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ABSTRACT

Session-based recommender systems (SBRSs) predict users’ next in-
teracted items based on their historical activities. While most SBRSs
capture purchasing intentions locally within each session, captur-
ing items’ global information across different sessions is crucial
in characterizing their general properties. Previous works capture
this cross-session information by constructing graphs and incorpo-
rating neighbor information. However, this incorporation cannot
vary adaptively according to the unique intention of each session,
and the constructed graphs consist of only one type of user-item
interaction. To address these limitations, we propose knowledge
graph-based session recommendation with session-adaptive prop-
agation. Specifically, we build a knowledge graph by connecting
items with multi-typed edges to characterize various user-item
interactions. Then, we adaptively aggregate items’ neighbor in-
formation considering user intention within the learned session.
Experimental results demonstrate that equipping our constructed
knowledge graph and session-adaptive propagation enhances ses-
sion recommendation backbones by 10%-20%. Moreover, we provide
an industrial case study showing our proposed framework achieves
2% performance boost over an existing well-deployed model at The
Home Depot e-platform.
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1 INTRODUCTION

Transformer-based models have shown state-of-the-art performance
for session-based recommender systems (SBRSs) by leveraging their
attention mechanisms and deep learning capabilities [9, 41]. While
transformers are adept at capturing local session data and individual
item preferences [4, 15], they are limited in their ability to capture
global transitional patterns among items [12, 23, 44]. This limitation
has sparked research into hybrid graph-based SBRSs that combine
the strengths of transformers with Graph Neural Networks (GNNs)
to capture both local and global dependencies [12, 23, 39, 44]. For
example, in Figure 1(b), borrowing the transitional information
between flower and lopper in Figure 1(a) helps characterize the
intent of session A as decorating the garden and hence increases
the probability of predicting the next item to be garden-related, e.g.,
watering can.

However, the existing hybrid models face two significant chal-
lenges. Firstly, the lack of full connectivity between GNN and trans-
former models limits their ability to capture the session dynam-
ics [22, 37, 40]. While GNN s excel at capturing item-item relation-
ships, they often struggle to incorporate the broader session context,
and the learned item representations lack full awareness of the ses-
sion context. For example, in Figure 1, although both sessions A and
B have involved the flower, their intentions are quite different: one
for decorating the garden while the other for decorating the kitchen.
In contrast to blindly aggregating all neighbors’ information to the
flower without considering the session context [12, 23, 44], our ap-
proach learns session-aware item embeddings by selectively propa-
gating information from relevant neighbors based on the current
session. For instance, when determining which neighbors’ informa-
tion is aggregated to the flower, we recommend incorporating the
lopper and watering can when decorating the garden in (b), while
the sink and the table when decorating the kitchen in (c).

Secondly, the global transitional patterns among items in these
hybrid models are typically constructed based on one type of in-
teraction, such as co-purchase patterns [12, 22, 23, 37]. However,
on e-commerce platforms [40], items could form multiple relation-
ships: substitution items are typically co-viewed and complemen-
tary items are typically co-add-to-carted (co-ATC) [21, 36] by the
same user. Uniformly using neighbor information may result in the
dilution of diverse relationships among items and consequentially
lead to unsatisfactory recommendations for users.
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Figure 1: Since the user in Session A (b) intends to decorate the
garden, while the user in Session B (c) intends to decorate the
kitchen, the corresponding neighbors from the knowledge
graph (a) are different for the same flower. By our proposed
session-adaptive propagation, the flower aggregates more
information from the lopper/watering can in (b) while more
information from the sink/table in (c).

To overcome the above two challenges, we propose a knowl-
edge graph-based SBRS with session-adaptive propagation. Our
contributions are summarized as follows:

e For the first challenge, we propose a session-adaptive graph
propagation to adaptively aggregate items’ neighbor information
based on the session contexts obtained by the transformer model.

e For the second challenge, we construct an item knowledge graph
by extracting three different item co-relations with users. Addi-
tionally, we employ the heterogeneous graph transformer [11]
in the message-passing design to effectively aggregate neighbor-
hood information based on the relationship type.

o We experimentally verify the proposed framework in enhancing
existing SBRs, compare the performance improvement caused by
different types of edges, and verify the session-adaptive propaga-
tion by visualizing the changing attentions of the same item in
aggregating neighbors in different sessions.

2 RELATED WORK

Earlier works in SBRSs leverage Markov Chains to infer the con-
ditional probability of an item based on the previously interacted
items [24, 26]. More recent works have resorted to deep learning for
session recommendation. Recurrent neural networks (RNNs) [8, 41]
such as GRU4Rec [9] and Transformers (TFs) [4] such as SAS-
Rec [15] have been developed to model the interactions among
adjacent items in a session. To capture even more complex transi-
tional patterns, graph-based methods such as SR-GNN [39] extract
the session graph for each session and use a gated GNN to learn
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session embeddings. Different from previous works that only cap-
ture transitional patterns within the session, we construct a global
graph with different types of edges to capture even more broad
information, the related works of which are reviewed next.

