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Abstract. The discontinuous Galerkin approximation of the grad-div and curl-curl problems
formulated in conservative first-order form is investigated. It is shown that the approximation is spec-
trally correct, thereby confirming numerical observations made by various authors in the literature.
This result hinges on the existence of discrete involutions which are formulated as discrete orthogo-
nality properties. The involutions are crucial to establish discrete versions of weak Poincaré-Steklov
inequalities that hold true at the continuous level.
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1. Introduction. Many conservation equations generate involutions, e.g., the
elastodynamics equations, Maxwell’s equations, the magnetohydrodynamics equa-
tions, the wave equation, etc. For instance, on domains with trivial topology, if
one considers the wave equation (which is a linearized version of the compressible
Euler equations), the involution on the velocity, v, is V x v =0, and if one considers
Maxwell’s equations, the involutions on the electric and magnetic fields, E, B, are
Gauss’s laws, i.e., V-E = 0 (in the absence of free charges) and V-B = 0. An algebraic
characterization of involutions for general conservation equations is given in Boillat
[7]. Involutions are important to prove compactness and entropy inequalities and to
establish well-posedness. The question addressed in this paper is whether using the
discontinuous Galerkin (dG) method to approximate in space conservation equations
endowed with involutions generates discrete involutions that are strong enough to
establish compactness. Since the problem is very difficult for generic nonlinear con-
servation equations, we restrict ourselves to the grad-div and curl-curl operators writ-
ten in first-order conservation form, as they are good representatives of the problems
encountered with the wave equation and Maxwell’s equations. For both operators,
the involutions are formulated as orthogonality properties (see, e.g., Hiptmair [22,
sect. 4.1] for handling Gauss’s law involutions). We restrict ourselves to the investi-

*Received by the editors February 23, 2023; accepted for publication (in revised form) June 15,
2023; published electronically December 6, 2023.
https://doi.org/10.1137/23M1555235
Funding: The work of the authors was partially supported by the National Science Foundation
grant DMS-2110868; the Air Force Office of Scientific Research, USAF, grant FA9550-18-1-0397;
the Army Research Office grant W911NF-19-1-0431; the U.S. Department of Energy by Lawrence
Livermore National Laboratory grant B640889; and the INRIA through the International Chair
program.
TCERMICS, Ecole des Ponts, 77455 Marne-la-Vallee Cedex 2, France; and INRIA Paris, 75589
Paris, France (alexandre.ern@enpc.fr).
fDepartment of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843
USA (guermond@tamu.edu).

2940

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/31/24 to 128.194.2.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SPECTRALLY CORRECT dG APPROXIMATION 2941

gation of the spectral properties of the dG approximation, leaving the study of other
discretization methods to future work.

The spectral correctness of the dG method for approximating the grad-div op-
erator written in second-order form is proved in Antonietti, Buffa, and Perugia [3,
Thm. 4.1]. The spectral correctness of the curl-curl problem written in second-order
form has been established in Buffa and Perugia [9, Prop. 7.3] (this result is prefigured
in Houston et al. [23, Cor. 3.6] for constant coefficients). We recall that spectral
correctness means that the point spectrum of the approximation does not contain
spurious eigenvalues. Whether this is also the case when the equations are writ-
ten in first-order form has not yet been established at the time of this writing and
to the best of the authors’ knowledge. The reader is referred to Boffi, Brezzi, and
Gastaldi [6] for examples of (conforming) approximations of the grad-div problem
written in first-order form that are not spectrally correct. The dG approximation of
the time-dependent Maxwell’s equations written in first-order conservation form has
been investigated in Hesthaven and Warburton [20]. Using energy arguments, it is
shown in [20, Thm. 4.2] that the approximation is convergent, and an observation is
made in [20, Thm. 4.3] regarding the involution properties of the scheme. This obser-
vation is, however, not sufficient to establish that the associated eigenvalue problem
is spectrally correct. The eigenvalue problem is numerically investigated in Alvarez
et al. [1], Cohen and Duruflé [13, sect. 3.1], and Hesthaven and Warburton [21], and
the authors observe that the eigenvalue problem is pollution free provided the nu-
merical flux is dissipative, i.e., includes penalty terms on the jump of the tangential
components of both fields. Furthermore, spectral correctness has been established
for a combination of conforming and dG approximations of Maxwell’s equations by
Campos Pinto and Sonnendriicker [10]. It is also observed therein that the full dG
approximation is compatible with Gauss’s laws.

In the paper, we prove that indeed the dG method yields approximations of the
first-order form of the grad-div and curl-curl operators that are spectrally correct. In
particular, we show that it is essential to invoke discrete counterparts of the involu-
tions associated with the continuous problem to establish this result. The discrete
involutions, which are formulated as (topology-blind) discrete orthogonality prop-
erties, are crucial to establish discrete (weak) Poincaré—Steklov inequalities. These
inequalities are, in turn, pivotal to gain full L?-stability of the dG approximation. The
discrete Poincaré—Steklov inequalities usually available in the literature involve the
L?-norm of the gradient, curl, or divergence when using conforming spaces (see, e.g.,
Hiptmair [22, Thm. 4.7] or Monk and Demkowicz [25, Cor. 3.2]) or reconstructions
thereof when using dG approximations (see Buffa and Perugia [9, Lem. 7.6]). The
route followed here consists instead of extending weak Poincaré—Steklov (in)equalities
that hold true at the continuous level which involve a dual norm of the gradient, curl,
or divergence.

The material is organized as follows. We present in section 2 the continuous
operators we want to approximate (see Definitions 2.13 and 2.17). The involutions
mentioned above are formalized as orthogonality properties (see Remarks 2.1 and 2.5).
The finite element setting is introduced in section 3. Lemma 3.2, which establishes
discrete Poincaré—Steklov inequalities hinging on discrete involutions, is the key result
of this section. As in the continuous setting, the discrete involutions are formalized
as orthogonality properties. The dG approximation of the grad-div and curl-curl
operators is analyzed in sections 4 and 5, respectively. The main results of these
sections are Theorems 4.11 and 5.10, which prove the spectral correctness of the dG
approximation. For completeness, standard results on Helmholtz decompositions are
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collected in Appendix A. Although everything that is said in the paper could be
written using the unified formalism of finite element exterior calculus (see Arnold,
Falk, and Winther [4]), we prefer to use the formalism of vector calculus to be more
explicit even though the structure of the grad-div and curl-curl operators is similar.
Finally, the main compactness result invoked for both operators is the consequence of
the regularity of the solution in fractional-order Sobolev spaces with regularity index
5> 3 (see Lemma 2.14 and 2.18). This regularity is known in the literature to hold
true in the case of homogeneous materials. The case of heterogeneous materials is left
to future work.

2. Continuous setting. Let D be an open, bounded, Lipschitz polyhedron of
RY de {2,3}, with unit outward normal vector np. Additional topological assump-
tions on D are collected in section A.1. We implicitly assume that d = 3 whenever
working with the curl operator. To be dimensionally consistent, we introduce a length
scale, £p, associated with D (it could be, for instance, the diameter of D).

2.1. Functional spaces. We use standard notation for Lebesgue and Sobolev
spaces. We use boldface fonts for R%-valued vectors, vector fields, and functional spa-
ces composed of such fields. The spaces L?(D) and L*(D) are composed of Lebesgue
integrable scalar-valued functions and vector fields that are square integrable, respec-
tively. The canonical inner products in these two spaces are denoted (-,-)z2(py and
(*s+)L2(p), respectively. Depending on the context, the symbol L denotes the orthog-
onality in L?(D) or L?(D). We define

(2.1a) HY(D):= H(grad; D) := {pe L*(D) | Vpe L*(D)},
(2.1b) H(curl; D):={v € L*(D)| Vxv € L*(D)},
(2.1c) H(div; D) :={ve L*(D)|V-v € L*(D)}.

These Hilbert spaces are equipped with their natural graph norms

(2.2a) ol by = P72 () + €D I VDI L2 )
(2.2b) [0l E(curt;py = 10l[22 () + €IV XV T2 ()
(2-2¢) 1032 (aiv:p) = 10122 () + ED IV 0172y

We also consider the following closed subspaces:

(2.3a) Hy (D) := Ho(grad; D) := {p € H'(D) | 75 (p) = 0},
(2.3b) H(curl; D) :={v € H(curl; D) |v5p(v) =0},
(2.3¢) H(div; D) := {v € H(div; D) | 73, (v) =0},

where v, : HY(D) — H 2(AD) is the extension by density of the usual trace operator
such that v5,(p) = plap for every smooth function p € H*(D), s > %, and the
tangential and normal trace operators 7§, : H(curl; D) — H > (0D) and ~4p, :
H (div; D) — H~2(dD) are the extensions by density of the tangent and normal trace
operators such that 7§, (v) = v|apxnp and v3, (v) =v|sp-np for every smooth field
v e HD), s> % (see, e.g., [17, sect. 4.3]). We are also going to make use of the

following closed subspaces:

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/31/24 to 128.194.2.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SPECTRALLY CORRECT dG APPROXIMATION 2943

(2.4a) Py:= H(grad =0; D) :={pc H'(D) | Vp=0},

(2.4b) H(curl=0;D):={v e H(curl; D) | Vxv =0},
(2.4c) Hy(curl=0;D):={v € Hy(curl; D) | Vxv =0},
(2.4d) H(div=0;D):={v e H(div; D) | V-v =0},
(2.4e) H(div=0;D):={v € Hy(div; D) | V-v =0}.

Finally, we recall the following result (see Amrouche et al. [2, Prop. 7]) which is
a consequence of the elliptic regularity theory: There exists s € (3,1] so that for all
ec {H(curl;D)Nn Hy(div; D), Hy(curl; D) N H(div; D)},

(2.5) lell = (p) < Co(llell zcurt:n) + ll€ll zaiv:D))-

Here and in what follows, Cp denotes a generic constant that only depends on D and
whose value can change at each occurrence.

