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Abstract—Intracortical brain computer interfaces (iBCIs) uti-
lizing extracellular recordings mainly employ in vivo signal
processing application-specific integrated circuits (ASICs) to
detect action potentials (spikes). Conventionally, “brain-switches”
based on spiking activity have been employed to realize asyn-
chronous (self-paced) iBCIs, estimating when the user involves
in the underlying BCI task. Several studies have demonstrated
that local field potentials (LFPs) can effectively replace action
potentials, drastically reducing the power consumption and
processing requirements of in vivo ASICs. This article presents
the first LFP-based brain-switch design and implementation
using gated recurrent neural networks (RNNs). Compared to
the previously reported brain-switches, our design requires no
exhaustive learning phase for the estimation of optimal recording
channels or frequency band selection, making it more applicable
to practical asynchronous iBCIs. The synthesized ASIC of the
designed in vivo LFP-based feature extraction unit, in a standard
180-nm CMOS process, occupies only 0.09 mm? of silicon area,
and the post place-and-route synthesis results indicate that it
consumes 91.87 nW of power while operating at 2 kHz. Compared
to the previously published ASICs, the proposed LFP-based
brain-switch consumes the least power for in vivo digital signal
processing and achieves comparable state estimation performance
to that of spike-based brain-switches.

I. INTRODUCTION

Over the past decade, researchers have investigated the
activities of individual neurons concerning their neighboring
neurons and their response to various stimuli [1f], [2]]. Neurons
communicate by firing electrical pulses, called action poten-
tials (APs) or spikes. The electrical activity of neurons can
be measured and recorded by multi-electrode arrays (MEAS).
Each intracortical electrode implanted in the motor cortex
records extracellular electrical activity from a relatively small
population of neurons within a few hundred micrometers
of the neuron closest to the tip of the electrode [3[]. This
measurement is often contaminated with ambient noise and
technical artifacts, such as instrumentation noise. The mea-
sured electrical activity inside the gray matter of the brain
can be used for muscle control, sensory perception (such as
seeing and hearing), as well as speech, decision making, and
self-control.

The intracortical brain-computer interfaces (iBCls) predom-
inantly quantify the neural activity of the brain using multi-
unit activities (MUASs). Neural spikes embedded in the MUAs
are detected and separated from the background noise by
comparing the recorded and filtered voltage waveforms with
a threshold, commonly considered as the scaled value of
the background noise. Neighboring neurons often fire spikes
of similar shape and amplitude; however, relative to their
distances to an electrode’s tip, the shape of spike waveforms
may differ among neurons. This fact allows the spiking

activity of individual neurons to be separated through the
spike sorting process [4]]. It has already been demonstrated
that robust iBCIs can be implemented without employing
computationally-daunting spike sorting [S]-[9]. In this case,
all threshold crossings (TCs) of the recorded and filtered
voltage waveforms associated with an electrode (channel)
are treated as spikes from one putative neuron. Instead of
transmitting spike waveforms for offline neural decoding and
control, transmitting the number of spikes over a given time
window as the feature of interest would dramatically reduce
the transmission data rate and power consumption [10].

Although spike-based decoding is commonly employed,
various studies have shown that LFP signals can alternatively
be used for neural decoding [11]]-[13]]. In LFP-based decoding
studies, the spectral power is the most commonly employed
metric to quantify the neural activity. This is predicated on
historical findings indicating a correlation between changes in
the neural signal band power and different physiological states,
such as oscillations in the gamma band (30 — 90 Hz) during
sleep in humans [|14]], [15]. Similarly, the power in the beta
band (15 — 35 Hz) has been linked to movement preparation
[16].

Depending on the timing and nature of the interaction
between the user’s brain activity and the iBCI system, two
paradigms exist. In synchronous iBCls, the user’s neural ac-
tivity is processed within a predefined schedule, such as when
the user is instructed to perform the underlying BCI task, such
as motor imagery or concentration on a specific stimulus.On
the other hand, asynchronous iBCIs allow the user to initiate
actions at their own pace without being restricted to specific
time intervals or cues. Asynchronous iBCls aim to offer a
more natural and flexible brain-computer interaction.However,
to support a self-paced iBCI, the system needs to continuously
monitor the user’s brain activity. Compared to synchronous
BClIs, asynchronous iBCls are better suited for applications
where users require continuous control, such as prosthetic
control.

Over the last decade, synchronous iBCls and the decoding
of information, such as movement kinematics (i.e., direction,
velocity, etc.), from recorded extracellular signals have re-
ceived considerable attention. However, the efficient realiza-
tion of the asynchronous iBCIs and addressing the need to
detect when a user desires to use a prosthetic or assistive
device have remained relatively understudied. A two-state
“active/inactive” “brain-switch” [17]-[20] continuously mon-
itors neural signal features to detect whether the user would
like to engage in the underlying BCI activity. Consequently,
it only processes neural signals during the “active” state.
Another important aspect of brain state estimation is that
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the inclusion of periods of unintended iBCI control could
introduce errors to the decoder analysis. For instance, decoding
neural activity between periods of active BCI operations may
result in unintended, and potentially dangerous, prosthetic
movements when the user is not intended to be engaged in
the iBCI operation. To eliminate unnecessary and unintended
decoding of neural signals during periods of non-BCI activity,
we designed an intention estimation system to discriminate
between periods of active BCI control and inactive states. We
utilized a recurrent neural network and LFPs as the input
feature of interest to detect discrete state changes when the
user desires to engage in the underlying BCI activity.

