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The expanding role of reinforcement learning (RL) in safety-critical system design has promotedω-automata
as a way to express learning requirements—often non-Markovian—with greater ease of expression and
interpretation than scalar reward signals. However, real-world sequential decision making situations often
involve multiple, potentially conflicting, objectives. Two dominant approaches to express relative preferences
over multiple objectives are: (1) weighted preference, where the decision maker provides scalar weights for
various objectives, and (2) lexicographic preference, where the decision maker provides an order over the
objectives such that any amount of satisfaction of a higher-ordered objective is preferable to any amount
of a lower-ordered one. In this article, we study and develop RL algorithms to compute optimal strategies
in Markov decision processes against multiple ω-regular objectives under weighted and lexicographic
preferences. We provide a translation from multiple ω-regular objectives to a scalar reward signal that
is both faithful (maximising reward means maximising probability of achieving the objectives under the
corresponding preference) and effective (RL quickly converges to optimal strategies). We have implemented
the translations in a formal reinforcement learning tool, Mungojerrie, and we present an experimental
evaluation of our technique on benchmark learning problems.
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1 INTRODUCTION
Reinforcement learning (RL) [65] is a sequential optimisation approach whereby a learning
agent (the learner) optimally resolves a sequence of choices based on feedback received from the
decision maker (the interpreter). This feedback often takes the form of rewards and penalties, with
strength proportional to the fitness of the choices made by the learner, as judged by the interpreter,
toward some higher-level objectives; we call such objectives learning objectives. The RL paradigm
reflects the way dopamine-driven organisms latch on to past rewarding choices [19, 32], and hence,
historically, RL paradigms integrated a nuanced, myopic way of looking at the reward sequences
in the form of discounted-sum of reward. More recently, other forms of reward aggregation, such
as limit-average, have also been considered (interestingly, there seems to be a correspondence of
average-reward RL with dopamine-serotonin opponent interactions [8, 20]). We call such objec-
tives (discounted-sum, average reward) learner’s aggregators.

Reward Translation for Reinforcement Learning. We posit that the key programming
challenge in developing Reinforcement Learning-driven systems is translation. It involves de-
signing a reward function that maps the sequence of learner’s choices to scalar rewards, given
a class of learning objectives and aggregator functions. The aim is to ensure that an RL agent,
maximising the aggregated sum of rewards, converges to a policy that maximises the learning
objective.

Currently, reinforcement learning often relies on a manual translation of, often instinctive, objec-
tives to reward signals. Such translations not only depend on the expertise of the decision maker in
reward engineering, they pose obstacles to an adoption of the formal methods paradigm to system
design due the lack of formal specifications and the lack of guarantees on the faithfulness of the
translation. As the applications of RL, powered by deep learning [33], continue to provide creative
solutions [44, 55, 62, 68] to problems that traditionally relied on human ingenuity, the integration
of RL in safety-critical system design [54, 56, 71] is inevitable. As a response, a number of differ-
ent translation schemes [10, 13, 28, 35, 40, 60] have been proposed to translate single-objective
learning requirements expressed in formal languages (such as linear temporal logic [4] and ω-
automata [4]) to scalar rewards. However, when the learning objectives are given as multiple—
potentially conflicting—objectives [51, 59, 66, 67], the aforementioned translation schemes are not
directly applicable.

Multi-objective ω-Regular Reinforcement Learning. This article investigates the prob-
lem of reward translation in reinforcement learning, specifically focusing on scenarios where the
learning requirements are presented as a finite set of ω-regular objectives.

1.1 Pareto Optimality and Weighted Preferences
In scenarios where variousω-regular objectives may conflict with each other, a single strategy that
maximizes the probability of satisfaction for all individual objectives may not exist. In such cases,
decision makers may be interested in analyzing the trade-offs among different strategies. A strat-
egy is considered Pareto optimal [18, 22, 67] if no other strategy can achieve a higher satisfaction
probability for one objective without reducing the satisfaction probability for another objective.
The satisfaction probability vectors for all Pareto optimal policies forms the Pareto curve.

Unfortunately, the Pareto curve for ω-regular objectives cannot be exactly computed in poly-
nomial time [22, Theorem 2.1]. On the positive side, since Pareto curves are convex for multiple
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Fig. 1. Double bet example with two objectives: (1) The first coin is never heads, and (2) the second coin is
eventually heads. These properties can be expressed in Linear temporal logic (LTL) [5] as globally (i.e., at
every step, denoted by the temporal modality G) avoid first coin landing heads (G¬h1), and finally (i.e., at
some time in the future, denoted by the temporal modality F) the second coin lands head (Fh2). The figure
shows the learned Pareto curve from various weights, where a is the weight for the first objective.

ω-regular objectives [22], one can employ the standard approach of approximating them by op-
timising the weighted sum of various objectives for an even spread of weights [18]. We will fol-
low this approach and enable reinforcement learning of weighted-sums of ω-regular objectives.
Throughout the article, we assume that the weight vector is positive. Minimising the satisfaction
of a particular objective can be done by taking the negation of the property.

Example 1.1 (Double Bet: Pareto Curve). Consider a simple scenario where an agent has two
biased coins that turn up heads with probability 1/12 and 1/4, respectively. The agent can set the
number of times to flip the coins, up to four times, or the agent can decide to set both coins to
heads. There are two competing objectives: Ensure that the first coin is never heads, and ensure
that the second coin is eventually heads. We consider weightings between these two properties
where the first is weighted by 0 < a < 1 and the second is weighted by 1 − a. Figure 1 shows
the maximal probabilities of satisfaction obtainable for each property as learned by RL with our
method by sweeping through values of a. Initially, when a = 1, the agent decides to flip the coins
0 times, satisfying the first property, but neglecting the second. As a decreases to zero, the agent
decides to flip the coins more times. Eventually, the agent decides to set the two coins to heads,
satisfying the second property, but neglecting the first. The colored dots in Figure 1 are the critical
points where the strategy changes. !

1.2 Lexicographic Preferences
Instead of specifying a particular weight for each objective, it can be more natural to specify the
preference order of the objectives. Lexicographic preference is a well-studied comparison criterion
in utility theory [26, 52, 72], formal methods [7, 11, 12, 16], and reinforcement learning [29, 31, 72].
Under a lexicographic preference over multiple objectives, a decision maker prefers any amount
of satisfaction of a higher-order objective over any amount of satisfaction of a lower-ordered one.
We study RL where the learning objective concerns a lexicographic optimisation of ω-regular ob-
jectives. That is, we are given k different ω-regular specifications, ordered by importance. We op-
timise the probabilities of these specifications as follows. An optimal strategy has to maximise the
probability that the first objective is achieved. The strategy then also has to maximise the probabil-
ity that the second objective holds among those strategies that achieve the maximum probability
for the first objective. The next priority is to maximise the third objective, and so forth. Lexico-
graphic preference is useful when, for instance, one wants to guarantee critical requirements first,
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Fig. 2. Robot Case Studies (R 4×4, R 5×5, and R 4×7): Grid-world Examples with Multiple ω-Regular
Objectives in Robot Navigation. The LTL property GFp is often referred to as infinitely often p.

functional ones second, and only then focus on the non-functional ones. Let us consider three
grid-world scenarios to illustrate optimisation under lexicographic ω-regular objectives.

Example 1.2 (Motivating Lexicographic Objectives). Consider a robot navigating a grid world, as
illustrated in Figure 2, with three scenarios of varying sizes. At each step, the robot chooses one of
four directions, in which it moves zero, one, or two steps. If there is enough space, then the prob-
ability of moving two steps in the chosen direction is p, while the probability of moving only one
step is 1−p. If there is only room for one step, then the robot moves a single step deterministically.
If there is no space to move, then the robot remains stationary. In Figure 2, the initial position of
the robot is indicated by R. The red fields represent hazards for the robot, while the green fields
allow the robot to recharge its battery. Additionally, there are four fields labelled 1 to 4.

For each of the scenarios (a)–(c), we have three different objectives expressed as LTL formu-
las [5]. The objectives are numbered (1) to (3), with (1) representing the highest priority objective
and (3) representing the lowest priority objective.