Prior work explore global transitional patterns across different
sessions by querying the global item graph [12, 23, 44]. [12] designs
a global context-enhanced inter-session relation encoder to cap-
ture the inter-session item-wise dependencies. [44] constructs the
dual session graph to model the pair-wise transition relationship
between items based on the global connections. [23] constructs the
global graph by merging all individual session graphs. Recently,
KSTT [43] uses an item-category knowledge graph for session
recommendation. However, these models learn item embeddings
from the global graph without session-tailored modification. Only
GCE-GNN [37] and GCARM [22] consider session adaptation in ag-
gregating neighbors’ information. However, GCE-GNN quantifies
the importance of neighbors based on their similarity to the whole
session without differentiating central items. GCARM treats all tran-
sitions similarly without distinguishing different interaction types.
To handle these issues, we design a session-adaptive propagation
to query neighbors based on session contexts and interaction types.
The constructed KG in this work has only one type of node, the
item, and we will consider other node types in the future. We put a
more comprehensive review of related works in Appendix A.1.

3 THE PROPOSED FRAMEWORK

Our framework, as illustrated in Figure 2, comprises of a GNN that
obtains item embeddings by adaptively aggregating information
from neighboring items based on the target session, and a trans-
former model that acquires session embeddings for predicting the
next item. In the subsequent sections, we first explain the construc-
tion of the item knowledge graph, and then the GNN-based message
passing model and the transformer-based prediction model.

3.1 Item Knowledge Graph Construction

As items typically exhibit two types of correlations, substitution
and complementary [44], we extract three distinct types of edges,
as depicted in Figure 2(a)-(c), by examining whether two items
co-occur within the same session: co-view, co-ATC, and co-view-
ATC edges. For instance, in the first session shown in Figure 2(a),
the user first views the cornerstone, then adds the flower to the
cart, and subsequently views the lawn mower. This sequence forms
three edges: the co-view edge between the cornerstone and the
lawn mower, the co-view-ATC edge between the cornerstone and
the flower, and the co-view-ATC edge between the flower and the
lawn mower. More formally, we define the edge weight from item
vj to v; of type co-t;-t; as follows:

21,\;11:1 ) - tZ)

]l(vi, vj € Sm, (05, Sm) = 11, (v, S
1(01 € Sm, (05, Sm) = 1)

(t1.t2) _
WIH_]

ey

where S, is the mth—session, M is the total number of sessions

in the historical data, and t1,t2 € 7 = {view, ATC} and 1 is an
indicator function. Specifically, 1(v; € Sm,vj € Sm, (v, Sm) =
t1,7(vj, Sm) = t2) = 1if (a) both v;,v; belong to the mt session
Sm, (b) user interacts with v; following type ¢; and (c) interacts with
vj following type t3 in Sy, and otherwise 0. Note that, we normalize
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Figure 2: In (a)-(c), we first extract three types of edges from historical sessions to construct item knowledge graph. Then in
(d), we forward the given session through the 1%t transformer layer to obtain items’ contextual embeddings, which are used

for query-relevant neighbors for GNNs to perform graph propagation. The propagated item embeddings are fed into the

znd

transformer with a pooling layer afterward to obtain session embedding for the recommendation.

edge weights based on the degree of the head node to avoid popular
items from dominating the message-passing of GNNs [6, 29].

Based on our empirical experiments, it was observed that the
obtained graph may contain items with over a hundred neighbors.
Therefore, in order to mitigate the heavy computational issue [42]
and prevent over-smoothing [3] during the message passing, we
sparsify the graph by retaining only the top-K neighbors for each
neighborhood type, based on the acquired edge weights. The statis-
tics of the constructed networks are provided in Table 1.

3.2 Session-adaptive Propagation

As mentioned earlier, a straightforward approach to utilize item
graphs in SBRSs is to employ a GNN model to obtain item em-
beddings from the graph. These acquired embeddings can then be
utilized in a transformer-based model to predict the next item based
on the target session [12, 23, 44].

However, seen in Figure 1, a key limitation of this architecture is
that the contribution of each neighboring item remains unchanged
in obtaining the center item’s embedding, regardless of the ses-
sion from which the item originates. As such, the item embeddings
obtained from the GNN is unaware of the contextual information
specific to the target session. This approach is sub-optimal since the
purchasing intention associated with the same item naturally differs
across different sessions, thereby necessitating changes in the se-
lection of compatible neighbors based on the session-specific inten-
tion. Motivated by this observation, we propose a session-adaptive
propagation that dynamically propagates neighbor information
according to the item’s unique context within each session.

