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ABSTRACT. In this paper we prove the uniqueness and stability in determining a time-dependent
nonlinear coefficient 5(¢,z) in the Schrédinger equation (id; + A + q(t,z))u + fu® = 0, from the
boundary Dirichlet-to-Neumann (DN) map. In particular, we are interested in the partial data
problem, in which the DN-map is measured on a proper subset of the boundary. We show two
results: a local uniqueness of the coefficient at the points where certain type of geometric optics
(GO) solutions can reach; and a stability estimate based on the unique continuation property for the
linear equation.

1. INTRODUCTION

We investigate a partial data inverse problem for the time-dependent Schrédinger equation with
a nonlinear term, for example, in modeling the recovery of the nonlinear electromagnetic second
order polarization potential from the partial boundary measurements of electromagnetic fields. Let
Q C R", n >3 be a bounded and convex domain with smooth boundary 0€2. For T" > 0, we denote
Q:=(0,7)xQand X := (0,7) x 9. Suppose I' is an open proper subset of the boundary 9 and
denote

»#:=(0,T) x T.

Key words: Nonlinearity, Inverse problems, Time-dependent Schrédinger equation.
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For q(t,z) € C*°(Q) and S(t,z) € C*(Q), we consider the nonlinear dynamic Schrédinger equation

(i0h + A+ qlt,2)) ult, 2) + Bt,a)u(t,)> = 0 on Q,
(1.1) u(t,x) = f  onX,
u(t,z) = 0 on {0} x Q,
where Au := Z?Zl 88722 is the spatial Laplacian.
Based on the Well—gosedness result in Proposition 2.2, the Dirichlet-to-Neumann (DN) map Ay g
is well-defined by

Aq,ﬂ :f»—>al,u‘2ﬁ, fGS)\(E)

for A > 0 sufficiently small (see (2.1) for the definition of S)(X), where d,u := g—fj and v(x) is the
unit outer normal to 02 at the point x € 0€). The inverse problem we consider in this paper is the

determination of the nonlinear potential 3(¢,x) from the partial DN-map A, 3.

1.1. Main results. For a set B C {2, we denote Mp by

Mp :={g€C>Q): l9llcr gy < mo,and g =0o0n (0,T) x B,1 <r < ooj.
for some positive constant mg. Let @ C Q be an open neighborhood of the boundary 0Q and O’ C Q
be an open neighborhood of T'“ := 9Q \ T.

We define an open subset Qr of (2 as
(1.2)
Qr = {p € Q : there exist wi,ws € "1, w; L wy such that ((Ppywr Y ¥pws U Vpwr+ws) N OL) C F},

where v, denotes the straight line through a point p in a direction w in R"™ and S"! is a unit
sphere at the origin. The set Q1 consists of those interior points at which three lines in directions
w1, wo and wy + we intersect and these three lines must enter and exist {2 through I'.
Our main results are stated as follows:

Theorem 1.1 (Local uniqueness). Assume g and B are in C*(Q) for j =1, 2. Suppose Ay g, (f) =
Ny g, (f) for all f € S\(X) with support satisfying supp(f) C X, Then Bi(t,x) = Bo(t,x) for all
(t,z) € (0,T) x Q.

The result of Theorem 1.1 highly depends on the convexity of the domain €2 in order to recover
B(t,-) in the region Qp near the partial boundary T'.

Theorem 1.2 (Stability estimate). Assume ; € C®(Q) for j = 1,2. Suppose that (q,1 —
B2) € Mo x Mo. Let Ayp, = Sx(¥) — L?(X%) be the Dirichlet-to-Neumann maps of the nonlinear
Schrédinger equation (1.1) associated with B for j =1, 2. There exists a sufficiently small 69 > 0
so that if the DN maps satisfy

(Mg — Ag o) fllo(sey <6 for all f € Sx(X),

for some ¢ € (0,080), then for any 0 < T* < T, there exist constants C > 0 independent of § and
0 < o < 1 such that the following stability estimate holds:

L —0
181 = Ball (o ey < € (8% + [10g(6) )

The logarithmic type stability estimate here is expected since we only take measurements on
partial region of the boundary of the domain.

The uniqueness result of Theorem 1.3 follows directly from Theorem 1.1 and Theorem 1.2 by
letting 6 — 0. In particular, due to Theorem 1.1, the assumption of 81 — B2 can be relaxed to M.
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Theorem 1.3 (Global uniqueness). Suppose that §) is bounded and strictly convex. Assume B; €
C>(Q) for j =1, 2. Suppose that (q,B1 — P2) € Mo x Mor. Let Agp; t SA(E) — L%(ZF) be the
Dirichlet-to-Neumann maps of the nonlinear Schridinger equation (1.1) with 8 for j = 1,2. If
Ny g, (f) = Ny g, (f) for all f € Sx(X), then

Br=p2 nQ.

The nonlinear Schrodinger equation (NLS) in (1.1) can be used to model a basic second harmonic
generation process in nonlinear optics. A similar NLS is the Gross-Pitaevskii (GP) equation

(10 + A + q)u+ B(t, @) |ul*u = 0

for the single-atom wave function, used in a mean-field description of Bose-Einstein condensates.
See [45] for discussions of various NLS models based on integrability and existence of stable soliton
solutions, such as the nonlinear term of a saturable one, |u|?(1 + |u|?/u3)~! with uy a constant,
or (Jul? — |u|*)u. We remark in Remark 4.3 that our approach can be generalized to power type
nonlinearity other than quadratic ones. Similar discussions can be found in [41] for the GP equation.

Similar to those of hyperbolic equations, results related to the determination of coefficients for
dynamic Schrédinger equations are usually classified into two categories of time-independent and
time-dependent coefficients. For the linear equation, stability estimates for recovering the time-
independent electric potential or the magnetic field from the knowledge of the dynamical Dirichlet-
to-Neumann map were shown in [2, 5, 6, 7, 9, 13]. A vast literature is devoted for the inverse
problems associated to the stationary Schrodinger equation, known under the name of Calderén
problem, see [46, 48] for the major results when the DN-map is measured on the whole boundary
and see [14, 16, 17, 25] when measured on part of the boundary. The paper [15] by Eskin is known
to be the first to show the unique determination of time-dependent electric and magnetic potentials
of the Schrédinger equation from the DN-map. Stability for the inverse problem with full boundary
measurement was shown in [26, 27, 12]. The stable determination of time-dependent coefficients
appearing in the linear Schrédinger equation from partial DN map is then given in [8]. The stability
estimate for the problem of determining the time-dependent zeroth order coefficient in a parabolic
equation from a partial parabolic Dirichlet-to-Neumann map can be found in [11].

In dealing with the inverse problems for nonlinear PDEs, the first order linearization of the DN-
map was introduced in recovering the linear coefficient for the medium, and sometimes the nonlinear
coefficients. See [19, 20, 21, 22, 23, 47| for demonstrations for certain semilinear, quasilinear elliptic
equations and parabolic equations. Recently the higher order linearization, also called the multifold
linearization, of the measurement operators (e.g., the Dirichlet-to-Neumann map or the source-
to-solution map) has been applied in determining nonlinear coefficients in more general nonlinear
differential equations. For example, based on the scheme, the nonlinear interactions of distorted
plane waves were analyzed to recover the metric of a Lorentzian space-time manifold and nonlinear
coefficients using the measurements of solutions to nonlinear hyperbolic equations [30, 42, 49]. In
contrast the underlying problems for linear hyperbolic equations are still open, see also [10, 42]
and the references therein. The method is also applied to study elliptic equations with power-
type nonlinearities, including stationary nonlinear Schrodinger equations and magnetic Schrodinger
equations, see [28, 29, 31, 32, 33, 38, 39, 43]. A demonstration of the method can be found in [4, 3]
on nonlinear Maxwell’s equations, in [34, 35] on nonlinear kinetic equations, and in [40] on semilinear
wave equations. In [36], we solved an inverse problem for the magnetic Schrodinger equation with
nonlinearity in both magnetic and electric potentials using partial DN-map and its nonlocal fractional
diffusion version [37]. For the nonlinear dynamic Schrédinger equation considered in this paper,
unique determination of time-dependent linear and nonlinear potentials from the knowledge of a
source-to-solution map was discussed in [41].
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The novelty and contributions of this paper include the following two points. The first one is the
construction of gaussian beam approximate solutions to the time-dependent Schrédinger equation
in Section 3. Since these solutions are only concentrated near straight lines passing through the
observation set I', this makes it possible to determine the points in Qp from the knowledge of partial
data. The second one is the GO solutions constructed based on [26, 41] with adaption. Combining
with the unique continuation principle in [8] derived through the application of a parabolic Carleman
estimate, we are able to prove the stability estimate for the nonlinear coefficient 8 from the knowledge
of the DN map restricted to an arbitrary portion of the boundary. In particular, we also show
the uniqueness result for the nonlinear Schrodinger equation with slightly less constraint on the
assumption of the unknown coefficient 8 near 92 thanks to Theorem 1.1.

