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ABSTRACT

Molecular electronic spectra can be represented in the time domain as auto-correlation functions of the initial vibrational wavepacket. We
present a derivation of the harmonic vibrational auto-correlation function that is valid for both real and imaginary harmonic frequencies.
The derivation rests on Lie algebra techniques that map otherwise complicated exponential operator arithmetic to simpler matrix formu-
las. The expressions for the zero- and finite-temperature harmonic auto-correlation functions have been carefully structured both to be
free of branch-cut discontinuities and to remain numerically stable with finite-precision arithmetic. Simple extensions correct the harmonic
Franck-Condon approximation for the lowest-order anharmonic and Herzberg-Teller effects. Quantitative simulations are shown for several
examples, including the electronic absorption spectra of F,, HOCI, CH,NH, and NO.
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I. INTRODUCTION

The vibronic structure of optical, photoionization, and pho-
toelectron spectra encodes the evolution that nuclear wavepackets
undergo following electronic excitation or detachment. Interpret-
ing the dynamics revealed by such spectra is often aided by first-
principles simulations based on two key dynamical simplifications,
the Born-Oppenheimer, and Franck-Condon (FC) approximations.
Together, these imply that the transition dipole between vibrational
levels belonging to two different electronic states is proportional
to the overlap integral between their respective vibrational wave-
functions. If it is sufficiently accurate to further approximate the
potential energy surfaces as quadratic expansions about their respec-
tive local minima, then the vibrational structure is that of two sets of
(mutually displaced, rotated, and scaled) harmonic oscillators, the
overlap integrals of which are well known.' * As the only informa-
tion required in this commonly used framework is the equilibrium
geometries and quadratic force constants of the initial and final

surfaces, there exist a number of popular software packages for
computing harmonic FC spectra using this frequency-domain, state-
by-state approach.”® For large molecules, the number of discrete
vibrational states that contribute to the spectrum grows rapidly,
but intelligent selection algorithms can address this and remain
efficient.””""

The frequency-domain approach breaks down when the ver-
tical geometry is highly displaced from a local minimum (if one
exists at all) on the final potential energy surface. A quadratic
expansion centered at the minimum would then be a poor approx-
imation at the vertical geometry. Although an expansion centered
at the vertical geometry would be more accurate, the large displace-
ment from the extrapolated effective minimum would still pose a
challenge to frequency-domain methods because of the high vibra-
tional state density at the energy of the vertical geometry. More
fundamentally, the Hessian at the vertical geometry is not guaran-
teed to be positive definite: it may possess negative-curvature (i.e.,
imaginary-frequency) modes, which generate a continuum of states
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in the quadratic approximation. Although one might construct a
frequency-domain method that treats such continua directly (or
indirectly through non-Hermitian techniques), we adopt a different
approach.

The problems of large displacements and negative-curvature
modes are naturally addressed by moving to a time-domain picture.
Here, the FC spectrum is obtained by the Fourier transform of
the auto-correlation function of the initial vibrational wavepacket
evolving on the final-state potential energy surface. Sophisticated
time-domain algorithms, such as the multi-configurational time-
dependent Hartree (MCTDH) method'' and Chebyshev propa-
gation,'” can provide highly accurate spectroscopic predictions.
These methods, however, are often computationally expensive, may
require special forms of the molecular Hamiltonian and potential
energy surfaces, and typically handle unbound modes by imposing
outgoing boundary conditions using manually tuned complex
absorbing potentials."” "> For spectra that display a broad, con-
tinuous FC envelope, only the short-time, and, therefore, local,
dynamics are relevant, motivating a time-domain treatment based
on perturbation theory, in the same spirit of standard second-
order vibrational perturbation theory (VPT2) for small-amplitude
frequency-domain problems.'® The zeroth-order picture of such an
approach would be the harmonic auto-correlation function based on
a quadratic expansion of the initial and final potential energy sur-
faces (both centered about the initial state equilibrium or vertical
geometry). Analytic expressions for the harmonic correlation
function are known and indeed have been applied to the general
vibrational problem before.'” *° These formal expressions, however,
suffer from two important technical problems.

The first problem is branch-cut discontinuities arising from the
periodic motion of bound, real-frequency modes. This analytical
issue appears in many manifestations of the harmonic oscillator
correlation function or propagator (and in the dynamics of oscil-
lators more generally”"**), though it is often overlooked. This may
be because there is a simple numerical fix to the problem, which has
been adopted in prior applications.””*** Nonetheless, it is of inter-
est to derive an analytical solution to the branch-cut issue for the
general, multi-dimensional case, which we present here.