To implement the above idea, given the target session, we input
the initial item embedding within the session into a transformer,
resulting in the generation of its session-aware representation. Sub-
sequently, this obtained embedding is utilized to determine the
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edge weights for the GNN model. Finally, following the message-
passing process, the updated item embeddings are once again fed
into another transformer model to make the final prediction.
More formally, we first obtain item initial embeddings E! by
integrating item meta-attributes such as item title and category.
Then, given an item v; in the session S, we use the item initial
embeddings E! to obtain its contextual embedding c™

m = transformerl(ui,El,Sm), You; € S

@
where transformer; is the 1% transformer. With the contextual
embedding c]” as the query, inspired by [11], we perform hetero-
geneous graph transformer-based propagation to adaptively ag-
gregate v;’s neighbors’ information relevant to the current session
intention:

ml_ 1 H hLt,mh Lty ml-1
WM = o D ik 2 Wl ©)
teTxXT ujeNf
A=-1INT (ph Lt om
(QbtRI )T (KAt e )
pbm = ! Vo, € S, SmeS, (4)

d/H
where ah l; "™ denotes the graph attention from item v; to v; under

the head h, edge type ¢ at layer I. Q1t K1t vt represent the
query, key, and value matrix at the head h, edge type t, layer [
of graph attention. H is the total number of heads. After L layers
graph transformer-based propagation, we obtain the final item
™

embeddings . Since different session contexts provide different

contextual embeddings c* # cm/ the calculated attention coeﬂ’lcients
would also be different, i.e., (xhljm # alPbt™ The nth andhm L)

16—

would be different, and they would only include the nelghborhood
information that is relevant to the item’s unique intention provided
by the corresponding session context Sy, (Spy).
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To demonstrate the effectiveness of our proposed session-adaptive
propagation in learning neighborhood attention based on the ses-
sion context, we conduct a case study that visualizes the learned
neighborhood attention for the same item across different sessions
is indeed different. Further details are presented in Section 4.7.

3.3 Prediction and Optimization

After L layers graph propagation, the item embeddings, e.g., h;"’L, Vo;
Sm, are fed into transformer; with mean pooling to obtain the
session embedding S;, and then we compute the cross-entropy loss
to optimize the whole framework:
M |V
L= 3 Ymilog¥mi, Sm=transformer,({h]*"|v; € Sm}) (5)
m=1 i=1
where V is the total item space, Y, € {0, 1}“"| is the one-hot en-
coded next ground-truth item of the session Sy, Y = o(p(Sm)) €
RIVlis the predicted probability distribution of the next item for
the session S, from the linear prediction head p followed by the
softmax normalization o. Note that S, could be used in other tasks
if paired with corresponding prediction heads, such as predicting
the category/price of the next item as discussed in Section 4.4. The
parameters of transformery are optimized via back-propagation,
and we periodically synchronize the parameters from trans former;
to transformery [7]. During the inference stage, we make the next
item prediction by finding the item i = argmax ;e Ypm,j.

4 EXPERIMENTS

In this section, we verify the effectiveness of the proposed knowl-
edge graph construction method and the session-adaptive propaga-
tion mechanism through extensive experiments. We first introduce
the datasets and the experimental settings.

4.1 Experimental Setup

4.1.1 Datasets. We conduct experiments on the following datasets:

e Diginetica! comes from CIKM Cup 2016. We follow the same pre-
processing as [39]: sessions in the last and second-to-last week are
used as testing and validation data. We filter out sessions of length
less than 1 and items appearing less than 5 times. We extract
item co-purchase edges from all sessions in train-purchase.csv
and item co-view edges from only training/validation sessions
in train-item-view.csv to avoid data leakage. The meta-attribute
includes item title, category, and price.

¢ Yoochoose 1/64% comes from the RecSys Challenge 2015. Ses-
sions on the last and second last day are used as testing and vali-
dation data. We filter out sessions of length less than 1 and items
appearing less than 5 times. We extract item co-purchase edges
from all sessions in yoochoose-buys.dat and item co-view edges
from only training/validation sessions in yoochoose-clicks.dat
to avoid data leakage. Since items in this dataset have only one
category attribute and it represents different meanings, e.g., 1-
12 for item real categories, ‘S’ for special offer, and 8-10 digit
numbers for item brand, we only use item ID to demonstrate the
effectiveness of session-adaptive heterogeneous propagation.

Ihttps://competitions.codalab.org/competitions/11161
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
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Table 1: Statistics of datasets used for experiments and their
corresponding knowledge graphs.

Dataset Train/Val/Test Seqs # Edges # Nodes Sparse Seqs Meta data
675,673/
Diginetica 43,541/ 1,576,571 123,273 13,867 Title/Category/Price
68,571
Yoochoose 369,142/
1/64 45,864/ 1,025,176 52,739 15,385 -
55,898
3,169,140/ Title/Category/Brand/
E}; gtz'r;fm) 672,873/ 4,162,7121,317,149 227,941 Color/Manufacturer/Class/
672,873 Department

e THD is a real industrial-level dataset from The Home Depot,
the largest home improvement retailer in the USA. We sample
3,169,140/672,873/672,873 Add-to-Cart (ATC) sessions chronolog-
ically for constructing the train/valid/testing data. The multiplex
graph is constructed by extracting co-view, co-ATC, and co-view-
ATC edges. Items in this dataset have 7 meta-attributes: product
title, hierarchical categories (i.e., L1, L2, L3, Leaf), brand, manu-
facturer, color, department, and class name.

Statistics of the three datasets are summarized in Table 1. Note
that sparse sessions refer to the ones containing items appearing
less than 5 times in the whole dataset. These sessions are used to
evaluate our framework on sessions including cold-start items.