Finally, we would like to point out that the nonlinear Schrédinger equation (1.1) was also con-
sidered by [41], where both the linear and nonlinear coefficients are uniquely determined from the
source-to-solution map. Not only the measurement is different from the DN map we utilize here,
but also we establish the stability estimate for the nonlinear coefficient.

The paper is organized as follows. In Section 2, we establish the well-posedness of the direct
problem, the initial boundary value problem for our nonlinear time-dependent Schrodinger equation
in a bounded domain for well chosen boundary conditions. Then we prove the local uniqueness
result Theorem 1.1 in Section 3 by constructing the geometrical optics (GO) solutions for the linear
Schodinger equation that concentrate near straight lines intersecting at a point. The higher order
(multifold) linearization step is conducted via finite difference expansions in this section to derive
the needed integral identity. Then we prove the stability estimate Theorem 1.2 in Section 4 where we
implement a more standard type of linear GO solutions and adopt the unique continuation argument
to control the boundary term due to the inaccessibility by the partial data measurement. Finally,
we present the short proof of Theorem 1.3 for a global uniqueness result by combining assumptions
in the previous two theorems.
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2. WELL-POSEDNESS OF THE DIRICHLET PROBLEM

2.1. Notations. Let » and s be two non-negative real numbers, m be a non-negative integer and
let X be one of Q, 9Q and I". We introduce the following Hilbert spaces:

e the space L?(0,T; H*(X)) that consists of all measurable functions f : [0,T] — H*(X) with
norm

T 1/2
oo = ([ 15 ma) <o
e the Sobolev space
H™0,T; L*(X)) :={f: 0%f € L*(0,T; L*(X)) fora=0,1,...,m};
and the interpolation
H' (0,75 L2(X)) = [H™ (0,7 L*(X)), L*(0,T: L*(X))]g, (1 —O)m =r.
We also define the Hilbert space
H™((0,T) x X) := H"(0,T; L*(X)) N L*(0, T; H* (X)),
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whose norm is given by

T 1/2
£l zms 0,7y % x) = (/0 1 (¢, ')H}QLIS(X)dt + Hf”?{r(o,:r;m(x))) :

For more details on these definitions, we refer to Chapter 1 and Chapter 4 in [44]. In particular, for
integer m > 1, we define

%BR(Q) ::{feHm(Q):a?f‘tZOZ()v a:0,--~,m—l}.
For A > 0 we define the subset S)(X) of H2”+%’2“+%(E) by

3
S\(X%) = {f € H2”+%’2“+%(E) 0 07 f(0,-) = 0 on 0N for integers m < 2k + 3

(2.1)
and ] e gans gy < A

2.2. Well-posedness. We first show unique existence of the solution to the linear equation and,
based on this, we apply the contraction mapping principle to deduce the well-posedness for the
nonlinear equation.

Proposition 2.1. (Well-posedness for the linear equations) Let k > "T‘H be an integer. Suppose

q € C®(Q). For any f € H2“+%’2”+%(E) satisfying O f(0,+) = 0 for m < 2k + 3, there exists a
unique solution uy € H*(Q) to the linear system:

(10 +A+qusf = 0 in Q,
(2.2) up = f on X,
up = 0 on {0} x Q,
and uy satisfies the estimate
(23 Jusllroei@y < Ol yaceg acsd

Proof. In light of [[44], Chapter 4, Theorem 2.3], there exists a function @ € H?**%25+2(Q) such
that for0§a<2/<a+%,

(2.4) ofu(0,-) =0 in Q, iy = f,
and

Nl a2y < Cllall ransaznsaig) < CllFl yons g o g 5

for some positive constant C', depending only on €2 and T', where the first inequality holds by noticing
Proposition 2.3 in Chapter 4 in [44]. Let
F = —(i0; + A + q)a.

Since @ € H**2(Q), we get F € H*+12%(Q) C H*?%(Q) implying F € H*(Q) by using Propo-
sition 2.3 in Chapter 4 in [44] again. In addition, due to (2.4), F' has zero initial condition up to
2 derivative w.r.t. t, which makes F € H2"(Q). From Lemma 4 of [41], there exists a unique
solution wu, to the Schrédinger equation (i0; + A + q)u, = F with F|;—9 = 0 and u.|;—o = u«|x, = 0.
We denote by £~! the solution operator of this inhomogeneous Dirichlet problem for the linear
Schrédinger equation, that is, £71(F) = wu,. In particular, we have that £71: H32(Q) — H32*(Q)
is a bounded linear operator. Therefore, we obtain

Jucllni@) < CNFllgeiay < O lynec s
and uy = U+ uy € HZ"(Q) satisfies

gy < Nl maeqy + sl < Ol ot aer
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g

Proposition 2.2. (Well-posedness for the nonlinear equation) Let k > ”TH be an integer. Suppose
q and B are in C*°(Q). For any f € S\(X) (defined in (2.1)) with X\ > 0 sufficiently small, there
exists a unique solution u € H?*(Q) to the problem (1.1) and it satisfies the estimate

(25) ey < Clf N yaesg s oy
where the constant C' > 0 is independent of f.

Proof. If u is a solution to (1.1), we set w := u — uy which will solve

(10 + A + q)w —Bt, x)(w+up)?  inQ,
(2.6) w = 0 on X,
w = 0 on {0} x Q,

where uy¢ is the solution to (2.2). Or equivalently, w is the solution to
w— Lo Kw=0,

where Kw := —5(t,z)(w +us)?. For k > "L using the facts that H?*(Q) is a Banach algebra (see
[1]) and that uf € H2*(Q), we have that K : H3" — HZ® is bounded.
We define for @ > 0 (a small parameter to be determined later) the subset

Xa(Q) = {u € HF"(Q); llullan(q) < a}.
From (2.3), we deduce

(™" 0 Kyl zec) < Clkulianay < C (Iwlaeiqy + luslae(y) < Cla? +X2) < a
for w € X,(Q) and

H(ﬁ_l o IC)w1 — (,C_l o IC)’U)QHH2H(Q) < CHICw1 — KwQHH%(Q)

< C (Jlwill g () + lwall ey + gl mze(q)) llwr — wall gan(q)
< C(CL + )\)le — UJQHH%(Q)
< Kle - w2||H2rg(Q), for wy, wa € Xa(Q)

with K € (0,1) provided that we choose 0 < A < @ < 1 and a small enough. This proves that
L7 o K is a contraction map on X,(Q), hence there exists a fixed point w € X,(Q) as the solution
to (2.6). Moreover,

w2 (@) = (L7 0 K)wllr2e (@) < ClIKwl|gr2e(g)
< C(lwlbang) + lurlzn o)
< Callw|g2e (@) + CA|lugll g2= (@),
which further implies
Wl zr2e (@) < CAllugll 2 ()
by choosing a sufficiently small. Combined with (2.3), we eventually obtain (2.5). O
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3. PROOF OoF THEOREM 1.1

3.1. Geometrical optics solutions based on gaussian beam quasimodes. In this section we
construct the geometrical optics solutions to the linear Schrodinger equation
(10 + A+ qu=0,
in @, having the form
u(t,z) = eip((a(z)*'w'%t)a(t, x)+r(t,x)

and vanishing on part of the boundary, where the leading part eip(e(x)_‘w‘th)a(t,a:) follows the
construction of gaussian beam approximate solutions concentrated near a straight line in direction w
as p — 0o. For completeness, we present a detailed adaptation, to our equation, of the construction
in [18], which was for the operator —A, — s? on its transversal manifold (M, g) and for large complex
frequency s. The analogous construction for the wave equation can be found in [24]. For other similar
WKB type constructions, we refer the readers to [18, 26, 41].

