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ABSTRACT

Session-based recommender systems (SBRSs) predict users’ next in-

teracted items based on their historical activities. While most SBRSs

capture purchasing intentions locally within each session, captur-

ing items’ global information across different sessions is crucial

in characterizing their general properties. Previous works capture

this cross-session information by constructing graphs and incorpo-

rating neighbor information. However, this incorporation cannot

vary adaptively according to the unique intention of each session,

and the constructed graphs consist of only one type of user-item

interaction. To address these limitations, we propose knowledge

graph-based session recommendation with session-adaptive prop-

agation. Specifically, we build a knowledge graph by connecting

items with multi-typed edges to characterize various user-item

interactions. Then, we adaptively aggregate items’ neighbor in-

formation considering user intention within the learned session.

Experimental results demonstrate that equipping our constructed

knowledge graph and session-adaptive propagation enhances ses-

sion recommendation backbones by 10%-20%. Moreover, we provide

an industrial case study showing our proposed framework achieves

2% performance boost over an existing well-deployed model at The

Home Depot e-platform.
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1 INTRODUCTION

Transformer-basedmodels have shown state-of-the-art performance

for session-based recommender systems (SBRSs) by leveraging their

attention mechanisms and deep learning capabilities [9, 41]. While

transformers are adept at capturing local session data and individual

item preferences [4, 15], they are limited in their ability to capture

global transitional patterns among items [12, 23, 44]. This limitation

has sparked research into hybrid graph-based SBRSs that combine

the strengths of transformers with Graph Neural Networks (GNNs)

to capture both local and global dependencies [12, 23, 39, 44]. For

example, in Figure 1(b), borrowing the transitional information

between flower and lopper in Figure 1(a) helps characterize the

intent of session A as decorating the garden and hence increases

the probability of predicting the next item to be garden-related, e.g.,

watering can.

However, the existing hybrid models face two significant chal-

lenges. Firstly, the lack of full connectivity between GNN and trans-

former models limits their ability to capture the session dynam-

ics [22, 37, 40]. While GNNs excel at capturing item-item relation-

ships, they often struggle to incorporate the broader session context,

and the learned item representations lack full awareness of the ses-

sion context. For example, in Figure 1, although both sessions A and

B have involved the flower, their intentions are quite different: one

for decorating the garden while the other for decorating the kitchen.

In contrast to blindly aggregating all neighbors’ information to the

flower without considering the session context [12, 23, 44], our ap-

proach learns session-aware item embeddings by selectively propa-

gating information from relevant neighbors based on the current

session. For instance, when determining which neighbors’ informa-

tion is aggregated to the flower, we recommend incorporating the

lopper and watering can when decorating the garden in (b), while

the sink and the table when decorating the kitchen in (c).

Secondly, the global transitional patterns among items in these

hybrid models are typically constructed based on one type of in-

teraction, such as co-purchase patterns [12, 22, 23, 37]. However,

on e-commerce platforms [40], items could form multiple relation-

ships: substitution items are typically co-viewed and complemen-

tary items are typically co-add-to-carted (co-ATC) [21, 36] by the

same user. Uniformly using neighbor information may result in the

dilution of diverse relationships among items and consequentially

lead to unsatisfactory recommendations for users.
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Figure 1: Since the user in SessionA (b) intends to decorate the

garden, while the user in Session B (c) intends to decorate the

kitchen, the corresponding neighbors from the knowledge

graph (a) are different for the same flower. By our proposed

session-adaptive propagation, the flower aggregates more

information from the lopper/watering can in (b) while more

information from the sink/table in (c).

To overcome the above two challenges, we propose a knowl-

edge graph-based SBRS with session-adaptive propagation. Our

contributions are summarized as follows:

• For the first challenge, we propose a session-adaptive graph

propagation to adaptively aggregate items’ neighbor information

based on the session contexts obtained by the transformer model.

• For the second challenge, we construct an item knowledge graph

by extracting three different item co-relations with users. Addi-

tionally, we employ the heterogeneous graph transformer [11]

in the message-passing design to effectively aggregate neighbor-

hood information based on the relationship type.

• We experimentally verify the proposed framework in enhancing

existing SBRs, compare the performance improvement caused by

different types of edges, and verify the session-adaptive propaga-

tion by visualizing the changing attentions of the same item in

aggregating neighbors in different sessions.

2 RELATEDWORK

Earlier works in SBRSs leverage Markov Chains to infer the con-

ditional probability of an item based on the previously interacted

items [24, 26]. More recent works have resorted to deep learning for

session recommendation. Recurrent neural networks (RNNs) [8, 41]

such as GRU4Rec [9] and Transformers (TFs) [4] such as SAS-

Rec [15] have been developed to model the interactions among

adjacent items in a session. To capture even more complex transi-

tional patterns, graph-based methods such as SR-GNN [39] extract

the session graph for each session and use a gated GNN to learn

session embeddings. Different from previous works that only cap-

ture transitional patterns within the session, we construct a global

graph with different types of edges to capture even more broad

information, the related works of which are reviewed next.

Prior work explore global transitional patterns across different

sessions by querying the global item graph [12, 23, 44]. [12] designs

a global context-enhanced inter-session relation encoder to cap-

ture the inter-session item-wise dependencies. [44] constructs the

dual session graph to model the pair-wise transition relationship

between items based on the global connections. [23] constructs the

global graph by merging all individual session graphs. Recently,

KSTT [43] uses an item-category knowledge graph for session

recommendation. However, these models learn item embeddings

from the global graph without session-tailored modification. Only

GCE-GNN [37] and GCARM [22] consider session adaptation in ag-

gregating neighbors’ information. However, GCE-GNN quantifies

the importance of neighbors based on their similarity to the whole

session without differentiating central items. GCARM treats all tran-

sitions similarly without distinguishing different interaction types.