The second problem involves unstable finite-precision arith-
metic arising from the exponentially diverging motion of unbound,
imaginary-frequency modes. Although the time-domain expres-
sions used in prior applications are formally correct for imaginary-
frequency modes by analytic continuation, the details of this
procedure require care. Expressions that are well-behaved numer-
ically for bound, periodic modes may become exponentially diver-
gent for imaginary frequencies. Unitary evolution guarantees that
the final correlation function is bounded, but this comes about by
the cancellation of terms that individually diverge exponentially
in time. In any practical numerical implementation, guarantee-
ing these cancellations using finite-precision arithmetic requires
a detailed understanding of the analytical structure of the auto-
correlation function. Addressing these two issues is a major focus of
this paper.

We first present a derivation of the harmonic correlation func-
tion using a Lie-algebraic approach, for both zero and finite tem-
peratures, which enables the clear identification of how both the
branch-cut and unstable arithmetic problems arise and how to solve
them. Simple extensions beyond the harmonic FC approximation,
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including the lowest order anharmonic and Herzberg-Teller correc-
tions, are then discussed. We demonstrate these results with several
illustrative examples, highlighting applications to quantitative simu-
lations of the electronic absorption spectra of dissociative surfaces
(fluorine, F,, and hypochlorous acid, HOCI), transition state
regions (methyleneimine, CH,NH), and highly displaced geometries
(nitrogen dioxide, NO>).

Il. THEORY
The harmonic initial state Hamiltonian, with 2 = 1, is
&l 2 2
HO_ZEwi(pi +qi)’ (1)

1

where g, is the reduced dimensionless normal coordinate of the ith
vibrational mode (i = 1,...,n), p; is its conjugate momentum, and
w; is its harmonic frequency. The dimensionless coordinates and
momenta satisfy the canonical commutation relation [qj, Pi] = 0.
In these coordinates, the final state Hamiltonian expanded to second
order about the vertical geometry (g; = 0) is

1 1
H = Ziw’pf + EZKMI% + ZG,‘qi
i ij i
1 r 1 r T
=Ep Wp+5q Kq+G q+ Vo, (2)

where q and p are # x 1 column vectors containing the g; and p,
operators; W is a diagonal matrix containing w; along the diagonal;
and Vo, G, and K are the final state energy, gradient, and Hes-
sian, respectively, evaluated at the vertical geometry. The final state
Hamiltonian can be written in terms of its own normal coordinates
Q and momenta P as

H= %(PTQP +Q'2’QQ) - %GTK_IG + Vo,

where
P=R'p,
Q=R'(q-4d),
d--K'G,

R =W 2L

The matrix L is orthogonal and contains the eigenvectors of the
mass-weighted Hessian, i.e.,

(WKW L = Lz,

where Z contains the real eigenvalues z; along its diagonal. These
may be positive or negative and equal the square of the final-state
harmonic frequencies, which we take to be either positive real or
negative imaginary. That is, let zi/ % = 0, O, where (O = |z|'* and
ok = 1 if z; is positive and oy = —i is zj is negative. The matrices
and Q are diagonal, containing oy and Q, respectively. The matrices
AL, which relate the canonical creation and annihilation operators
of the initial and final states, will appear often below. They are
defined as
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A, = WAL 20l L WiLs T 22,

A. The zero-temperature correlation function

For a zero-temperature spectrum, we are interested in calculat-
ing the vacuum auto-correlation function,

Co(t) = {0le”"™0),

where |0) is the ground vibrational state of the initial state Hamil-
tonian, Hy. (The finite-temperature case will be considered in
Sec. I1 B.) The FC spectral density is related to the auto-correlation
function by a Fourier transform,

So(w) = % [ ey, 3)

where w equals the transition frequency from the |0) initial state,
which has zero-point energy Ey = ¥ wy/2.

Our approach to calculating Co is based on disentangling the
exponential propagator. First, we recognize that a harmonic Hamil-
tonian can always be cast as a general quadratic polynomial in the

raising and lowering operators, al and a;, i.e., as

. 1
-iHt=Q= Aij(a?aj + E&j) + B,ja,TajT + Cijaiaj + fiaiT
+ gidi +h, (4)

where repeated indices are implied summations, and the n x n
matrices B and C are symmetric. (For Hermitian H, furthermore,
B =C and A is symmetric.) The space of quadratic operators is
closed under commutation,

[QQ1=Q",

thus forming a Lie algebra. This guarantees that exponential
quadratic operators can, in principle, be disentangled via the
Baker-Campbell-Hausdorff (BCH) formula as

€Q _ eA,vj(aTaj+%8;;)+B,vjajaj+C,-]a;aj+f,af+g,a,+h

+
eh'ef:a, eB;u, a] ¢

,](a a;+0;/2) Cua ajg a; (5)
The order of the terms in the argument of the exponent in the first
line of this equation is arbitrary, but the order of the individual fac-
tors in the second line, Eq. (5), is non-trivial because they do not
commute. Assuming the parameters of this particular disentangled
form are known, then Cy is simple to evaluate,

Co(t) = {0le”"" o)

<0|€ ef, xeBqu a] ¢ U(a a;+08;/2) Cl]aa]eg a0

0)
=¢ <0|6Aﬁ(a, aj+6,1/2)|0>

K Tr[A’/2
=eer[ /2]

= det[eAl/z], (6)
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where we have made repeated use of the fact that a;|0) = (O|u:r =
The problem is now to determine the (time-dependent) disentangled
coefficient h’, and the determinant of exp[A’/2] given the original
entangled exponential operator.