The rest of this article is organized as follows. Section
briefly reviews the motivation for employing LFPs over other
signal modalities. Section [[Tl] discusses the application of LFPs
for realizing brain-switches. The relative performance of the
designed LFP-based brain-switch is compared against those
of the spiking-based models. Section [[V|presents the hardware
architecture and realization of the proposed LFP-based feature
extraction unit. Finally, Section [V makes some concluding
remarks.

II. FEASIBILITY OF EMPLOYING LOCAL FIELD
POTENTIALS

One invasive method for recording the brain’s neural ac-
tivity is to use penetrating microelectrodes implanted in the
related brain area, such as the primary motor cortex. These
electrodes provide valuable information for decoding intended
muscle movements. Intracortical MEAs, capable of recording
hundreds to thousands of channels simultaneously, offer the
highest degrees of freedom among neural signal modalities.
They have been conventionally used in iBCIs to record and
translate neural activities for controlling robotic prostheses and
assistive devices. Whether using a single electrode or an MEA,
recording action potentials (spikes) from an individual neuron
requires placing the electrode tip within 50-100 mm from
the neuron. The electrical spike signal best reflects the neural
activity of the brain and has a high signal-to-noise ratio (SNR),
as well as high temporal and spatial resolutions. Therefore, the
firing pattern of spikes is commonly utilized to extract motor-
related information effectively.

Depending on the cortical area and layer, however, each
electrode may record action potentials of several individ-
ual neurons surrounding the electrode tip. If these multiple
recorded neurons have distinctive spike shapes, their individual
firing rates (i.e., the number of spikes within 30 to 100
ms time bins) can be discriminated by the spike sorting
process, yielding single-unit responses, also known as single-
unit activity (SUA). If their action potential voltage traces
are similar, spike sorting may not be able to differentiate the
individual spike waveforms, thus yielding multi-unit activity
(MUA), which represent the total firing rates of two or more
neurons. MUAs can be obtained by high-pass filtering the raw
data at 250 Hz to 5 kHz and counting all waveforms crossing
a threshold. An alternative neural signal that has been shown
to be well-correlated with MUAs is the spiking band power
(SBP), which has a relatively low sampling requirement of 2

kHz [21]] and can be considered as a low-frequency version
of MUAs.

Fig. [T] illustrates the relative spatial resolution of the alter-
native signal modalities available for intracortical recording,
with the center representing the location of the electrode tip.
SUAs have a spatial resolution of single units, on the order of
50 pm, while MUAs have a spatial resolution over 100 pm.
The SBP is similar to MUAs but can detect the activity of
neurons over a larger area of 250 pum. Additionally, the LFP
comprises the activity of neurons within 500 pm [21]-[24].

Fig. 1: The different signal modalities of intracortical record-
ing electrodes.

Maintaining signal stability poses a serious challenge for
long-term iBCI recordings. One major drawback of spike-
based iBCIs is that over time the electrode tips become
increasingly encapsulated by brain tissue scarring, preventing
the long-term observation of individual neurons [25]. Fortu-
nately, this encapsulation does not significantly affect lower
frequency signals. The LFP is the electrical potential recorded
from deep brain tissues, such as the extracellular space in
cortical regions. It is typically obtained by filtering the raw
continuous data from 0.3 Hz to 500 Hz. Since LFPs mainly
reflect the summation of electrical activities surrounding the
recording site, they may be less sensitive to small movements
or the loss of detectable neurons near the electrode tips [24].
Additionally, the extracellular medium, i.e., portions of cortical
tissue between the electrode tip and neurons, acts as a low-pass
filter. Consequently, the amplitude of high-frequency action
potentials is naturally attenuated with distance. As a result,
extracellular action potentials are only reliably detected for
electrodes positioned near the recorded neuron. In contrast,
low-frequency synaptic potentials attenuate less with distance,
allowing them to propagate over larger distances in the ex-
tracellular medium. These low-frequency signals may even be
recordable as far as the surface of the scalp, which is used in
electro-encephalography (EEG) studies.

While early studies on LFPs primarily focused on the
temporal analysis of a population of LFP signals, time-domain
analyses of LFPs have demonstrated inferior performance for
decoding neural information and control. One commonly-
employed feature of interest is band-limited power, which can
be computed over specific frequency bands, such as delta
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Fig. 2: (a) The block diagram of the in vivo LFP-based feature extraction pre-processing. (b) The time-frequency power
spectrum of the neural signals during different phases of the feature extraction pre-processing. (c) The spectral power of the

raw LFP and the CAR signal.