To handle these issues, we design a session-adaptive propagation

to query neighbors based on session contexts and interaction types.

The constructed KG in this work has only one type of node, the

item, and we will consider other node types in the future. We put a

more comprehensive review of related works in Appendix A.1.

3 THE PROPOSED FRAMEWORK

Our framework, as illustrated in Figure 2, comprises of a GNN that

obtains item embeddings by adaptively aggregating information

from neighboring items based on the target session, and a trans-

former model that acquires session embeddings for predicting the

next item. In the subsequent sections, we first explain the construc-

tion of the item knowledge graph, and then the GNN-based message

passing model and the transformer-based prediction model.

3.1 Item Knowledge Graph Construction

As items typically exhibit two types of correlations, substitution

and complementary [44], we extract three distinct types of edges,

as depicted in Figure 2(a)-(c), by examining whether two items

co-occur within the same session: co-view, co-ATC, and co-view-

ATC edges. For instance, in the first session shown in Figure 2(a),

the user first views the cornerstone, then adds the flower to the

cart, and subsequently views the lawn mower. This sequence forms

three edges: the co-view edge between the cornerstone and the

lawn mower, the co-view-ATC edge between the cornerstone and

the flower, and the co-view-ATC edge between the flower and the

lawn mower. More formally, we define the edge weight from item

𝑣 𝑗 to 𝑣𝑖 of type co-𝑡1-𝑡2 as follows:

𝑤
(𝑡1,𝑡2 )
𝑖←𝑗 =

∑𝑀
𝑚=1 1(𝑣𝑖 , 𝑣𝑗 ∈ S𝑚, 𝜏 (𝑣𝑖 , S𝑚 ) = 𝑡1, 𝜏 (𝑣𝑗 , S𝑚 ) = 𝑡2 )

∑𝑀
𝑚=1 1(𝑣𝑖 ∈ S𝑚, 𝜏 (𝑣𝑖 , S𝑚 ) = 𝑡1 )

, (1)

where S𝑚 is the 𝑚th-session, 𝑀 is the total number of sessions

in the historical data, and 𝑡1, 𝑡2 ∈ T = {view,ATC} and 1 is an

indicator function. Specifically, 1(𝑣𝑖 ∈ S𝑚, 𝑣 𝑗 ∈ S𝑚, 𝜏 (𝑣𝑖 ,S𝑚) =

𝑡1, 𝜏 (𝑣 𝑗 ,S𝑚) = 𝑡2) = 1 if (a) both 𝑣𝑖 , 𝑣 𝑗 belong to the𝑚th session

S𝑚 , (b) user interacts with 𝑣𝑖 following type 𝑡1 and (c) interacts with

𝑣 𝑗 following type 𝑡2 inS𝑚 and otherwise 0. Note that, we normalize
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Figure 2: In (a)-(c), we first extract three types of edges from historical sessions to construct item knowledge graph. Then in

(d), we forward the given session through the 1st transformer layer to obtain items’ contextual embeddings, which are used

for query-relevant neighbors for GNNs to perform graph propagation. The propagated item embeddings are fed into the 2nd

transformer with a pooling layer afterward to obtain session embedding for the recommendation.

edge weights based on the degree of the head node to avoid popular

items from dominating the message-passing of GNNs [6, 29].

Based on our empirical experiments, it was observed that the

obtained graph may contain items with over a hundred neighbors.

Therefore, in order to mitigate the heavy computational issue [42]

and prevent over-smoothing [3] during the message passing, we

sparsify the graph by retaining only the top-𝐾 neighbors for each

neighborhood type, based on the acquired edge weights. The statis-

tics of the constructed networks are provided in Table 1.

3.2 Session-adaptive Propagation

As mentioned earlier, a straightforward approach to utilize item

graphs in SBRSs is to employ a GNN model to obtain item em-

beddings from the graph. These acquired embeddings can then be

utilized in a transformer-based model to predict the next item based

on the target session [12, 23, 44].

However, seen in Figure 1, a key limitation of this architecture is

that the contribution of each neighboring item remains unchanged

in obtaining the center item’s embedding, regardless of the ses-

sion from which the item originates. As such, the item embeddings

obtained from the GNN is unaware of the contextual information

specific to the target session. This approach is sub-optimal since the

purchasing intention associated with the same item naturally differs

across different sessions, thereby necessitating changes in the se-

lection of compatible neighbors based on the session-specific inten-

tion. Motivated by this observation, we propose a session-adaptive

propagation that dynamically propagates neighbor information

according to the item’s unique context within each session.

To implement the above idea, given the target session, we input

the initial item embedding within the session into a transformer,

resulting in the generation of its session-aware representation. Sub-

sequently, this obtained embedding is utilized to determine the

edge weights for the GNN model. Finally, following the message-

passing process, the updated item embeddings are once again fed

into another transformer model to make the final prediction.

More formally, we first obtain item initial embeddings E1 by

integrating item meta-attributes such as item title and category.