To proceed, we use a faithful matrix representation of the
quadratic Lie algebra.”> Consider the (21 + 2) x (2n + 2) matrix, M,
which is constructed from the quadratic operator coefficients as

0o g’ 1 —2h
0 A 2B f
M= . (7)
0 -2C -A g
0 0 0 0

It is straightforward to show that this matrix map of the quadratic
operators satisfies the same commutation rules. That is, if we let
M, M’, and M" be the matrices mapped to by the operators Q,
Q’, and Q”, then [M,M'] = M" if and only if [Q, Q"] = Q". The
faithful matrix representation is useful because BCH formulas can
be derived with them via direct matrix exponentiation and multi-
plication rather than manipulating the exponential operators them-
selves.”® It turns out that the matrices of the form M have a relatively
straightforward matrix exponential, so that the disentangling rule,
Eq. (5), can be expressed as a (2n +2) x (2n + 2) matrix equation.
The full derivation is presented in Appendix A. The two main results
needed to evaluate the correlation function are

’ -1
A= 4(A+e*AI - A_e*AT) (8)
and
2
W= —itV, * e G'(A, -A)T(A, -A)TG, (9)
where
T=(" =)= (A" + Ay ) (Ase AL —A_eAT)™!
x (Asn™ +A_y") (10)
and
ej: _ eiit):ﬂ
‘_ CEIER
T za
- S iy - 1
T —2(zQ)?

Let us first focus on the matrix T, which contributes to 4. The
elements in the diagonal positive-frequency matrices e, #*, and
{* that correspond to modes with imaginary frequencies (o} = —i)
are exponentially divergent as t — co. These divergences, however,
ultimately cancel in T itself, which we can see by assuming the
positive-frequency terms dominate the negative-frequency terms at
large time,
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T =" AL (Ave™AD) sy

_ (+ _ n+e—’1+
_ (+ _ ’7+,1—
==+ )
=-(.

The cancellation of exponentially large intermediate quantities
implies that the naive evaluation of I' using finite-precision float-
ing point arithmetic directly as written in Eq. (10) may be unstable
and inaccurate. Indeed, numerical tests quickly confirm this issue,
suggesting that it is necessary to explicitly remove the divergent
intermediates.

To do so, we first inspect various factorizations of the following
matrix inverse, which occurs frequently,

-1 -1
(A+e+AI - A_e_AZ) = (1 - A:re_AilA_e_AZ) Affe_A;1
-1
= AQ(1 - e*AfA_e*ATA;) e AT
-1
- A;e‘(l - A;IA,e‘AZA;e‘) A7

-1
=Ae A} (1 - A_e‘ATA;e‘Af) ,

where " denotes the transpose-inverse. In each case, the factoriza-
tion yields a numerically stable matrix inverse and provides another
exponentially damped factor on its right or left. After expanding all
terms in Eq. (10), one can choose the right- and left-sided forms for
each as necessary to cancel the various 4" and {* factors. After some
straightforward, if tedious, algebra, the result is

T=-n A A e ATAL(1-e AF'A e ATAL) Yy
- [ffAf(l ~Ae AV A e AD) TNy transpose]

20 - AT - A AT A e AD) TN e AT AL (1)

The non-commuting nature of matrix multiplication makes this
expression appear rather cumbersome. Nonetheless, all exponen-
tially divergent intermediates have been removed, and it can be
numerically evaluated accurately.

We now proceed to the second factor of Cy(t), the deter-
minant of exp[A’/2]. The disentangling formula yields only the
matrix exponential of A" itself [Eq. (8)]. The determinants of these
two matrices are, of course, related by a square root, but the rela-

) A2 AT\ 1/2 ] ) ]
tion det[e” “] = (det[e ]) requires careful consideration of the
branch-cut choice implicit in the square root in the right-hand side.
If (---)"? is taken to be the principal square root, which we denote
with ./, then each time det[e* ] crosses the negative real axis in
the complex plane, its square root would experience a sign-reversing
branch-cut discontinuity.