(a) In this scenario, the first priority of the robot is to visit all four numbered fields infinitely
often, the second priority is never to enter a dangerous area, and the third priority is to
visit some charging field infinitely often. It is possible to fulfill the primary objective with
probability 1. However, the secondary objective can then not be fulfilled with any positive
probability: Due to its uncertain movements, the robot always has a chance to step into a
dangerous field when trying to achieve the primary objective. The third priority, however,
can again be fulfilled with probability 1.

(b) The objectives are the same as for scenario (a). However, because of the larger grid, the
robot can stay out of danger (G¬danger) while satisfying its primary objective (∧i GFi);
it can meet all three objectives with probability 1.

(c) The primary objective is to visit fields 1 and 2 infinitely often or to visit fields 3 and 4
infinitely often. The secondary objective is to avoid dangerous fields. The tertiary one is to
eventually visit a charging field. Here, the robot can again fulfill its primary objective with
probability 1. The secondary one can only be fulfilled with probability 1 − (p · (1 − p)):
To fulfill its primary objective and then the secondary one, the best the robot can do is
to move upwards and then to the right. If, by moving to the right, the robot first moves
one field but then two fields, then it will run into a dangerous field. When maximising the
primary and secondary objectives, the tertiary objective can then only be fulfilled with
probability p · (1 − p), because trying to reach the charging field cannot be done without
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entering a dangerous field with at least probability 1− p (the chance of not “jumping” over
the left barrier of red fields). Therefore, the tertiary objective is only pursued when the
secondary objective has been missed.

The priorities play a key role here: For scenario (c), if the safety objective G¬danger were
the most important, then the robot would be able to completely avoid unsafe fields, fulfill-
ing this objective with probability 1. However, the probability to fulfil the recurrence objective
(GF1∧GF2)∨ (GF3∧GF4) would be p, because the robot can only reach the lower-right corner of
the grid with probability p if it is to avoid danger at all cost. One can also consider giving property 1
the highest priority, followed by properties 2 and 3 with the same priority. In this case, the optimal
strategy is for the robot to go to the lower-left corner of the grid. This results in the satisfaction
of properties 1 and 3 with probability 1, and the satisfaction of property 2 with probability 1 − p.
The cumulative satisfaction 1+ (1− p) of properties 2 and 3 is higher under this strategy than the
cumulative satisfaction of value 1 obtained if the robot went for the lower-right corner instead. !

1.3 Contributions
We study the reward translation problem for reinforcement learning of multiple ω-regular objec-
tives with weighted and lexicographic preferences. We assume that each objective is given as a
Good-for-MDPs (GFM) Büchi automaton [37]: A semantic condition on nondeterministic Büchi
automata that requires that the optimal satisfaction probability of the automaton over an MDP is
equal to the optimal probability of visiting accepting end-components [21] on the product of the
MDP and the automaton. While suitable limit-deterministic Büchi automata [34, 61] are the most
well-known classes of GFM automata, other characterisations (slim automata [37]) also exist.

In this work, we extend the limit-reachability theorem, a method introduced in our prior re-
search [35, 36]. Our extension allows for the transformation of various combinations of Büchi
conditions into different rewards, resulting in a reduction to a weighted reachability problem. By
leveraging this reduction, optimal strategies can be computed over the resulting MDP (a finite
MDP with Markovian scalar reward) using standard, off-the-shelf RL algorithms. It is important
to note that, in practice, we do not perform the composition of the MDP with the automata and
the transformation into rewards before the RL process begins. Instead, we employ an on-the-fly
composition strategy to avoid the expensive construction of parts of the product automaton that
would not be visited during RL.
Extension over the conference version. In the conference version [38] of this article, the
focus was on lexicographic ω-regular objectives. However, this extended version introduces
support for weighted ω-regular objectives, allowing for the approximation of the Pareto curve.
As a result, combinations of lexicographic and weighted ω-regular objectives can now be
considered. Our implementation of both reward schemes is available in Mungojerrie [39]
(plv.colorado.edu/mungojerrie), an open-source tool designed for testing reward schemes for
ω-regular objectives in finite-state MDPs. We provide evidence of the effectiveness of our reward
schemes through various examples.

2 PRELIMINARIES
We write B = {0, 1} for the set of Boolean values, N for the set of natural numbers, and R for
the set of real numbers. For ℓ,u ∈ R with ℓ ≤ u, we define the closed interval [ℓ,u] as the set
{n ∈ R : ℓ ≤ n ≤ u}, the open interval ]ℓ,u[ as the set {n ∈ R : ℓ < n < u}, and the intervals [ℓ,u[
and ]ℓ,u] as the sets {n ∈ R : ℓ ≤ n < u} and {n ∈ R : ℓ < n ≤ u}, respectively. An ω-word w on an
alphabet Σ is a function w : N → Σ. The set of ω-words on Σ is written Σω and a subset of Σω is
an ω-language.
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A discrete probability distribution over a finite set S is a function d : S→[0, 1] such that∑
s ∈S d (s ) = 1. Let D (S ) denote the set of all discrete distributions over S . A distribution

d ∈ D (S ) is a point distribution if d (s ) = 1 for some s ∈ S . For d ∈ D (S ), we write supp(d ) for
{s ∈ S : d (s ) > 0}.

2.1 Markov Decision Processes: The Environment
A Markov Decision Process (MDP)M is a tuple ⟨S, s0,A,T , Σ,L⟩ where S is a finite set of states,
s0 is a designated initial state, A is a finite set of actions, T : S × A → D (S ) is the probabilistic
transition (partial) function, Σ is the set of observations and L : S × A × S → Σ is the observation
labelling function of the set of transitions. A Markov chain is an MDP where the set of actions is a
singleton, meaning that there is only one possible action at each state.

We say that an action a ∈ A is available (or enabled) in a state s ∈ S if T (s,a) is defined. For a
state s ∈ S , the setA(s ) ⊆ A denotes the set of actions available in s . For states s, s ′ ∈ S and a ∈ A(s ),
we have thatT (s,a) (s ′) equals Pr (s ′ |s,a). A run ofM is anω-word s0,a1, s1, . . . ∈ S× (A×S )ω such
that Pr (si+1 |si ,ai+1) > 0 for all i ≥ 0. A finite run is a finite such sequence. For a run r =
s0,a1, s1, . . ., we define the corresponding labeled run as L(r ) = L(s0,a1, s1),L(s1,a2, s2), . . . ∈ Σω .
We write Runs(M) and FRuns(M) for the set of runs and finite runs, respectively, ofM. Similarly,
we write Runss (M) and FRunss (M) for the set of runs and finite runs ofM starting from state s .
When the MDP is clear from the context, we drop the argumentM.

A strategy in M is a function µ : FRuns → D (A) such that, for all finite runs r , we have
supp(µ (r )) ⊆ A(last(r )), where last(r ) is the last state of r . Let Runsµ

s (M) denote the subset of
runs Runss (M) that correspond to strategy µ and initial state s . We say that a strategy µ is
• pure, if µ (r ) assigns probability 1 to just one action in A(last(r )) for all runs r ∈ FRuns;
• stationary, if last(r ) = last(r ′) implies µ (r ) = µ (r ′) for all finite runs r , r ′ ∈ FRuns;
• positional, if it is both pure and stationary; and
• finite-state, if there exists an equivalence relation ∼ on FRuns with finitely many equivalence

classes, such that µ (r ) = µ (r ′) for all finite runs r ∼ r ′.
The behaviour of an MDPM under a strategy µ with starting state s is defined on a probability
space (Runsµ

s ,F µ
s , Prµ

s ) over the set of infinite runs ofM under µ from s . Given a random variable
over the set of infinite runs f : Runs → R, we write Eµ

s
{
f
} for the expectation of f over the runs

ofM from state s that follow strategy µ. For any MDPM and stationary strategy µ, letMµ be the
Markov chain resulting from choosing the actions inM according to µ.

2.2 ω-Regular Languages: The Requirements
A nondeterministic Büchi automaton is a tuple A = ⟨Σ,Q,q0,∆, Γ⟩, where Σ is a finite alphabet,
Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q is the set of transitions, and
Γ ⊆ Q × Σ × Q is the transition-based acceptance condition. An automaton A is deterministic if
(q,σ ,q′), (q,σ ,q′′) ∈ ∆ implies q′ = q′′ and is complete if, for all σ ∈ Σ and q ∈ Q , there is a
transition (q,σ ,q′) ∈ ∆.