Then, given an item 𝑣𝑖 in the session S𝑚 , we use the item initial

embeddings E1 to obtain its contextual embedding c𝑚𝑖 :

c𝑚𝑖 = 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟1 (𝑣𝑖 , E
1,S𝑚), ∀𝑣𝑖 ∈ S𝑚 (2)

where 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟1 is the 1st transformer. With the contextual

embedding c𝑚𝑖 as the query, inspired by [11], we perform hetero-

geneous graph transformer-based propagation to adaptively ag-

gregate 𝑣𝑖 ’s neighbors’ information relevant to the current session

intention:

h
𝑚,𝑙
𝑖 =

1

|T |2

∑︁

𝑡 ∈T×T

| |𝐻
ℎ=1

∑︁

𝑣𝑗 ∈N
𝑡
𝑖

𝛼ℎ,𝑙,𝑡,𝑚𝑖←𝑗 Vℎ,𝑙,𝑡h
𝑚,𝑙−1
𝑗 (3)

𝛼ℎ,𝑙,𝑡,𝑚
𝑖←𝑗 =

(Qℎ,𝑙,𝑡h𝑚,𝑙−1
𝑖 )⊤ (Kℎ,𝑙,𝑡 c𝑚𝑗 )
√︁

𝑑/𝐻
, ∀𝑣𝑖 ∈ S𝑚, S𝑚 ∈ 𝒮, (4)

where 𝛼ℎ,𝑙,𝑡,𝑚𝑖←𝑗 denotes the graph attention from item 𝑣 𝑗 to 𝑣𝑖 under

the head ℎ, edge type 𝑡 at layer 𝑙 . Qℎ,𝑙,𝑡 ,Kℎ,𝑙,𝑡 ,Vℎ,𝑙,𝑡 represent the

query, key, and value matrix at the head ℎ, edge type 𝑡 , layer 𝑙

of graph attention. 𝐻 is the total number of heads. After 𝐿 layers

graph transformer-based propagation, we obtain the final item

embeddings h𝑚,𝐿
𝑖 . Since different session contexts provide different

contextual embeddings c𝑚𝑖 ≠ c𝑚
′

𝑖 , the calculated attention coefficients

would also be different, i.e., 𝛼ℎ,𝑙,𝑡,𝑚𝑖←𝑗 ≠ 𝛼ℎ,𝑙,𝑡,𝑚
′

𝑖←𝑗 . Then h𝑚,𝐿
𝑖 and h𝑚

′,𝐿
𝑖 )

would be different, and they would only include the neighborhood

information that is relevant to the item’s unique intention provided

by the corresponding session context S𝑚 (S𝑚′ ).
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To demonstrate the effectiveness of our proposed session-adaptive

propagation in learning neighborhood attention based on the ses-

sion context, we conduct a case study that visualizes the learned

neighborhood attention for the same item across different sessions

is indeed different. Further details are presented in Section 4.7.

3.3 Prediction and Optimization

After𝐿 layers graph propagation, the item embeddings, e.g., h𝑚,𝐿
𝑖 ,∀𝑣𝑖 ∈

S𝑚 , are fed into 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟2 with mean pooling to obtain the

session embedding S𝑚 and then we compute the cross-entropy loss

to optimize the whole framework:

L =

𝑀
∑︁

𝑚=1

|V|
∑︁

𝑖=1

Y𝑚,𝑖 log Ŷ𝑚,𝑖 , S𝑚 = 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟2 ({h
𝑚,𝐿
𝑖 |𝑣𝑖 ∈ S𝑚 }) (5)

whereV is the total item space, Y𝑚 ∈ {0, 1}
|V | is the one-hot en-

coded next ground-truth item of the session S𝑚 , Ŷ𝑚 = 𝜎 (𝑝 (S𝑚)) ∈

R
|V | is the predicted probability distribution of the next item for

the session S𝑚 from the linear prediction head 𝑝 followed by the

softmax normalization 𝜎 . Note that S𝑚 could be used in other tasks

if paired with corresponding prediction heads, such as predicting

the category/price of the next item as discussed in Section 4.4. The

parameters of 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟2 are optimized via back-propagation,

andwe periodically synchronize the parameters from 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟1
to 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟2 [7]. During the inference stage, we make the next

item prediction by finding the item 𝑖 = argmax𝑗∈V Y𝑚,𝑗 .

4 EXPERIMENTS

In this section, we verify the effectiveness of the proposed knowl-

edge graph construction method and the session-adaptive propaga-

tion mechanism through extensive experiments. We first introduce

the datasets and the experimental settings.

4.1 Experimental Setup

4.1.1 Datasets. We conduct experiments on the following datasets:

• Diginetica1 comes fromCIKMCup 2016.We follow the same pre-

processing as [39]: sessions in the last and second-to-last week are

used as testing and validation data.We filter out sessions of length

less than 1 and items appearing less than 5 times. We extract

item co-purchase edges from all sessions in train-purchase.csv

and item co-view edges from only training/validation sessions

in train-item-view.csv to avoid data leakage. The meta-attribute

includes item title, category, and price.

• Yoochoose 1/642 comes from the RecSys Challenge 2015. Ses-

sions on the last and second last day are used as testing and vali-

dation data. We filter out sessions of length less than 1 and items

appearing less than 5 times. We extract item co-purchase edges

from all sessions in yoochoose-buys.dat and item co-view edges

from only training/validation sessions in yoochoose-clicks.dat

to avoid data leakage. Since items in this dataset have only one

category attribute and it represents different meanings, e.g., 1-

12 for item real categories, ‘S’ for special offer, and 8-10 digit

numbers for item brand, we only use item ID to demonstrate the

effectiveness of session-adaptive heterogeneous propagation.