2.2. Heuristics for the involutions. We introduce in this section the differ-
ential operators associated with two model eigenvalue and boundary value problems.
We identify the associated involutions and interpret them as orthogonality properties.

2.2.1. Grad-div eigenvalue problem. Given a scaling factor ¢ > 0 (see
Remark 2.3), we consider the following eigenvalue problem: Find A € C and a nonzero
pair (v,p) € Ho(div; D) x H'(D) so that

(2.6) Vp=v, Vyv=\p

with the operators V : H'(D) 3 ¢ — Vq € L*(D) and V- : Ho(div; D) > w —
V-w € L*(D). Notice that —V and V- are adjoint to each other since (¢, Vo-w) 2(p) =
—(Vg,w) 2 (p)y for all ¢ € H'(D) and all w € Hy(div; D). Moreover, we will see in
section 2.3 that both operators have a closed range.

We are only interested in the case A # 0. The assumption A # 0 implies that
p= Vo (A" c?v) and v =V(A\"!p). This means that

(2.7a) p€im(Vy-) = ker(V)* =Py,
(2.7b) v €im(V) =ker(Vo-)* = Ho(div=0; D)™,

where we recall that the symbol “im” means “image of” or “range of” and the symbol
“ker” means “kernel of” or “nullspace of.” (Notice that p € ]P’é simply means that
(p, 1)L2(D) =0, i.e., p has zero mean-value over D.) We call involutions of the eigen-
value problem (2.6) the properties p € ]P’é‘ and v € Hy(div=0; D)L. One objective of
the paper is to prove that the dG approximation of (2.6) preserves discrete versions
of the involutions (2.7) and that the approximation of the spectrum is pollution free.

Remark 2.1 (involutions and topology of D). The involution property (2.7b)
implies that Vxv = 0 since Ho(div=0;D)" = VH'(D) (see (A.5c)). However,
Vxv = 0 fully describes the involution only if D is simply connected. Indeed,

1
the decomposition H(curl=0;D) = VH'(D) ® K.(D) (see (A.4a)) implies that
H(div=0; D)L C H(curl =0; D) with equality iff D is simply connected.

Remark 2.2 (time domain). Consider the wave equation in the time domain:

(2.8) dv+Vp=0, Op+c*Vyv=0
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with initial conditions p(-,0) =p°(-), v(-,0) = v°(-) and boundary condition 73, (v) =
0. Arguing as above, we observe that if p° € Pﬁ‘, 0 € Ho(diVZO;D)L, then the
involutions p(-,t) € Py, v(-,t) € Ho(div=0;D)" hold true at all times. That the
dG method satisfies discrete counterparts of these involutions guarantees that the
(semidiscrete) system behaves properly over long times.

Remark 2.3 (scaling factor). The scaling factor ¢ is introduced to remind us that
the field v and the function p can have different units. Here, ¢ has the same units as
the ratio of p to ||v|. In applications, one often thinks of ¢ as a wave speed. With
this scaling, the eigenvalue A scales as a frequency. The reader can assume that ¢=1
without loosing anything essential in what follows.

Remark 2.4 (other boundary conditions). The problems (2.6) and (2.8) can be
equipped with other boundary conditions. For instance, one can enforce 'yg p(p)=0in-
stead of ¥4, (v) = 0. In this case, the involutions are p € {0}* and v € H (div =0; D)* .
(Notice that the involution p € {0}* is trivial.) The present analysis extends to this
situation; see Remarks 2.11 and 4.1.

2.2.2. Curl-curl eigenvalue problem. Given ¢ > 0, the eigenvalue problem is
to find A € C and a nonzero pair (B, E) € Hy(curl; D)x H (curl; D) s.t.

(2.9) ~VxE=)\B, *VyxB=\E

with the operators Vx : H(curl; D) > e — Vxe € L*(D) and Vyx : Hy(curl; D) >
b — Vxb € L*(D). These operators are adjoint to each other since we have
(€,Voxb)pz(py = (b,Vxe)pzpy for all e € H(curl; D) and all b € Hy(curl; D).
Moreover, we will see in section 2.3 that both operators have a closed range.

We are only interested in the case A # 0. The assumption A # 0 implies that
E=Vyx(A"1¢?2B) and B=—-Vx(A"'E). This means that

(2.10a) E cim(Vyx) =ker(Vx)* = H(curl =0; D)™",

(2.10D) B cim(Vx)=ker(Vox)* = Hy(curl = 0; D)".

We call involutions of the eigenvalue problem (2.9) the fact that E € H(curl =0; D)J‘
and B € Ho(curI:O;D)J‘. One objective of the paper is to prove that the dG
approximation of (2.9) preserves discrete versions of the involutions (2.10) and that
the approximation of the spectrum is pollution free.

Remark 2.5 (involutions and topology of D). Owing to (A.4a) and (A.5¢), we
have H(curl=0;D)" c Hy(div=0;D), and equality holds true iff D is simply
connected. Thus, V-E = 0 and ’ygD(E) = 0 fully describe the involution satisfied
by E only if D is simply connected. Similarly, owing to (A.4b) and (A.5d), we have
Hy(curl = 0; D) c H(div=0; D), and equality holds true iff 8D is connected. Thus,
V-B =0 fully describes the involution satisfied by B only if 0D is connected.

Remark 2.6 (time domain). Consider Maxwell’s equations in the time domain:
(2.11) HhB+VxE=0, O,E—c*VyxB=0

with initial conditions B(-,0) = B°(:), E(-,0) = E°(:) and boundary condition
v$p(B) = 0. Assuming B € Hy(curl=0;D)", E° € H(curl=0;D)", then the
involutions B(-,t) € Ho(curl=0;D)", E(-,t) € H(curl=0;D)" hold true at all
times. That the dG method satisfies discrete counterparts of these involutions guar-
antees that the (semidiscrete) system behaves properly over long times.
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Remark 2.7 (other boundary conditions). The problems (2.9) and (2.11) can also
be equipped with the boundary condition 7§, (E) = 0. The analysis in the paper
readily extends to this case (it suffices to swap the roles of E and B).

2.3. Weak Poincaré—Steklov (in)equalities. In this section, we identify im-
portant properties of the differential operators involved in the eigenvalue problems
(2.6) and (2.9) and in the time-evolution problems (2.8) and (2.11). All these results
are consequences of well-known Helmholtz decompositions which we recall in Appen-
dix A. Recall that we defined H*(D) := H(grad; D) and P, := H(grad = 0; D) and
that orthogonality is meant in L? and L? depending on the context. We consider the
following subspaces:

(2.12a) X®:= H(grad; D) N H(grad = 0; D) = H'(D) NP{,
(2.12D) X3:= H(div; D) N H(div=0;D)",

(2.12¢) X°¢:= H(curl; D) ﬂH(curl:O;D)J‘,

(2.12d) X¢:= Hy(curl; D) N Hy(curl = 0; D)".

As these spaces are closed in H*(D), H(div; D), H(curl; D), and Hg(curl; D), re-
spectively, they are Hilbert spaces when equipped with the inherited inner products.

LEMMA 2.8 (isomorphisms). The following operators are isomorphims:

(213a)  V:X®— Ho(div=0;D)", Vo-: X — H(grad =0;D)" =P¢.
(2.13b)  Vx:X°— Hy(curl=0;D)",  Vox:X§— H(curl=0;D)".

Proof. (1) These operators are well defined since V(H'(D)) C Ho(div = 0; D)",
Vo-(Ho(div; D)) € Py, Vx(H(curl; D)) ¢ Hy(curl=0; D)™, Vox(Ho(curl; D))
C H(curl =0; D)L. They are also bounded.

(2) Injectivity. Let p € X8 = H(grad; D)NH(grad = 0; D)J‘ be such that Vp=0.
Then p € H(grad = 0; D) N H(grad =0; D) = {0}. A similar argument shows that
the other operators are injective as well.

(3) Surjectivity. The Helmholtz decompositions (A.5c) and (A.5b) show that the
operators V and V- are surjective. The surjectivity of the Vx operator follows from
the Helmholtz decomposition (A.6a) and V(HE(D)) C Ho(curl=0;D). Similarly,
the surjectivity of the Vo x operator follows from the Helmholtz decomposition (A.6b)
and Vx(HL(D)) C H(curl =0; D) (see Amrouche et al. [2, Lem. 3.11, p. 840]). O

Remark 2.9 (literature). Referring to Appendix A for the notation and to Dautray
and Lions [14, Table I, p. 314], we have H'(div = 0;D) = Hy(curl=0;D)" and
H}(div=0;D) = H(curl = 0; D). Hence, (2.13b) is a topology-blind restatement
of Theorems 3.2 and 3.17 in Amrouche et al. [2].

Lemma 2.8 implies that the images of the operators V, Vj-, VX, Vyx are closed.
Therefore, there is Cp > 0 so that Cp||p||z1(py < €p||VpllL2(p) for all p € X&. Hence,
we can equip X& with the norm ||p||xs := £p||Vpl||2(py for all p € X&. By using a
similar argument, we equip X3, X¢, X with the norms [vllxa = £plIVovllL2(p),
[bllxs = £p[|VoxblL2(p), llelxe = £D||V><e||L25D), respectively. We extend by
density the above operators to V : L?(D) — (X§), Vo- : L*(D) — (X®), Vx :
L*(D) — (X{), Vox : L*(D) — (X€). For all p € L*(D) and all v,b,e € L*(D),
we set
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(2.14a)
|(p, Vo-v) 2 ()| |(v, V) L2 ()l
Vol xday = sup ———-~"—2 Vo-v Si=Ssup
IVelocyy = S0 ooy’ V0= S0 o)
(2.14b)
(b, Vxe)r2(p)l (e, Voxb) L2l
||VOXb||(Xc)/Z —() ||V><6H(XB)’: sup —()

= su ) :
ee;?c (p||VxellL2(p) bexg (Dl Voxb| L2(p)

COROLLARY 2.10 (weak Poincaré-Steklov (in)equalities). The following holds:

(2.15a) Ipllz2(py = £ol|Vpll x2) Vp € H(grad =0;D)" =Py,
(2.15D) 0]l L2(py = £p | Voo (xey Vv € Hy(div = 0; D)*,
(2.15¢) 1bll 2oy = €0 Vo xbl| (x<) Vb e Hy(curl = 0; D)",
(2.15d) lell2(py =£p|Vxell(xcy Ve € H(curl =0; D)*.