(1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30
Hz), gamma (30-80 Hz), or high-frequency (80-500 Hz). It
has been demonstrated that the spectral power in the high-
frequency (HF) range of 60—200 Hz reflects the summation of
spiking signals from the neuronal population near the record-
ing electrode. This range may contain more sub-threshold
information that is lost during the spike detection process.
Since HF-LFP activity is correlated with neuronal firing rates
(multi-unit spike count) [26], [27], it may provide particularly
information-rich signals for predicting movement parameters,
such as kinematic representations of prosthetic movement
variables, even in the absence of clear spiking activity. For
instance, a study in [13|] reported that various movement
intentions, such as the imagined end-point, trajectory, and
type of movement, could be reliably predicted from the LFP
signals. Additionally, LFPs are considered a more stable neural
signal compared to the single-unit and multi-unit activities,
which often suffer from electrode drift, neuron drop-out [28]],
and scarring from the electrode-tissue interface [25].

Another advantage of LFPs over action potentials is that
LFPs can be sampled and processed at significantly lower
rates (approximately 1 kHz) compared to spike events being

digitized at sampling rates of 10 — 30 kHz for accurate spike
detection [29]. A reduced sampling rate has a significant
impact on the power consumption of implantable interfaces,
potentially increasing the lifespan of implanted devices [29].
Additionally, there is no need for computationally-daunting
spike detection and sorting algorithms, which consume 0.6 —
4 uW of power per channel [20]], [30]. BCIs based on LFPs
may also not require the use of deeply penetrating micro-
electrodes, significantly reducing the chance of tissue scar-
ring and potentially increasing the longevity of the recorded
neural signals [25]]. Therefore, instead of relying on isolating
individual action potentials within the 500-5000 Hz band, the
low-frequency components (< 500 Hz) of a recorded neural

signal can be employed for a stable BCI signal processing
[31].

III. DESIGN OF LFP-BASED RNN BRAIN SWITCHES

To reduce the significant power consumption of the in
vivo circuitry during non-BCI activities, a neurally-controlled
brain-switch can be utilized. This switch enables or disables
in vivo neural signal processing and wireless transmission of
chosen features for in silico neural decoding. Brain-switch
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algorithms operate on the assumption that the recorded neu-
ral signals exhibit various behaviors during different mental
states. For instance, EEG-based brain-switches may detect an
increase in the 1 Hz — 4 Hz band power [32], [33]], while
ECoG-based brain-switches may detect a change in the power
of the specific frequency bands for motor execution/imagery
[17]. For spike-based neural signal processing, the spike counts
during a time interval [34]], as well as changes in the firing
rates [18]], have been considered as underlying features for re-
ported brain-switch algorithms. It has been previously reported
that a small subset of recording channels exhibit satisfactory
variations in the MUAs, allowing brain-switch algorithms to
reliably detect transitions in mental state [20].

Due to the intracortical recording setting, LFPs offer a
higher signal-to-noise ratio compared to ECoG and EEG.
Moreover, the relaxed requirements of LFP signal acquisi-
tion and processing make them a viable modality for brain-
switch algorithms, significantly reducing the power consump-
tion compared to spike-based systems. To analyze the fea-
sibility of using LFP features for brain-switch models, we
employed two publicly-available neural datasets, datasets I
(I140703) and II (L101210) [35)]. These datasets contain raw
recordings from the motor cortex (M1 Region) of two Rhesus
macaque monkeys using an implanted 96-channel Utah Array.
The recordings were initially sampled at 30 KHz and then
downsampled to 10 KHz. Further downsampling to 2 kHz
was performed to extract low-frequency LFPs. During the
experiments, the monkeys performed a cued reach and grasp
task to displace an object. The monkeys were presented with
a series of cues indicating that the beginning of a trial and
specifying one of four combinations of grip and displacement
forces to use. Additional details of the animal experiments are
described in [35].

A. LFP Feature Extraction Unit

After signal acquisition and digitization, the common aver-
age reference (CAR) is conventionally employed to effectively
remove the common noise shared across electrodes. The CAR
is given as X[n] = X[n] — pu[n], where X[n] denotes the
multi-channel neural signal, and p[n] denotes the mean over
all recording channels at time n. The CAR enhances the SNR
and the interpretation of neural activity. Although the CAR
is computed over all recording electrodes in most analyses,
practical settings typically limit the CAR to a local subset
of recording channels, as its impact on the system-level
performance is negligible [36]. Following CAR, spectral power
is computed for three frequency bands: the low-band LFP (LB-
LFP) (8 — 60 Hz), mid-band LFP (MB-LFP) (60 — 300 Hz),
and high-band LFP (HB-LFP) (150 — 500 Hz). Spectral power
is commonly calculated using Fourier or Morlet wavelet trans-
forms, providing time-frequency decomposition of signals.