1https://competitions.codalab.org/competitions/11161
2https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015

Table 1: Statistics of datasets used for experiments and their

corresponding knowledge graphs.

Dataset Train/Val/Test Seqs # Edges # Nodes Sparse Seqs Meta data

Diginetica
675,673/
43,541/
68,571

1,576,571 123,273 13,867 Title/Category/Price

Yoochoose
1/64

369,142/
45,864/
55,898

1,025,176 52,739 15,385 ś

The Home
Depot (THD)

3,169,140/
672,873/
672,873

4,162,7121,317,149 227,941
Title/Category/Brand/

Color/Manufacturer/Class/
Department

• THD is a real industrial-level dataset from The Home Depot,

the largest home improvement retailer in the USA. We sample

3,169,140/672,873/672,873 Add-to-Cart (ATC) sessions chronolog-

ically for constructing the train/valid/testing data. The multiplex

graph is constructed by extracting co-view, co-ATC, and co-view-

ATC edges. Items in this dataset have 7 meta-attributes: product

title, hierarchical categories (i.e., L1, L2, L3, Leaf), brand, manu-

facturer, color, department, and class name.

Statistics of the three datasets are summarized in Table 1. Note

that sparse sessions refer to the ones containing items appearing

less than 5 times in the whole dataset. These sessions are used to

evaluate our framework on sessions including cold-start items.

4.1.2 Item embedding initialization. We initialize item embeddings

based on their meta-attributes. We use different embedding tech-

niques to extract different types of item metadata [25], which can

be numerical, categorical, and textual. For each numerical attribute,

we directly embed it as a real-valued number. For each categorical

attribute, we initialize a unique learnable embedding matrix. For

textual attributes such as title and description, we first construct the

token embedding matrix and then the title/description embedding

is computed by mean pooling over the embeddings of correspond-

ing tokens in that sentence. Note that pre-trained NLP models are

not preferred here to avoid capturing noisy semantic signals. For

example, even though silver sinks and creamy white stones share

semantic-similar colors, they are essentially purposed for deco-

rating different rooms. We empirically observe that utilizing this

token-based embedding avoids capturing noisy semantic signals

since they correspond to different tokens. We concatenate different

types of embeddings to form the final item meta-embeddings and

feed them into the transformer model.

4.1.3 Backbones. Note that our constructed knowledge graph and

the proposed session-adaptive propagation can be applied to en-

hance any embedding-based SBRS. To demonstrate this, we select

three fundamentally different but representative backbones and

equip them with our framework:

• GRU4Rec [9]: The very first model leveraging RNNs to charac-

terize item sessions for session recommendation.

• SASRec [15]: The very first model leveraging the self-attention

from the transformer to draw context from all user-item interac-

tions in the same session.

• KGHT [40]: A graph-based model constructing the item rela-

tional graph and leveraging graph attention to capture item re-

lations for recommendations. Since this work is not initially

designed for session recommendation, we modify it to align with

our problem setting.
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Table 2: Performance comparison (%) of utilizing meta-attribute embedding layer and session-adaptive heterogeneous propaga-

tion layer. The best and runner-up are in bold and underlined. Note that N(M)@10 represents NDCG(MRR)@10.

Backbone

Diginetica Yoochoose 1/64 THD

Increase (↑)N@10 M@10 N@10 M@10 N@10 M@10

Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse Full Sparse

RNN

GRU4Rec 12.66 11.04 9.55 8.19 32.77 28.32 26.52 22.81 14.40 7.66 12.34 6.53 ś

GRU4Rec𝑚 12.38 10.62 9.27 7.77 ś ś ś ś 17.09 10.42 14.19 8.41 10.55%

GRU4Rec𝑚∗ 13.01 11.47 9.73 8.37 ś ś ś ś 18.13 11.33 15.23 9.34 18.88%

Trans-
former

SASRec 14.70 13.00 11.11 9.57 33.68 28.59 27.16 22.87 15.27 8.11 12.97 6.83 ś

SASRec𝑚 14.68 12.79 11.08 9.28 ś ś ś ś 17.87 11.11 14.87 9.01 11.94%

SASRec𝑚∗ 15.31 13.68 11.60 10.12 ś ś 18.53 11.72 15.53 9.64 18.28%

Graph

KGHT 17.73 15.99 13.33 11.74 34.81 30.14 28.04 24.10 16.59 9.29 14.02 7.74 ś

KGHT𝑚 17.70 15.78 13.27 11.52 ś ś ś ś 18.47 11.68 15.49 9.59 8.45%

KGHT𝑚∗ 17.81 16.88 13.38 12.49 ś ś ś ś 18.78 11.89 15.74 9.79 11.59%

KGHT𝑞 18.64 16.74 13.97 12.28 35.80 31.71 28.80 25.21 17.30 10.20 14.45 8.35 4.25%

KGHT𝑞𝑚∗ 18.93 17.16 14.22 12.65 ś ś ś ś 18.83 12.17 15.67 9.91 14.10%

X: Backbone X using item ID but no meta-attributes; X𝑚 : Backbone X using item meta-attributes but no ID; X𝑚∗ : Backbone X using both item meta-attributes and ID;
X𝑞 : Backbone X using Graph and Session-adaptive propagation; X𝑞𝑚∗ : Backbone X using Graph, Session-adaptive propagation, and meta-attribute.