4.1.2  Item embedding initialization. We initialize item embeddings
based on their meta-attributes. We use different embedding tech-
niques to extract different types of item metadata [25], which can
be numerical, categorical, and textual. For each numerical attribute,
we directly embed it as a real-valued number. For each categorical
attribute, we initialize a unique learnable embedding matrix. For
textual attributes such as title and description, we first construct the
token embedding matrix and then the title/description embedding
is computed by mean pooling over the embeddings of correspond-
ing tokens in that sentence. Note that pre-trained NLP models are
not preferred here to avoid capturing noisy semantic signals. For
example, even though silver sinks and creamy white stones share
semantic-similar colors, they are essentially purposed for deco-
rating different rooms. We empirically observe that utilizing this
token-based embedding avoids capturing noisy semantic signals
since they correspond to different tokens. We concatenate different
types of embeddings to form the final item meta-embeddings and
feed them into the transformer model.

4.1.3 Backbones. Note that our constructed knowledge graph and
the proposed session-adaptive propagation can be applied to en-
hance any embedding-based SBRS. To demonstrate this, we select
three fundamentally different but representative backbones and
equip them with our framework:

o GRU4Rec [9]: The very first model leveraging RNNs to charac-
terize item sessions for session recommendation.

e SASRec [15]: The very first model leveraging the self-attention
from the transformer to draw context from all user-item interac-
tions in the same session.

e KGHT [40]: A graph-based model constructing the item rela-
tional graph and leveraging graph attention to capture item re-
lations for recommendations. Since this work is not initially
designed for session recommendation, we modify it to align with
our problem setting.
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Table 2: Performance comparison (%) of utilizing meta-attribute embedding layer and session-adaptive heterogeneous propaga-
tion layer. The best and runner-up are in bold and underlined. Note that N(M)@ 10 represents NDCG(MRR)@ 10.

Diginetica Yoochoose 1/64 THD
Backbone N@10 M@10 N@10 M@10 N@10 M@10 Increase (T)
Full Sparse Full Sparse | Full Sparse Full Sparse | Full Sparse Full Sparse

GRU4Rec 12.66  11.04 9.55 8.19 32.77 2832 2652 2281 | 14.40 7.66 12.34 6.53 -
RNN GRU4Rec,,, 1238 10.62 9.27 7.77 - - - - 17.09 1042 14.19 8.41 10.55%

GRU4Rec,* | 13.01  11.47 9.73 8.37 - - - - 18.13  11.33  15.23 9.34 18.88%
Trans- SASRec 1470  13.00 11.11 9.57 33.68 2859 27.16 2287 | 15.27 8.11 12.97 6.83 -
former SASRec;,, 14.68 12.79 11.08 9.28 - - - - 17.87 11.11  14.87 9.01 11.94%

SASRec, * 1531 13.68 11.60  10.12 - - 18.53  11.72 1553 9.64 18.28%

KGHT 17.73 1599 1333 1174 | 34.81 30.14 28.04 24.10 | 1659 9.29 1402 7.74 -

KGHT,, 17.70 1578 13.27 11.52 - - - - 18.47 11.68  15.49 9.59 8.45%
Graph KGHT,* 1781 1688 1338 1249 | - - - - | 1878 11.89 1574 9.79 11.59%

KGHTy 18.64 16.74 1397 12.28 | 35.80 31.71 28.80 25.21 | 17.30 10.20  14.45 8.35 4.25%

KGHT gm» 18.93 17.16 14.22 12.65 - - - - 18.83 12.17 15.67 9.91 14.10%

X: Backbone X using item ID but no meta-attributes;

X,»: Backbone X using item meta-attributes but no ID; X,,,.: Backbone X using both item meta-attributes and ID;

Xg4: Backbone X using Graph and Session-adaptive propagation; Xgm.: Backbone X using Graph, Session-adaptive propagation, and meta-attribute.

Equipping each of the above three backbones with the item meta-
attribute embedding layer and the session-adaptive propagation
layer, we end up with 11 model configurations. We name each
new configuration by combining the name of its backbone and
the equipped techniques, e.g., GRU4Rec,, denotes the backbone
of GRU4Rec with item meta-attribute embedding layer, SASRec;,+
denotes the backbone of SASRec with both item meta-attribute
and ID, and KGHTy denotes the backbone of KGHT equipped with
session-adaptive propagation layer. The architecture of each model
configuration is summarized in Table 3.

4.14  Evaluation Metric and Implementation Details. Following [13,
38], we report the average of NDCG@10 (N@10) and MRR@10
(M@10) over all sequences in the test set. We assign a dedicated
embedding layer for each attribute, and the embedding dimen-
sion is determined based on the total number of distinct tokens
of the corresponding attribute vocabulary. To ensure a fair com-
parison, we tune the following hyperparameters for each model
individually: the dimension of ID embedding layer {64, 128, 256},
the number of layers for self-attention and graph propagation
{1, 2,3}, the number of attention heads {1, 4, 8}, the dimension
of hidden embeddings {100, 512}, learning rate {1e~%,1e73,1e72},
the L2 penalty {0, 5¢~*}, training epochs {100, 200}, the batch size
{100,512}, dropout ratio {0.1,0.25} across all models. We save the
model performing best on validation sessions and evaluate it on test-
ing sessions. Training epochs for Diginetica/Yoochoose/THD are set
to be 200/200/30. We synchronize the parameters of transformer;
from transformer; every epoch.