A less computationally complex approach is to use a
series of bandpass filters with cutoff frequencies for LB-
LFP, MB-LFP, and HB-LFP. Once the signals are filtered,
the spectral power within each frequency band of interest can
be estimated using envelope detection schemes [[18] or fast
Fourier transform [37]. Applying bandpass filtering allows for

attenuating signal components outside the desired frequency
range, eliminating the need for Fourier transform to compute
the spectral power over all frequencies. Fig. [(a) illustrates
the estimation of total power contained within a specified
frequency range (band power) using the square of the root
mean-square (RMS) of the bandpass filtered LFP signal in
the time-domain [38]]. Fig. 2[b) illustrates the time-frequency
plots of the raw LFP signal, the output of the CAR, and the
output of the bandpass filter (BPF) over the LB-LFP (8 — 60
Hz), MB-LFP (60 — 300 Hz), and the HB-LFP (150 — 500
Hz). The time-frequency plots in Fig. 2[b) demonstrate that
the employed BPF effectively isolates the signal within the
specified frequency range. Following the implementation of
CAR, the multi-channel noise is reduced, leading to a decline
in low-frequency power, as depicted in the magnified view
presented in Fig. [J|c). For Channel 1 of Dataset I, depicted in
Fig. 2, the average power of the raw LFP within 0 — 120 Hz
is 16 mV?2, while after CAR, the average power in the same
frequency band is reduced to 8.2 mV2.

B. RNN Model Evaluation

While brain-switch software models may use all recording
channels as the input to the algorithm, one opportunity for
reducing energy dissipation is to employ a subset of recording
channels. This, however, comes at the expense of additional
pre-processing and a learning phase. This approach is viable
for spike-based iBCls, where specific neurons or an ensemble
of neurons may behave differently during the intention onset.
However, in the case of LFPs representing the activity of
neuronal populations, it might be possible to utilize either a
set of arbitrary recording channels or even a single recording
channel as the input for the brain-switch algorithm.
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Fig. 3: The system-level block diagram of the designed brain-
switch consisting of the in vivo LFP processing unit and in
silico brain-state estimation.

In our previous work [20]], we found that machine learning
(ML) algorithms, specifically relatively small recurrent neural
networks (RNNs) using neural spikes as input performed well
for brain-state detection. In this study, we implement an LFP-
based brain-switch RNN, as depicted in Fig. |3} The brain-
switch consists of two units: an in vivo processing system for
neural signal processing and LFP feature extraction, and an in
silico module that receives wirelessly transmitted features and
executes the RNN-based brain-switch model. When the BCI is
in the “inactive” state, one recording channel is employed for
in silico brain-state estimation. However, when the BCI is in
the “active” state, all or a subset of recording channels can be
employed for robust neural decoding. Therefore, the output of
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the brain-switch is utilized to control both the in vivo signal
acquisition as well as in silico neural decoding. It is important
to note that the neural signal features used for decoding may
differ from those used for the brain-state estimation. In vivo
neural signals are first enhanced using the CAR. Then an 8-
th order bandpass filter, along with a squared RMS module is
used to estimate the power within each frequency band. where
the number of spikes observed within this time period make
up the multi-unit activities [29], [39]]. Ranges up to 50 ms have
been reported for iBCIs targeting the SBP [21]. The RMS is
computed over 10 ms windows as it falls within the range of
commonly employed iBCI configurations.

We evaluate the performance of four alternative RNN-based
models with different recurrent cell architectures: standard
RNN, long short-term memory (LSTM), gated recurrent unit
(GRU), and quasi-recurrent neural nework (QRNN) [40]]. Each
RNN cell accepts the previous layer inputs and employs
a self-recurrent connection to learn temporal dependencies
within the data. The standard RNN cell transmits its hidden
state directly. In contrast, the LSTM and GRU cells utilize
internal non-linear functions to regulate the amount of data
propagated over time. The QRNN employs a convolution
operation over time instead of directly propagating its internal
state, with its temporal receptive field width dependent on
the convolutional kernel width. For performance comparison
among the alternative RNN cells, we devised a RNN brain-
switch that accepts the LFP bandpower of a single channel to
predict the moment of intention. First, the single channel is
passed to a fully-connected dense layer with 16 units, where
its output connects to an RNN-based layer to learn temporal
features within the signals. For a fair comparison among the
different cell types, the RNN-based layers have about the same
number of parameters. The model with the simple RNN cells
employs 62 units, the LSTM employs 34 units, the GRU
employs 32 units, and the QRNN employs 25 units. Finally,
the outputs of the RNN-based layer passes through a fully-
connected dense layer that performs the final regression and
predicts the current intention state using a non-linear sigmoid
function.

Each of the RNN-based layers has about 4800 parameters
and is trained using the mean squared error loss metric and the
Adam optimizer. Each is trained using 10-fold cross-validation
to provide a fair estimate of its performance. The performance
of the designed brain-switch RNN models is measured using
the F-score metric given as F' = 2Tp/(2Tp + Fny + Fp),
where T'p denotes the number of correctly detected intentions,
Fn denotes the number of non-detected intentions, and F'p
denotes the number of false positive intentions [41]. Figs.
(a) and (b) show the boxplots of the F-score of the four
alternative models for the first recording channel of Dataset
I and II, respectively. It can be seen that the GRU-based
model provides the most consistent performance over both
datasets and training iterations compared to the alternative
models. In other words, while the LSTM and QRNN can
perform well, whether a given training session will yield an
acceptable performance is not deterministic. However, for a
well performing training session, the training time is also of
importance. Fig. [5[a) and (b) show the variation of F-score

of the different models over the training period. In general,
the GRU-based model achieves a relatively high performance
considerably faster than the other models and is also shown to
provide stable performance over time compared to the other
recurrent neural network models. Therefore, we employ the
GRU-based architecture, as shown in Fig. @ to realize the
brain-switch.
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Fig. 4: The boxplots of the F-score of the four alternative
RNN-based models over the first recording channel of (a)
Dataset I and (b) Dataset II.