A run r of A on w ∈ Σω is an ω-word r0,w0, r1,w1, . . . in (Q × Σ)ω such that r0 = q0 and, for
i > 0, it is (ri−1,wi−1, ri ) ∈ ∆. A word has exactly one run in a deterministic, complete automaton.
We write inf (r ) for the set of transitions that appear infinitely often in the run r . A run r of A
is accepting if inf (r ) ∩ Γ ! ∅. The language, denoted as LA , of automaton A (or recognised by
A) refers to the subset of words in Σω that have accepting runs in A. A language is considered
ω-regular if it is accepted by some (nondeterministic) Büchi automaton.

Linear Time Logic (LTL) is a temporal logic whose formulae describe a subset of theω-regular
languages. It is often used to specify objectives in human-readable form. Given a set of atomic
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propositions AP , a is an LTL formula for each a ∈ AP . Moreover, if φ and ψ are LTL formulae,
then so are ¬φ, φ ∨ψ , Xφ, ψ U φ. Additional operators are defined as abbreviations: ⊤ def

= a ∨ ¬a;
⊥ def
= ¬⊤; φ ∧ψ def

= ¬(¬φ ∨¬ψ ); φ → ψ
def
= ¬φ ∨ψ ; Fφ def

= ⊤Uφ; and Gφ
def
= ¬F¬φ. We writew |= φ if

ω-wordw over 2AP satisfies LTL formula φ. The satisfaction relation is defined inductively [5, 53].
If w = w0w1 . . ., and w i = wiwi+1 . . ., then w |= a if a ∈ w0; w |= ¬φ if w ̸|= φ; w |= φ ∨ψ if w |= φ
or w |= ψ ; w |= Xφ if w1 . . . |= φ; w |= ψ U φ if, for some i , w i |= φ and for all j < i , w j |= ψ .

2.3 Syntactic and Semantic Satisfaction Probabilities
Given an MDPM and an automatonA = ⟨Σ,Q,q0,∆, Γ⟩, we want to compute an optimal strategy,
i.e., a strategy µ maximising the probability that the runs ofM under µ belong to the language of
A. We define the semantic satisfaction probability for A and a strategy µ from state s as

PSemMA (s, µ ) = Pr µ
s
{
r ∈ Runsµ

s (M) : L(r ) ∈ LA
}

and

PSemMA (s ) = sup
µ

(
PSemMA (s, µ )

)
.

A strategy µ∗ is optimal for A if PSemMA (s, µ∗) = PSemMA (s ).
When using automata for the analysis of MDPs, we need a syntactic variant of the acceptance

condition. Given an MDPM = ⟨S, s0,A,T , Σ,L⟩ and an automatonA = ⟨Σ,Q,q0,∆, Γ⟩, the product
M × A = ⟨S × Q, (s0,q0),A × Q,T ×, Γ×⟩ is an MDP augmented with an initial state (s0,q0) and
accepting transitions Γ×. The function T × : (S ×Q ) × (A ×Q ) −⇁ D (S ×Q ) is defined by

T × ((s,q), (a,q′)) ((s ′,q′)) =
⎧⎪⎨⎪⎩
T (s,a) (s ′) if (q,L(s,a, s ′),q′) ∈ ∆

0 otherwise.
Finally, Γ× ⊆ (S ×Q ) × (A ×Q ) × (S ×Q ) is defined by ((s,q), (a,q′), (s ′,q′)) ∈ Γ× if, and only if,
(q,L(s,a, s ′),q′) ∈ Γ and T (s,a) (s ′) > 0. A strategy µ× on the product defines a strategy µ on the
MDP with the same value, and vice versa. Note that for a stationary µ×, the strategy µ may need
memory. We define the syntactic satisfaction probabilities as

PSatMA ((s,q), µ×) = Pr µ×

(s,q )

{
r ∈ Runsµ×

(s,q )
(M ×A) : inf (r ) ∩ Γ× ! ∅

}
PSatMA (s ) = sup

µ×

(
PSatMA ((s,q0), µ×)

)
.

Note that PSatMA (s ) = PSemMA (s ) holds for a deterministic A. In general, PSatMA (s ) ≤ PSemMA (s )
holds, but equality is not guaranteed, because optimal resolution of nondeterministic choices may
require access to future events.

An automaton A is good for MDPs (GFM), if PSatMA (s0) = PSemMA (s0) holds for all MDPsM
[37]. For an automaton to match PSemMA (s0), its nondeterminism is restricted not to rely heavily
on the future; rather, it must be possible to resolve the nondeterminism on-the-fly. In this article,
we only consider GFM automata, which have this ability. Note that every LTL property and, more
generally, every ω-regular objective can be expressed as a suitable GFM automaton [37].

An end-component of an MDP is a set C ⊆ S that satisfies the following conditions: For every
state s ∈ C , there exists an action as ∈ A(s ) such that {s ′ | T (s,as ) (s ′) > 0} ⊆ C , and the graph
formed by the vertices in C and the edges in

E = {(s, s ′) | s ∈ C and T (s,as ) (s ′) > 0}
is strongly connected. An end-component is accepting if at least one of such edges correspond to
an accepting transition and is maximal if there does not exist an end-component C ′ ⊃ C . It is
well-known (see, e.g., Reference [21]) that for every strategy the union of the end-components is
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visited with probability 1 and once an end-component, C ′, is entered there is a pure finite-state
strategy that visits its every edge infinitely many times while never leaving C ′. For ω-regular
objectives, optimal satisfaction probabilities and strategies can be computed using graph-theoretic
techniques [21] over the product structure to maximise the probability of reaching accepting end-
components.

2.4 Reinforcement Learning
A rewardful MDP is a pair (M, ρ), whereM is an MDP and ρ : S ×A→ R is a reward function. A
rewardful MDP (M, ρ) under a strategy µ determines a sequence of random rewards ρ (Xi−1,Yi )i≥1,
whereXi andYi are the random variables denoting the ith state and action, respectively. Depending
upon the problem of interest, different aggregator functions may be of interest. The reachability
objective ReachMT (s, µ ) (with T ⊆ S) is defined as

ReachMT (s, µ ) = Pr µ
s
{
s,a1, s1, . . . ∈ Runsµ

s (M) : ∃ i such that si ∈ T
}
.

For a given discount factor λ ∈ [0, 1[, the discounted reward objective DisctMλ (s, µ ) is defined as

DisctMλ (s, µ ) = lim
N→∞

E
µ
s
⎧⎪⎨⎪⎩
∑

1≤i≤N
λi−1ρ (Xi−1,Yi )

⎫⎪⎬⎪⎭ .
For the aggregator AggM where AggM ∈ {ReachMT ,DisctMλ }, we define the optimal reward

AggM∗ (s ) as the supremum of AggMσ (s ) over all strategies σ ∈ ΣM , starting from an initial state
s . A strategy σ ∈ ΣM is considered optimal for AggM if AggMσ (s ) = AggM∗ (s ) for all states s ∈ S .
For an MDPM and an aggregator AggM ∈ {Reach(T )M ,Disct(λ)M}, the optimal reward and an
optimal strategy can be computed using value iteration, policy iteration, or, in polynomial time,
using linear programming [24, 58]. However, when the transition and reward structure of the MDP
is unknown, such techniques are not applicable. In the case of MDPs with unknown transition and
reward structure, reinforcement learning (RL) [65] provides a framework to compute optimal
strategies through repeated interactions with the environment. One classical RL algorithm is the
Q-learning algorithm developed by Watkins [70].