Equipping each of the above three backbones with the itemmeta-

attribute embedding layer and the session-adaptive propagation

layer, we end up with 11 model configurations. We name each

new configuration by combining the name of its backbone and

the equipped techniques, e.g., GRU4Rec𝑚 denotes the backbone

of GRU4Rec with item meta-attribute embedding layer, SASRec𝑚∗
denotes the backbone of SASRec with both item meta-attribute

and ID, and KGHT𝑞 denotes the backbone of KGHT equipped with

session-adaptive propagation layer. The architecture of each model

configuration is summarized in Table 3.

4.1.4 Evaluation Metric and Implementation Details. Following [13,

38], we report the average of NDCG@10 (N@10) and MRR@10

(M@10) over all sequences in the test set. We assign a dedicated

embedding layer for each attribute, and the embedding dimen-

sion is determined based on the total number of distinct tokens

of the corresponding attribute vocabulary. To ensure a fair com-

parison, we tune the following hyperparameters for each model

individually: the dimension of ID embedding layer {64, 128, 256},

the number of layers for self-attention and graph propagation

{1, 2, 3}, the number of attention heads {1, 4, 8}, the dimension

of hidden embeddings {100, 512}, learning rate {1𝑒−4, 1𝑒−3, 1𝑒−2},

the L2 penalty {0, 5𝑒−4}, training epochs {100, 200}, the batch size

{100, 512}, dropout ratio {0.1, 0.25} across all models. We save the

model performing best on validation sessions and evaluate it on test-

ing sessions. Training epochs for Diginetica/Yoochoose/THD are set

to be 200/200/30. We synchronize the parameters of 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟2
from 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟1 every epoch.

4.2 Model Configuration Analysis

To demonstrate the effectiveness of the proposed knowledge graph

and session-adaptive propagation, we compare three backbones

GRU4Rec, SASRec, and KGHT with their corresponding enhanced

versions in Table 2. For brevity, we represent any of the three

backbones as 𝑋 in the following text:

• Compared with 𝑋 , 𝑋𝑚∗ incorporates item meta-attributes and

improves the performance by around 12%− 19% on average. This

is because ID-based embedding only captures the topological

proximity of each item to all other items and cannot provide

Table 3: An architecture comparison of different backbones.

Backbone ID
Meta-

attribute
Graph

Session-adaptive

propagation

Multi-task

learning

GRU4Rec ✔ ✘ ✘ ✘ ✘

GRU4Rec𝑚 ✘ ✔ ✘ ✘ ✘

GRU4Rec𝑚∗ ✔ ✔ ✘ ✘ ✘

M-GRU4Rec𝑚∗ ✔ ✔ ✘ ✘ ✔

SASRec ✔ ✘ ✘ ✘ ✘

SASRec𝑚 ✘ ✔ ✘ ✘ ✘

SASRec𝑚∗ ✔ ✔ ✘ ✘ ✘

M-SASRec𝑚∗ ✔ ✔ ✘ ✘ ✔

KGHT ✔ ✘ ✔ ✘ ✘

KGHT𝑚 ✘ ✔ ✔ ✘ ✘

KGHT𝑚∗ ✔ ✔ ✔ ✘ ✘

KGHT𝑞 ✔ ✘ ✔ ✔ ✘

KGHT𝑞𝑚∗ ✔ ✔ ✔ ✔ ✘

M-KGHT𝑞𝑚∗ ✔ ✔ ✔ ✔ ✔

generalizability, especially when items’ topological information

is noisy/sparse. Leveraging meta-attributes alleviates this issue

by transferring the learned information among items sharing

the same meta-attribute. Since THD has more abundant types

of well-curated meta-attributes than the ones of Diginetica, as

evidenced in Table 1, 𝑋𝑚∗ achieves an even larger performance

gain over 𝑋 on THD than on Diginetica.

• Comparedwith𝑋 ,𝑋𝑚 achieves comparable and sometimes slightly

worse performance on Diginetica, e.g., 9.55% for GRU4Rec while

9.27% for GRU4Rec𝑚 in MRR@10. This is because solely rely-

ing on meta-attributes to represent items may lose topological

information in the sessions. Two items sharing the same meta-

attributes will be encoded the same, even though they may be

involved in significantly different sessions. This is also evidenced

by the better performance of 𝑋𝑚∗ than 𝑋𝑚 after combining both

item ID and item meta-attribute. Different from Diginetica, 𝑋𝑚
always achieves higher performance than 𝑋 on THD because

more abundant meta-attributes there enable the concatenated

embeddings to be more unique and hence can somewhat mimic

the function of Item ID in capturing topological information

embedded in the sessions.
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Table 4: Ablation study on different types of edges.

Backbone
Diginetica Yoochoose 1/64 THD

Decrease (↓)
N@10 M@10 N@10 M@10 N@10 M@10

KGHT𝑞𝑚∗ 18.94 14.22 35.80 28.80 18.83 15.67 Ð

ś w/o diff 18.34 13.80 35.15 28.22 18.68 15.50 2.02%

ś w/o v 15.21 11.46 34.36 27.68 18.66 15.53 9.78%

ś w/o a 18.70 13.97 35.04 28.09 18.76 15.64 1.39%

ś w/o va / / / / 18.79 15.63 0.23%

* w/o diff: uniformly aggregate different types of neighbors with no differentiation.
* w/o v/a/va: with no co-view/co-ATC/co-view-ATC edges.