C. MEA Channel Selection

To evaluate the performance of the designed brain-switch
scheme, the impact of channel and frequency band selections
was analyzed. For each recording channel and frequency band,
the data was normalized as X ;o = (X ;¢ — piyc) /o so, Where
trc and o yc denote the mean and standard deviation of signal
X of channel C filtered over frequency band f. Deep learning
algorithms conventionally rely on a training and testing subset
using 70% and 30% of the dataset, respectively. Compared
to deep learning datasets that typically have millions of
samples for training and testing, a common limitation in the
field of computational neuroscience is that training data is
relatively sparse. In our work, we have used only the first
30% of the dataset for training, which is consistent with our
previously published work [[10] to emulate this limitation. It
is important to note that using less training data and more
testing data implies that our model is not as intensely affected
by overfitting. Dataset I and II consist of 153 and 149 trials,
respectively. For each trial, the moment the monkey releases a
switch is considered as the brain state transition from inactive
to active, as used in our previous work [20]. However, to avoid
detecting the intention during movement-related potentials
when the animal releases the switch, a small randomized jitter
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Fig. 6: The block diagram of the designed GRU-based LFP
brain-switch.

time (1 = 14 £+ 8 ms) was subtracted from the switch release
time, ensuring that the state transition is detected during the
movement planning phase of the trial. The value used for the
jitter time has no particular significance other than ensuring
that the RNN is trained to predict a brain-state transition prior
to a switch released by the subject. The jitter time is modeled
as a random variable so that the RNN would appropriately
learn to perform the state transition based on the neural signal
input patterns rather than performing a brain-state transition at
the same time for any given trial. This approach also ensures
that the model is only trained on neural signals that occur
during the grasp planning stage of the subject’s movement.
The designed RNN model was trained on all combinations
of recording channels and frequency bands, and the F-Score
probability distributions for Datasets I and II are shown
in Figs. [7{a) and (b), respectively. It can be seen that the
performance of the designed brain-switch model is agnostic
to recording channel and frequency band over both datasets,
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Fig. 7: The F-score probability distributions for (a) Dataset
I and (b) Dataset II over the three frequency bands and all
recording channels.

with a consistent F-Score performance of 0.86 + 0.06 for
Dataset I and approximately 0.80 &£ 0.07 for Dataset II. This
finding suggests that any particular channel may offer use-
ful information for effective brain-state estimation. However,
some channels may have lower performance than others. While
beyond the scope of this work, one may employ a mean
bandpower threshold or other relevant metrics for screening
candidate channels. In our previous realization of the brain-
switch, which utilized multi-unit activities in the form of spike
threshold crossings, we required multiple channels along with
a complex channel selection process for sufficiently accurate
brain-state estimation [20]. However, we found that a single
recording channel of LFPs, which embodies the activity of
larger populations of neurons, provides relatively accurate
brain-state estimation. This is potentially due to the fact that
in the spike-based approach, removing low-frequency com-
ponents to obtain the action potentials isolates the recorded
neural signals to those of only neurons near the electrode tips,
which may encode more specific information than that of an
ensemble of neurons surrounding a larger region around the
electrode.

D. CAR and Filter Considerations

The results depicted in Figs. [/{a) and (b) prompt the
question of whether performing the CAR is necessary at all.
CAR is commonly employed in LFP studies to remove noise
that is common across the recording electrodes. In practice,
removing common noise from multi-channel recordings is
an effective approach for reducing the impact of redundant

Authorized licensed use limited to: San Diego State University. Downloaded on July 31,2024 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3396115

features on the decoding algorithm. However, as discussed
in Section [[I] our findings indicate that data from a single
channel is adequate for the brain-switch operation. Therefore,
the CAR may not be necessary, and the noise may be
sufficiently removed by the bandpass filter. Additionally, in
the context of efficient hardware realization, removing the
CAR would significantly reduce the in vivo signal processing.
Computing the CAR would require 2N — 1 additions and
one multiplications per clock cycle, which can be expressed
as 2N + 1 operations when assuming the complexity of
multiplication as twice that of an addition [42]]. Considering
a clock rate of 2 kHz and a 96-channel Utah electrode array,
the CAR would require 386 kOps/second.