Proof. Owing to (2.13a) in Lemma 2.8, for all ¢ € IP’&, there exists a unique
v(q) € X so that Vo-v(q) =q. Let pe Py, p#0. We have

B (P, D2yl (P, Vov(4)) r2(p)|
HP||L2(D) =S8sup —(—7——— = Sup
gept ldllzzipy  gert [IVorv(@)llr2(p)
|(p, Vo-v) L2 (D)
— sup — D) =Lp||Vpll(xay-

vexd [VovllLz(p)

The proof of the other identities is similar. ]

Remark 2.11 (other boundary conditions). Setting X§ := Hy(grad;D) N
Hy(grad = 0; D)J‘ = H}(D)Nn{0}* = H}(D) and X4.= H (div; D)N H (div = 0; D)J‘7
the operators Vo : X& — H(div=0; D)™ and V-: X¢ — Hy(grad = 0;D)" = L*(D)
are isomorphisms owing, in particular, to the Helmholtz decompositions (A.5d) and
(A.5a). Moreover, equipping X and X¢ with the norms [pllxs == £p|[VopllL2(p)
and ||v|xa := {p||V-v|[12(p), respectively, and considering the extended operators
Vo : L*(D) — (X% and V- : L*(D) — (X&), the following weak Poincaré-Steklov
(in)equalities hold true for all (p,v) € L2(D)x H(div = 0; D)":

Ipllz2(0) = €olIVopll(xay,  [lvllz2(p) = £olV-vll(xsy

with dual norms defined as in (2.14). (Notice that ||-[|(xs) = |- z-1(p)-)

2.4. Eigenvalue problems. We are now ready to give a precise definition of
the operators involved in the eigenvalue problems (2.6) and (2.9). The main difficulty
we address is to get rid of the eigenspace associated with the 0 eigenvalue. For this
purpose, we consider the following L2- or L?-orthogonal projections:

(2.16a) 18 : (D) — H(grad = 0; D) = Py = ker(V) = im(Vp-)*,
(2.16b) 1 : L*(D) — H(div =0; D) = ker(Vo-) = im(V)*,
(2.16¢) IT§ : L*(D) — Ho(curl = 0; D) =ker(Vy x) = im(Vx)*,
(2.16d) I1°: L*(D) — H(curl = 0; D) = ker(V x) = im(Vy x)*.

2

(
%

Recall that ¢p is a length scale associated with D and that ¢ is a scaling factor typically
representing a wave speed; in what follows, we use the time scale 7p := ¢~ 14p.
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2.4.1. Grad-div problem. Let us first address the grad-div operator.

THEOREM 2.12 (well-posedness). For all (f,g) € L*(D)xL?*(D) =: L9, there
ezists a unique pair (v,p) € Ho(div; D) x HY(D) such that

(2.17a) 75 I (v) + Vp = (I = TI5)(f),
(2.17b) 75 T8 (p) + Vv = (I —T18)(g).

This pair is in X3x X8 and continuously depends on (f,g), i.c., vl x4 =/lpc?||(I—
118)(9)ll 2 by IIpllxs = €oll(T = TI5) ()| L2 ()

Proof. Lemma 2.8 implies that there there exists a unique pair (v,p) € XS X X8
verifying Vp = (I — II3)(f) and Vo-v = (I — I18)(g). Since I18(¢) = 0 for all ¢ € X&
and TI§(w) = 0 for all w € X, the pair (v,p) solves (2.17). This proves existence.
Let now (v,p) € Ho(div; D) x HY(D) be a solution to (2.17) with zero right-hand
side. Taking the inner product of (2.17a) with IT3(v), we conclude that ITS(v) = 0.
This, in turn, implies that v € XS. Similarly, taking the inner product of (2.17b)
with II&(p), we conclude that p € X&. Finally, Vo-v =0 and v € X imply that v =0,
and Vp=0 and p € X8 imply that p =0. This proves uniqueness. The boundedness
assertion is a consequence of the definition of the norms [|-[| x4 and ||-[|x=. O

DEFINITION 2.13. We define the operator T : LY — L4 so that, for all (f,g) € L9,
the pair (v,p) :=T(f,g) solves (2.17).

LEMMA 2.14 (compactness). (i) There is s € (1,1] s.t. for all (v,p) € Xixxe,
(2.18) vl &= (py < Cplpl|Vovll L2(p), Ipll 21 (py < Cplpl|VpllL2(p)-
(ii) The operator T : LY — L% is compact.

Proof. The decomposition (A.5c) implies that v € V(H'(D)) for all v € X;
hence, Vxv =0. Then, the inequality (2.5) implies that, for all v € Xg,

vl £rs(py < Co (|0l E(aivip) + €0V XVl L2(p))
= Cp|v| mivip) < Collvlixs = Cplol Vol r2(p)-

Moreover, we have already seen that ||p||z1(py < Cplp||VpllL2(py = Cpllpllxe for all
p € X&. This proves the first assertion. The second assertion follows from the Rellich—
Kondrachov compactness theorem in fractional-order Sobolev spaces implying that the
embedding Xg x X8 — L4 is compact. ]

Let o(T) be the spectrum of T" and o,(T) be the point spectrum of 7. Since
T is compact, the spectrum of T reduces to its point spectrum away from 0, and
0 is an accumulation point. Let Jp(fAﬁl) be the point spectrum of the operator
—AG  L2(D)NPy — L2(D) NPy, where —A(=ARN(f)) = f and 8,(~AR (f))|op =
0. Recall that o,(—Ay") C Rsg. Notice also that a € o,(—ARy") iff iv/a and —iva
are both members of o, (T). Hence, the point spectrum of T is purely imaginary. Let
us now relate the operator T' to the spectral problem (2.6).

LEMMA 2.15. (i) Let p#0, (v,p) € Xax X® be an eigenpair of T. Then ﬁ, (v,p)
is an eigenpair of (2.6). (ii) Let A#0, (v,p) € Ho(div; D)x HY(D) be an eigenpair of
(2.6). Then %, (v,p) is an eigenpair of T.

Proof. (i) Let u # 0, (v,p) € X3xX® be an eigenpair of T. Then II§(uv) +
V(pp) = (I - Tj)(v) and 118 (up) + Vo-(pv) = (I — I#)(p). Since Mf(v) = 0 and
I18(p) =0, we conclude that %, (v,p) is an eigenpair of (2.6).
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(ii) Let A # 0, (v,p) € Ho(div; D)x H' (D) be an eigenpair of (2.6). Then V(5p) =
v and Vo:(3c?v) = p. This implies that v € H(div=0;D)" and p € P;. Hence,
IS (v) = 0 and [I%(p) =0, i.e., 1, (v,p) € X% X# is an eigenpair of T. 0
Lemma 2.15 shows that the eigenstructure of T is the same as that of (2.6) for the
nonzero eigenvalues. Hence, it suffices to study the spectrum of T' to have full knowl-

edge of the eigenstructure of (2.6). In the paper, we prove that the dG approximation
of T is spectrally correct, i.e., pollution free.

2.4.2. Curl-curl problem. We proceed as in section 2.4.1 for the analysis of
the eigenvalue problem associated with the curl-curl operator. The reader is referred
to Monk [24, Chap. 1] for an introduction to Maxwell’s equations.

THEOREM 2.16 (well-posedness). For all (f,g) € L*(D)xL*(D) =: L, there
exists a unique pair (B, E) € X{xX° such that

(2.19a) 75 II§(B) — VX E = (I - II{) (f),
(2.19b) 75 I°(E) + Vo x B = (I — TI°)(g).

This pair is in Xgx X and continuously depends on (f,g), i.e., we have ||B| xs =
Coe (I =T1°)(9) | L2 () 1Bl xe = Cp|(I = TIG) (f)ll L2 (D)-
Proof. The proof is similar to that of Theorem 2.12. 0
DEFINITION 2.17. We define the operator T : L¢ — L° so that, for all (f,g) € L°,
the pair (B, E):=T(f,g) solves (2.19).
LEMMA 2.18 (compactness). (i) There ezists s € (3,1] so that, for all (B,E) €
XixX°©,
(2.20)  ||Bllms(p) < Cplp|VoxBl|L2 (D), | Ellzrs(py < Cplp||VXE| L2 (py-

(ii) The operator T : L* — L€ is compact.

Proof. By definition, we have X° C H(curl; D). Moreover, the identity (A.4f)
implies that H(curl=0;D)" = HY(div = 0;D). Hence, X¢ C H(curl;D) N
H (div=0; D). Then, the inequality (2.5) implies that, for all E € X°,

IE| £2:(py < Co (|1 Bl e (curt; ) + {0V -E| L2(D))
=Cpl|lE| fr(curt;p) < CH || Bl xc = Cplp||VXE|| 12(p).-

A similar argument is used to prove the first inequality in (2.20). This proves the first
assertion. The second assertion follows from the Rellich-Kondrachov compactness
theorem in fractional-order Sobolev spaces. ]

Since T is compact, we have o(T)\{0} = 0,(T)\{0} and 0 is an accumulation
point of o(T'). Let us now relate the operator T' to the spectral problem (2.9).