Let p be a point in 2 and w € R™ be a nonzero direction. Denote by 7, ., the straight line through
p in direction w, parametrized by 7. (s) = p + sw for s € R, where & := w/|w|. We can choose
w2, ... ,wy € R™ such that A = {&,wa,...,wy,} forms an orthonormal basis of R™. Under this basis,
we identify z € R™ by the new coordinate z = (s, 2’) where 2’ := (29,...,2,), that is,

T =D+ S0+ 20w + ... + ZpWwn.

In particular, v, .(s) = (s,0,...,0).

We consider the gaussian beam approximate solutions v with ansatz
(31) U(ta Z) = eip(tp(Z)*|aJ|2pt)a(t7 Z5 p)) p> 07

in the coordinate (t,z) € R""1. The aim is to find smooth complex functions ¢ and a. Let the
Schrédinger operator act on v and get

(3.2)

e~ PR (i, + A+ q)u(t, 2) = pP(Jw]? — (Ve, V) )a + ip(2V¢ - Va + aAp) + (i0; + A + q)a.

We first choose the phase function p(z). The equation (3.2) suggests that we will choose the
complex phase function ¢ satisfying the eikonal equation

E(p) := (Vp, V) — [w|> =0 up to N-th order of 2’ on ,,,
that is, £(p) = O(|2'|V+1). We substitute ¢ of the form

N
/ / / Sok,o/(s) %
SD(S’Z) :Z¢k(svz)7 where ka(sv'z) = T(z )a‘
k=0 lo! |=k
Here « is an n-dim multi-index a = (a1, a’) € Z% with o/ = (ag,...,ay), and

eo(2) = |wls, ¢1(2) =0.
We obtain
(Vo, V) — [w]? = (2|w|0sp2 + Vo - Vo) + (2|w|0sps + 2V 2 - Varps)
O(l2'?) Oo(l"1®)
+ (2|w|Ospa + 2V o2 - Vorpy + Fu(s, 2')) + - + O(|2'IN*h),

o(I']*)
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where Fj(s,2') is a j'* order homogeneous polynomial in 2’ depending only on ¢a, ..., ¢;j_1. Next
we look for @9 such that the first O(|2’|?) term vanish. Writing

1
pa(s,2') = §H(s)z/ 2

where H(s) = (H;j(s))2<i,j<n is a smooth complex symmetric matrix. Then H satisfy the matrix
Riccati equation

(3.3) ]w\d%H(s) + H(s) = 0.

Imposing an initial condition H(0) = Hyp, where Hy is a complex symmetric matrix with positive
definite imaginary part ImHy, by [[24] Lemma 2.56], there exists a unique smooth complex symmetric
solution H(s) to (3.3) with positive definite ImH (s) for all s € R.

For |a| > 3, in order to make the O(|2|?),...,O(]2'|V) terms vanish, one derives first order ODE’s
for the Taylor coefficients ¢y, .. By imposing well-chosen initial conditions at s = 0, we may find all
the pj, 7 =3,...,N.

Neat we construct the amplitude function a(t,z;p). Let x, € C(R™1) be a smooth function
with x;, = 1 for [2/| < 2 and x, = 0 for |2/| > 7. Let « € C§°(0,T) be a smooth cut-off function of
the time variable. We make the ansatz for the amplitude as

a(t,s, s p) Zp a;j(t, s, 2 )xn(2") = (ao + ptar + -+ p Nan)xy(2).

From (3.2), we should determine a; from

2V - Vag + apAp =0 up to N-th order of 2’ on 7, ,,
2V -Vai; +a1Ap = i(id + A + q)ag up to N-th order of 2’ on 7, ,,

(3.4)
2V -Van +anAp = i(i0; + A+ q)ay—1  up to N-th order of 2’ on 7, .

so that the terms of O(p~*) (k = 0,..., N) vanish up to N-th order of 2z’ on 5,,. Therefore, we
write ag to have the form

N ka
o(t,s,2) Za ), where af(s,?) = Z %o /'(S)(z')o‘/.

k=0 o |=k

Here af is a k" order homogeneous polynomial in 2’. The first equation in (3.4) becomes

2V - Vag + agAp = 1(t) (2|w|85a8 + agAZme)
(3.5) +(t) (Q\w](?sa(l) + 2V 100 - Vad + ab ALps + agAzmpg) + -+ O(JZ)VT.

Note that A,igs = tr(H(s)). In order to let the first bracket vanish, we solve 2|w|dsad(s) +
tr(H(s))ad(s) = 0 with a given initial condition a3(0) = ¢y for some constant cy. For later pur-
pose, we choose ¢y = 1 to get

ag(s) = o Tl Jo tr(H(6)dt

Similarly, the coefficients of aé, cee aév can be determined for the other brackets in (3.5) to vanish.

Lastly, we can construct ai,...,ay in a similar way. More specifically, we can write similar ansatzs
for ay,...,an with corresponding coefficients af(s, ') being k" order homogeneous in z’. They can

be determined by solving similar equations as for a’é , but with nonzero right hand side terms that
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are homogeneous in 2’. Finally, we note that alg’a/ is smooth which further implies that a(¢, z; p) is
smooth.

So far we have constructed a gaussian beam v(t, z) localized near {(z1,0,...,0),2 € R} of the
form (3.1) with

1 _ _
o5, #) = lwls+ SH(5)2' 2+ O(F),  alt,s,2) = o) ao +ptas -+ + pVay)

with positive definite ImH (s).

It is easy to verify that by translation and rotation ¥(z) = z, the function defined by v(t, ¥(z))
with a(t, ¥(z)), still denoted by v(¢, ) and a(t, x) respectively, is indeed the gaussian beam localized
near the line v, ., and satisfy

(10 + Ay + q(t,x))v(t,x) = (10 + A, + q)v(t, 2)

(36) =cvemhre (XW(Z/) (OUZI¥ )52 + OV p + (0 + A + g)anp) + pin@’)ﬂ) ’

where ¢(t,z) here is the above ¢(t,z) with z = ¥(z) (We do not distinguish the names of the

functions, e.g. ¢(t,x) and ¢(t, z), but only indicate the difference due to transformation by notations

of variables (t,x) and (t,z)) and x,(2") is a smooth function with , = 0 for |2/| < Z and |2/| > 7,

and 9 vanishes near the geodesic 7, . This last term accounts for those derivatives landing on x;,.
More specifically, we have

(3.7) v(t,x) = eip(@(x)_Mth)a(t, x),

where the phase function is explicitly given by

1 .
Oz) = ¢(U(x)) = w- (= p) + FH(2)(z = p) - (z = p) + O(dist(w, %p)°),
where H(x) is an n x n matrix, defined by

H(z) = DU () ( 8 (e _Op).@) ) (DU (),

and the notation dist(x,y, ) represents the distance between the point « and the line ~, ,,. Moreover,
based on the properties of H, that is, ImH(s) is positive definite, combined with the fact that DW¥
is a unitary matrix, we have that there exists a constant ¢y > 0 such that

(3.8) %Im?—[(:c)(x —p) - (z —p) > co(dist(z,7pw)?) for all .

To summarize, we obtain

Proposition 3.1. Let ¢ € C*°(Q) and 7y, be a straight line through a point p € Q in direction w €

R™. For any N >0 and n > 0, there exists a family of approzimate solutions {v, € C*(Q), p > 1},
supported in (0,T) x Ny(vpw) where Ny(vpw) is an n-neighborhood of vp,, such that

. _N+1_n-—1
(3.9) 100 + Ag + Q)vpll o, 1s12(0)) < Cp~ 72 7 1,
and, for integer m > 0,
(3.10) 1i0: + D + @)vpllum(g) < Cp~ 7 T T2,

where C' is a positive constant independent of p.
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Proof. Take v, as in (3.7). It remains to show (3.9) and (3.10). To begin with, since Im(H(s)) is
positive definite, there exists ¢; > 0 so that Im(H (s))2’- 2’ > ¢1|2/|>. Therefore, for < 1 sufficiently
small, in the neighborhood {|z’| < n} one has

. _ 2 _1 /|12
|ezp(so(s,2) |w] pt)| < e—xapl

The equation (3.6) implies

. _1 12 _ ~
(10 + Ay + q)v,| < Cem 1P (1N Fp2y () + p N x () + pRy(2)9)

) _1 "2 _ N
101101 + Dy + q)v,| < Cem 1P (1IN gty () 4+ 0> N (2) + 0% (2)0) -
Hence it follows that