(a) 0.08 ‘ ‘ ‘ l
—6— 8 - 60 Hz- ;=0.80+0.07
—+— 60 - 300 Hz - 1:=0.82+0.06
0.06 150 - 500 Hz - 12=0.80+0.07
2
S
(_QB 0.04
£
0.02
0
0.5
b
(b) 0.1 |
—6— 8 - 60 Hz-;=0.84-+0.06
0.08 —+— 60 - 300 Hz - ;1=0.78+0.07
150 - 500 Hz - 12=0.76+0.07
)
= 0.06 ¢
?
3 \
g 0.04
0.02
O
0.5 0.6 0.7 0.8 0.9
F-Score

Fig. 8: The F-score probability distributions for (a) Dataset
I and (b) Dataset II over the three frequency bands and all
recording channels when removing CAR.

Figs. [§[(a) and (b) show the F-Score probability distributions
over Datasets I and II, respectively, and over all combinations
of recording channels and frequency bands, without employing
the CAR. It can be seen that for Dataset I, there is no
significant degradation in F-score compared to those with
the CAR for all three frequency bands. For Dataset II, the
performance of each band varies, with the LB-LFP (8 — 15
Hz) outperforming the other two bands. Therefore, we employ
the band-limited power of the LB-LFP as the input feature for
the RNN-based brain-switch algorithm.

Previously published work mainly employ two-sided non-
causal filters as they may better preserve the amplitude and
shape of neural signals while not imposing phase distortions
[43]. Causal filter realizations, however, are deemed to be
preferred for in vivo realizations due to their reduced compu-
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Fig. 9: The spectral power of the LB-LFP of non-causal and
causal filters with filter order (a) 8, (b) 6, (c) 4, and (d) 2 over
the first channel of Dataset I.

tational complexity and memory requirements. Fig. 0] shows
the spectral power density of the first channel of Dataset I over
the 8 — 15 Hz frequency band for both non-causal and causal
filtering with various filter orders. It is evident that the lower-
order filters do not limit the signal to the desired frequency
band as accurately as the higher-order filters. While it may ap-
pear that the second-order causal filter spectrum shown in Fig.
[((d) may not be suitable, as it has a relatively poor frequency
selectivity, we investigate its impact on the performance of the
designed brain-switch algorithm by training the RNN model
using both non-causal and causal filters of orders 2, 4, 6, and
8 and the LB-LFP bandpower for the first channel of Datasets
I and II as input. Figs. @Ka) and (b) confirm that there is no
significant performance variation when employing either non-
causal or causal filters. Additionally, it is observed that for
Dataset I, the lower-order filters outperform the higher-order
filters, employing either non-causal or causal realizations. This
suggests that the sharp roll-off characteristic of the higher-
order filters is not a strict requirement for the designed RNN-
based brain-switch. Therefore, we employ a second-order
causal filter without CAR for in vivo realization. It should be
noted that the performance of the proposed GRU-based brain
state estimation is dependent on the dataset, as is the case for
all machine learning-based algorithms. The performance of
the proposed approach, and other similar kinematic decoding
tasks, relies on the activation of relevant brain regions. Prior
to surgical implantation of microelectrodes, the neural activity
of the brain regions are observed using positron emission
tomography (PET) or functional magnetic resonance imaging
(fMRI). [44], [45].

IV. HARDWARE ARCHITECTURE OF THE DESIGNED
LFP-BASED BRAIN SWITCH

Fig. shows the block diagram of the in vivo signal
processing for the LFP-based feature extraction, i.e., LFP
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Fig. 11: The block diagram of the in vivo signal processing for estimating LFP bandpower.
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Fig. 10: The F-score of the LFP-based RNN brain-switch
model using various filter orders and filter causalities for the
LB-LFP and the first channel of (a) Dataset I and (b) Dataset
I

bandpower estimation. A single channel of the MEA is band-
pass filtered at a rate of 2 kS/s. The bandpower is estimated by
computing the RMS squared over non-overlapping windows
of 8 ms (i.e,, 16 samples at 2 kS/s). The bandpass filter
is designed using a second-order infinite-impulse response
(IIR) Butterworth filter structure [46]. The passband filter
coefficients for 8 — 60 Hz were computed using the Filter
Design Toolbox in Matlab as by = 1, by = 0, by = —1,
al0] = 1, a[1] = —1.84, and a[2] = 0.848. The filter input
scaling factor of 0.075 is approximated as an arithmetic right
shift by four bit positions, equivalent to multiplying by 0.0625.
To find an optimal tradeoff between area utilization and power
consumption, in addition to the direct biquad structure, the
time-multiplexed IIR filter structures with the folding factors
of 2 and 3, as shown in Figs. @a) — (b), respectively, were
designed and implemented. The direct structure is required to
operate at the minimum rate of 2 kHz while the designs with
the folding factors of 2 and 3 are required to operate at 4 kHz

and 6 kHz, respectively. A control unit, not shown, is used to
generate appropriate control signals.
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Fig. 12: The block diagram of the designed band-pass filter
with the folding factors of (a) two and (b) three.

The filter output is passed to the AMS? unit, as shown in Fig.
[IT} The control unit asserts the signal nWin every 8 ms, setting
the accumulation register to the squared input sample. On the
16-th input from the filter (i.e., after 8 ms), the control unit
asserts the signal done to latch the output of the accumulator
into the output register, which is arithmetically right shifted by
four bits to compute the mean over the window. The squared
RMS is used as the estimate of the bandpower where no square
root operation is required.