LEMMA 2.19. (i) Let p # 0, (B, E) € X(xX° be an eigenpair of T. Then %,
(B, E) is an eigenpair of (2.9). (ii) Let A#0, (B, E) € Ho(curl; D)x H(curl; D) be
an eigenpair of (2.9). Then +, (B, E) is an eigenpair of T

Proof. The proof is similar to that of Lemma 2.15. a

Lemma 2.19 implies that the eigenstructure of T' is the same as that of the spectral

problem (2.11). In the paper, we prove that the dG approximation of T is spectrally
correct, i.e., pollution free.
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3. Discrete setting. In this section, we introduce the discrete setting used in
the paper. The main result of this section is Lemma 3.2 which establishes discrete
counterparts of the weak Poincaré-Steklov (in)equalities from Corollary 2.10.

3.1. Broken polynomial spaces, jumps, and averages. Let (7;)ncn be a
shape-regular family of affine simplicial meshes such that each mesh covers D exactly.
More general meshes can be considered provided suitable polynomial spaces compos-
ing the corresponding discrete de Rham sequence are available. A generic mesh cell
is denoted K, its diameter hy, and its outward unit normal nyx. We define h as
the piecewise constant function on 7j such that }~L| k = hg for all K € Tp; we set
h:= ||i~L||L<>o(D). The set of mesh faces, Fj,, is split into the subset of mesh interfaces
(shared by two distinct mesh cells which we denote Kj, K,.), say Fy, and the subset
of mesh boundary faces (shared by one mesh cell, K;, and the boundary, D), say
F ,? . For every mesh face F' € F},, hp denotes the diameter of F'. Every mesh interface
F € F}; is oriented by the unit normal, nr, pointing from K; to K,. Every boundary
face F' € ]-';? is oriented by the unit normal ng :=np. For all K € T;,, Fx denotes
the collection of the mesh faces composing the boundary of K, and we set Fy :=
Fr N ]:;Z

In what follows, for positive real numbers A, B, we abbreviate as A < B the
inequality A < C'B, where C is a generic constant, independent of h € H and the
fields involved in the inequality, and whose value can change at each occurrence.

Let k£ > 0 be the polynomial degree. Let Py 4 be the space composed of d-variate
polynomials of total degree at most k, and set Py, 4 := [Pk,d}d. Consider the scalar-
and vector-valued broken polynomial spaces

(3.1a) PP (Th) = {vn € L°(D) | vp i € Pra VK € T},
(3.1b) P}(Th) = {vn, € L™(D) | vy €Pra VK € Tr}.

We introduce the L2- and L2-orthogonal projections
(3:2) 0y :L*(D) = PY(T),  II;: L*(D) = PR(T).

For every py, € PP(Th), Vipn denotes the broken gradient of py, (evaluated piecewise
over each mesh cell). For every vy, € PE(’E), Vi xvy, and Vj,-v;, denote the broken
curl and divergence of vy, respectively.

For all K € Ty, all F € Fg, all p, € P,E’('ELL and all vy, € PE(Th), we define
the local trace operators such that v p(pr)(®) := prl K (®), Vi p(Vr)(®) := vi|k (),
Yic.p(0n) (@) == vp|k (x)xnp, and vy p(vh)(€) ;= vp| K (@) np for a.e. x € F. Then,
for all F'e F? and x € {g,c,d}, we define the jump and average operators such that

(3.3a) [pnl% =7k, ron) =Yk, p(on),  {oale =5 (v, p@n) + Yk, p(P0)),

(3:3b) [onlf =i, r(vn) =7, r(on),  {onli =5 (Vi r(on) + 7k, p(v4))-

N =N =

To allow for more compact expressions, we also set [pn]% = {pa % = Vi, £(Pn),
[val% = {on s =%, p(vn) forall F'e F?. Finally, we define the jump sesquilinear
forms such that for all py,, g € P,?('EL) and all vy, wy € Pz(ﬁ),
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% (Ph,an) == Z ([pnl% lanl%) L2y, 85 °(Phogn) = Z ([pn]%, lanl%) L2cry,

FEFn FEFP

si(on,wn) = ([wale [wil @) 2y, 857 (nwn) =Y ([wal§ [walF) 2 (r),
FEF, FeFp

si(nwn) =Y ([oalf, [wal ) rary, s34 nwn) == ([oale, [wal$) 2,
FeF, FeFs

and the seminorms |q1h\% = si(qh,qh)%, |q;f\%’o = si’o(qh,qh)%, lvn$ = s‘fl(vh,vh)%,

[0 = 5% (v, v1) 2, [VR|d = s (v, 1) 2, and o = s (v, v5) 2.

3.2. Discrete Poincaré—Steklov inequalities. In this section, we prove dis-
crete counterparts to the Poincaré—Steklov (in)equalities established in Corollary 2.10.
We first define the (broken) polynomial subspaces

(3.4a) P (div=0;T3) := P2(T,) N Ho(div = 0; D),
(3.4b) P(div=0;T3) := PY(T;) N H(div = 0; D),
(3.4c) Pj,(curl =0;7T3) ::PZ('E) N Hy(curl =0; D),
(3.4d) P (curl =0;7;,) := PY(7,) N H(curl = 0; D),

2

and we consider the following L?- or L°-orthogonal complements:

(3.5a) X§ = P(Th) NPy,

(3.5b) X?LO = PZ(E) mP(lio(diV:Oﬂ;z)Lv

(3.5¢) X, := PR(T) N Pp(div=0; Ta)*,

(3.5d) ho 1= PR(Th) N Pio(curl = 0;T5) ",

(3.5¢) ¢ .= Py(Tn) N P§(curl = 0;75,)*

The broken polynomial spaces X}, X%O, X%, 1o, and X7 are nonconforming

approximations of X8, Xg, Xd, Xg, and X°¢, respectively. We could have set
Pg(grad =0;T,) := PP(T,) N H(grad = 0; D) and X} = PP(T,,) N P¢(grad = 0;T;,)*,
but this would have led to the same definition of X} as above because Py (grad =
0;75) =Po.

LeEMMA 3.1 (discrete Poincaré—Steklov inequalities for scalars). The following
holds:

(3.6) 1PallLz(p) < €olIVpnll(xay Vo € X

Proof. Since X§ C Py, (3.6) is a consequence of (2.15a). a

The situation is not as simple for discrete vector fields because X %0 is not a
subspace of Ho(div:O;D)L, X% is not a subspace of H(div:O;D)l, X7, is not
a subspace of Ho(curl=0;D)", and X is not a subspace of H(curl=0;D)".
To establish discrete Poincaré—Steklov inequalities for vector fields, we use that the
broken polynomial spaces contain polynomial spaces from the entire discrete de Rham
sequence based on curl-free Nédélec or divergence-free Raviart—Thomas polynomials.

LEMMA 3.2 (discrete Poincaré-Steklov inequalities for fields). The following
holds:
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(3.7a) lvnllL2(py S £l Vovnll (xey + 7 |vpls Yoy, € X,
(3.7b) lwnllz2(py SEollV-wnllxsy +h2lwaly® Y, € X3,
(3.7¢) BAllz2(m) S €01 Vo xbnllxey + b2 bl Vb, € X0,
(3.7d) lenllza(p) S ol Vxenllxsy +h2lenls®  Ven € X5,

Proof. (1) Proof of (3.7a). Here, the H(div; D)-conforming space composed of
piecewise Raviart-Thomas polynomials of order k > 0, Pﬁo (Tr), plays a central role.
Notice that P{,(75) is not a subspace of P} (T;), but we have

(3.8)  Po(Th) N Hy(div=0; D) = PY(T5) N Ho(div=0; D) =: P, (div=0;Ty).

Let Zpo™ : PR(Th) — Py (Th) be the H(div; D)-conforming averaging operator with
zero normal boundary prescription constructed in [16, sect. 6]. Let v, € X %07 and
define

v =T (vn), €= — TIH(v)).

Since Vo-(IT3(v§)) = 0 (because II§ (vil) € Ho(div=0; D)) and & € H(div = 0;D)",
the weak Poincaré-Steklov (in)equality (2.15b) from Corollary 2.10 gives

(3.9) €112y = £nlVo-€ll ey = Lo Vo Tig™ (o) | xsy-

Let J& : L*(D) — P4 (Ts) and JP : L*(D) — PP(T;) be the commuting approxi-
mation operators devised in [17, sect. 23.3] (see also Arnold, Falk, and Winther [4],
Christiansen [11], Christiansen and Winther [12], Schéberl [27]). Since v§ € P, (7T5),
we have

Wi, = Tno(€) = Tio (05, — €) = Tio (T (v}))-
The commuting property of »7}?0 implies that
Vo (v5, = T (€)) = Vor (Tio (T3 (v1))) = Ty (Vo (I (v))) = T3, (0) = 0.

Hence, vl — J3,(€) € P, (Tn) N Ho(div =0; D) = P (div = 0;75) owing to (3.8).
Using that vj, € P{y(div=0;7;)" then gives

lonllz2py = (Vn,vn — Vi) 2Dy + (Vn, 5 — Ti0(€)) 2Dy + (Vn, Tio(€)) 12(p)
= (v, v — V) 2Dy + (Vn, Ti0(€)) L2 (D)
Invoking the Cauchy—Schwarz inequality and the L?-stability of 7; ;30 yields
lvnllz2py S llvn = v3llLz(oy + 1€l L2 ()
Recalling the definition of v and the bound (3.9) on & then gives
lonll 2oy S lon = Tns™ (0n)ll 2oy + ol Vo g™ ()l (xo)-

Adding and subtracting Vv, to the second term on the right-hand side, using the
triangle inequality, and since £p | Vo-@||(x=) < [|@]l2(p) for all ¢ € L?(D), we obtain

av

lonllz2 oy S lwn — Zig™ (i) lp2 oy + €0l Vovnll (xey -
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,av

Finally, we invoke the approximation properties of I;Lio . For all K €Ty, we have

1
2

1
||vh—ISaV<vh>||Lz<K>5hf({ > |ﬂvhﬂ%niam} :

FeFk

The assertion follows from the shape-regularity of the mesh sequence.