1(60: + Az + @)voll3n 07202

/|2

T T
_1 /12 _ _1
< CpS/O He 401p|z\ ‘Z/‘NJran(zl)H%z(Q)dt—i-Cp 2N+4/0 He 401,0|z XU(Z/)H%Q(Q)dt

T
(3.11) + Opﬁ/ e~ 1e1Pl2 |2>?,7(z’)19\\%2(9)dt = J1+ Jo+ J3.
0

Now by changing of variable 2/ = p_%y and applying integration by parts, we obtain
J < Cpg/ 6—%clp|z’|2|zl|2N+2dZ/
|2'|<n

_N—1—n=1 _1 2
< Op T [ by,
Rn—1

(3.12) < Cp NIt

where the constant C' > 0 is independent of p. Likewise, we can also deduce
(3.13) Jp < Cp N= 744

which is controlled by (3.12) provided p is sufficiently large. Moreover, since X, is supported in
7 < |Z/| <, by performing the change of variable 2’ = p_%y again, we derive

1 /12
7<[2'|<n

n—1 1 2
—5=+6 —5cily
< C’p 2 / ) ez 1yl dy
2p2<ly|<np2

< Cp~ "7 Mo P (3 )t

(3.14) < O lemsen®e b

which decays exponentially in p (for a fixed 1) and is also controlled by (3.12) provided p is sufficiently
large. Therefore, (3.9) holds by combining (3.11), (3.12), (3.13) and (3.14).
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Similarly, we have the following higher regularity estimate
180 + Az + Q)01 Fm g
1

T T
1 ’
< Cp4m+4/0 ||efzclp|z |2’Z/|N+1X77(Z/)H%2(Q)dt + Cp2N+4m/0 H674clp‘z

/‘2

Xn(?) ||%2(Q)dt

T
1 PPN
+ 2 [ e iR, (0| oy
< Cprflf"T*l+4m+4?

provided p is sufficiently large. This completes the proof of (3.10). a

With Proposition 3.1, we can construct the geometrical optics solutions now.

Proposition 3.2. Let m > 0 be an even integer and g € C*°(Q). Given p € Q and w € R", suppose
that the straight line vy, through p in direction w satisfies (Yp NOQY) C I'. Then there exists pg > 1
such that when p > po, the Schrédinger equation (i0; + A + q)u = 0 admits a solution v € H™(Q)
of the form

u(t,r) = eip(e(m)_k‘"%t)a(t, x) +r(t,x)

with boundary value supp(uloryxan) C YF and initial data u|i—g = 0 in Q (or the final condition
ul=r =0 in Q). Here ©(x) and a(t,z) are as in (3.7) and satisfy Proposition 3.1 and the remainder
r satisfies the following estimates:

N+1

_N+1_n-—-1
(3.15) 7]l gmg) < Cp~ "2~ T2

and
_N+1_ n-—1
I7llcqomm2@) + ITllcrqorrz@) < Cp~ 2 7 A
Proof. We can choose 1 > 0 small enough such that (N, (yp..,)N0€) C I'. By the previous Proposition
3.1, for p > pp, we obtain ©(z) and a(t, z) correspondingly. By Proposition 3 and Lemma 4 in [41],
we obtain the existence of the solution r € H™(Q) to

(O +A+qr = —(0+A+qu in Q,
r = 0 on 3,
r = 0 on {0} x Q,

and the estimate
: N+l n-1g9.
7l zrm(@) < ClI(i8; + A+ @) gm(gy < Cp~ 2 — 1 T2mF2,
Here the last inequality follows from Proposition 3.1. Also, with (3.9), [[26], Lemma 2.3] suggests

_NEL_n-liy

I7llcqo.m,m20)) + ITllerqom,z2)) < Cll(E0k + A + @)vl gro,mi02)) < Cp™ 2
O

3.2. Finite difference. We introduce the multivariate finite differences, which are approximations
to the derivative. We define the second-order mixed finite difference operator D? about the zero
solution as follows:

1

2 ._
D Uey foteafo = 160 (u€1f1+€2f2 —Ueify — u€2f2)'

Note that when €1 = €2 = 0, Ug, foqenfy, = 0. We refer the interested readers to [40] for the
definitions of higher order finite difference operators. For the purpose of our paper, we only need
D?. To simplify the notation, we denote uc, f,4c,f, by us¢ and define |e| := |e1]| 4 |e2|. Then we have
the following second order expansion.
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Proposition 3.3. Let k > "T‘H be an integer and f; € H2“+%’2"+%(Z) satisfying &ffj(O,-) =0

for £ < 25+ 3 for j = 1,2. For |e| := |e1| + |e2| small enough, there exists a unique solution
ucy € H*(Q) to the problem
(i8t+A+q)uEf+6u§f =0 in Q,
usy = e1fi+eafo on X,
usg = 0 on {0} x Q.

In particular, it admits the following expression:
1
uep = e1U1 +e2Us + 5 (E%W@o) + E%W(og) + 261€2W(1,1)) +R,

where for j = 1,2, U; € H**(Q) satisfies the linear equation:

(O +A+qQU; = 0 inQ,
(3.16) Uj = fj on E,
Ui = 0 on {0} x Q,

and for k; € {0,1,2} satisfying k1 + ko = 2, Wy, 4,) € H?"(Q) is the solution to

(10 + A+ QWi gy = —28U7Uy inQ,
(317) W(kl,kg) =0 on E,
W(k1,k2) = 0 on {O} x Q.
Moreover, the remainder term R € H**(Q) satisfies
3
(3.18) IR 2y < Cllenfi + €2f2HHzn+g,25+g(2)-

Proof. The existence of u.y € H**(Q) is given by Proposition 2.2 when |e| := |e1| 4 |e2| sufficiently
small such that €1 f1 +e2f2 € S\(X). Also, equations (3.16) and (3.17) are both well-posed in H?*(Q),
for example by Proposition 4 in [41], for & as in the assumption (H?*(Q) is a Banach algebra). We
denote

U= Uef — (€1U1 + €2U2).

Then it solves

(i +A+qu = —ﬂugf in @,
u = 0 on Y,
u = 0 on {0} x Q,

Applying Lemma 4 in [41] and (2.3) gives that

(3.19) @] r2e () < CllBusll ey < C”usf“%{%(@) < Cllerfr + ngQHi{QH%,QH%(Z).

From (3.16) we obtain
. . 1 2 ,
(10 + A + qQ)uey + Bugf = Z (10 + A+ q)U; + B Z ( 1. ko > eMeb2 (i, + A + DWWk, ka)
j=1,2 k1+ko=2 ’
+ (i + A+ Q)R + Bul;.
Then by (3.17), the remainder R satisfies

(i@ﬁ—A—i—q)R = —ﬂugf-l-B(ElUl—i-égUg)Q in Q,
R =0 on X,
R =0 on {0} x .
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Then we have that R € H?*(Q) exists and satisfies

IR 2wy < Cll = BuZf + BlerUr + €2U2)? || 2 ()
< CH’ELHHQN(Q)HUEf + (61U1 + €2U2)||H2N(Q)

< Cllerfr + €2f2”i12,€+%72,€+%(2)H61f1 + 62f2HH2“+%’2“+%(2)
<Cleifr + €2f2||22,€+%72ﬁ+g(2)

by using the fact that H2%(Q) is a Banach algebra, the equations (3.19), (2.3) and the well-posedness
of (3.16). 0

Remark 3.1. Based on Proposition 3.3, when one of €1 and €2 is zero, we have

Ue, f, = €101 + %6%W(270) + R ugyg, = eals + %EQW(OQ) +R®),
where RY is the remainder term of order O(s?) for j =1,2. We can rewrite u.y as
(3.20) Uep = Ue,f, + Ueyfy +E152Wa 1) + R,

where R :=R —RM — R®), Moreover, we have

1 -~
W) = Duey fitenp — @R
and also the Neumann data
1 1 ~
OWanlsr = — (Agslenfi +eaf2) — Agplenfi) — Agpleafz)) — — O R[5
£1€9 £1€2

Through the rest of the paper, we only need to assume |e1| ~ |e2| ~ |e|, in which case we have
R = o(e1€2). In fact, from (3.18) we have

3
IRl < Cler + =2 (Il Ul g )

3 3
H2K,+ 5 ,2n+§ (E

In the case that €1 and &3 are of different scales such as |ea| ~ |e1|F for some positive k > 1 (or
vice versa), more terms can be taken in the expansions of ucr, ue, p and ue, s, to eventually verify

that R has the norm of order o(eie3).
Since Wy, r,) 15 independent of 1 and ez, this implies

(3.21)
. , 1
Wi = lim Duefiienp,, OWanls: = lim —— (Aga(ef) — Agplerfi) — Agp(eafa)) -

£1,e2—0 €1,62—0 €1€9

in proper norms. For example, in LQ(Eﬁ), we can derive

1 ~ 1 ~
- <
—— 1Rl < — 0.