4.2 Model Configuration Analysis

To demonstrate the effectiveness of the proposed knowledge graph
and session-adaptive propagation, we compare three backbones
GRU4Rec, SASRec, and KGHT with their corresponding enhanced
versions in Table 2. For brevity, we represent any of the three
backbones as X in the following text:

e Compared with X, X;;;. incorporates item meta-attributes and
improves the performance by around 12% — 19% on average. This
is because ID-based embedding only captures the topological
proximity of each item to all other items and cannot provide
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Table 3: An architecture comparison of different backbones.

Backbone ID M‘?ta- Session-ada'ptive Multi-'task
attribute propagation learning
GRU4Rec '3 X X X
GRU4Rec,, X X X X
GRU4Rec,,, * % X X
M-GRU4Rec,,, * X X
SASRec X X X X
SASRec;, b ¢ X X X
SASRec;;, * X X X
M-SASRec;;,* X X
KGHT X X X
KGHT,, X X X
KGHT,,* X X
KGHT, X X
KGHTgm: X
M-KGHT .

generalizability, especially when items’ topological information
is noisy/sparse. Leveraging meta-attributes alleviates this issue
by transferring the learned information among items sharing
the same meta-attribute. Since THD has more abundant types
of well-curated meta-attributes than the ones of Diginetica, as
evidenced in Table 1, X;;« achieves an even larger performance
gain over X on THD than on Diginetica.

Compared with X, X, achieves comparable and sometimes slightly
worse performance on Diginetica, e.g., 9.55% for GRU4Rec while
9.27% for GRU4Rec;, in MRR@10. This is because solely rely-
ing on meta-attributes to represent items may lose topological
information in the sessions. Two items sharing the same meta-
attributes will be encoded the same, even though they may be
involved in significantly different sessions. This is also evidenced
by the better performance of X, * than Xp,, after combining both
item ID and item meta-attribute. Different from Diginetica, X,
always achieves higher performance than X on THD because
more abundant meta-attributes there enable the concatenated
embeddings to be more unique and hence can somewhat mimic
the function of Item ID in capturing topological information
embedded in the sessions.
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Table 4: Ablation study on different types of edges.

Backbone Diginetica |Yoochoose 1/64 THD Decrease (1)
N@10 M@10|N@10 M@10 |N@10 M@10
KGHTgm | 18.94 14.22 | 35.80 28.80 18.83 15.67 -
- w/o diff | 18.3¢ 13.80 | 35.15 28.22 18.68 15.50 2.02%
-w/ov 15.21 11.46 | 3436  27.68 18.66  15.53 9.78%
-w/oa 18.70 13.97 | 35.04  28.09 18.76  15.64 1.39%
- w/ova / / / / 18.79 15.63 0.23%

* w/o diff: uniformly aggregate different types of neighbors with no differentiation.
* w/o v/a/va: with no co-view/co-ATC/co-view-ATC edges.

o Comparing among different backbones, graph-based models achieve
higher performance than non-graph-based ones, which aligns
with the notion that incorporating global information across dif-
ferent sessions is conducive to the recommendation [12, 23, 44].
More specifically, KGHT4 gains 4.25% improvement over KGHT
because the designed session-adaptive propagation only aggre-
gates the most relevant neighbor information to the session con-
text and avoids introducing unrelated neighbors.

4.3 Influence of Different Types of Edges

We further analyze the influence of co-view, co-ATC and co-view-
ATC edges in the constructed knowledge graph. Specifically, we
use KGHT g as the baseline and respectively remove three types
of edges, e.g., KGHT g w/o v removes the co-view edges and
KGHT g w/o diff treat different types of edges uniformly by
employing the same graph attention layer. The performance of
removing each specific type of edges is reported in Table 4 and we
draw three observations:

e On Diginetica and Yoochoose 1/64, removing co-view edges de-
creases the performance most because of the following two rea-
sons. First, sessions in these two datasets track user click activities
rather than purchase activities and consist of more substitution
items rather than complementary ones [21, 36]. Therefore, re-
moving co-view edges that essentially capture the substitution
relationship between any two items hurts the performance more
than removing other types of edges. Secondly, co-view edges are
constructed from both training and validation sessions, message-
passing along which captures more recent transitional patterns
encoded in the validation sequences. The performance decrease
here indicates the distribution shift in transitional patterns from
training sessions to validation sessions. One promising direction
is to treat sessions at different time stamps differently, as recent
transition patterns may be more indicative of the future sessions
than the past ones [10].

e Conversely, on THD dataset, since the session is composed of
the user’s sequentially add-to-cart activity, removing co-view
edges causes minor performance degradation compared with the
one on the other two datasets. Moreover, removing co-view-ATC
edges causes little-to-no performance change, which indicates
that capturing the view-to-ATC transition patterns may not help
predict users’ next clicked items.

3Instead of averaging aggregated embeddings across all 72 types of edges in Eq (3),
we use a uniformed query, value and key matrices.
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Table 5: Performance improvement by multi-task learning.