The computations of the filter and AMS? unit are performed
in the fixed-point format Q(WL.WF), where WI and WF denote
the integer and fractional wordlengths of the signals. Software
simulations of the in vivo modules verified that the filter’s
internal accumulator requires 17 bits in Q(5.12) format and the
filter output requires 16 bits in Q(3.13) format. Since the RMS?
performs a square operation and a right shift for computing the
mean, the full-precision computation would require at least 30
fractional bits. To find the optimal number of fractional bits
necessary to achieve performance (F-Score) comparable to that
of the software simulations shown in Figs. various bit-true
simulations were performed. Fig. [I3] shows the F-Scores of
the designed RNN-based brain-switch algorithm over different
number of fractional bits for representing the RMS bandpower.
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The analysis over the two datasets showed that a minimum of
eight fractional bits offers sufficient accuracy.
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S
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0.6 |
1
1
0.5¢ ,'
5 10 15 20 25
Fractional bits

Fig. 13: The variation of the F-Score of the designed RNN
brain-switch over various number of fractional bits used for
representing the bandpower, with the dashed lines indicating
the trend.

The logic synthesis of the in vivo design shown in Fig.
[T1] was implemented using Synopsys Design Compiler, and
the place and route was performed using Cadence Innovus
in a standard 180-nm CMOS process. The design was also
synthesized for both folding factors of the bandpass filter
datapath. The power consumption was estimated by employing
both datasets, along with the toggling rate information of all
signals stored in a Switching Activity Interchange Format
(SAIF) file. Table [I gives the area utilization and power
consumption of the designed LFP bandpower estimator using
the direct structure and using two folding factors. It is shown
that the smallest area and the least power consumption are
achieved with the direct-form IIR filter structure. While the
folding factors of two and three for the bandpass filter datapath
have fewer adders and multipliers, the multiplexers require
sign and zero extension of inputs with fewer bits to match
those of the accumulation registers, which in turn require
more area. While the LB-LFP offered the best performance
for both employed datasets, it may be beneficial to support
MB-LFP and HB-LFP bands as well for practical applications
(e.g., neural decoding). The design was therefore modified
to support all three sub-bands. The power consumption of
the LFP-based feature extraction unit with the programmable
frequency band for different folding factors is given in Table
Similar to that of the ASIC for the LB-LFP, the direct
structure (i.e., the folding factor of one) consumes the least
power among the three realizations for a marginally larger
silicon area.

The ASIC layouts of the synthesized in vivo LFP processing
unit, including the IR filter and the RMS bandpower unit, for
(a) the LB-LFP and (b) the programmable frequency band
in a standard 180-nm CMOS process are shown in Fig. [T4]
The layout in Fig. [I4(a) computes the bandpower of the LB-
LFP and occupies 0.089 mm? of silicon area and consumes
91.87 nW of power from a 1.8 V supply while operating at 2
kHz. The layout in Fig. [T4|b) computes the bandpower of any
one of the LB-LFP, MB-LFP, and HB-LFP bands based on a

programmable band-selection input, and occupies 0.117 mm?
of silicon area and consumes 109.9 nW of power froma 1.8 V
supply, while operating at 2 kHz. The power consumption was
estimated by simulating the netlist after placement and routing
and accounting for the switching activity of all signals.

@ {b)

309
345

290 Hm

340 Hm

Fig. 14: The ASIC layouts of the synthesized in vivo LFP-
based feature extraction units for (a) the LB-LFP and (b) the
programmable frequency band in a standard 180-nm CMOS
process.

Table [lI| gives the characteristics and implementation results
of various in vivo feature extraction ASICs. Due to the
relatively high temporal resolution of action potentials, analog
front-ends (AFEs) for spike-based BCIs must operate at a
significantly higher sampling rate and bandwidth than those
employing LFPs. First, the power consumption of the low-
noise amplifier (LNA) is proportional to the width of the
frequency band of interest [29]], which for LFPs is about
five times smaller than that for spikes. Secondly, conven-
tional AFEs employ successive approximation register (SAR)
analog-to-digital converters (ADCs), whose power consump-
tion is relatively linearly proportional to the sampling rate [S0],
[S1f], which again are far more efficient for LFPs. Thus, for
a fair comparison with the previously published works, the
comparison Table II only accounts for the digital backend
of all works. In our previous work [20], we designed and
implemented an RNN-based brain-switch algorithm employing
MUA features. Compared to the designed LFP-based brain
switch, the MUA-based design requires a correlation-based
learning phase to find the optimal recording channels for
detecting the brain’s state transitions. Employing the same
datasets, the MUA-based brain-switch algorithm achieves a
marginally improved F-score of 0.89 compared to the LFP-
based brain-switch F-score of 0.84, with a power consumption
approximately five times higher. In [47]], the authors present an
analog implementation of a spike detection unit that performs
energy-based thresholding to generate MUAs. In [48]], the
authors target the low-frequency SBP and achieve a low
power consumption of 212 nW per channel. Also targeting
the SBP, the design in [49] reports a power consumption of
3.6 uW per recording channel for obtaining the SBP. The
proposed LFP-based ASICs, as given in Table consume
significantly lower power for extracting the LFP features.
While it remains to explore how well the SBP can be employed
for deteciting the brain-state transitions, due to the LFP’s lower
frequency filtering and acquisition requirements, the LFP is
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TABLE II: The characteristics and implementation results of various feature extraction ASICs.