(2) The proof of the other inequalities proceeds similarly. Here, one considers
the H (div; D)-conforming space composed of piecewise Raviart—Thomas polynomi-
als of order k >0, P(73), or the H(curl; D)- and H(curl; D)-conforming spaces
composed of piecewise Nédélec polynomials of order k > 0, P} (Tn) and Py(Tr).
The corresponding averaging operators and commuting approximation operators are
constructed in, e.g., [17, Chaps. 22-23]. O

3.3. Discrete projection operators. The (broken) polynomial subspaces in-
troduced in (3.4) naturally lead to the following L*-orthogonal projections:

(3.10a) Iy : L*(D) = Pio(div = 0;Tr), IT, : L*(D) — Py (div=0;Ty,),
(3.10b)  Mj5,:L*(D) - Pig(curl=0;7;),  II;: L*(D) - P§(curl = 0; 7).
We can define the L?-orthogonal projection II§ : L*(D) — Pg(grad = 0;73), but
II5 coincides with II% since Pf(grad = 0;7,) = Py. We now record instrumental
properties of the above operators to be used in the analysis of the dG approximation.

Recall that the continuous projection operators are defined in (2.16) and that the
projection operators onto the broken polynomial spaces are defined in (3.2).

LeEMMA 3.3 (discrete projections). The following holds:

(3.11a) Ml oMmi=TI, Mo =1I} TII,oIIS=1I, IIoM°=II,
(3.11b) I oMP =TI), TI{oMI} =11}, IIS,oII} =115, II{ oIl =1I.

Remark 3.4 (II#). The identities in (3.11) also hold for II¢ and II}. We addi-
tionally have I8 o IT} = II} o I8 = I1& because Py C PP(7T3). Finally, if the boundary
condition is 7§, (p) = 0 for the grad-div problem, we simply set II§ = I}, = 0.

4. dG approximation of grad-div operator. This section deals with the
analysis of the dG approximation of the grad-div operator. The main result is Theo-
rem 4.11, which implies that the approximation is spectrally correct. For simplicity,
we set the scaling coefficient to ¢:=1.

4.1. Definitions. We define the discrete space L§ := PR(T,)xPP(T). The
sesquilinear form ay, : L x L8 — C associated with the problem (2.17) is

an((vn,pn), (Wh,qn)) 51551(Hgo(vh),wh)L2(1)) +551(Hg(ph)7Qh)L2(D)
— (Pn, Viewn) £2(py — (Vh, Vian) L2(p)

(4.1) + Y el Twnl )z + D ({onde lanlf) 2e)

FeF, FEFy

+ Sz(vhm wh) + S}gy,7o(ph7 qh)
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Integrating by parts the broken divergence and gradient operators also gives

an((Vn,pn), (Wh,qn)) :ffyl(nﬁo(vh),wh)m(p) + 05 (T18(pr), an) £2(p)
+ (Vapn, wn)p2(py + (Vih, qn) 12(D)

(4.2) = > (ol fwn 3 )2y — Y (loald fan} i) 2 e

FeFyg FEFs

+ Sz(vh, wy) + 57 (Ph, qn)-

Notice that the stabilization sesquilinear forms s and s&° could be scaled by O(1)
positive weights; for simplicity, we choose these weights to be equal to 1 here.

We now define Tj, : L& — Lg C L4, the discrete counterpart of the operator
T: L% — L9 introduced in Definition 2.13 (recall that LY := L*(D)x L?*(D)). For all
(f,9) € LY, Ty (£, g) := (vn,pn) is the unique pair in L$ so that, for all (wy,qn) € LY,

(4.3)  an((vn,pn), (W, qn)) = (I = i) (F),wn) 2y + (I = 1%)(9), qn) £2(D)-

The definition of T}, makes sense owing to the stability result established in Lemma 4.6.

Our goal is to prove that limpew o0 |7 — Thllz(Le;4) = 0. This is done in two
steps. First we prove an inf-sup condition which establishes stability. Then we prove
a consistency/boundedness result. Convergence follows by combing these two results.

Remark 4.1 (other boundary conditions). To approximate the grad-div operator
with the boundary condition 7§, (p) = 0 (see Remarks 2.4 and 2.11), we use the
sesquilinear form

an((vn,pn), (Wh,yqn)) = 5" (T (v4), wa) £2(py — (Ph, Varwn) 12(p) — (Ui, Vadn) 2(p)

+ D ey Twnd$)zecey + Y (Hondi landF) e

FeFy FeFy
d,o
+ 83, (v, wn) + 85 (Ph, qn)-
Notice that there is no projection operator acting on py, as II5, =0.

4.2. Discrete involutions and other comments. The projection operators
H?LO and I8 are only invoked for theoretical purposes. One does not need to construct
these operators in practice when one wants to approximate the eigenvalue problem
(2.6) or when one wants to approximate the wave equation in the time domain (2.8).
Indeed, let us consider the following sesquilinear form:

(4.4)
an((Wn,n) (Wh,qn)) == —(Pn: Va-wn) 120y — (Vn, Vaan) r2(p)

+ > (el [wal P pery + ) (ol [anlF) r2or)
FeFy, FeFy
+ 85, (vn, wn) + 55° (Phy Gn)-
Notice that a,((-,-), (wn,qn)) =0 for all (wy,, ) € Py (div =0;T5,) x Py because every
field wy, € P{y(div = 0;7) satisfies Vj,-wj, = 0 and [wy,]% = 0 for all F € Fj, and
every function ¢ € Py satisfies Vg, =0 and [[¢5]]% =0 for all F € Fj.
LEMMA 4.2 (eigenvalue problems for aj, and ). Let A#0, (vn,pn) € LY. Then

Th(vn,pn) = 5 (On,pn) iff an((Vnpr), (Whyqn)) = A((vn, wh) p2(py+ (Phs an) L2()) for
all (wp,qn) € LY.
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Proof. (1) Let (vp,pn) € L§l be so that Ty, (v, pn) = 5 (va,pp). This means that
an((Vn,pn), (Wh,qn)) = A(((T = Tyg) (vn), wr) p2(py + (1 = TI8)(pn), an) £2(py) for all
(wh,qn) € LY. Using the test functions wy, = Iy (vy) and g, = 118(ps), we obtain
ﬂglul‘[‘éo(vh)HiQ(D) + 05 [T (pp)|[3 2y = 0, which then gives

(4.5) I, (vy) =0, I18(pp,) = 0.

This implies that as((va,pn), (Wa,qn)) = A((Vn, wn)L2(py + (Pr,qn)L2(py) for all
(wh,qn) € LY, whence the assertion.

(2) Assume now that ap ((va,pn), (wn,qn)) = )\((Uh,’wh)m(D) + (pr,an) L2(D))
for all (wp,qs) € LY. Using the test functions wy, = Hio(vh) and ¢n = I18(py,), we
observe that dh((vh,ph), (wh,qh)) =0, which, in turn, implies that (4.5) holds true.
The assertion readily follows. 0

Remark 4.3 (discrete involutions). The proof of Lemma 4.2 shows that the invo-
lutions enforced by aj, and aj, are (4.5). Notice that the projections Hflo and II® are
not involved in the construction of d;. As shown in Lemma 3.2, these involutions are
essential to prove the discrete Poincaré—Steklov inequalities (3.7). These inequalities
play a pivotal in the proof of the spectral correctness of T}, which owing to Lemma
4.2 implies the spectral correctness of the dG approximation realized by ay,.

Let us now consider the approximation in time and space of the wave equation
(2.8). For simplicity, we use the backward Euler time-stepping. Letting (v}, p}) € L%
be the approximation at time ¢t and letting 7 be the time step, (vzﬂmzﬂ) €L is

the unique pair that solves, for all (wp,,qn) € L‘}L,

(Up T wn) 2oy + (R an) 2oy + Tan ()L PR, (wa ) =

(4.6) (i, wn) 2y + (Ph>qn) L2 (D)-

LEMMA 4.4 (time involution). Assume that the pair (v}, p) satisfies the involu-
tions (4.5). Then the pair (v}, pi™) satisfies (4.5) as well.

Proof. Using wj, = H}ilo(vZH) and g;, =TI8(p;'™) yields the assertion. 0

Lemma 4.4 shows that if v} is orthogonal to P{y(div =0;7) and the mean of p9)
over D is zero, then this is also the case for (v}, p}) for all n > 0.

4.3. Stability. We equip the discrete space L‘g with the mesh-dependent norm

_1 _1
o.h = Lp" vnllL2(py + £p° IpnllL2(D)

(v, pn)
1 > 1 o
(4.7) + |h2Vhvnl 2oy + 172 Vapnllpz2py + [vnlh + sl °.
Recall that HE and Hg are defined in (3.2), and the spaces X S are X8 are equipped
with the norms [|wl| x4 :=¢p||Vo-wl|[r2(p) and [lg|[x= :={p||Vaq| L2(p), respectively.

LEMMA 4.5 (stability of broken projections). The following holds:
1
(4.8) (XL, (w), TR (@) o0 S €57 (lwllxa + llallxs) — V(w,q) € XGxXE.