The problem of computing an optimal strategy for the reachability probability objective can
be reduced to the problem of computing an optimal strategy for the discounted objective under
some large discount factor [24]. For this reason, we restrict our attention to algorithms for com-
puting optimal strategies for the discounted performance objective. The optimal discounted value
DisctMλ,∗ = V : S → R can be characterized [58] using the following equations:

V (s ) = max
a∈A(s )

⎧⎪⎨⎪⎩ρ (s,a) + λ
∑

s ′ ∈S
p (s ′ | s,a) ·V (s ′)

⎫⎪⎬⎪⎭ . (1)

Being a contraction, the unique fixed point of the following value improvement operator Φ : R |S | →
R |S | , defined as

Φ : F 7→ max
a∈A(s )

⎧⎪⎨⎪⎩ρ (s,a) + λ
∑

s ′ ∈S
p (s ′ | s,a) · F (s ′)

⎫⎪⎬⎪⎭ ,
gives the solution for the discounted optimality Equations (1). From the Banach fixed point theo-
rem [6], the following sequence of iteratesVt+1 (s ) = maxa∈A(s ) {ρ (s,a) + λ

∑
s ′ ∈S p (s ′ | s,a) ·Vt (s ′)},

starting from an arbitrary value functionV0 ∈ [S → R], converges to the optimal value Disct(λ)M∗ .
This sequence of iterates are often represented in the following equivalent form by using Qt (s,a)
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as the estimate for the value of a state-action pair at step t of the iteration:

Qt+1 (s,a) = ρ (s,a) + λ
∑

s ′ ∈S
p (s ′ | s,a) ·Vt (s ′) and Vt+1 (s ) = max

a∈A(s )
Qt+1 (s,a).

Let Q∗ (s,a) = limt→∞Qt (s,a) for all s,a ∈ S × A. We refer to such value associated with the
state-action pair as the Q-value or the “quality” of the pair.

The Q-learning algorithm assumes that instead of knowing the MDP beforehand, we are given
data samples of the form (st ,at , rt+1, st+1) ∈ S × A × R × S for t = 0, 1, 2, . . . such that p (st+1 |
st ,a) > 0 and ρ (st ,at ) = rt+1. The Q-learning algorithm iteratively applies the following update
to the state-action value function:

Qt+1 (s,a) =
⎧⎪⎪⎨⎪⎪⎩

(1 − αt )Qt (s,a) + αt (rt+1 + λ· max
a′ ∈A(s )

Qt (st+1,a′)), if (s,a) = (st ,at ),

Qt (s,a), otherwise,

where 0 ≤ αt < 1 is the learning-rate at the step t ≥ 0.

Theorem 2.1 (Q-learning [69]). For bounded rewards |rt | ≤ B and learning rates 0 ≤ αt < 1
that satisfy the conditions:

∞∑

t=0
αt = ∞ and

∞∑

t=0
α2

t < ∞,

we have that Qt (x ,a) → Q∗ (s,a) as t → ∞ for all (s,a) ∈ S ×A almost surely.

3 MULTI-OBJECTIVE ω-REGULAR REINFORCEMENT LEARNING
For an unknown MDP M with initial state s0 and multiple ω-regular learning objectives
(φ1, . . . ,φk ), our goal is to design a faithful and effective reward scheme under both lexicographic
and weighted preferences. In the rest of the article, we assume that the properties (φ1, . . . ,φk )
are available as GFM Büchi automata (A1, . . . ,Ak ). The challenge is to characterise a reward
function over the product space ofM and (A1, . . . ,Ak ) (independent of the probabilistic transi-
tion structure ofM) in such a way that any strategy maximising the reward function maximises
the satisfaction probabilities for the objectives under the appropriate (lexicographic or weighted)
preference.

3.1 Lexicographic Preference
Without loss of generality, we assume that the lexicographic preference order of the decision maker
is φ1 > · · · > φk , i.e., the decision maker cares about φ1 most and φk least. For two k-dimensional
vectors v = (v1, . . . ,vk ) and v ′ = (v ′1, . . . ,v

′
k ), we say that v is larger in the lexicographic order

than v ′, denoted by v > v ′, if there exists 1 ≤ i ≤ k such that vi > v ′i and vj = v ′j for all j < i . We
write v ≥ v ′ if v > v ′ or v = v ′.

For an MDPM with initial state s0 and ω-regular objectives (A1, . . . ,Ak ), the lexicographic
value PSemM, lex

A1, ...Ak
(s0, µ ) of a strategy µ and the optimal lexicographic value PSemM, lex

A1, ...Ak
(s0) are

defined as

PSemM, lex
A1, ...Ak

(s0, µ ) =
(
PSemMA1

(s0, µ ), . . . ,PSemMAk
(s0, µ )

)
, and

PSemM, lex
A1, ...Ak

(s0) = sup
µ

PSemM, lex
A1, ...Ak

(s0, µ ).

We say that µ∗ is a lexicographic optimal policy if PSemM, lex
A1, ...Ak

(s0, µ∗) = PSemM, lex
A1, ...Ak

(s0).
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Fig. 3. Reward translation from ω-regular objectives to reachability reward.

3.2 Weighted Preference
For an MDPM with initial state s0, the ω-regular objectives (A1, . . . ,Ak ), their relative weights
as a vector w = (w1, . . . ,wk ) ∈ Rk

≥0, we define weighted-value PSemM,w
A1, ...Ak

(s0, µ ) of a strategy µ

and the weighted value PSemM,w
A1, ...Ak

(s0) of the MDPM as

PSemM,w
A1, ...Ak

(s0, µ ) =

k∑

i=1
wi · PSemMAi

(s0, µ ), and

PSemM,w
A1, ...Ak

(s0) = sup
µ

PSemM,w
A1, ...Ak

(s0, µ ).

We say that µ∗ is a weighted-optimal policy if PSemM,w
A1, ...Ak

(s0, µ∗) = PSemM,w
A1, ...Ak

(s0).

3.3 Faithful and Effective Reward Translation: Single-objective Case
Bridging the gap between ω-regular specifications and RL involves translating learning objectives
into scalar rewards. This translation should ensure that an RL algorithm, focused on maximising
scalar rewards, generates a policy that maximises the probability of satisfying the specification.
We refer to this translation requirement as faithfulness. Additionally, the translation should be
effective, meaning that the formulated reward should facilitate the reliable and efficient learning
of optimal policies by mainstream RL algorithms, such as Q-learning [69].

For the single-objective setting, Figure 3 sketches the reward translation scheme (from GFM
Büchi learning objective to a reachability aggregator) from Reference [35]. In this translation, max-
imising the chance to realize an ω-regular objective given by a GFM Büchi automaton A for an
MDPM is reduced to maximising the chance to meet the reachability objective in the augmented
MDP Rζ , for ζ ∈ ]0, 1[, obtained from the product MDPM ×A by
• adding a new target state t (either as a sink with a self-loop or as a point where the compu-

tation stops; we choose here the latter view) and by
• making the target t a destination of each accepting transition τ ofM ×A with probability

1 − ζ and multiplying the original probabilities of all other destinations of an accepting
transition τ by ζ .

Theorem 3.1 (Limit Reachability Theorem [35]). For every MDPM and GFM automaton A,
the following holds:

(1) For every ζ ∈ ]0, 1[, the MDPs Rζ andM ×A have the same set of strategies.
(2) For a positional strategy µ, the chance of reaching the target t in Rζ

µ is 1 if, and only if, the
chance of satisfying the Büchi objective in (M × A)µ is 1, i.e., ReachR

ζ

t ((s0,q0), µ ) = 1 ⇔
PSatMA ((s0,q0), µ ) = 1.
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(3) There is a ζ0 ∈ ]0, 1[ such that, for all ζ ∈ [ζ0, 1[, an optimal reachability strategy µ for Rζ is
an optimal strategy for the Büchi objective inM ×A.

To solve the reachability problem (an undiscounted reward maximisation problem) using Q-
learning, one can exploit the concept of Blackwell-optimal strategies. Given an MDPM, we say
that a strategy µ is Blackwell-optimal if there exists a λ0 ∈ ]0, 1[ such that µ is λ-discount optimal
for all λ ∈ ]λ0, 1[. Moreover, if M has n states and all transition probabilities are rational with
numerator and denominator bounded from above by M , then λ0 is bounded from above by 1 −
((n!)222n+3M2n2

)−1 [2, 42, 50]. The following theorem enables the application of Q-learning for
discounted reward problem for total-reward when total rewards are bounded.

Theorem 3.2 (Blackwell-Optimality [49]). Let M be an MDP and ρ : S × A → R be a
reward function such that for every strategy µ ofM the expected total reward is finite; then, every
Blackwell-optimal strategy is total-reward optimal.