Work Ours (LB-LFP) [ Ours (Prog.) | Ours[20] 147] 48] 149]

Signal modality LFPs MUAs MUAs | SBP SBP

Technology (nm) 180 180 180 180 180 180

Supply voltage (V) 1.8 1.8 1.8 1.8 1.55 | 0.625
Area per channel (mm?) 0.09 0.12 0.03 0.03 0.07 -

Power per channel (nW)f 91.8 109.9 630 1500 212 3660

1 Normalized to a 180-nm CMOS process with a 1.8 V supply and accounting only for digital backend.

TABLE I: The area utilization and power consumption of the
designed and implemented LFP-based feature extraction unit.

Folding Factor | Area (mm?) | Power (nW)

1 0.09 91.8
2 0.10 192.5
3 0.10 160.6
Programmable Frequency Band

1 0.12 109.9
2 0.12 2472
3 0.11 279.6

well positioned as an effective signal modality for brain-state
monitoring and behavioral decoding.

One important consideration is the total power consumption
of the proposed system, accounting for the signal acquisition
analog front-end (AFE) circuitry, digital signal processing, and
wireless transmission overhead. Conventional AFE circuitry,
such as low-noise amplifiers (LNAs) and analog-to-digital
converters (ADC), requires an average of 7.4 uW of power per
channel for spike-based systems employing sampling rates on
the order of 10 kS/s [52]. As both the bandwidth and sampling
rate of the LFPs and SBPs is roughly one-fifth of that for spike-
based BClIs, the signal conditioning AFE for LFPs and SBPs
would consume approximately 1.5 yW per recording channel.

The wireless transmission power depends largely on the
output bitrate of the in vivo circuitry, as well as the temporal
resolution of the signal features. For spike-based systems, a
commonly employed range of temporal resolutions is within
the range of 1 ms to 10 ms, requiring an output data rate
between 0.4 - 1.0 kbps, i.e., one bit per millisecond or
[logy, 10 ms] = 4 bits per millisecond assuming a one
millisecond spike refractory period. The temporal resolution
of the proposed LFP feature extraction unit is 10 milliseconds,
with 9 bits (Q(1.8)) per estimated bandpower sample and
requires 0.9 kbps. Spike-based systems consume between 0.6
and 1.78 uW of power for obtaining MUAs. Given a wireless
transmission power of 158 pl/bit [53|], spike-based systems
require between 8.06 W and 9.26 uW per recording channel,
accounting for the entire signal acquisition and processing
chain, and wireless transmission. The designed LFP-based
feature extraction system would require a total of 1.75 uW per
recording channel. Based on our previous work implementing
on a spike-based brain-switch targeting MUAs, we found that a
minimum of 8 recording channels were required for sufficient
brain-state transition detection, which would require a total
of 64.48 uW of power. In contrast, the designed LFP-based
brain-switch requires only a single channel and consumes over
97% less power with only 1.75 pW.

Considering that a single channel of the LFP is sufficient
for brain state estimation, an alternative system configuration

is to bypass the LFP feature extraction in vivo and transmit
the LFP signal directly. Assuming a signal resolution of 16
bits and a sampling rate of 2 kS/s, the required output data
rate for a system transmitting the LFP signal directly is
32 kbps. Given the transmission energy of 158 pl/bit, this
would require 5.05 pW of power, over 2.8 more power than
that of the proposed system. For transmitting the LFP signal
directly, the increased data rate becomes the primary factor
causing increased wireless transmission power requirements.
To achieve a comparable power consumption to the proposed
design, the LFP signal must be represented with fewer than 6
bits to consume less than 1.8 pyW.

V. CONCLUSION

This article presented a brain-switch to estiamte when
the user involves in the underlying BCI activity based on
local field potentials (LFPs) and gated recurrent unit (GRU)-
based neural networks. The designed switch is particularly
imnportant in the practical realization of asynchronous brain-
computer interfaces and offers a comparable or greater ef-
fectiveness than that of spike-based systems. It was shown
that the performance of the machine learning (ML)-based
algorithms for implementing LFP-based brain-switches may
not be sensitive to specific recording channels as well as
specific frequency bands. Compared to the previously reported
brain-switch schemes in which exhaustive learning phases for
optimal recording channels are performed prior to neural net-
work training, the brain-switch performance is similar across
multiple recording channels, significantly reducing the pre-
processing computations. The synthesized LFP-based feature
extraction unit in a standard 180-nm CMOS process was
estimated to occupy 0.09 mm? of silicon area and consumes
only 91.8 nW of power while operating at 2 kHz. Compared to
the previously published works on in vivo neural signal feature
extraction, the proposed LFP-based design consumes the least
power and achieves a performance (F-Score) comparable to
that of spike-based systems.
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