Proof. (1) Bound on IT} (w). Let w € X§. The L*-stability of IT} together with
the closedness of the image of Vj- (see Lemma 2.8) implies that

_1 _1 1
o7 I3 (w)ll 2y < £p° Wl 2y S €5

[l xs.
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Moreover, we observe that, for all K € Ty,
|IV-(IT, () |72 1) = (V-(TT} (w) — w), V(T (w)) L2 (x0) + (V-w, V-(TIR (w)) 2 k)
Letting A be the first term on the right-hand side, integration by parts gives

A= — (I (w) — w, V(V-(IL} (w)))) IT (w) — w, n V-(IL) (w)))

)t L2(0K)"

Invoking the Cauchy—Schwarz inequality, the approximation properties of HE, the

boundedness of the embedding X3 < H*(D) with s > 1 (see Lemma 2.14), and

inverse and trace inequalities for the polynomial V-(IT} (w)), we obtain
AlS h;(_l‘w|H5(K)HV'(Hz(w))HLZ(K)-
For the second term on the right-hand side, we apply the Cauchnychwarlz inequality.
After simplifying by || V-(II;(w))|| 12 (k) and multiplying the result by k%, we obtain
1 s_1 1

i IV (T, () | 22 ) S P [wlme ey + Wi V-]l 22 xc)-

Summing over the mesh cells, we infer that
~1 s—1 —1 1 -1
172 V3 (TT, (w)) || 220y S (B/€D)* "2 €p* [wl|xa + (h/€D) (1" wl]| x4
<205% [wl]| xg.

where the last bound follows from h < ¢p. Finally, since w € H*(D) with s > %, it
is legitimate to assert that w has zero normal jump across every mesh interface and
zero normal trace at every mesh boundary face. This implies that

s—1 s—1,—3
T} (w)[fy =TT, (w) — wliy S A2 [w|ge(p) S (h/€p)* "2 45 |w] xg-

Hence |TT}, (w)|§ < 61_)% |wl|xa because h </p. This completes the bound on 1} (w).
(2) The arguments for II%(q) are similar (and simpler) and are therefore
omitted. d

We are now ready to establish our main stability result.

LEMMA 4.6 (stability). The following holds:

(4.9) (wnp)lon < sup |an (v, pn), (wh, an))|

Y(vn,pn) € Lj.
(wh.an)ELY [ (wh qn)lls.n

Proof. Let (vp,pr) € LY, and let S denote the right-hand side of (4.9). We need
to show that |[(vh,pn)|sn SS.
(1) The first step of the proof is classical (see, e.g., [15]). We observe that

(5 T (wr)lI2 ) + £ T (0m) 72 ) + (fwnl5)? + (1Pl %)?
(4.10) = an((vn.pn), (vn.pn)) < S|l (vn.p1) -

Moreover, using wy, := thph and gy := th-vh in the expression (4.2) for ay gives

172 hvn 132 oy + 172 Vnanl % py = an (v, pr), (wh, qn)) — Ax,
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with

Ay =5 (T (vn), wn) £2(py + €5 (T(pr), qn) 2Dy + $h(Va, wa) + 55° (Ph an)

- Z (thﬂ%’{{wh}}%)ww) - Z ([[vh]](}‘v{{Qh}}%)LQ(F)-

FEF? FEFy,
Using inverse inequalities and h < £p shows that
1 s
[(wn, qn)llo,n S Ih2whl[L2(p) + 1A 2 anllz2(p)
=1 S 1
= [|h=2VrprllL2(py + 1P2Vivnl L2y < [[(Vn, pR) |lb.n-

This proves |ax ((vn,pn), (Wn,qn))| < S||(vn, pr)ly,n- Moreover, invoking the Cauchy—
Schwarz inequality, h < ¢p, inverse inequalities, and the bound from step (1) gives

1
2

1] S (65 T (o)1 22y + €5 1T (0n) 122y + (Jonli)? + (ol *)?)

71 71 1
X (Ih~2wnllL2(p) + 1h 72 gnllL2(p)) < S2[[(vn: pa)

3
2
bh*
Putting the above bounds together yields
~ ~ 1 1 1 3
(411)  [|R2Vhvnllzzo) + 122 Vipallza oy SS2 [ (n,pn)llZ, +S% [ (vn.pn)lIF,-
Combining (4.10) with (4.11) shows that
_1 _1 o
2 I ()| L2 oy + €0° T (pw) | 2 () + |wn s + [paly
~ ~ 1 1 1 3
(412)  +[|h2Vhvnllra(py + 1h2 Vapallz2 o) S SZ I (wn,pu)lIZ), +S7 [ (n,pa) 12,

(2) In the second step, we prove that, for all (v},,p}) € X§,xX¥ (see (3.5)),

1 1 . gt o
(4.13) 0 (Iv3llz2 oy + 1Pkl L2 () SEBS™ + (B/€n)* == (|05, 15 + P4, [5°)
with
S sup |ah((v;up%)v (Hz(w)vHE(Q))H
i e Twllxg +llallxe

The proof of (4.13) heavily relies on the discrete Poincaré-Steklov inequalities (3.6)
and (3.7a). Let ¢ € X® with £p||Vq||z>(p) =: lgllxs =1, and set g, :=1II}(¢). Notice
that 118(gp,) = [18(g) = 0 since 118 o I} = 1% (see Remark 3.4). Using the expression
(4.2) for ay, and since g has zero jumps across the mesh interfaces, we infer that

(v, V@) £2(py = — (Vav},q) 20y + Z (lorl e {ad i) rzcmy
FeFy
= —an((v},,94), (0,qn)) — Ag,
with

Ag:= (Vi v}, — qn)r2(D) — Z (i 1% g - an ) r2(r) + 85 (Phy a4 — an)-
FeFn
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Noticing that the first term on the right-hand side vanishes, invoking the Cauchy—
Schwarz inequality, the approximation properties of II?, and the continuous embed-
ding X& < H*(D) with s > 1 gives

1Ao| S (h/0p) 2057 (Jo |3+ [ [5°).

Similarly, let w € X3 with (p|[Vowl[r2(p) =t [[w]|xa =1, and set wy, = 1} (w).
Notice that I3, (wp,) = II5 (TI} (w)) = I}, (w) = I, (TT3 (w)) = 0 owing to Lemma
3.3. Using (4.2), and since w has zero normal jumps across the mesh interfaces and
zero normal component at the mesh boundary faces, we infer that

— (Vaph, w2y + Y (15 {wBE) 2y
FeFy

= - ah((v;mp/h)v ('whao)) —Ag,

(Ph, Vorw) L2(p)

with

Ag = (Vaph,w —wn)p2py — Y, (P15, §w — win B %) 12 () + 85 (05, w — wy),
FeFg

Invoking the Cauchy—Schwarz inequality, the approximation properties of HE, and
the continuous embedding X3 < H*(D) with s > 1 gives

s—1 -1 o}
83| S (h/ €)™ 205" ([vp[5 + IDhI5°).-

Using the above identities for (v}, Vq)p2(py and (pj,, Vo-w)r2(p) together with the
above bounds on Ay and As shows that

™ s—1 -3 ,0
IVo-vll sy + VPRl xgy SS™+ (B/€0) =2 £ ([0hli + IPal5°)-

Finally, using the discrete Poincaré-Steklov inequalities (3.6) and (3.7a) gives

(p? (||UZ||L2(D) + Hp/hHLZ(D))
1 1 o
S8 (Vo v loxsy + VPNl xcay) + (R/€p)2 ([0 + [PhI5°)
3 us 5—l ,0
SEAS™ 4 (h/tp)* 72 (|[vhlh + [Phl5°),

where we used that h < {¢p. This completes the proof of (4.13).
(3) In this last step, we prove (4.9). Let (vs,pn) € LY, and set v}, := vh—H(,iO(th
P, :=pn — I1%(py). Notice that (v}, p),) € X5,xXy. Then, using (4.13) yields

_1 1 1 °
057 (lon = Mg (wn) L2 (o) + o6 = T ()|l 22(D)) S LHS™ + (h/€0)*~ 2 (|onls + [palf®)-
Using h < {¢p and invoking (4.12) gives

_1 1 1
0p* (llon = Mg (wn)ll L2 (o) + lpn = T (o)l 22 (D)) S€BS™ + S [ (vn, 1) 17,
Owing to Lemma 4.5, we infer that

them < |an ((vn = T3 (), pn — TE(pn)), (wi, an)) |
D ~ sup .
(wh,qn)€Ly [ (wh, qn)| b,h
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We observe that

an ((vn — i (vn), pr — T8(pn)), (wh. qn))
= an((vn,pn), (W, qn)) — 5" (T (vn), wh)r2(py — {5 (I(ph), 4n) L2 (D) -

Bounding the last two terms on the right-hand side by using the Cauchy—Schwarz
inequality, invoking the estimate (4.10), and using the above bounds gives

_1
057 (Jlon — I (vi) | L2 oy + lpn — T8 (on) | 22(p))
1 1 1 3
SS+ SE([(vnspa)lly ), + ST (0n,pr) Iy,

Invoking the triangle inequality and the estimate (4.10) yields

_1 1 1 1 3
tp? (lonllz2py + Ipnllz2(py) SS+S2|[(wn,pa)ll7 ), +S* [ (vn, )l -

Combining this bound with (4.12) finally gives

1 3
2|[(vns PRI -

1w, 20) 175 S S + Sl (vn, pn)
The inf-sup condition (4.9) follows by repeated applications of Young’s inequality. O

Introducing S™ in the proof of Lemma 4.6 may seem surprising as S” is not used
in the final result (4.9). The inequality (4.13) finds its justification in the following
sharper stability estimate which will be instrumental to bound the consistency error.

COROLLARY 4.7 (sharper Li-stability). The following inequality holds true for
all (v} ) € XX XE:
|ah((v/}pp;b)7 (wh7 Qh)) |

1
Co* ([villz2cpy + okl 22 (o)) <(h/lp)*™%  sup

(wn,qn)ELY H(whv(]h)”b,h
(4.14) i s | (@hop). (). ()|
7 (wayexgxx [wllxg + lallxs
Proof. Combine (4.9) with (4.13). 0

4.4. Consistency and boundedness. The second step of our program consists
of proving a consistency/boundedness result. This is done by first considering the
discrete operator Tj, : LY — L$ € L9 so that, for all (f,g) € LY, Th(f,g) := (¥n,pn) is
the unique pair in L¢ so that for all (wh,qh) €Ly,

(4.15)  a,((On,pn), (wh,qn)) = (L = TI5) (), wn) 2 (py + (I —TI2)(9), qn) £2(D)-

The definition of T}, is meaningful owing to Lemma 4.6. The difference between the
operators T}, and T}, lies in the way f is projected on the right-hand sides of (4.3) and
(4.15) (see also Remark 4.10 below). The operator T}, is introduced since it is easier
to bound the associated consistency error. We postpone the control on T, —T) to a
second step (see Lemma 4.9 below). We augment the stability norm ||-||, 5, by defining,
for all s € (4,1], the following mesh-dependent norm on H*(D)xH*(D) + L:

1w, @) llgn = [l (w, @) ls,p + 122wl g2y + 1B 24l 2(p)

(4.16) { Z Z 1%, (w HL2(F)+||’YKF( )||2L2(F)} .