• Comparing among different backbones, graph-basedmodels achieve

higher performance than non-graph-based ones, which aligns

with the notion that incorporating global information across dif-

ferent sessions is conducive to the recommendation [12, 23, 44].

More specifically, KGHT𝑞 gains 4.25% improvement over KGHT

because the designed session-adaptive propagation only aggre-

gates the most relevant neighbor information to the session con-

text and avoids introducing unrelated neighbors.

4.3 Influence of Different Types of Edges

We further analyze the influence of co-view, co-ATC and co-view-

ATC edges in the constructed knowledge graph. Specifically, we

use KGHT𝑞𝑚∗ as the baseline and respectively remove three types

of edges, e.g., KGHT𝑞𝑚∗ w/o v removes the co-view edges and

KGHT𝑞𝑚∗ w/o diff treat different types of edges uniformly by

employing the same graph attention layer3. The performance of

removing each specific type of edges is reported in Table 4 and we

draw three observations:

• On Diginetica and Yoochoose 1/64, removing co-view edges de-

creases the performance most because of the following two rea-

sons. First, sessions in these two datasets track user click activities

rather than purchase activities and consist of more substitution

items rather than complementary ones [21, 36]. Therefore, re-

moving co-view edges that essentially capture the substitution

relationship between any two items hurts the performance more

than removing other types of edges. Secondly, co-view edges are

constructed from both training and validation sessions, message-

passing along which captures more recent transitional patterns

encoded in the validation sequences. The performance decrease

here indicates the distribution shift in transitional patterns from

training sessions to validation sessions. One promising direction

is to treat sessions at different time stamps differently, as recent

transition patterns may be more indicative of the future sessions

than the past ones [10].

• Conversely, on THD dataset, since the session is composed of

the user’s sequentially add-to-cart activity, removing co-view

edges causes minor performance degradation compared with the

one on the other two datasets. Moreover, removing co-view-ATC

edges causes little-to-no performance change, which indicates

that capturing the view-to-ATC transition patterns may not help

predict users’ next clicked items.

3Instead of averaging aggregated embeddings across all T2 types of edges in Eq (3),
we use a uniformed query, value and key matrices.

Table 5: Performance improvement by multi-task learning.

Backbone

Diginetica THD

N@10 M@10 N@10 M@10

(All, Sparse) (All, Sparse) (All, Sparse) (All, Sparse)

GRU4Rec𝑚∗ (13.01, 11.47) (9.73, 8.37) (18.13, 11.33) (15.23, 9.34)

M-GRU4Rec𝑚∗ (13.05, 11.57) (9.74, 8.48) (18.61, 11.76) (15.66, 9.71)

SASRec𝑚∗ (15.31, 13.68) (11.60, 10.12) (18.54, 11.72) (15.53, 9.64)

M-SASRec𝑚∗ (15.66, 13.84) (11.83, 10.18) (18.80, 12.08) (15.78, 9.97)

KGHT𝑞𝑚∗ (18.93, 17.16) (14.22, 12.65) (18.83, 12.17) (15.67, 9.91)

M-KGHT𝑞𝑚∗ (18.95, 17.11) (14.23, 12.53) (18.98, 12.28) (15.81, 10.02)

4.4 Multi-task Learning

In this section, we explore the impact of squeezing item meta-label

information such as taxonomy and price into the item embeddings

on the performance of next item prediction. Concretely, we feed

the session embedding S𝑚 obtained from Eq. (5) into task-specific

prediction heads to predict the next item meta-labels. The loss

of predicting next-item meta-labels is combined with the loss of

next-item prediction to jointly train the whole model and hence

can be essentially deemed as self-supervised learning [14, 30]. We

first present the performance of next-item prediction before/after

incorporating multi-task learning in Table 5. Specifically. M-X de-

notes the basic model X augmented by the multi-task learning. The

item meta-labels used in Diginetica and THD are the price and L1

categories, respectively.

As shown in Table 5, in most cases, jointly training models by

predicting the next-item meta-labels improves next-item prediction.

This indicates that squeezing knowledge of the next-item meta-

label could sometimes help next-item prediction. An exceptional

case is applyingM-KGHT𝑞𝑚∗ to Diginetica; the performance does

not always increase because aggregating the non-informative meta-

attributes of items by message-passing in Diginetica causes little-to-

no benefit in next-item prediction. The performance improvement

on THD achieved by multi-task learning is stronger than the one on

Diginetica because meta-labels of items at THD are more carefully

annotated and hence can uniquely characterize the functionality of

corresponding items.

Predicting next-item meta-labels by itself has many real-world

applications, such as previewing the users’ purchasing budget if

predicting the next-item price [16] and summarizing the users’ pur-

chasing intention if predicting the next-item category [1]. There-

fore, we also compare the performance of next-item meta-label

prediction with some other baselines, including Top-N, X𝑚∗, P-

X𝑚∗, and M-X𝑚∗. Their detailed definitions are included in the

caption of Figure 3(a)-(b). We report the performance improvement

of each model over the baseline Top-N. As shown in Figure 3(a)-

(b), training prediction heads by multi-task learning significantly

enhances the next-item meta-label prediction. The performance im-

provement of N@5 for predicting price on Diginetica of GRU4Rec

increases from -67.84% to +33.56%, and N@5 for L1 category pre-

diction on THD of SASRec increases from -74.47% to +22.16%. Com-

pared among different backbones, graph-based models are better

than transformer-based ones and further than GRU-based ones,

showing that capturing global transitional patterns is also con-

ducive to predicting the next item meta-label.
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Figure 3: (a)-(b): Comparing the performance improvement(%) over the baseline Top-N on predicting next-item meta-labels.