Since the aforementioned reward scheme can be reduced to total reward objectives with
bounded expected total reward, Q-learning can be applied with discount factor left as a
hyperparameter.

3.4 Problem Definition
The key technical problem of this article concerns the design of faithful and effective reward
schemes for multi-objectiveω-regular specifications with lexicographic and weighted preferences.
We reduce multiple Büchi objectives under both the lexicographic and weighted preferences to
weighted reachability objectives defined via a product automaton constructed from the GFM au-
tomata A1, . . . ,Ak , and some other auxiliary information. We introduce an intermediate objec-
tive, the weighted-Büchi automaton, and show reductions to it from lexicographic and weighted
ω-regular objectives in Section 4. We then show how to reduce a weighted-Büchi automaton to
weighted reachability, which can then be learned with RL, in Section 5.

4 MULTIPLE ω-REGULAR SPECIFICATIONS TO WEIGHTED BÜCHI AUTOMATA
This section presents a reduction technique that transforms lexicographic and weighted ω-regular
objectives into a weighted-Büchi automaton. The reduction involves constructing a product au-
tomaton P using the GFM automataA1, . . . ,Ak , along with additional auxiliary information. We
start by focusing on lexicographic ω-regular objectives.

4.1 From Lexicographic Preference to Lexicographic-Büchi Automaton
In a first step, we discuss reductions from lexicographic ω-regular objectives, given as GFM
Büchi automata, to a GFM automaton with lexicographic Büchi condition. We call such automata
lexicographic-Büchi.
Lexicographic-Büchi Automata. A lexicographic-Büchi automaton is an ω-automaton A =
⟨Σ,Q,q0,∆, Γ⟩ along with a valuation function v : Γ → Bk , which maps each accepting transition
to a k dimensional Boolean vector different from the 0⃗ vector. In our reduction the dimensions
will correspond to the Büchi objectivesA1, . . . ,Ak and the valuation function will indicate corre-
sponding acceptance transitions. Let us first provide semantics for lexicographic-Büchi acceptance
conditions. For convenience in the proofs, we provide two: The independent semantics and the in-
fimum semantics. We will show that we obtain the correct results, irrespective of which semantics
we use, for the translations we suggest: Both semantics provide the same value for the extended
product automaton we define.
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• The infimum semantics assigns to any run, r , the value according to the “worst accepting
transition” seen infinitely many times in r . Namely, to the set IA = inf (r ) ∩ Γ of accepting
transitions visited infinitely many times along r , it assigns the 0⃗ vector if IA is empty, and
otherwise the lexicographically minimal vector in {v (t ) | t ∈ IA}.
• The independent semantics treats all Büchi conditions independently: Using it, a run would

be assigned a Boolean vector (b1,b2, . . . ,bk ), where bi = 1 if there is a transition t ∈ IA such
that the ith component of v (t ) is 1.

Key Reduction. We assume that the individual ω-regular objectives are given by k GFM Büchi
automataA1, . . . ,Ak . From these automata, we discuss a construction to an equivalent extended
product automaton P, where equivalence means that, for all finite-state strategies, the value that
can be obtained using the k GFM automata for the properties, and the infimum semantics and the
independent semantics provide the same results.

Definition 4.1 (Product Automaton P). Given GFM Büchi automata A1, . . . ,Ak , with Ai =
(Σ,Q i ,qi

0,∆
i , Γi ), we define their product automaton P = (Σ,Q,q0,∆, Γ,v ), where:

• Q =×k
i=1 (Q i × B)

• q0 = (q1
0, 0;q2

0, 0; . . . ;qk
0 , 0)

• ∆ = Γ ∪ ∆′, where the non-accepting transitions ∆′ are defined independently for the k
components: For the ith component,
– ((q, 0),σ , (q′, 0)) is possible iff (q,σ ,q′) ∈ ∆i \ Γi (i.e., iff (q,σ ,q′) is a non-accepting

transition of Ai ),
– ((q, 0),σ , (q′, 1)) is possible iff (q,σ ,q′) ∈ Γi (i.e., iff, (q,σ ,q′) is an accepting transition

of Ai ),
– ((q, 1),σ , (q′, 1)) is possible iff (q,σ ,q′) ∈ ∆i (i.e., iff (q,σ ,q′) is a transition of Ai ), and
• for all transitions (q1,b1; . . . ;qk ,bk ;σ ;q′1,b ′1; . . . ;q′k ,b

′
k ) ∈ ∆′ with∑k

i=1 b
′
k ! 0, Γ contains a

transition t = (q1,b1; . . . ;qk ,bk ;σ ;q′1, 0; . . . ;q′k , 0) (obtained by replacing all Boolean values
in the target state by 0), with v (t ) = (b ′1,b

′
2, . . . ,b

′
k ); Γ contains no further transitions.

That is, ∆′ simply collects the information, which of the individual accepting transitions has
been seen since the last transition from Γ has been taken. Taking a transition from Γ then “cashes
in” on these transitions, while resetting the tracked values to 0. As a minor optimisation, we remove
the states×k−1

i=0 Q i × {1} together with the transitions that lead to them. This can be done as there
is never a point in delaying to cash in on these transitions. Offering such additional choices that
should never be taken would likely impede, rather than help, learning.

Correctness. We now state and prove the correctness of the reduction.

Theorem 4.2. Given an MDP M and k ω-regular objectives given as GFM Büchi automata
A1, . . . ,Ak , it holds that maximising these k objectives with lexicographic order, and maximising
them with the product automaton P defined in Definition 4.1 with infimum or independent semantics
provides the same result.

Proof. It follows from Reference [22] that pure finite-memory strategies suffice for MDPs with
lexicographic Büchi objectives. We therefore fix an arbitrary finite-memory strategy µ for the
control of the MDPM with lexicographic Büchi objectives, obtaining a Markov chainMµ . Note
that this is only a control for the MDP, not of the witness automaton P.

We first turn any pure strategy for P with independent semantics into a strategy for the in-
dividual Ai , which yields the same expected vector for every run (and thus the same expected
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probability vector). This is quite simple: Every individual Ai can simply behave like its compo-
nent in P. On every run, if the ith component of the lexicographic vector is 1, then Ai has seen
infinitely many accepting transitions.

Next, we turn k individual pure finite-memory strategies for the individual Ai into a strategy
for P and evaluate it with the infimum semantics. For this, the automaton essentially follows the
component strategies, and only has to additionally decide when to “cash in.” P will make this
choice whenever all individual automata have reached an end-component on the product ofMµ
and the automaton, and, for all Ai that are in an accepting end-component, the Boolean store
in the ith component is set to 1, or would have been set in this move. Note that this means that
v (t ) in this case indicates all those components, for which the individual Ai is in an accepting
end-component whenever an accepting transition occurs. In situations where none of the Ai are
in an accepting end-component, we do not utilise accepting transitions. Apart from this, accepting
transitions are used only when all Boolean values would otherwise be 1 (as cashing in becomes
obligatory in such cases).

With this strategy, the valuation can only differ from the individual valuations of theAi if either
(at least) one of theAi -s never reaches an end-component, or if it eventually reaches an accepting
end-component, but only visits accepting transitions finitely often. As both of these events have
probability 0, the expected vectors are the same for the individualAi and for P with this strategy.
Finally, for every strategy the expected value for the independent semantics is at least as high as
the value for the infimum semantics. "

4.2 From Lexicographic-Büchi Objective to Weighted-Büchi Automaton
In this section, we observe that the previous theorem translates smoothly to a scalar version of the
previous translation.
Weighted-Büchi Automata. A weighted-Büchi automaton is an ω-automaton A =
⟨Σ,Q,q0,∆, Γ⟩ along with a weight function w : Γ → R, which maps each accepting transition
to a positive weight. As in the lexicographic-Büchi condition, the value of a run is 0 if no accept-
ing transition occurs infinitely often. If accepting transitions do occur infinitely often, and they do
occur in the order t1, t2, t3, . . . ∈ Γω , then the value of the run is lim infn→∞ 1

n
∑n

i=1w (ti ).
For a linear function f : Rk → R with only positive coefficients (i.e., linear functions

that grow strictly monotonically in each dimension), the weighted-Büchi automaton Pf =
(Σ,Q,q0,∆, Γ, f ◦v ) is such that Σ,Q , q0, ∆, Γ, andv are identical to the product automaton P from
Definition 4.1.