KeT, FEFK
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LEMMA 4.8 (consistency/boundedness). Let (f,g) € LY. Set (v,p) := T(f,g),
(f)}uﬁh) = Th(f7g)} é;: = f)h - HZ(,U); €v =v - HZ(,U); éi = ﬁh - Hg(p); and
P:=p—T1I2(p). The following holds for all (wy,qn) € L{:

(4.17) lan (€5, €0), (wh,qn))| S, ") lsn
Proof. Let (wp,qn) € LY. By definition of T},, we obtain

an((€},eh), (wn,qn)) = (I = TI5) (f), wn) 2y + (I = 11%)(9), an) £2(p)
— an (T (v), I13()), (wn, an))-

Since Vp = (I —II3)(f) and Vo-v = (I —I12)(g) by definition of T', we infer that

[ (wn, qn) .1

an((€},€7), (wn,qn)) = (Vp,wn)2(py + (Vo-v,qn) 12(p)
— an (T3 (), 11} (p)), (wh, qn)).

We integrate by parts the first two terms on the right-hand side (this is legitimate
owing to Lemma 2.14 since s > 3). Using the expression (4.1) for aj,, this gives

an (&, eh).(wh, qn)) = —5" (i (T, (v), wh) £2(py — €5 (TE(IR (), an) 22 ()
+ (T} (p) — p, Virwn) r2(py + (I (v) — v, Vian) £2(p)
+ > {p -5 [wilP)em + Y Ko =R 0) B, [0 2 ()

FeF, FeF?
— 55, (I, (v), wn) — s3° (I (9), a)-
Recall from Lemma 2.12 that v € X3 and p € X%, ie., II3(v) = 0 and II%(p) = 0.
We then observe that TIj,(IT} (v)) = I}, (v) = I}, (Il (v)) = 0 (owing to Lemma
3.3), Ie(I12 (p)) = I1&(p) = 0, [v]$ =0 for all F € Fy, and [p]% =0 for all F € Fp.
Recalling the notation £ := v — I} (v), &7 :=p — I} (p), we infer that
an((€7,€)), (wn,qn)) = — (€, Vi-wn)L2(p) — (€%, Vran) L2 (p)

+ > Y Twnl )z + D (HEVDE, [an]F) 20

FEFy, FEF?
+ 55, (67, wn) + 557 (€7, qn)-
The assertion follows from the Cauchy—Schwarz inequality and h < ¢p. ]
The second step of the consistency error analysis is to estimate Tj, — T},.

LEMMA 4.9 (bound on (T}, — Tj,)). We have limysno |Th — Thll £(za.pa) =

0.
Proof. Let (f,9) € L%, and let us set (v, pn) := Th(F,9), (®n,5n) := Tn(f,9),
Ny :=wv), — Oy, and 1}, :=pp, — pr. We have, for all (wp,q,) € LY,

(4.18) an (07,17, (w, an)) = (11§ — o) (f), wh) 2 (D).

Invoking Lemma 3.3 gives ((TI] — H%O)(f),ﬂzo(nZ))Lz(D) = 0. Then testing (4.18)
with wy, = I, (nY) yields TI§,(n?) = 0. Moreover, testing (4.18) with g5 = 115 (n})
readily gives I18(nP) = 0. Hence, (n¥,77) € XyxXE. We can then invoke Corollary
4.7 to bound (n},ny). Owing to (4.18), we infer that

ah (nvane)a(wh,Qh) 1 1
p e (C0 < 10 — 1) ()l o) < 5117l
(wn,qn)EL} H(wh,%)Hm
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Moreover, we have, for all (w,q) € ngXg,
an ((n}, ), (T3 (w), IT3 (q))) = ((TX§ — Tj0) (), TT; (w)) 12 )
= ((Hg - H%O)(f)anz(w) - w)Lz(D)v

where the last equality follows from w € Ho(div=0; D) and (I3 — TI%,)(f) €
H(div=0; D). Invoking the Cauchy—Schwarz inequality, the approximation proper-
ties of IT}, and the embedding X3 < H*(D) with s> 3 (see Lemma 2.14) gives

|an (3, 717), (T3 (w), 1172.())) | S B° 11 F | 2oy [0 e 0y S (B/€0)* | Fll 2y 10| g

Hence, we have

s |an ((n, %), (X (w), 115 (q))) | <
(w,q)€Xx X5 1wl xa + llallx= ~

(h/€p)* || fllL>(p)-
Putting the above two bounds together and invoking Corollary 4.7 finally gives

tp* (i llca o) + I llz2py) < (h/€p)* 2 L3I fll2(py + (h/€0)*Ch | Fll L2 (m)-

Since h < {p, this proves that

I 1 1
(P Th(F59) = Th(F5 9)ll e S (R/€o)* 2L NI(F,9) |l a,
whence we conclude that limysp, 0 ||Th —Thllz(ra;nay =0. 0

Remark 4.10 (T}, vs. Tj,). Although we have limysp o || T — Th”L(Ld,Ld) =0 (see
the proof of Theorem 4.11), this does not prove the spectral correctness of the dG
approximation induced by the sesquilinear form ay, defined in (4.4) because Lemma 4.2
does not hold true for T},. More precisely, let A # 0, and assume that %, (v, pn) € L;il
is an eigenpair of Tj,. Then IT{,(v;,) =0 and II%(py,) = 0, but a((va,pn), (Wi, qn)) =
AMn; wr)p2(py + ANPhs qn) L2 (D) — (1T — H%O)(vh),wh)Lz(D) for all (wp,qn) € L.
Hence A, (vp,,pr) is not an eigenpair of the dG approximation associated with ay,.

4.5. Conclusion. We are now ready to state the main result of this section.
Owing to standard spectral approximation results (see, e.g., Bramble and Osborn [8,

Lem. 2.2], Osborn [26, Thms. 3 and 4], Boffi [5, Prop. 7.4]), this theorem proves the
spectral correctness of the dG approximation.

THEOREM 4.11 (convergence). We have limysp—so | T — Thll £(La;14) = 0.

Proof. Since we have already established in Lemma 4.9 that limysp,_0 ||Th —
Thllz(ra;ay = 0, it suffices to prove that limys, o |1 — ThHC(Ld;Ld) =0 and invoke
the triangle inequality. Let (f,g) € LY. Recalling the notation introduced in Lemma
4.8, and using Lemma 4.6 and Lemma 4.8, we infer that

P an((ey, ), (wn,qn)
er,ep)llon S sup s (83, 25), (wn. 4n))|
(wn,qn)€Ly ”(whaq}l)”b,h

SI(E%,€7)

.-

This estimate combined with the triangle inequality, |||/, 5, <|-||s,n, standard approx-
imation properties of HE and H'fL, and h </{p gives

2
(v = on,p = pr)llo.n S ||(Ev,§p)||ﬁ,h§{ > R ol +hK|p|%Il(K)}
KeTn

ShE ([v] &= (py + €5 * 1Pl 11 (D)) -
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(Recall that we have set h:=maxgeT, hx.) Lemma 2.14 gives

Ch1v| ey < vllae(py S ol Vorvll2py = €oll(L —118)(9)|| 22 (D) < D l9lL2 (D)
Pl (o) = IVl L2y = (X = T5) ()l 2oy < 1 Fllz2(m)-

Hence,
_1 ~ - - s_1 1
(P IT(f,9) = Ta(f,9)lpe < (v = s p = Br)llo,n < (R/€p)* ™2 LR || (F 9) ]l La-
This proves that ||T — Th”E(Ld;Ld) <Up(h/lp)*~z. The proof is complete. 0

5. dG approximation of curl-curl operator. This section deals with the
analysis of the dG approximation of the curl-curl operator. The main result is Theo-
rem 5.10, which implies that the approximation is spectrally correct. As most of the
arguments are similar to those in section 4, most details are omitted. For simplicity,
we set the scaling coeflicient to ¢:=1.

5.1. Definitions. We define the discrete space L§ := Py(T,)xPy(Ts). The
sesquilinear form ay, : L§ x L — C associated with the problem (2.19) is
an((Bn, En), (b, en)) :== 05" (TIL50(Br),br) 2 (py + {5 (L5 (En), en) 12(p)
— (En, Vixby)2(py + (Bh, Vi Xen)r2(p)

(5-1) = > B o) e + Y ({BubE. [enl )Lz

FeF, FeF?
+ S%(Bh7 bh) + SZ’O(Eh,eh).

Integrating by parts the broken curl operators gives

an((Bn, En), (bn,en)) = 05" (TL0(Br), ba) L2 (py + {5 (X5, (En), en) L2 (p)
= (VaxEp,by)p2(py + (VX B, en)p2(p)
(5:2) = > (Bl {on Y5z + Y (Bl fend) 2
FEFy FCFy
—+ Sz(Bh, bh) + S(;L’O(Eh, eh).
We now define T}, : L¢ — L§, C L®, the discrete counterpart of the operator 7": L — L¢

introduced in Definition 2.17 (recall that L¢ := L*(D)xL*(D)). For all (f,g) € L¢,
Ty(f,g) .= (Bp, E},) is the unique pair in L so that, for all (by,es) € LY,

(5'3) ah((Bh7 Eh)v (bha eh)) = ((I - H%O)(-f)v bh)L2(D) + ((I - H%)(g)u eh)L’z(D)'
The definition of T}, makes sense owing to the stability result established in Lemma 5.5.

We prove that limpey—0 |7 — Thl|£(Le;2c) = 0 by proceeding as in section 4.