1

W 1ylss — . (Agp(ef) — Agplerfr) — Agpleafz))

L2(s%)

1~ 1~
ey S C@HRHH%%(Q) < C%HRHH%(Q)

(e1+ 62)3

.22 <
(822) <C €1€2

(HleHQmJ,-%,Qn-Q—%(E) + ||f2”H2m+%,2n+%(Z)>
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3.3. An integral identity. Let us.; (¢ = 1,2) be the small unique solution to the initial boundary
value problem for the Schrodinger equation:

(10 + A+ Quoes + Peuj ., = 0 in Q,
Uer = e1ft+eafe  on X,
Upef = 0 on {0} x €}

with supp(fj) C (0,T) x T for j =1,2. For || := |e1]| + |e2| small enough, they admit the expansion

1
Uper = €1Up1 +e2Ug2 + 5 (5%W£,(2,0) + €§Wz,(o,2) + 25152We,(1,1)) + Ry,

where Uy j, Wy (r, ,) and Ry are as in Proposition 3.3. Since the linearized equations for both ¢ are
the same with the same boundary data f;, we have

Ui = Uy, Jj=12,

denoted by Uj; for the rest of the paper.
In addition, let Uy be the solution of the adjoint problem:

(i +A+qUy = 0 inQ,
(3.23) Uo = fo on X,
Up = 0 on {T} x

with supp(fo) € (0,T) x T.
Lemma 3.1. Let q, By € C®(Q) (¢ =1,2) and B := B1 — B2. Suppose that

Agp, (f) = Agyp (f)
for all f € Sx\(X) with supp(f) C L. Then

(3.24) / 6U1U2U0 dxdt = 0.
Q
Proof. We denote

W= W2,(1,1) - W1,(1,1)-

By (3.21), we have 9,W|s: = 0. After multiplying the equation in (3.17) by Ujg, subtracting and
integrating over (), we have

/ QﬁUlUQUO dxdt = /(anyW — Wal,Uo) dO’(fL‘)dt =0
Q )

due to that Uy(T,-) = W(0,-) =0, W|s = 0,W|s: = 0 and Up|x, has the support in XF.
O

3.4. Proof of Theorem 1.1. We will show that the coefficient (¢, z) can be recovered uniquely
for all the points in (0,7) x Qr.

Proof of Theorem 1.1. For each p € Qr, choose wi, wo € S*! satisfying the condition in the de-
scription of Qr in (1.2). Set wp := w1 +we. Based on Proposition 3.2, we can find geometrical optics
solutions U; = vj+1;, j = 1,2 for the problem (3.16) and Uy = vg + g for its adjoint problem (3.23)
associated to three lines vy ., ¥pw. and 7, respectively. More specifically, we have

v;(t, ) = (O3 @) =lwi o) (D) (¢, ), j=0,1,2

with the phase function

0;(x) = w; - (z —p) + ()& — p) - (=~ p) + O(dist (7, 7))
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The amplitude functions a9 (t,z)|sq are supported in T’ given i < 1y for some 79 > 0 and the
remainder functions 7;(, x) satisfy (3.15). Let f; := Ujlaq (j = 0,1,2). From Ay, (f) = Ags,(f)
on S\(X) with supp(f) € X and Lemma 3.1, we obtain the integral identity (3.24). Plugging in
above U; (j =0,1,2), we obtain

0= / ﬁUlUQUO dxdt = / Buviv9tg dxdt + R1 + Rs + Rs,
Q Q
where the remainder terms are grouped as

Ry = / 5(?01)11)2 + r1v2vg + 7“21}1@0) dxdt,
Q

Ry = / 5(707“1’02 + Torovy + 7‘17’250) d:Edt,
Q

R3 = / BriroTo dzdt.
Q
When k > ”T‘H, Proposition 3.2 shows that

Ri+ Ry + R3=0(p %)

for a large K > 5 by choosing IV sufficiently large.
Note that |wi|? + |wa|? = |wo|?. The phase of the product is then given by

O1(2) + O2(x) — Bo(w) = yH@)(w — ) - (z — p) + h(a),

where H(z) := Hi(z) + Ha(z) — Ho(x) whose imaginary part
ImH(z) = ImH1(z) + ImHa(z) + ImHo(z).
By (3.8), we have

1 ) .
ST H ()7 — p) - (2 — ) = coldist(@ paur)? + dist (2, pn)?) = ol — p?,

2
which implies Im?H is positive definite. Also, we have for |z — p| small,
(3.25) [h()] = O(dist (2, Yp)* + dist(2, Ypw5)* + dist(x, Yp)?) = Oz = p[*).
Therefore, for nn < ng sufficiently small, we shall have
(3.26) Im(0;(x) + O(x) — Op(x)) > |z — p|? when |z — p| <.

Finally, standing on these, we derive

O(p_K) —/Qﬁvlvgvo dxdt

T ~
= [ e D D) ) + Oy o) e,
0 BQ'/] (p)

where ag(t,z) = a(()l)a(()2)6(()0) (t,z) and Xp(z) := [[;20,1.2 Xn(2pw, () With 2, (z) being the projec-
tion of x — p onto the orthogonal (n — 1)-dim subspace ij ={{ eR": £ -w; =0}. By the change

of variable = p% (r — p), we have

T A S N I
Oty = [ [ e R ez e (52 1, p L)+ O )T b ddr,
0 BQT]\/E(O)
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Applying (3.25) and (3.26), and by the dominated convergence theorem, we obtain the limit as

p — 00
, T
(/ ez M(p)T-2 d:%) (/ Bao(t,p) dt> =0,
n 0

where we use that the pointwise limit of pﬁ( p 2% +p) is zero. We can choose the initial condition for
H in the matrix Riccati equation such that the first integral is nonzero. Also recall that a(()j )(t, p) =

t(t) for 5 = 0,1,2 in the constructions of aéj), thus

T
/0 B(t, p)A(t) dt = 0.

Since ¢ can be chosen to be any smooth cut-off function at the time variable, such as a sequence
te(t) converging to 0y, as € — 0 for a given to, this leads to 5(to,p) = 0 for arbitrary ¢, € (0,7°). O

To conclude this part, we remark that there are two reasons of the use of Gaussian beams instead
of a localized version of geometric optics solutions here: one is that it can be potentially applied to
non-Euclidean geometrical settings in future study; the second reason is that although it is possible
to use simpler localized geometric optic solutions, we feel the Gaussian beams construction sheds
more light on the asymptotic decaying behavior as p — oo while tracing the effect caused by the
shrinkage of d, the width of the concentration centered at the line.

4. PROOF OF THEOREM 1.2 AND THEOREM 1.3

4.1. Geometric optics. In this section, we will construct the geometric optics (GO) solutions to
the Schrédinger equation, similar to the ones used in [26] and [41], and introduce its associated
unique continuation principle. Compared to the GO solutions in Proposition 3.2, these are not
localized near a straight line.

Following the same ansatz for a GO solution under the global coordinate

N
u(t, ) = &0 (Z P an(t, x)) +r(t ),
k=0

where we take a simple linear (in z) phase
(I)(ta:E) = p(:E W p|w|2t)a
with p > 0 and w € R™. Then the terms in the amplitude naturally satisfy
w-Vag =0,
2iw - Vay = —(i0; + A + q)ao,
(4.1)
2iw - Vay = — (10 + A + q)an—_1,
and the remainder term r satisfies

(i0y + A+ q)r —p Ne®t2) (i9, + A+ g)ay  inQ,
(4.2) r 0 on X,
r = 0 on {0} x €.
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We construct ag as follows. Let 0 < T < T and the function 6, € C§°(R) satisfy 0 < 6, < 1 and
for0< h< %,

_ [ 0 i [0,h]U[T* —h,T"],
(4.3) On(t) = { 1 in [2h, T* — 2h],
with support in (h,T* — h) and, moreover, for all j € N, there exist constants C; > 0 such that
(4.4) 108l wsoe ) < C3h77.
We choose

ao(t, ) = Oy, (t)e! T+
with € € wt. Then it satisfies
ap(t,z) =0 for all (¢t,x) € ((0,h) U (T* —h,T")) x Q,
and the first equation in (4.1).
Let ye 0Q and L :={x : w- (x —y) = 0}. Set
(4.5) ak(t,x+sw):;/Os(iat+A+q)ak_1(t,az—|—§w)d§7 xel, j=1,...,N.