Theorem 4.3. Given an MDP M and k lexicographic ω-regular objectives given as GFM Büchi
automata A1, . . . ,Ak , it holds that maximising these k objectives, weighted by some f : Rk → R
with only positive coefficients, and maximising them with the automaton Pf provides the same result.

Proof. The proof of Theorem 4.2 merely needs to be extended by the observation that, for
every run r , with value b+ in the independent semantics, b− in the infimum semantics, and wf
in the weighted semantics, f (b+) ≥ wf ≥ f (b−) holds. Recalling that the same expected vectors
can be obtained using the individual Ai , P with independent semantics, and P with infimum
semantics, all these maximisations provide the same result. "

Lemma 4.4. Let µ be any optimal finite-memory strategy forM × Pf . Then (M × Pf )µ never has
two transitions t , t ′ ∈ Γ with v (t ) ! v (t ′) in an end-component reachable from its initial state.

Proof. Assuming such transitions t and t ′, the strategy can be improved by playing an adjusted
strategy that mimics the strategy in the end-component (once reached), except that it only plays an
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accepting transition when all Boolean values that occur in this end-component in the independent
semantics, are set. As this increases the expected reward, it contradicts the optimality of the end-
component. "

Corollary 4.5. There exists optimal pure memoryless strategies forM × Pf .

We complete this reduction by showing that, for carefully chosen f , optimising the expected
reward provides an optimal policy for P (for both semantics).

Theorem 4.6. For a given MDP M and k GFM Büchi automata A1, . . . ,Ak , there is a linear
function f such that an optimal pure strategy for M × Pf is also optimal on M × P. (Note that
M × P andM × Pf have the same states and strategies, and that Lemma 4.4 entails that the value
for both semantics of P is the same.)

Proof. Since the set of positional strategies is finite, there is a minimal difference pmin > 0
between the probabilities to achieve an individual objective by any two positional strategies with
a different probability of meeting this objective.

Let fk = 1, pick any fi ≥ (1 + 1/pmin) fi+1 for all i < k , and let −→f = ( f1, f2, . . . , fk ). Now,
consider any two positional strategies that obtain probability vectors of satisfying the properties
−→p = (p1,p2, . . . ,pk ) and −→p ′ = (p ′1,p

′
2, . . . ,p

′
k ), respectively, such that −→p > −→p ′. We claim that the

value of −→p ·−→f T is at least pmin higher than −→p ′ ·−→f T . This is because, assuming that the ith position
is the first one where −→p and −→p ′ differ, we get

−→p · −→f T − −→p ′ · −→f T ≥ pmin fi −
∑

j>i
fj ≥ pmin (1 + 1/pmin) fi+1 −

∑

j>i
fj

= pmin fi+1 −
∑

j>i+1
fj ≥ · · · ≥ pmin fk = pmin.

Moreover, if ∑k
i=1 fi · ε < pmin, then using the weights of −→f for the reachability will guarantee

that a strategy with a better performance obtains a better value and, in particular, only optimal
strategies can obtain the highest value. "

4.3 From Weighted Preference to Weighted-Büchi Automaton
We now discuss the reduction of k GFM Büchi automata A1, . . . ,Ak with preference given by
weight vector w = (w1, . . . ,wk ) to a weighted-Büchi automaton Pf . This reduction is direct. The
automaton Pf = (Σ,Q,q0,∆, Γ, f ◦v ) is such that Σ, Q , q0, ∆, Γ, and v are identical to the product
automaton P from Definition 4.1, and f (v ) = wTv .

Theorem 4.7. Given an MDP M and k ω-regular objectives given as GFM Büchi automata
A1, . . . ,Ak with weighted preference given by weight vector w = (w1, . . . ,wk ), it holds that max-
imising the weighted preference objective, and maximising them with the weighted-Büchi automaton
Pf provide the same result.

Proof. The proof of Theorem 4.2 can be extended to establish this result. As mentioned in Ref-
erence [22], pure finite-memory strategies are sufficient for MDPs with weighted preference Büchi
objectives. When translating an optimal pure finite-memory policy for the weighted preference ob-
jective to the automaton Pf , the decision to “cash in” is done by waiting for the end-components
on the product to be reached, and selecting for Ai that are in that accepting end-component. An
optimal pure strategy on Pf can be translated back for the individualAi by having it behave like
its respective component in Pf . "
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Fig. 4. Adding transitions to the target (T ) in the augmented product MDP. The only edges that give non-
zero reward are marked with a transition dependent +R (·) reward. In the original translation [35], all such
rewards were equal to 1.

4.4 Combining Lexicographic and Weighted Preferences
Using the results from this section, one can combine a lexicographic ordering between levels of
importance, while—within each level—allowing for fixed weights between properties.

Definition 4.8 (Lexicographic-Weighted ω-regular RL). Given an MDP M with un-
known transition structure and ℓ sets of ki (for i = 1, . . . , ℓ) GFM Büchi automata
A1,1, . . . , A1,k1 ; . . . ;Aℓ,1, . . . ,Aℓ,kℓ accepting ω-regular objectives φ1,1, . . . ,φ1,k1 ; . . . ;
φℓ,1, . . . ,φℓ,kℓ , compute a strategy optimal for the lexicographic weighted ω-regular objective
(A1,1, . . . ,A1,k1 ; . . . ; Aℓ,1, . . . ,Aℓ,kℓ ), that is, a strategy that maximises according to the
lexicographic order of the vector (

∑k1
i=j p1, jw1, j ; . . . ; ∑kℓ

j=1 pℓ, jwℓ, j ), where pi, j = PSemMAi, j
(s0) is

the probability thatM satisfies φi, j andwi, j > 0 is a weight that describes the relative importance
of φi, j within the ith level.

The above problem can be solved with the methods developed so far by selecting suitable
weights for each automaton. As before, this can be done by scaling the weights by sufficiently
large factors to ensure a lexicographic separation is achieved. The proofs from the previous sec-
tions extend fairly easily to this case.

5 FROM WEIGHTED-BÜCHI AUTOMATA TO WEIGHTED REACHABILITY
Generalizing the construction for GFM Büchi automata from References [35, 37], we replace the
fixed payoff of +R (·) = 1 used in the gadget (cf. Figure 4) by a transition dependent payoff f (v (t )).
The gadget is otherwise unchanged: It takes the original transition with probability ζ , and moves,
with a probability of 1 − ζ , to a sink state T—providing a payoff of f (v (t ))—where the run ends.
The payout on these transitions is the only reward that exists in this game, while ζ is a hyperpa-
rameter. This modification transforms the problem into a generalised reachability scenario, where
the payout occurs only in the last step.

Theorem 5.1. Given an MDPM and a weighted-Büchi automaton Pf there is a ζ0 < 1 such that,
for all ζ ∈ [ζ0, 1), the optimal strategies obtained from replacing the accepting transitions inM ×Pf
by the gadget, are optimal forM × Pf .

Proof. We start with expanding the observation from Lemma 4.4 about end-components in
optimal solutions to the weighted reachability objective obtained using this gadget: In both MDPs
under consideration,M × Pf and the variation where accepting transitions are replaced by the
gadget, there cannot be two t , t ′ ∈ Γ withv (t ) ! v (t ′)—if there were, the expected payoff could be
improved as described in the proof of Lemma 4.4.