Diginetica THD

Backbone N@10 M@10 N@10 M@10

(All, Sparse) (All, Sparse) | (All, Sparse) (All, Sparse)
GRU4Rec,,. |(13.01, 11.47) (9.73,8.37) |(18.13, 11.33) (15.23, 9.34)
M-GRU4Rec,,. | (13.05,11.57) (9.74, 8.48) |(18.61, 11.76) (15.66,9.71)
SASRec (15.31, 13.68) (11.60, 10.12)| (18.54, 11.72) (15.53, 9.64)
M-SASRec,,. |(15.66, 13.84) (11.83,10.18)|(18.80, 12.08) (15.78,9.97)
KGHT g+ (18.93, 17.16) (14.22, 12.65)| (18.83, 12.17) (15.67, 9.91)
M-KGHT . [(18.95,17.11) (14.23, 12.53)|(18.98, 12.28) (15.81, 10.02)
4.4 Multi-task Learning

In this section, we explore the impact of squeezing item meta-label
information such as taxonomy and price into the item embeddings
on the performance of next item prediction. Concretely, we feed
the session embedding S, obtained from Eq. (5) into task-specific
prediction heads to predict the next item meta-labels. The loss
of predicting next-item meta-labels is combined with the loss of
next-item prediction to jointly train the whole model and hence
can be essentially deemed as self-supervised learning [14, 30]. We
first present the performance of next-item prediction before/after
incorporating multi-task learning in Table 5. Specifically. M-X de-
notes the basic model X augmented by the multi-task learning. The
item meta-labels used in Diginetica and THD are the price and L1
categories, respectively.

As shown in Table 5, in most cases, jointly training models by
predicting the next-item meta-labels improves next-item prediction.
This indicates that squeezing knowledge of the next-item meta-
label could sometimes help next-item prediction. An exceptional
case is applying M-KGHTgp, to Diginetica; the performance does
not always increase because aggregating the non-informative meta-
attributes of items by message-passing in Diginetica causes little-to-
no benefit in next-item prediction. The performance improvement
on THD achieved by multi-task learning is stronger than the one on
Diginetica because meta-labels of items at THD are more carefully
annotated and hence can uniquely characterize the functionality of
corresponding items.

Predicting next-item meta-labels by itself has many real-world
applications, such as previewing the users’ purchasing budget if
predicting the next-item price [16] and summarizing the users’ pur-
chasing intention if predicting the next-item category [1]. There-
fore, we also compare the performance of next-item meta-label
prediction with some other baselines, including Top-N, X, P-
Xins, and M-X,;,.. Their detailed definitions are included in the
caption of Figure 3(a)-(b). We report the performance improvement
of each model over the baseline Top-N. As shown in Figure 3(a)-
(b), training prediction heads by multi-task learning significantly
enhances the next-item meta-label prediction. The performance im-
provement of N@5 for predicting price on Diginetica of GRU4Rec
increases from -67.84% to +33.56%, and N@5 for L1 category pre-
diction on THD of SASRec increases from -74.47% to +22.16%. Com-
pared among different backbones, graph-based models are better
than transformer-based ones and further than GRU-based ones,
showing that capturing global transitional patterns is also con-
ducive to predicting the next item meta-label.
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Figure 3: (a)-(b): Comparing the performance improvement(%) over the baseline Top-N on predicting next-item meta-labels.
Top-N: the simple heuristic recommending the most frequent meta-labels among previous items within one session; (2) X,
uses an untrained prediction head to predict the task-specific label of the next item; (3) P-X,;,. first predicts top-N next items
and use their task-specific labels as recommendations; (4) M-X,,. uses a trained prediction head that is trained by multi-task
learning to predict the task-specific label of the next item. (c) N@10 on sessions of different sparsity. M-KGHT g, is better
than M-SASRec;,. on sessions of the sparsity at the middle level.

4.5 Analysis on Sessions of Different Sparsity Table 6: Performance comparison among different baselines.
Prior research has identified degree-related biases in various con- Baseline Diginetica Yoochoose 1/64 THD

texts, including node classification [29], link prediction [18], knowl- N@10 M@10 | N@10 M@10 | N@10 M@10
edge graph completion [27], and conventional non-session-based NARM 16.06 1212 | 3445 2810 | 1744 1462
recommender systems [33, 35]. Analogically, we assess the relation- SR-GNN 1710 1282 | 3544 2866 | 17.08 1445
ship between the next-item prediction performance of the session M2TRec 15.66 1183 | 33.68 2716 | 1880 1578
and its sparsity, defined as the average degree of items in that ses- M-KGHTgm. | 18.95 14.23 | 3580 2880 | 1898 15.81

sion. In essence, higher average sparsity in a session indicates lower

average involvement of items from that session in other sessions session diversity as the average involvement of items and adapt
and a reduced number of global transitional patterns that the global existing diversity methods into alleviate session unfairness.
knowledge graph can capture. We group sessions based on their

average sparsity and report the average N@10 of M-SASRec,,,* and 4.6 Performance Comparison with baselines

M-KGHT g across all sessions for each group in Figure 3(c). From the analysis in previous sections, we select the best model