Then a; (j = 1,..., N) satisfies (4.1) and vanishes on L. The regularity of a; inherits from ag, which
is smooth both in ¢ and .
We introduce the notation

(1,8 =1+ 72+ [€P)V?, 7eR, £ eR™

Proposition 4.1. Let w € R", N > 0 and m > n+1 be an integer. Suppose that ¢ € C*(Q).
Then there exist GO solutions to the Schrédinger equation (i0; + A + q)u = 0 in Q of the form

N

u(t, ) = e (ao<t, z) + Zp’“ak(t,x)) +r(t,a),  aolt,x) = Op(1) T
k=1

satisfying the initial condition uli=o = 0 in Q (or the final condition u|;—r = 0 in Q). Here aj, €
H™Q) (k=1,...,N) are given by (4.5) and satisfy
(4.6) lagllim@) < Cr.* ™A™ F " 0 <k < N

for any T € R, h € (0, %) small enough and & € wt, where the constant C > 0 depending only on
Q and T. The remainder term r satisfies

(4.7) 7]l zrm ) < Cp~N+2m (7 ¢)2N+m+2p—(N+m+1)

and

I7llcr (o, 2@)nc o 2@y < Cp N2 (7, &N 2R~ N2

for some constant C' > 0 depending only on Q and T.
Proof. We show the proof for the case with zero initial condition. The case with zero final condition
at T' can be justified similarly. For k = 0, the estimate (4.6) clearly holds for m = 0. For m = 1, it

is easy to check that ||Vag| 12(q) < Cl€] and |[|saollr2(g) < C(|7| + |€] + k') and, therefore, when
h is small,

laoll gy < C{r, &)1
Similarly, we can also deduce the bound for |lag||gm(g). By induction, assuming that aj,_; satisfies

”ak—IHHm(Q) < C<7-7 £>2k+m72h7k7m+1'
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From (4.5), since we take z-derivative twice and t-derivative on ay_1, the estimate of |[ag|| gm () will
receive extra (7,£)? and h™! on top of ||ag—1]|gm(g). This leads to (4.6). Note that (4.6) holds for
all integer m > 0.

Now we discuss the existence and estimates of r to the problem (4.2). From Proposition 3 and
Lemma 4 in [41], since €/®(id; + A + q)ay € HJ* with even integer m > “EL, there exists a solution

r to (4.2) so that
”rHHm(Q) < CprHeiCI)(Z-at + A+ Q)QNHHW(Q) < Cpr+2m<T7 §>2N+m+2hf(N+m+1)'
In addition, from Lemma 2.3 in [26], one can also derive

I7ller o122 @)nc o az@) < Co M€ (0 + A + q)an |l i o.1,r20)

<Cp N (llanll mz07r.c2(0)) + llan |l go.7,120))

S CIO_N+2<T, §>2N+2h_N_2.
Il

Remark 4.1. The choice of ag is quite flexible as long as w - Vag = 0 s fulfilled. This flexibility is
essential in the reconstruction of the unknown coefficient 8 since it will help eliminate the unwanted
terms in the integral identity in order to obtain the Fourier transform of 5, see Section 4.4 for more
detailed computations and explanations.

For our purpose, we will also need the GO solution with a simple choice ag(t,x) = O (t) where Oy (t)
is given by (4.3). That is, there exist GO solutions to the Schrédinger equation (i0y + A + q)u =0
in @Q of the form

N
u(t, z) = *E2) <9h(t) + Zp‘kak(t, m)) +r(t,x),
k=1

satisfying the initial condition uli—o = 0 in Q (or the final condition uli—r = 0 in Q). From (4.1),
we obtain w - Vay = —%&Hh(t), implying

1

2’w‘23t9h(t):v-w

aj(t,x) =

with a1(t,x) = 0 on w. The rest of ar, € H™(Q) (k = 2,...,N) are given by (4.5) and one can
verify

(4.8) lakllgm@y < CRF ™, 0<k<N
and
(49) Il < CpNFFPRm NI ln o1, 2@ o2y < Cp N TRV

for some constant C > 0 depending only on Q and T. Note that under this construction ay (k =
0,---,N) all vanish on ((0,h)U (T — h,T)) x Q.

4.2. Unique continuation property (UCP). Recall that O C Q is an open neighborhood of 9.
Let O; (j = 1,2,3) denote the open subsets of O such that O;41 C O;, O; C O. Set Q; := Q\ O,
and Q; := (0,7) x Q;. We will need the following lemma of UCP and its corollary for the linear
Schrodinger equation. The lemma follows directly from [8] by setting the magnetic potential to be
Zero.
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Lemma 4.1 (Unique continuation property). Suppose that ¢ € Mp. Let w € H“?(Q) be a solution
to the following system

(i@t + A+ q)ﬁ} = 9o m Q,
(4.10) w = 0 on 3,
w = 0 on {0} x Q,

where go € L*(Q) and supp(go) C (0,T) x (Q\O). Then for any T* € (0,T), there exist C > 0,~v* >
0,m1 > 0,1 < 1 such that the following estimate holds

101 L2 ((0,7+) x (@5\022)) < C (’YWIH@HHM(Q) + €m”|’8u@\|L2(zﬁ)> ;
for any v > v*. Here the constants C, m1 and py depend on 2, O, T* and T.

Corollary 4.1. Let ¢ € Mo, and © € HY2(Q) a solution of (4.10) where go € L?*(Q) and
supp(go) C (0,T) x (Q\ O) such that 8,7 =0 on X, Then w =0 in (0,T) x (3 \ Q).

4.3. The integral identity. In this section, we derive the needed integral identity to prove the
stability estimate in Theorem 1.2. We denote

Q" :=(0,T*)xQ for0<T* <T.

Recall the notation ug.s (¢ = 1,2) that denotes the small unique solution to the initial boundary
value problem

(10 + A+ Qucs + Bpuj.; = 0 n Q%
Uper = €e1fi+eafe  on X,
Upef = 0 on {O} X Q,

where f1, fo € H2“+%’2”+%(Z‘) and |e| := |e1]|+|e2] is sufficiently small such that 1 f1 +e2f2 € S\ (2).
Also, let U; and Wy (1 1y be the solutions to the equations (3.16) and (3.17), respectively. In addition,
let Uy be the solution of the adjoint problem,

(i@t + A + q)Uo =0 n Q*,
Us = fo on X,
Uy = 0 on {T*} x Q

for some fy € H 2“+%’2“+%(E) to be specified later. We also introduce a smooth cut-off function

X € C*°(Q) satisfying 0 < x < 1 and

() = 0 in Os,
XTTZ1 1 inQ)\ 0,
and denote W := Wy (1 1y — Wy (1,1), which solves

(i +A+gW = 28UU;  inQF,
(4.11) W o= 0 on L,
W = 0 on {0} x Q,

where § = 1 — B2. As we will see below, by applying this cut-off function y to W, whose Neumann
data is not necessary zero, we have a control of the energy near the boundary using UCP. First, we
obtain the following key integral identity.

Lemma 4.2. Suppose that = 1 — o € Mp. Let U;j and W be as above. Then
(4.12) / 25U1U2U0 + [A, X]WUO dxdt = 0,

where [A, x] := Ax — XA is the commutator bracket.
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Proof. Let W*(t,z) := x(z)W(t,z). Note that since 31 — o =0in [0,7] x O and x = 1in Q\ O
(a subset of O\ O9), we have

X(Br—P2)=P1— P2 InQ.
This implies that the function W* satisfies

(10 + A+ qW* = 28U Uz + [A, x]W in Q*,
w* =0 on X,
w* =0 on {0} x Q.