This leaves the expected difference to be purely down to the part before reaching an end-
component. Moreover, for every positional strategy, the expected value of the undiscounted payoff
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Table 1. Multiobjective Q-learning Results

Name prop. ord. states prod. prob. time f w ζ ε α tol ep-l ep-n
Bet 1, 2 25 400 0.71,0.68 3.25 — (0.5,0.5) 0.95 0.2 0.1⋆ 0 60k
Bet 1, 2 25 400 0.84,0.44 8.11 — (0.7,0.3) 0.95 0.2 0.07⋆ 0 150k
R 4×4 1, 2, 3 16 1024 1,0,1 6.37 — 0.7 65k
R 4×4 2, 1, 3 16 1024 1,0,1 1.95 — 0.7 0.03 75k
R 5×5 1, 2, 3 25 1600 1,1,1 12.49 — 0.5 0.2 0.4⋆ 0 250 200k
R 4×7 1, 2, 3 28 3584 1,0.75,0.25 23.18 20 — 0.9 0.2 0.9⋆ 0 400 100k
R 4×7 2, 1, 3 28 3584 1,0.5,0 10.62 20 — 0.7 0.2 0.15 200 200k
R 4×7 1, 2, 3 28 3584 1,0.5,1 11.90 — (20,1,1) 0.7 0.2 0.9⋆ 0 400 150k
Virus 1, 2 809 58248 1,0 41.43 — 0.97 0.5 0.2 50 150k
Virus 2, 1 809 58248 1,0.25 191.97 — 0.97 0.5 0.9⋆ 50 700k
UAV 1, 2 11,448 732672 1,1 93.57 20 — 0.2 40 120k
Bridges 1, . . . , 7 19 5318784 — 3.55 — (1,. . . ,1) 0.9 0.2 30k
Tracking 1, 2 41,472 497664 1,1 97.35 — 0.3 0.1 0 100 300k
Blank entries indicate that the default values were used. The default values are: f = 10, ζ = 0.99, ϵ = 0.1, α = 0.1,
tol = 0.01, ep-l = 30, and ep-n = 20,000. The w column indicates the weights used in a non-lexicographic weighting.
Parameters that were linearly decayed to zero over training are indicated with ⋆. For Bridges the sum of the
probabilities of satisfaction of the seven properties is 6. Times are in seconds.

is between the value obtained by removing the payoff for the gadgets not in an end-component,
and increasing the payoff for these gadgets to the maximal payoff. As the expected difference be-
tween these two extremes approaches 0 as ζ approaches 1, for sufficiently large ζ < 1, optimal
strategies for weighted reachability in the model with gadgets also serve as optimal strategies for
the mean payoff objective ofM × Pf . "

We note that weighted reachability lacks the contraction property [58, 65], which makes it the-
oretically unsuitable for Q-learning. Learners often wrap reachability (and undiscounted payoff)
into a discounted version thereof. This adds another parameter γ , which should be chosen signifi-
cantly closer to 1 than ζ [e.g., 1 − (1 − ζ )2].

6 EXPERIMENTAL RESULTS
We implemented the construction described in Sections 4 and 5 in Mungojerrie [39], a C++ tool
that reads MDPs described in the PRISM language [47] and ω-regular automata written in the
HOA format [3]. In our implementation, we have introduced a component known as the “tracker,”
which keeps track of the accepting edges observed for each property. Our implementation is done
on-the-fly, where we keep track of the states of the MDP, the automata, and the tracker, separately
and compose them together at each timestep. The agent has additional actions to “cash in” and to
control any nondeterminism in the automata.

6.1 Experimental Setup
We conducted a series of experiments using Q-learning on various case studies, and the results are
presented in Table 1. The table provides details about each example, including the prioritisation
order of properties, the number of states in the MDP and the product, the probability of satisfaction
for each property under the learned strategy, and the execution time in seconds.

We also report the values of the parameter f (which encodes the linear function for −→f = ( f , 1)

from Section 4.2 when we have two objectives, and for −→f = ( f 2, f , 1) when we have three),
the weight vector w used if the weights used are not of this form, the parameter ζ , the explo-
ration rate ε , and the learning rate α . The discount factor γ was 0.999 for all the examples in
Table 1.
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Fig. 5. Learned strategy on the 4 × 7 Robot grid with property prioritisation order 2, 1, 3. We show only
reachable states and project the states in the product to the MDP. The “cash in” action is not shown for
clarity.

The table also shows the relative difference under which action values are considered the same
during model checking of the learned strategy (tol), the maximum number of timesteps between
accepting edges before the episode is reset (ep-l), and the number of training episodes (ep-n). Pa-
rameters were tuned manually to minimise training time. All experiments were performed on a
machine running Ubuntu with an Intel i7-8750H processor and 16 GB of RAM. The runtime for
each experiment remained below 4 min, and the memory usage did not exceed 1 GB.

6.2 Case Studies
Next, we provide a short discussion for each case study in the table.
Double Bet (Bet). For the double bet example in the introduction, we use Q-learning with ζ = 0.9,
ε = 0.2, α = 0.06 linearly decayed to 0 over training, tol = 0, γ = 0.995, ep-l = 30, and ep-n = 500k
with various values for a. The objectives in LTL are:

(υ1) G¬h1: Coin 1 is never heads.
(υ2) Fh2: Coin 2 is eventually heads.

Figure 1 shows the learned Pareto curve showing the maximal probabilities of satisfaction obtain-
able for each property.
Robot (R 4×4, R 5×5, and R 4×7). For the robot example from the introduction in Figure 2
with p = 0.5, we have considered instances for the three scenarios discussed there, with different
priorities of them. On examples R 4× 4 and R 5× 5, we initialise learning episodes randomly
within the model to deepen exploration to achieve better performance. On the R 4×7 example
with property 1 given the highest priority and properties 2 and 3 given the same priority, we give
a weighting of ( f , 1, 1) with f = 20. The results are in line with the analysis provided in the
introduction. Figure 5 shows an optimal strategy learned for the 4 × 7 Robot grid with property
prioritisation order 2, 1, 3.

To avoid clutter, we show only states that are reachable under the learned strategy and do not
show the “cash in” action. Additionally, we project states in the product to the MDP. The robot
starts in Row 0, Column 3 and moves up the column. Then, in Row 3, Column 3 it attempts to go
across. With probability 0.5, it gets stuck in Row 3, Column 4. There are no safe actions from this
field except to move north—keeping the robot in the same field. If it gets across to Row 3, Column 5,
then it moves down and repeatedly visits the fields labelled 3 and 4.
Computer Virus (Virus). This case study, based on Reference [48], focuses on the spread of a
virus in a computer network. The structure of the model is depicted in Figure 6, where circles
represent network nodes and lines represent network connections through which the virus can
spread. In this scenario, an attack has a probability of 1 − pdetect = 0.5 of bypassing the firewall.
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Fig. 6. Network model for virus spread in computer networks.

If an attack successfully bypasses the firewall, then it can infect the network with a probability of
pinfect = 0.5. The control of the attacks is centralised, and there is always a no-operation action
available. The instance coordinating the attack has the following objectives:

(v1) Fs3,2 = 2∧G((s3,2 = 2 ∧ s3,1 ! 2) =⇒ XXs3,1 = 2): Eventually, node (3, 2) gets infected;
and when (3, 2) is infected and (3, 1) is not, (3, 1) is infected within 2 steps.

(v2) Fs1,1 = 2∧G(s2,2 ! 2 ∧ s2,3 ! 2): Eventually node (1, 1) gets infected while nodes (2, 2) and
(2, 3) never get infected.

When the prioritisation order is 1, 2, the optimal strategy crosses the barrier formed by nodes
(2, 2) and (2, 3) to infect node (3, 1) before node (3, 2). When the prioritisation order is 2, 1, then
the optimal strategy respects the barrier formed by nodes (2, 2) and (2, 3), and follows the path
through node (3, 1) to (1, 1). This reduces the probability of satisfying v1 from 1 to 0.25. This
problem is particularly challenging, because it requires discovering a long sequence of actions and
the properties interfere with each other during learning.
Human-in-the-Loop UAV Mission Planning (UAV). This model (originally from Reference [25]),
considers the control of an unmanned aerial vehicle (UAV) interacting with a human operator. The
UAV operates on a network of connections. In this network, waypoints (wi ) are specified as well as
restricted operation zones (rozi ). In specifications, waypoints serve as places that shall be visited
(once or repeatedly), while restricted operation zones shall be avoided. In our experiments, we
have used the following properties.

(u1) ∧i G¬rozi : UAV never visits a restricted operation zone.
(u2) Fw1 ∧ Fw2 ∧ Fw6: UAV eventually visits w1, w2, and w6.