Top-N: the simple heuristic recommending the most frequent meta-labels among previous items within one session; (2) X𝑚∗

uses an untrained prediction head to predict the task-specific label of the next item; (3) P-X𝑚∗ first predicts top-N next items

and use their task-specific labels as recommendations; (4) M-X𝑚∗ uses a trained prediction head that is trained by multi-task

learning to predict the task-specific label of the next item. (c) N@10 on sessions of different sparsity. M-KGHT𝑞𝑚∗ is better

than M-SASRec𝑚∗ on sessions of the sparsity at the middle level.

4.5 Analysis on Sessions of Different Sparsity

Prior research has identified degree-related biases in various con-

texts, including node classification [29], link prediction [18], knowl-

edge graph completion [27], and conventional non-session-based

recommender systems [33, 35]. Analogically, we assess the relation-

ship between the next-item prediction performance of the session

and its sparsity, defined as the average degree of items in that ses-

sion. In essence, higher average sparsity in a session indicates lower

average involvement of items from that session in other sessions

and a reduced number of global transitional patterns that the global

knowledge graph can capture. We group sessions based on their

average sparsity and report the average N@10 of M-SASRec𝑚∗ and

M-KGHT𝑞𝑚∗ across all sessions for each group in Figure 3(c).

Clearly, M-KGHT𝑞𝑚∗ performs better than M-SASRec𝑚∗ when

average sparsity ranges between 2-10 while worse when average

sparsity is either below 2 or above 10. On one hand, items in ses-

sions with extremely low sparsity participate in fewer sessions

and thus, the captured global transitional patterns across different

sessions are insufficient. Therefore, relying more on neighbors as

M-KGHT𝑞𝑚∗ brings no advantages compared with relying more on

meta-attributes as M-SASRec𝑚∗. On the other hand, items in ses-

sions with extremely higher sparsity generally have higher degrees

and are usually co-view/co-ATC with many different types of items.

Aggregating information from various types of neighboring items

serving different functionalities may corrupt the intention of the

current session. Because the number of sessions of sparsity between

[2, 10] is higher than the number of other sessions, the overall per-

formance of M-KGHT𝑞𝑚∗ is still higher than M-SASRec𝑚∗. Further

work can study this phenomenon from the fairness perspective

and diversity perspective [5, 19, 45] and focus on balancing the

performance of sessions of various sparsity by designing adaptive

embedding sizes for items in different sessions [19, 45] based on

their involvement in different sessions. In addition, we can define

Table 6: Performance comparison among different baselines.

Baseline
Diginetica Yoochoose 1/64 THD

N@10 M@10 N@10 M@10 N@10 M@10

NARM 16.06 12.12 34.45 28.10 17.44 14.62

SR-GNN 17.10 12.82 35.44 28.66 17.08 14.45

M2TRec 15.66 11.83 33.68 27.16 18.80 15.78

M-KGHT𝑞𝑚∗ 18.95 14.23 35.80 28.80 18.98 15.81

session diversity as the average involvement of items and adapt

existing diversity methods into alleviate session unfairness.

4.6 Performance Comparison with baselines

From the analysis in previous sections, we select the best model

configuration: M-KGHT𝑞𝑚∗ and compare it with state-of-the-art

baselines NARM [17], SR-GNN [39] and M2TRec [25]. For the

implementation of M2TRec and M-KGHT𝑞𝑚∗ on Yoochoose 1/64

with no item meta-attributes, we directly use item ID as the input.

We modify the implementation of NARM and SR-GNN to include

the validation performance and hence align with our experimen-

tal setting. In Table 6, M2TRec performs worse than SR-GNN and

NARM on Diginetica and Yoochoose 1/64 while better on THD.

This is because M2TRec designs an item meta-embedding layer to

integer item meta-features and the more informative meta-features

on THD than the ones on Diginetica/Yoochoose maximize the bene-

fit of using M2TRec. However, our proposed M-KGHT𝑞𝑚∗ achieves

the best performance across all three datasets for both NDCG@10

and MRR@10. This exhibits the general ability of the proposed

framework to realize superior performance over existing meth-

ods across datasets with varying real-world dynamics, i.e., having

varying amounts of meta-attributes, user-item interaction types,

and session lengths. Note that because THD is an industrial-scale

dataset (THD has around 3 million training sessions that are 5/10

times larger than Diginetica/Yoochoose), the performance gain on

THD is slightly weaker than the gains on the other two datasets.
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Figure 4: Case study of our proposed M-KGHT. (a) Comparing the Top5 recommendation by M2TRec and M-KGHT. By

leveraging neighborhood information of Spray Mop1, the correct item Mop Refill appears in the recommendation list. (b)-(c)

visualizes the learned attention of one attention head over co-view neighbors. Since users in both of these two sessions intend

to clean the gardens, the session-adaptive graph propagation successfully learns the higher intention for garden-related items.

4.7 Industrial-level Case Study

We further deploy our designed system in the industrial-level set-

ting by training it with 6 million sessions spanning the last two

years and evaluating over 0.1 million sessions in the following

month. We achieved 2% performance improvement over the previ-

ously deployed model at The Home Depot. Next, we conduct some

case studies to visualize the effect of our proposed system.