In particular, we have

Wy =0,W*|x =0.
~We multiply the first equation above by Uy and then integrate over Q*. Using the condition
Uoli=r+ = Wli=o = 0, we finally obtain

/ 28U UsT g + [A, W Ty dadt — / (Tod,W* — W*0,To) do(x)dt = 0.
* b))
O

4.4. Proof of the stability estimate (Theorem 1.2). Below we derive a series of estimates to
prove the final stability result in Theorem 1.2. We choose to plug in GO solutions Uj, j = 0,1,2 as
in Proposition 4.1 and Remark 4.1. Specifically, we take

N
Uj(t,x) = v(t, x) +r;(t, ) = P97 (aé” + Zp"“a,(j)(t,x)) +ri(ta),  §=0,1,2,
k=1

where the phase function ®; are of the form

Pi(t,x) =p(z-wj— p|wj|2t)
with the vectors wi, we and wy satisfying
(4.13) w1 +wy =wo, |wil? + |wel? = |wol.
The leading amplitudes a(()j ) are given by

aél) (t7 1’) = a(()2) (t7 :L') = ah(t)7 a[()O) (t, .I') — Hh(t)ei(7t+x.€)7

where 7 € R and & € wUL.
Substituting U; = v; +r; (j = 0,1,2) into the first term on the left-hand side of the identity
(4.12), we get

(4.14) / QBUlUQUO dzdt = / 2Bv1v90g dxdt + R1 + Ro + Rs,
where the remainder terms are grouped into

Ry :=2 B(?o?./lUQ + r1v20¢ + 7“2111@0) dxdt,
Q*

Ry =2 5(?07’11)2 + rorovy + 7”17"250) dxdt,
Q*

R3 = 2/ BriroTo dxdt.
Q*

We have the following asymptotics.
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Lemma 4.3. There exist pg > 1 and 1 > hg > 0 such that for p > pg and 0 < h < hg such that
(4.15) 2 Bu1vaTg dadt = 2 Ba(()l)aémﬁéo) dxdt + 1,
Q* Q*
where
|I| < C (p71<7_, £>2Nth + p72<7_7 §>2Nh72N + p73<7_’ §>2N+mh73N73m) ,
1

for any 7 € R and § € wy. Here m > n + 1 is the Sobolev order as in Proposition 4.1 and the
positive constant C' depends on Q*, N, and .

Proof. By the definition of v;, we have the identity

BuyvaTo ddt = 2 5% alPal") dwdt + I + Ip + I,
Q*

where we used the conditions (4.13) to get ®; +®3 — ®¢ = 0. Here the rest O(p~!) terms are grouped
into

N N N
L :=2/Q G [aé)a((f) (Zp_k ()) +afay’ (Zp_k ”) +aay (ZP )] dadt,

k=1 k=1 k=1
) N N N N
Iy = Q/Q* B [aé ) (Z pka,(f)) (Z pkag))> + aO (Zp ) (Z pka;0)>
k=1 k=1 k=1

+al (Zpkak ) (Zpk >]dwdt
and

N N N
I3 ::2/Q*ﬁ (Zp_ka,(j)) (Zp_kag)) <Zp a,(g)> dxdt.

k=1 k=1 k=1

Let us estimate each I;. To this end, it is sufficient to control the first term in each I; since the
other terms can be handled similarly.
The first term in I is controlled by

N
/Q Ba((]l)a[()2) (Z o *a ()> dxdt

k=1

2

< OBl (g a8 | oo (o)l at

(Z p M e )

<ch @] 20+ < Cp MW |2y < Cp~Hm, €2V RN,

by (4.6) for sufficiently large p > 1 and small h < 1, where C' depending on @*, N and /3. Similarly,
the second term and the third term are less than Cp~'h™ by applying (4.8) instead. Combining
these estimates together gives

(4.16) L] < Cp~Hr &)Y
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For I, applying Hélder’s inequality, the first term is controlled by

N
2 / Ba(()l) <Zp_kak ) (Zp_k (0)> dxdt
Q* k=1
N
1 _ 2 —kn—(0
scnﬁnm@*)uaé)Hm@*) (Zp ’f||a,i>||L2<Q*>) (Zp ’f||a,§’||Lz<Q*>>
k=1
N
k=1

<Cp ¥, §>2Nh—2N,

by using (4.6) and (4.8) again. Similarly, the second and the third terms share the same bound.
Therefore we have

(4.17) |Io| < Cp~ (1, )2 N2V,

Finally, since m > n + 1, we can control I3 by

N N N
5] < ClIB| oo (@) <Zp_k“a;(€1)\|Hm(Q*)> (Zp_kﬂa/?)HHm(Q*)) (Zp_kHaI(cO)HHm(Q*)>
k=1 k=1 k=1

_ 1 2 0
<Cp¥laiy | mmign ol | i@nlal) | g
(418) S Cp_3<7', £>2N+mh_3N_3m
Combining (4.16), (4.17), and (4.18) completes the proof. O

Lemma 4.4. Then there exists pg > 1 and 0 < hg < 1 such that the three remainder terms satisfy
the following estimates:

|Ry| < CpNt2mr ¢)2N+m+2p —3N—3m—1
|R2| < Cp—2N+4m<7_ §>2N+m+2h—3N—3m—2
and
|R3| < Cp3NFom (7 ¢)2N+mt2p=3N=3m=3
forp>po,0<h<hy, TeER and £ € wé‘, where the positive constant C depends on Q*, N, and 3.
Here m > n + 1 is the Sobolev order as in Proposition 4.1.

Proof. Again it is sufficient to evaluate the first term in each R;. Substituting vq, v2, and rg into
the first term of R;, we get

N N
/ 57“001?12611136515:/ Broe'® (Zp_kal(vl)) (Z p_kal(f)> dadt.
* Q*

k=0 k=0
Since H™(Q) is an algebra, by (4.7) and (4.8), we have

N
(Zp Fllag o > <Zp"“\a;§2)\\ﬂm(cz>)
k=0

< Cp N+ (r ) 2NFmt 2y =Nom=1y Oy oo a8 ey

< Cp—N+2m<7_’ §>2N+m+2h—3N 3m— 1'

\ ﬁromdmt\ <Cl8lc
Q*
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The rest terms in Ry satisfy the same estimate similarly. The same argument also gives the corre-
sponding bounds for Ry and Rs, using (4.6), (4.7), (4.8) and (4.9). This completes the proof of this
lemma. O

Now we are ready to prove an estimate for the Fourier transform of 59%(75) below.

Lemma 4.5. Let m = 2k > n+ 1 in Proposition 4.1, N > 4k + 1 and 8 = 1 — B2 € Mp. For
p>po>1and 1> hy>h >0, we have

(4.19) 2| [ BO)e T dpdt

S ‘/ [A, X]WUO dxdt + Cp_1<7', §>2N+2.‘€+2h—3N—6H—3
Q* *

forreR and € € wol. Here the constant C' > 0 is independent of p, T, & and h.
Proof. We derive from (4.14), (4.15) with m = 2x and the identity (4.12) that

(4.20) 2 [ BaValPa) dwdt = — / [A, X\]WUq dadt — (I + Ry + Ry + Rs).
Q* *

With the estimates in Lemma 4.3 and Lemma 4.4, we can further simplify the estimate of I + Ry +
Ry + R3 into

T+ Ri + Ro + Ry| < Cp~L(r, £)2N 2042 ~3N—6r-3
by noting that N > 4k + 1, p > 1, and (7,§) > 1. The lemma is then proved by recalling that
a(()o) = 0),(t)e! 778 and a(()l) = a(()Q) = 0p(t). O

Next we try to estimate the first term on the right hand side of (4.19) in terms of the boundary
measurements difference.