Seven Bridges of Königsberg (Bridges). We also consider the classic problem of the seven
bridges of Königsberg [23], in which one seeks a path that crosses each bridge exactly once. It
has been shown that the configuration of the bridges limits one to cross at most six bridges ex-
actly once. The model is deterministic, and we have seven properties of the form

(νi ) Fbi ∧ G(bi → XG ! bi ): Cross bridge i exactly once.
where bi indicates if one is on bridge i . Instead of applying a preference for each property (bridge),
we give each an equal weighting of 1. In this setting, payoff is maximised when the sum of the
probability of satisfaction of all properties is maximised, e.g., the agent maximises the expected
number of bridges crossed exactly once. The RL agent successfully finds strategies to cross six
bridges exactly once, the maximum number possible.
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Fig. 7. Approximate Pareto curve for the blackjack example, computed via learning.

Tracking (Tracking). In this model, a spotlight needs to track the random movements of an object
in a grid, while being confined to the grid’s border cells. The two specifications are

(v1) FGb : Eventually dwell in the border cells b forever,
(v2) GFh : Have the spotlight hit the object infinitely often.

This combination of objectives is satisfied by many strategies, which accounts for the relative
speed with which a strategy is learned in this case.
Blackjack (Blackjack). This case study is a slightly simplified game of blackjack. We examine
the combination of two objectives:

(v1) Fw : Win the game,
(v2) F¬l : Do not lose the game.

Different strategies maximise the probability of winning and the probability of not losing (which
includes drawing the game). By assigning weights to these objectives, one may explore a spectrum
of strategies from the most cautious to the most aggressive.

We approximate the Pareto curve by using Q-learning with ζ = 0.5, ε = 0.9, α = 0.3 decayed
linearly to 0 over training, tol = 0, γ = 0.995, ep-l = 20, and ep-n = 1,000k . We weight the
objective for winning with a and the objective for drawing with 1−a, for 15 equally spaced values
of a between 0.01 and 0.99. The MDP in this example has 3,829 states and the product has 61,264
states. Learning took approximately 25 s per point.

6.3 Discussion
The experimental results demonstrate the feasibility of our reward translation approach for han-
dling multi-objective ω-regular specifications in tabular learning settings. Table 1 shows that the
running time for each example is only weakly correlated with the number of states in that exam-
ple. Instead, we find that the running time is more closely related to the difficulty of discovering
the correct strategy. In learning optimal strategies for multiple objectives, our technique is able to
discover unintuitive strategies (Figure 5) and learn approximate Pareto curves (Figures 1 and 7).

7 RELATED WORK
MDP Optimisation. The study of optimal control problems for MDPs under various performance
objectives is a well-established area of research, as discussed in Reference [58]. For a given MDP
and a specific performance objective such as total reward, discounted reward, or average reward,
the optimal expected cost can be characterised using Bellman equations. Furthermore, an optimal
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strategy can be computed using dynamic programming techniques like value iteration, policy iter-
ation, or linear programming [58]. Chatterjee, Majumadar, and Henzinger [17] considered MDPs
with multiple discounted reward objectives. In the presence of multiple objectives, the trade-offs
between different objectives can be characterised as Pareto curves. The authors of Reference [17]
showed that every Pareto optimal point can be achieved by a memoryless strategy and the Pareto
curve can be approximated in polynomial time. Moreover, the problem of checking the existence
of a strategy that realises a value vector can be decided in polynomial time. These multi-objective
optimisation problems were studied in the context of multiple long-run average objectives by
Chatterjee [15]. He showed that the Pareto curve can be approximated in polynomial time in the
size of the MDP for irreducible MDPs and in polynomial space in the size of the MDP for general
MDPs. Additionally, the problem of checking the existence of a strategy that guarantees values
for different objectives to be equal to a given vector is in polynomial time for irreducible MDPs
and in NP for general MDPs.
Probabilistic Model Checking. Verification of stochastic systems against ω-regular re-
quirements has received considerable attention [5, 47]. For systems modelled as MDPs and
requirements expressed using ω-regular specifications, the key verification problem “probabilistic
model-checking” is to compute optimal satisfaction probabilities and strategies. The probabilistic
model checking problem can be solved [21] using graph-theoretic techniques (by computing
so-called accepting end-component and then maximising the probability to reach states in such
components) over the product of MDPs and ω-automata. Etessami et al. [22] were the first to
study the multi-objective model-checking problem for MDPs with ω-regular objectives. Given
probability intervals for the satisfaction of various properties, they developed a polynomial-time
(in the size of the MDP) algorithm to decide the existence of such a strategy. They also showed
that, in general, such strategies may require both randomisation and memory. That article also
studies the approximation of the Pareto curve with respect to a set of ω-regular properties in
time polynomial in the size of the MDP. Forejt et al. [27] studied quantitative multi-objective
optimisation over MDPs that combines ω-regular and quantitative objectives. Those algorithms
are implemented in the probabilistic model checker PRISM [47].
Reward Translation in RL. RL has recently been applied to finding optimal control forω-regular
objectives [10, 28, 35, 37, 40, 41, 46, 60], but all of theses papers deal with a single objective. Re-
cently, Reference [9] considered using RL to perform the lexicographic maximisation of a safety
property, followed by an ω-regular objective, followed by a discounted reward objective. The ap-
proach of Reference [9] (and, more recently, of Reference [64]) uses multiple tables from Q-learning
to gate the allowed actions for optimising a particular objective based on higher priority objectives.
This does not allow the use of multiple ω-regular objectives, since multiple ω-regular objectives
may require additional memory, which we supply in our construction. In this way, the results
of Reference [9] are complementary to ours. Our method allows an arbitrary number ofω-regular
objectives with arbitrary (potentially non-lexicographic) weights that can be combined into a sin-
gle reward. By treating this combination as a single objective at the highest priority, one can use
the method of Reference [9] to add a discounted reward objective at the lowest priority. The result-
ing policy lexicographically optimises the weighted/lexicographic ω-regular objectives followed
by the discounted reward objective, which follows from the results of Reference [9].
Safety in RL. Correct-by-construction synthesis, as described in Reference [5], is an approach to
the design of safety-critical systems that emphasises the integration of formal proof-of-correctness
with the automatic refinement of formal specifications. This approach considers the environment
as adversarial and employs tools from competitive game theory to design theoretically optimal,
if over-cautious, systems. In contrast, RL provides an alternative perspective on the environment,
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treating it as a stochastic player with an unknown strategy. RL employs adaptive sampling-based
techniques to converge toward an optimal policy while adapting to changes in the environment.
However, RL relies on the Markovian assumption and lacks guarantees on system safety during
the learning process. Shielding, as introduced in References [1, 45], combines the benefits of
correct-by-construction synthesis and RL. It integrates guarantees from correct-by-construction
synthesis with the adaptive nature of RL. Although lexicographically ranked objectives often
prioritise safety components in specifications, it’s important to note that our work does not
specifically address the concept of safe learning. Safe learning focuses on developing learning
approaches that avoid violations of safety objectives even during the training phase, as explored
in References [1, 14, 30, 43, 57, 63].

8 CONCLUSION
This article generalises a recent work on applying reinforcement learning to finding optimal con-
trol for MDPs withω-regular objectives to address the problem of controlling MDPs with multiple
ω-regular objectives with lexicographic and weighted preferences. Starting with good-for-MDPs
automata, the extension is surprisingly simple: It suffices to add a “tracker” to the product of the
individual automata, which memorises which of the individual Büchi conditions have occurred
and to allow the automaton to “cash in” on these occurrences (while resetting the memory). How
valuable the return is depends on the objectives, for which a good event (the passing of an indi-
vidual Büchi transition) has been witnessed, where the main objective attracts a high reward and
each consecutive objective obtains a small fraction of the reward assigned to the previous more
important one. Such a reward structure can be proven to work for reinforcement learning in essen-
tially the same way as it has been proven to work for the simpler case of having a single objective
(which is also a special case of our results).

This reduction is beautifully straightforward, and our experimental results show that it is also
effective. This might look surprising: After all, the correctness proofs rely heavily on well chosen
hyperparameters. Yet, in practice, the techniques have yet again shown to be robust: We could
learn correct strategies reliably and efficiently.
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