Clearly, M'KGHTqm* performs better tban M-SASRecp when configuration: M-KGHT g5« and compare it with state-of-the-art
average sparsity ranges between 2-10 while worse when average baselines NARM [17], SR-GNN [39] and M2TRec [25]. For the
sparsity is either below 2 or above 10. On one hand, items in ses- implementation of M2TRec and M-KGHT . on Yoochoose 1/64
sions with extremely low sparsity participate in fewer sessions with no item meta-attributes, we directly use item ID as the input.
and thus, the captured global transitional patterns across different We modify the implementation of NARM and SR-GNN to include
sessions are insufficient. Therefore, relying more on neighbors as the validation performance and hence align with our experimen-
M'KGHTqm* brings no advantages compared with rel}{lng more on tal setting. In Table 6, M2TRec performs worse than SR-GNN and
meta-attributes as M-SASRecm:. On the other hand, items in ses- NARM on Diginetica and Yoochoose 1/64 while better on THD.
sions with extremely higher sparsity generally have higher degrees This is because M2TRec designs an item meta-embedding layer to
and are u%ual!y CO'VleW/ co-ATC Wl.th many d1ﬂ°ere1}t types} of ¥tems. integer item meta-features and the more informative meta-features
Aggregating information from various types of neighboring items on THD than the ones on Diginetica/Yoochoose maximize the bene-
serving different functionalities may corrupt the intention of the fit of using M2TRec. However, our proposed M-KGHT g+ achieves
current session. Because the number of sessions of sparsity between the best performance across all three datasets for both NDCG@10

[2, 10] is higher than the number of other sessions, the overall per- and MRR@10. This exhibits the general ability of the proposed
formance of M-KGHT g is still higher than M-SASRec,.. Further

work can study this phenomenon from the fairness perspective
and diversity perspective [5, 19, 45] and focus on balancing the
performance of sessions of various sparsity by designing adaptive
embedding sizes for items in different sessions [19, 45] based on
their involvement in different sessions. In addition, we can define

framework to realize superior performance over existing meth-
ods across datasets with varying real-world dynamics, i.e., having
varying amounts of meta-attributes, user-item interaction types,
and session lengths. Note that because THD is an industrial-scale
dataset (THD has around 3 million training sessions that are 5/10
times larger than Diginetica/Yoochoose), the performance gain on
THD is slightly weaker than the gains on the other two datasets.

270



WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore Yu Wang et al.
P y gap gap g
(a) s Le s e
S [ Next truth Top5 Prediction Top5 Prediction
@ Y 4 item by M2TRec by M — KGHT
Co-View w Ca-Vie Top '\o,-, ahep .‘ir(,”o 't,;m é_g, wop Ro% Q\oﬂ“ (Jt.gq
v
ATC = @ ATC W "04 ATC E.
b
e v,
. : LAWE S .501,;‘ gnu» {;‘Q‘\d Cle, e,
wMop Rer, gour Clean,, | supStog, odsape Koy E = -
1 i =
CoATt | CarALL i » % x e
(h) Co-View Co-View (© Co-View Co-View
o Rake 5 sreel Rug, ,,mm— *(e oot Kilje, %““‘ Dr&lmyﬂkﬂ-\a?‘ Tui.;,,& pow Rake 5 cieel Ry, ¥ .;oﬂ‘ﬂ ch&;?{deWr.j ;‘w‘.mor n,,/,
0.45 017 178727 827e715 26602 12677 1547 5lde®  Li6e ™! 8.37¢78 099 99627
wandele, o qven Bl M, R C en 3 i < 0¥ Secupy 3
Chandelip, g gven "-;,&W pow Ruky , [ D00r My, parn Doy, %‘»g\v “1?.-%% cpandelje, coven W.u;&e’ oW Rak, Qeeping By, ey Su‘u.;l} \,Tat Bag,
1236715 1 y2emd7 038 10773 gazelt 0.57 47828 g0 E*H 0.99% 55662 4 56¢-29  49%e15
¥ ¥ [ B, 1
P -l cyee!
po Rak, r 3 @mp_l:z:,,% %.,v\ a,'q, , Vs a_g, sie R'“"e
® ATC ATC " ¥ ATC
P —t — Enn— —

Figure 4: Case study of our proposed M-KGHT. (a) Comparing the Top5 recommendation by M2TRec and M-KGHT. By
leveraging neighborhood information of Spray Mop1, the correct item Mop Refill appears in the recommendation list. (b)-(c)
visualizes the learned attention of one attention head over co-view neighbors. Since users in both of these two sessions intend
to clean the gardens, the session-adaptive graph propagation successfully learns the higher intention for garden-related items.

4.7 Industrial-level Case Study

We further deploy our designed system in the industrial-level set-
ting by training it with 6 million sessions spanning the last two
years and evaluating over 0.1 million sessions in the following
month. We achieved 2% performance improvement over the previ-
ously deployed model at The Home Depot. Next, we conduct some
case studies to visualize the effect of our proposed system.

