {0, 1} given by pl, = pg 0 L., .

Proof. For a € C/2Z, let M, = @, 011 KU Then U, = U, @M,

with S,(M,) € M_, and Agy(Maps) € M, @ M,. Let m, : U, — U,
be the projection with kegvnel M, and define pu, = ji, © 7, Then for
any t =h+m € Uyyp = Uyy & Moy,

Ha @ Gp(Dap®) = e @ Go(Aaph) + f1a @ go(Agpm)
= ﬁa 0%y gb(Aa,bh) = ﬁa-&-b(h) 1b = /~La+b<m>1b

where the second equality comes from 7, ® Id(A,ym) = 0. This proves
point (1) of Definition 2.4. Point (3) follows for x = h +m € U, from

- a(Sa(2)) = Fa(Salh)) + pa(Sa(m)) = Fia(h) + 0 = pra(2).

Finally we take advantage of the Z-grading in U by the weights where
the weights of F, F' and K“ are respectively 2, —2 and 0. Remark
that p vanishes on homogeneous elements of non zero weight. Let
a € [0, 1[+4iR and 8 €] — 1,0] + iR and fix 2 € K°U, and y € KU,
with homogeneous weights w, and w, respectively. Then p,(zy) =
ta(yr) = 0 unless f = —a and w, = —w,. In this last case K¢

commutes with xy so using that K%z, yK* € INJa we have

ta(y) = fa (K 7)(yK?)) = fa((yK*) (K 7)) = pa(yz).

We now check that the family {1} ,c0 (o1} satisfies Definition 3.4.

Since z,M, C M, and g='M, C M,, for x € U,,y € U, with x € M,
or y € My then we have poL -1+ @ py(r @ y) =0 = p, @ Ly, (z @ y).
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On the other hand, if x € ﬁa, Yy € U, then
HaLyzr ® py(z ®@y) = oLy & (2 @ y)
= Hq ® fipLg,(r ® y)
=, @ piyLg, (x @ y).
]

As in the proof of Theorem 4.1, the discrete Fourier transform on
the twist of U/

0 — -— +3" {1}2’“ 2H?2 f’ 1— n pn pn
P

and on its inverse

5 {1
9—1 _ ne—=" +3" —2H2Kn+1 Z’EnFn
2( DA T

gives a formula for the twists §F in Uy such that

T g1y ( )“15 ! 20! 26 = 2k2 42k
1o(g60) = po(g105 ") = A——=— {1} 72 ) ¢
k=0

where we assume the normalization factor A is in R*. Finally, the last
Gauss sum in the previous equation is known to vanish if and only
if ¢ € 8Z. Thus, the Hopf C/2Z-coalgebra U lead to an invariant of
C/2Z-manifolds HV and a modified invariant HV' of admissible C/2Z-
manifolds.

We finish with a simple example which shows that HV’ is a non-
trivial renormalization of HV.

Proposition 4.3. Assume { € 27\ 8Z. Let M = S* x S and w be a
cohomology class on M which takes value a € C/2Z on a generator of
Hy(M). Then HV(M,w) = 0. However, if a ¢ {0,1} then

DS e R
HV'(M,w) = {{j} at _
2{2 }277 if 0 =4.

Proof. A surgery presentation of M is given by an unknot colored by
a. The universal invariant is then g, = ¢ “*K and j, vanishes on it.
Let now a € C be in the class of a € C/2Z \ {0,1}. To compute HV'
we open the unknot to obtain an open straight strand. The universal
invariant is then 1, and one should compute

HV,(M7W> = :u;(la) = ,Ua(za)‘

Now U, has ¢ irreducible representations of dimensions ¢': {Va+2r :
k=0---¢ —1} where £**%* is the highest weight of Veasar (L. the
eigenvalue of K on the kernel of E in Viatar). Let us write z, =



-1 doc+2k
k=0 ¢
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Zavok as in Remark 3.6. As shown by the second author in

(8] (see also [2]), dator = t1(Lsyzn,0r) = Ha(Zat2x) is (a normalization
of) the modified dimension of Via+2r. The explicit computation done
for an even root of unity gives that

O{o+ 2k 132
da+2k = do% where do = %n

14

Then for ¢ > 4,

-1

-1
52(a+2k) + 572(a+2k) -9
1 (1la) = Zdimk = Z dggz VL2
k=0 k=0 {la}

207 r-1 ¢-1
_ ZI) . —o0 + 52& Z £2k + 5—2& Z §—2k
{ta} k=0 k=0
RO

T T T

where we used that the last two sum vanish for ¢ > 4. U

The example of this section is the Hopf G-coalgebra version of the
invariants of [4].
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