4.7.1 Visualizing the recommendation of M2TRec and M-KGHT𝑞𝑚∗.

To interpret the advantage of the proposed M-KGHT𝑞𝑚∗ over the

second best modelM2TRec on THD dataset, we select the sessions

where the top-5 recommendation list given by M-KGHT𝑞𝑚∗ hit

the next truth item while the one given byM2TRec does not. We vi-

sualize one example in Figure 4(a) where the customer sequentially

add-to-cart the spray mop and landscape rock. Items on the top-5

recommendation list given byM2TRec are uniformly aligned with

the landscape rock while recommended items by M-KGHT𝑞𝑚∗
align with both the spray mop and landscape. Furthermore, be-

cause M-KGHT𝑞𝑚∗ aggregates neighbor information of mop refill

to spray mop, the recommendation hits the true item, which demon-

strates the benefits of leveraging neighborhood information.

4.7.2 Visualizing the attention of session-adaptive propagation. We

further visualize the graph attention learned by our session-adaptive

propagation in Figure 4(b)-(c). Clearly, users generating these two

sequences (b)-(c) intend to clean their own gardens and success-

fully, the model learns to aggregate less information from irrelevant

neighbors, e.g., 1.78𝑒−27 from floor rug to bow rake 1 in (b) and

9.99𝑒−27 from hammer drill to leaf bags in (c). Interestingly, we find

model sometimes pays attention to only one relevant neighbor. For

example, even though both bow rake 1 and steel rake are aligned

with the intention of our second customer in (c), the model pays

its whole attention to bow rake 1. This aligns with diversity ob-

servation in [31] and motivates the design of multi-head attention

to focus on different important neighbors. More importantly, we

can find the neighborhood attention of the same item bow rake

1 varies from 0.38 in (b) to 0.998 in (c), demonstrating that even

though the neighborhoods are the same, the attention assigned

to them changes if the sequence content changes. This verify the

effectiveness of our proposed session-adaptive propagation.

5 CONCLUSION

Characterizing user intention by modeling global transitional pat-

terns of user-item interactions is essential in the session-based

recommendation. Traditional transformer-based models fail to cap-

ture global transitional patterns among items. More recent GNN-

augmented transformers ignore the session context and only con-

sider one type of customer-item interaction. Given these problems,

we propose a knowledge graph-based session recommendation

framework with session-adaptive propagation. We construct the

graph by extracting three different types of user-item interactions

and design a session-adaptive propagation for aggregating neigh-

bors’ information based on their consistency with the session in-

tention. A comprehensive ablation analysis shows the proposed

strategies provide a 10%-20% improvement. Moreover, our case

study on recommendation interpretation demonstrates that learned

neighborhood attention is highly determined by the consistency of

the neighbor with the session intention.
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A APPENDIX

A.1 Comprehensive Related Work

A.1.1 Session-based Recommendation System. Given that not all

historical user-item interactions are beneficial to predict users’ cur-

rent preferences [32], SBR Systems have emergedwith increasing at-

tention in recent years [8, 9]. Earlier works leverage Markov Chains

to infer the conditional probability of an item based on the previ-

ously interacted items [24, 26]. [26] infers the transition function

based on user data and additionally employs skipping/clustering

to enhance the recommendation. [24] factorizes the probability

transition matrix of each user to model sequential behavior be-

tween every two adjacent clicks. More recent works have resorted

to deep learning for session recommendation. Recurrent neural

networks (RNNs) [8, 41] such as GRU4Rec [9] have been developed

to model the interactions among adjacent items in a session. To

further enhance the communications between non-adjacent items,

transformers (TFs) [4, 28] such as SASRec [15] adopt a self-attention

to allow information exchange between non-adjacent items in a

session. To capture even more complex transitional patterns, graph-

based methods such as SR-GNN [39] extract the session graph for

each session and use a gated graph neural network to learn session

embeddings. Different from previous works that only capture transi-

tional patterns within the session, we construct a global graph with

different types of edges to capture even more broad information,

the related works of which are reviewed next.

A.1.2 Graph-based Recommendation System. Graph, as a general

data structure representing relations of entities, has been widely

adopted to assist many real-world applications [2, 20, 34, 46] and

one of the most representative examples is session recommendation.

Previous works explore global transitional patterns across different

sessions by querying the global item graph [12, 23, 44]. [12] designs

a global context-enhanced inter-session relation encoder to cap-

ture the inter-session item-wise dependencies. [44] constructs the

dual session graph to model the pair-wise transition relationship

between items based on the global connections. [23] constructs

the global graph by merging all individual session graphs. The

very recent work KSTT [43] resorts to an item-category knowledge

graph for session recommendation. However, the proposed models

in all the above works learn item embeddings from the global graph

without any session-tailored modification. Only GCE-GNN [37]

and GCARM [22] consider session adaptation in aggregating neigh-

bors’ information. However, GCE-GNN quantifies the importance

of neighbors based on their similarity to the whole session without

differentiating central items. GCARM treats all transitions similarly

without distinguishing different types of interactions. To handle

these two issues, we design a session-adaptive propagation to query

neighbors based on session contexts and interaction types, the ef-

fectiveness of which is verified in Section 4.7. Note that in this

work, although three types of item-item co-interaction edges are

considered, the constructed knowledge graph has only one type of

node, the item. We leave the inclusion of different node types as

one future work, such as adding user nodes, which could provide a

way to personalize the session recommendations.
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