4.7.1 Visualizing the recommendation of M2TRec and M-KGH Ty
To interpret the advantage of the proposed M-KGHT g, over the
second best model M2TRec on THD dataset, we select the sessions
where the top-5 recommendation list given by M-KGHT g hit
the next truth item while the one given by M2TRec does not. We vi-
sualize one example in Figure 4(a) where the customer sequentially
add-to-cart the spray mop and landscape rock. Items on the top-5
recommendation list given by M2TRec are uniformly aligned with
the landscape rock while recommended items by M-KGHT g
align with both the spray mop and landscape. Furthermore, be-
cause M-KGHT g aggregates neighbor information of mop refill
to spray mop, the recommendation hits the true item, which demon-
strates the benefits of leveraging neighborhood information.

4.7.2  Visualizing the attention of session-adaptive propagation. We
further visualize the graph attention learned by our session-adaptive
propagation in Figure 4(b)-(c). Clearly, users generating these two
sequences (b)-(c) intend to clean their own gardens and success-
fully, the model learns to aggregate less information from irrelevant
neighbors, e.g., 1.78¢~%7 from floor rug to bow rake 1 in (b) and
9.99¢~27 from hammer drill to leaf bags in (c). Interestingly, we find
model sometimes pays attention to only one relevant neighbor. For
example, even though both bow rake 1 and steel rake are aligned
with the intention of our second customer in (c), the model pays

its whole attention to bow rake 1. This aligns with diversity ob-
servation in [31] and motivates the design of multi-head attention
to focus on different important neighbors. More importantly, we
can find the neighborhood attention of the same item bow rake
1 varies from 0.38 in (b) to 0.998 in (c), demonstrating that even
though the neighborhoods are the same, the attention assigned
to them changes if the sequence content changes. This verify the
effectiveness of our proposed session-adaptive propagation.

5 CONCLUSION

Characterizing user intention by modeling global transitional pat-
terns of user-item interactions is essential in the session-based
recommendation. Traditional transformer-based models fail to cap-
ture global transitional patterns among items. More recent GNN-
augmented transformers ignore the session context and only con-
sider one type of customer-item interaction. Given these problems,
we propose a knowledge graph-based session recommendation
framework with session-adaptive propagation. We construct the
graph by extracting three different types of user-item interactions
and design a session-adaptive propagation for aggregating neigh-
bors’ information based on their consistency with the session in-
tention. A comprehensive ablation analysis shows the proposed
strategies provide a 10%-20% improvement. Moreover, our case
study on recommendation interpretation demonstrates that learned
neighborhood attention is highly determined by the consistency of
the neighbor with the session intention.
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A APPENDIX
A.1 Comprehensive Related Work

A.1.1  Session-based Recommendation System. Given that not all
historical user-item interactions are beneficial to predict users’ cur-
rent preferences [32], SBR Systems have emerged with increasing at-
tention in recent years [8, 9]. Earlier works leverage Markov Chains
to infer the conditional probability of an item based on the previ-
ously interacted items [24, 26]. [26] infers the transition function
based on user data and additionally employs skipping/clustering
to enhance the recommendation. [24] factorizes the probability
transition matrix of each user to model sequential behavior be-
tween every two adjacent clicks. More recent works have resorted
to deep learning for session recommendation. Recurrent neural
networks (RNNs) [8, 41] such as GRU4Rec [9] have been developed
to model the interactions among adjacent items in a session. To
further enhance the communications between non-adjacent items,
transformers (TFs) [4, 28] such as SASRec [15] adopt a self-attention
to allow information exchange between non-adjacent items in a
session. To capture even more complex transitional patterns, graph-
based methods such as SR-GNN [39] extract the session graph for
each session and use a gated graph neural network to learn session
embeddings. Different from previous works that only capture transi-
tional patterns within the session, we construct a global graph with
different types of edges to capture even more broad information,
the related works of which are reviewed next.
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A.1.2 Graph-based Recommendation System. Graph, as a general
data structure representing relations of entities, has been widely
adopted to assist many real-world applications [2, 20, 34, 46] and
one of the most representative examples is session recommendation.
Previous works explore global transitional patterns across different
sessions by querying the global item graph [12, 23, 44]. [12] designs
a global context-enhanced inter-session relation encoder to cap-
ture the inter-session item-wise dependencies. [44] constructs the
dual session graph to model the pair-wise transition relationship
between items based on the global connections. [23] constructs
the global graph by merging all individual session graphs. The
very recent work KSTT [43] resorts to an item-category knowledge
graph for session recommendation. However, the proposed models
in all the above works learn item embeddings from the global graph
without any session-tailored modification. Only GCE-GNN [37]
and GCARM [22] consider session adaptation in aggregating neigh-
bors’ information. However, GCE-GNN quantifies the importance
of neighbors based on their similarity to the whole session without
differentiating central items. GCARM treats all transitions similarly
without distinguishing different types of interactions. To handle
these two issues, we design a session-adaptive propagation to query
neighbors based on session contexts and interaction types, the ef-
fectiveness of which is verified in Section 4.7. Note that in this
work, although three types of item-item co-interaction edges are
considered, the constructed knowledge graph has only one type of
node, the item. We leave the inclusion of different node types as
one future work, such as adding user nodes, which could provide a
way to personalize the session recommendations.
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