5.2. Discrete involutions and other comments. The projections II}, and
IT; are only invoked for theoretical purposes. They are not needed when one wants
to approximate (2.9) or (2.11). Indeed, let us consider the following sesquilinear form:

(5.4)
dh((Bh,Eh), (b;“eh)) = —(Eh,thbh)Lz(D) —+ (Bh,vhxeh)L2(D)
=Y BB b)) + Y (EBrYE [enl?) Loy

FEFn FEFg
+ S(;L(Bh, bh) + S;’O(Eh, eh).
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LEMMA 5.1 (eigenvalue problems for aj, and ay,). Let A\#0, (B, Ep) € LS. Then

Th(Bh, Ey) = 5 (Bn, Ep) iff an ((Bn, En), (bh,en)) = A((Br,br)r2(py+(En. en)r2(p))
for all (b, ep) € L.

Remark 5.2 (discrete involutions). Lemma 5.1 reveals that the involutions en-
forced by ap and aj are

(5.5) I (Br) =0,  II,(Ex)=0.

These involutions are essential to prove discrete Poincaré—Steklov inequalities which
play pivotal roles in the proof of the spectral correctness of T}, which in turn implies
spectral correctness of the dG approximation realized by a; owing to Lemma 5.1.

Let us now consider the approximation in time and space of (2.11) using the
backward Euler time-stepping. Let (B}, E}) € L, be the approximation at ¢", and
let 7 be the time step. Let (BZ“,EZH) € L be s.t., for all (b, ep) € LY,

(BZH_I, bh)Lz(D) + (EZ—H, eh)Lz(D) + T&h((BZ+1, EZH_I), (b}“ eh))
(5.6) = (B, bn)r2(p) + (EL,€n)2(D)-

LEMMA 5.3 (time involution). Assume that the pair (B}, E}) satisfies the invo-
lutions (5.5). Then the pair (B}, E}) satisfies (5.5) as well.

5.3. Stability. We equip the discrete space Lj, with the mesh-dependent norm

_1 _1
l(en,bn)lls,n :=€p> bnllL2(py +£p° lenll L2 (p)
(5.7) +[|hE Vi xvn | 2oy + 1702 Vi xen|l Loy + [balS, + len

c,0
W
Recall that IT} is defined in (3.2), and the spaces X§ are X are equipped with the
norms ||bl|xs :={p||[Voxb||r2(p)y and |le| x- :={p||V xe| L2(p), respectively.

LEMMA 5.4 (stability of broken projections). The following holds:

(5.8) (XI5 (8), 112 (e)) lo,n < €57 (Bl xs + llellxe)  V(be) € XGxX©.

We can now state our main stability results.

LEMMA 5.5 (stability). The following holds:

a B 7Ez s b ,e
59  NBnEas sup 1n(BrBn) buen)
(br.en)€LS, | (br, en)lls,n

V(Bh,Eh) S Lz

Proof. Proceed as in the proof of Lemma 4.6. In particular, the second step of the
proof establishes that, for all (b),,€}) € X§,x X7, (these spaces are defined in (3.5)),

1 T ar s—% c ;0
(5.10) 0 (16411 L2y + lenllnz(py) SEBS™ + (h/ep)* =2 ([bhlf, + lenly ),

|a((b),.€5,), (T} (b),IT} (e))))| -
o]l xg +lellxe .

with 8™ :=sup eye x¢x x<

COROLLARY 5.6 (sharper L¢-stability). The following inequality holds true for
all (by,, e)) € X5ox X5

’ah ((b/hv e,), (bn, eh)) |

05 (104120 + b)) S (h/00) " sup

(brren)€LS, (b, en)lls,n
(5.11) i s |an ((b},, €},), AT} (b),IT; (€))) |
(b,e)EXEx X© bl xs + el x-
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5.4. Consistency and boundedness. To establish consistency/boundedness,
we proceed in two steps. We first introduce T} : L® — Lj C L€ so that, for all
(f,g9) € L°, Ty(f,g9) == (By, E},) is the unique pair in L§ s.t., for all (by,ep) € L§,

(5.12)  an((Bn, En), (bn.en)) = (I = TI5)(£), br) r2(p) + (I ~TI°)(g), €n) r2(p).-

To bound the consistency error induced by T},, we augment the norm |- [lb,r, by defining
the following mesh-dependent norm on H*(D)xH?®(D) + L§ for all s € (3,1]:

71 71
10, €)lls.n:= [/, €)lls.n + B~ 2bl[2(p) + R 2 el L2(p)

%
(5.13) + e p O 22y + Vi p(@)lIT2(r) -
) (F)

KeT, FEFK

LEMMA 5.7 (consistency/boundedness). For all (f,g) € L¢, let (B, E):=T(f,g)

and (By,, Ey) :=Ty(f,g). Define 0 := Bj, — II;(B), ¢* := B —II}(B) and 6§ =
E, —M}(E), ¢¢:= E — T (E). The following holds for all (by,ey) € LS

(5.14) |an((87,65), (bn, en))| S 11(8°,€°)]

The second step in the consistency error analysis consists of estimating T}, — T},.

g1l (br, €n)lo,n-

LEMMA 5.8 (bound on (Th —Tr)). We have limysp_o ||Th —Thllz(ze;ney =0.

Remark 5.9 (Ty, vs. Th). The fact that limy 5,0 ||T—ThHL‘/(LC’LC) =0 is not suffi-
cient to prove the spectral correctness of the dG approximation using the sesquilinear
form aj defined in (5.4). As for the grad-div problem (see Remark 4.10), one needs
to prove that limysp o0 |7 — Th|lz(ze,ze) = 0.

5.5. Conclusion. We are now ready to state the main result of this section.

THEOREM 5.10 (convergence). We have limysn 0 ||T — Thl £(ze;) = 0.

Appendix A. Helmholtz decompositions. We recall results characterizing
the kernel and the image of the gradient, curl, and divergence operators. These
results are mostly drawn from Amrouche et al. [2], Dautray and Lions [14], and
Girault and Raviart [19]; see also Fernandes and Gilardi [18] for the case of mixed
boundary conditions.

A.1. Topology of D. Recall that we assumed that D is an open, bounded,
Lipschitz polyhedron of R%, d € {2,3}. We denote Ty the boundary of the only
unbounded connected component of Rd\ﬁ. If D is not connected, i.e., 9D # Ty, we
denote {I';};cf1.1; the connected components of 9D that are different from I'y (see,
e.g., [19, p. 37], [2, p. 835], [14, p. 217]). If D is not simply connected, we assume that
there exist J cuts ((d — 1)-dimensional smooth manifolds) {¥;} 1./} that make the
open set D := D\ |J jefi} Y; simply connected. Additional regularity assumptions
on these cuts as stated in [2, Hyp. 3.3, p. 836] are assumed to hold true. For all
q € L?(D) such that g|ps € H'(D¥), we denote by Vxq the broken gradient of ¢ such
that (Vxq)(x) = (Vq|p=)(x) for a.e. € D.

For all i € N, let ¢; denote any real number. We define

(A.1a) HE(D):={qe HY(D)|q|r, =0,q|r, = c; Vi€ {1:1}},
(A1) HY(D)={ge L*(D) |dlp> € H\(D®), [alls, = ¢; ¥ € {1:7}}.
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We also consider the subspaces
(A.2a) H"(div=0;D):= {'v € H(div=0;D) | / vnds=0 Vie {1:[}} ,
T;
(A.2b)  Hy(div=0;D):= {v € Hy(div=0;D) | / vnds=0 Vje {1:J}}.
Zj

The following spaces characterize the topology of D:
(A.3a) K. (D):=Hy(div=0;D)N H(curl=0; D),
(A.3Db) Ky(D):=H(div=0;D) N Hy(curl =0; D).
We have dim(Ky(D)) =1 [2, Prop. 3.18] and dim(K, (D)) =J [2, Prop. 3.14].

THEOREM A.l (orthogonal decompositions, [14, p. 314]). The following decom-
positions hold true and are orthogonal in L*(D):

(A.4a) H(curl=0;D)=VH'(D )EBK (D),
(A.4b) Ho(curl = 0: D) = Vo H2 (D) & K (D)

(A.4c) H(div=0; D)= H" (div=0; D) & K (D),

(A.4d) Ho(div=0: D) = HS(div=0; D) & Kr(D),

(A.4e) L?(D)= Hg(curl = 0; D) @HF(dwfo D),
(A.4f) L*(D) = H(curl = 0; D) & HZ(div = 0: D).

A.2. Helmholtz decompositions.
THEOREM A.2 (decompositions for grad-div problem). The following decomposi-
tions hold true and are orthogonal in L?(D) and L*(D), respectively:

(A.5a) L*(D)={0} & V-H (div; D),
(A.5b) L*(D) = Py & V- Ho(div; D),
(A.5¢) L*(D) = H(div=0; D) s VHY (D),
(A.5d) L3(D) = H(div = 0; D) & Vo H.(D).

THEOREM A.3 (decompositions for curl-curl problem). The following decompo-
sitions hold true and are orthogonal in L*(D):

(A.6a) L*(D)=VH}(D) & V x H(curl; D),
(A.6D) L? (D) =VxHL(D) é_a Vox Hg(curl; D).

Remark A.4 (uniqueness of decomposition). The potentials in the Helmholtz
decompositions from Theorems A.2 and A.3 can be made unique:
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L*(D {0} & V-(H(div: D) N H(div = 0; D)),

L*(D :IPO@VO (H(div; D) N Ho(div =0; D)),

— H(div=0;D) & VoH} (D),

L*(D)=V(HA\D )mPO)@Vx(H(curl;D)mH(curlzo;D)i),

)=
)
L?*(D) = H(div =0; D)@V(Hl( )NPy),
)
)
L?*(D)

(
(

(
L*(D
(

(D) = Vs (HL(D) NPL) & Vox (Ho(curl; D) N Ho(curl = 0; D)%),
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