Lemma 4.6. Let m = 2k > n + 1 in Proposition 4.1 and 8 = 1 — P2 € Mp. Suppose
(A8, — Aggo) fllpzssy <6 for all f € Sx(X).
Then for p > po>1, 1> hg>h >0 and |e1| + |e2| sufficiently small, we have
W 1) < C pSrp 2N —4s—2
and

c 3 1264127 —3N—6K—9
[0 W || L2(s8) < 120 (6+ (e1+22)°p h )-

Proof. Recall that from Remark 4.1, we can derive
(4.21) 1Ujllgr2s(qy < Cp™h™ N 7271 j=1,2

when s > ”TH We first take s = . Since the non-homogeneous term of (4.11) is 23U Uy € H?",
applying Lemma 4 in [41] yields that

HWHHl,l(Q) < HWHHQH(Q) < CHUlHHQ"(Q)HUQHH%(Q) < Cpsnh_ZN_4“_27

where C' depends on 3, 2 and T'.
Below we will estimate O,W = 0, W5 1.1y — 0, Wy (1,1). From f; = Uj|s, according to (4.21) with
s =k + 1 and Theorem 2.1 (the trace theorem) in [44], we obtain

(4.22) ”f.j||H2n+%,2n+%(E) < C”Uj”H2n+2(Q) < C,O4H+4h_N_2“_3,

for j =1, 2, where the constant C'is independent of f;.
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Denote R = Ry — Ry where Ry is the remainder as in (3.20) for wrer (¢ =1,2). From (3.22) and
(4.22), we obtain

HaVWHLQ(Eﬁ)
1~ - _ 1 B
< @HA(ah —e2fa) = Aenfr) — Ale2fo)llp2(sr) + EH@RHLQ(E&)
3 1 5 X
< E(S + C@(& + 62) (HfIHHQK+%,2H+%(E) + HfQHH?””*%QH%(Z))
C
< —— (6 + (61 + g9)3p!2r 12 =8N —6r=9)
£1€2

where A := Agg — Ny,

g

Lemma 4.7. Suppose that ¢ € Mo and p1 — B2 € M. Then for N > 0 large enough there exist
¥*>0,m1 >0, pg>1and 0 < hy <1 such that

/ [Ap)(]WUO da:dt‘ < C<T, £>2N+4h74N765712 (7*M1p8n+4 + 6m17p12n+16 (5725 + 5)) )

fory>~*, 1 €R, € wOL, p > po and 0 < h < hg. Moreover, for each (7,€) € R"* L the Fourier
transform of 59% (extended by zero outside Q*) satisfies

\Eg\%(ﬂfﬂ < C(p*1<7-, £>2N+2n+2h73N76n73 v, €>2N+4,Yf,u1p8n+4h74N76n712
(4.23) (7, £)2NHAgmY 126416 ), —AN—6r—12 (5_26 . e) )

Proof. We choose €1 = €9 =: €. From Lemma 4.6, we obtain
HaVWHLQ(Eu) < C (572(5 + Z_:p12.l-c+12h73N76.%79) .
By the UCP in Lemma 4.1, there exist v* > 0, m; > 0 and p; < 1 such that

‘ / (A XWT dedt

< CI[A, XIW | 20,7+ 1-1 @\ 1 Tl 20,7011 ()

< ClW 20,74 x @5\ 1T 0l L20,7%; 12 ()

< C (Y W) + €™ N0 |y ) p(r, €2V 4R~

< O, €N (i A 8N AR5 iy (=2 AN =BG | 12616 AN 6129

for any v > ~*.
Together with Lemma 4.5 this leads to (4.23) for £ € wd-. Choosing enough wy, this ends the

proof. O
Proof of Theorem 1.2. Let p = ’yﬁ so that
p—l — ’Y_'ul P8R+4'
We denote
ay = 4N + 6k +12, ag:=2N + 2k +2, pi= 11
8Kk + 5

Then from (4.23), it is not hard to see
(4.24) B3 (r, )] < C(r, €)°2h™2 (774 + €™ (e 4+ 672) ),
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with some index mgy > my > 0. For a fixed M > 1, by (4.24) and Plancherel theorem, we deduce

1811 neny = / (r,€)7|B63 (r, €) Pdrde + / (r,€) 721867 (r. &) [Pdrde

(&)< (r&)l>M
<C (/ (1, €)% h™20 (y 72 4 €220 (2 + £716%)) drdg + MZHW%H%z(RnH))
(re)l<m

< OMPOHHI =200 (472 4 227 (2 4 e746%)) + CM g,
by recalling that |3| < mg. Thus,
Hﬁe%”Hfl(RnJrl) < MOt T e (Y +em™ (e +e7%0)) + CM .
By interpolating and (4.4),
18031172(0r) < 180311 1803 11y < CllBORN 1-1(geyh ™
< OMOT T ROt (471 M (2 4 e728)) + CM TR

In addition, we write
B = B9, + (1 —67).
Note that 1 — 67 = 0 in [2h, T* — 2h], which leads to
T*

2h
1= 63117200 < /0 (1—67)2dt +/T 2h(1 — 03)2dt < 4h.

Hence,
181172y < CUBGIL2 (e + 1B = )72 (gr))
< CMO+5 R0l (y7H 4 ™2V (e 4 e726)) 4+ CM ! + Ch,

Choose h < T*/4 satisfying M~'h=t = h (ie., h = M_%) such that the last two terms above have
the same order. This results in

18132(e) < CM® (7 + €™ (2 +£725)) + CM 2,

-
where a3 := as + %(al +n +2). We also further choose M = 2+ such that

YHMO = M3,
which implies that there exist constants 0 < y/ < 1 and m3 > ms > 0 such that
(4.25) 18122+ < C <em375_26 Femave w/) .
For 6 € (0, min{1, e=6m37" A%}) with A > 1, we take
A

. 1
5:11\%6% and yzﬁllog(é)].

Then (4.25) becomes

1 !
18132q-) < € (85 + log(9)[ ™) .
where C depends on Q, T, T*, mg, and A and A.

Now we verify the small condition in the well-posedness.
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Remark 4.2. From the above proof, the parameters are defined by

o
_ 1
p=At, M=r""F h=M"2=q T y= Tm\log@)\-

From (4.22), for j =1,2,

1
||f] ||H2H+%72N+% - < Cp4n+4h—N—2n—3 < 07(45-1-4)/”‘ 203 +1 (N+26+3) 1 < Cle™ms?,

We took €j = ¢ above. Due to ¢ < A%, it follows that

ol < JAT S <7,
and

A
2
provided A is sufficiently large. Hence, the Dirichlet data 1 f1 + €2 fo belongs to Sx(X). This justifies
the well-posedness and our procedures discussed above.

Ay=lol o -1 .1 AL -1
lle1fi +62f2HH2"+%’2“+%(2) < C§A 6 03¢ =(C—=A7F§5 < C§A <\,

4.5. Proof of Theorem 1.3.

Proof of Theorem 1.3. From Theorem 1.1, From Theorem 1.1 and the strict convexity assumption,
in R™ (n > 3), for p € Q close enough to I', we could find wy,ws € S*! satisfying w; L wy and
((pwn U ¥pws U Ypun+ws) NONY) C T'. Consequently, we obtain that f; = f2 in a neighborhood of
I'. Combining with the hypothesis that 81 — 82 = 0 on (0,7") x O yields that 31 — 2 = 0 near the
boundary 0€2. Thus one can assume that 8 = 0 in some open neighborhood O of 9€2. Applying the
result in Theorem 1.2, for any T* € (0,7, we derive that 51 = (B2 in (0,7*) x Q by letting 6 — 0,
which completes the proof. O

Remark 4.3. Theorem 1.1 and Theorem 1.2 hold true for more general nonlinearity, such as
B(t, z)u™ or B(t, z)|ul*™u. For the former case, the integral identity becomes [ BUUs ... UpUq dxdt =
0, where U; is the solution to the linear equation. Like the setting m = 2 discussed above, the vectors
wj in the phase functions of GO solutions are chosen to satisfy

wo=wi+...+wn and |wo|?* = |wiF+ ... + |wm|?

so that the leading complex phase functions vanish eventually in the integral identity. Once the phase
functions are determined, following similar arguments in the proof of theorems lead to the unique
and stable determination of 5.

For the case of Gross-Pitacvskii equation with nonlinearity (|u|?u and the generalized B|u
we can treat similarly to obtain the integral identity

‘Zmu7

/ﬂU1U2U3U4- o Usm-1U2p Uz 11Uy dzdt = 0

and choose
w1 —west w3 —wg+ ... +woeny1 —wo =0
jwi? = |w2* + |wsl® = |wal® + ... + [wam41]? = wol* = 0.

We can choose Uy,Us, Uit and Ug to be GO-solutions supported near four straight lines Vw1
Vpwss Vpwomasts ANA Vpo, Tespectively, and let U; and Ujyq be GO-solutions supported near vy ., for
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7 =3,5,...,2m—1 so that their complex phases will cancel the other in pairs. Hence, w1, w2, Wam+1,wWo
should satisfy

wo + w2 = w1 + Wam+1,
2 2 2 2
|wol® + wal” = |w1|” + |wam+1]7,

which can be achieved, for instance, by choosing

wo=(1,-1,...,0), wi=KW1-7r%-1,...,7),

wo=(V1=712,/1=72,0,....,r), woms1=(1,V/1—7r2...,0), 0<r<l1.
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