ARTICLE scitation.org/journalljcp

To examine the problem more closely, we first consider a single
vibrational mode, in which case the matrix expressions reduce back
to simple scalar ones. Equation (8) simplifies to

& = [cos(aQut) + ia sin(aQt)] 7",

where a = (0® +0°Q%)/2wsQ. For a positive-curvature, real-
frequency mode, 0 = 1 and a > 1, so the expression in the brackets
orbits an elliptical trajectory in the complex plane with
frequency Q. At values of Ot =m,3m,57,..., the trajectory
crosses the negative real axis and the principal square-root Ver
changes sign discontinuously. The problem, of course, is related to
the leading ¢ like behavior, for which it is clear that /2 # /e
for some t. This suggests that the solution is to factor out the global
Y dependence of the complex orbit as

- 1-a g0\~
e mQt(l + ae ZzaQt) . (12)

1+a

A’ 2
e = ——
1+a

We now take the square-root of each factor separately,

-1
Aoy 2 eii”m/z\/(l c1-a ae‘Zi"Qf) , (13)
l+a l+a

where all /-~ are principal square roots. Because a > 1 (for real-
frequency modes), the quantity (1—a)/(1+a) has an absolute
value less than unity and the argument of the right-most square root
never crosses the negative real axis. (The quantity in the parenthe-
ses makes a simple circular orbit centered about 1.) Its principal
square root, thus, exhibits no branch-cut discontinuity. The global
phase of the orbit is carried by the pure exponential factor g2,
which can be calculated directly because o and Q are known. The
branch-cut free expression, Eq. (13), also holds for a negative-
curvature, imaginary-frequency mode, which has o = —i. In this
case, a is a purely imaginary number, so that (1-a)/(1+4a) is a
complex number of unit modulus, and the argument of the square
root again does not cross the negative real axis. (This is assuming
t> 0. For t < 0, one need only calculate Cy(|¢|) and recognize that
Co(—i’) = Co(t)*.)

This simple factorization trick must now be generalized to the
multidimensional case. Starting from Eq. (8), we factor the matrix
inverse as

N = 4(1-Ae AT A_e AT TALe AT

and then calculate its determinant. Recognizing that det(AB)
= det(A) det(B) and det(A) = det(A”), we have

det(eAl) = det (A+/2)_2e_itTr[m] det (1-ALe AT'A_e AT)

These three factors correspond one-to-one with those of Eq. (12),
and we need a branch-cut-free square root of each. As in the
one-dimensional case, the first factor, det(A4/2)7% is simply
a constant and poses no problems. The second factor, e~ ">
= [Tee "™, is the product of the global phase factor for each

J. Chem. Phys. 157, 124102 (2022); doi: 10.1063/5.0112217
Published under an exclusive license by AIP Publishing

157, 1241024

60:05:€Z €202 Isnbny G0



The Journal

of Chemical Physics

normal mode. For real-frequency modes, this will be a periodic,
complex phase. For imaginary-frequency modes, this will be an
exponential damping term. As all oy and Q are known, ¢~ T1=2/2
can be calculated directly. The third factor requires more care. At
this point in the one-dimensional case, we could directly proceed
to the principal square root. However, in the multidimensional
case, the determinant in the third factor can still cross the neg-
ative real axis, and, in general, does. A further factorization is
necessary, and given that this is a determinant, it is natural to con-
sider the spectrum of the matrix argument. Let A; (k=1,---,n) be
the eigenvalues of (1 - Al,e”A;'A_e”A”). Its determinant is then
MAz ... Ay We assert that each eigenvalue individually does not
cross the negative real axis. Therefore, a branch-cut-free square root
of the determinant can be constructed by multiplying the principal
square root of each eigenvalue, respectively. The final determinant
is then,

det(e*/?) = det (A+/2) ' TEULTT AL (14
k

In summary, the numerically stable, discontinuity-free vacuum
auto-correlation function Co(t) is given by Egs. (6), (9), (11),
and (14).

B. The finite-temperature correlation function

The general finite-temperature correlation function replaces
the vacuum expectation value with a thermal-average trace,

C(t,p) = #fj) Tr[e(ﬂtfﬁ)Hoe—itH], (15)

where 8 = 1/kT and Zo(f) = Tr[e #™], the ground state partition
function. The finite-temperature spectrum is related to the cor-
relation function by the same Fourier transform as for the zero-
temperature case, Eq. (3), with Co(t) replaced by C(t,f3). In the
zero-temperature case, we found a form of the exponential operator
in which the vacuum expectation value was simple to evaluate (the
disentangled form), and then used the Lie algebra matrix representa-
tion to express the exponential in that form. The finite-temperature
case proceeds in a parallel fashion. We first find a form in which
the trace is simple to evaluate (the diagonalized form, considered
below), and then use the same matrix representation to express the
exponential product in Eq. (15) in that form.

Consider first the trace of a purely quadratic exponential
operator,

Tr[exp[A,j(ajaj +8ij/2) + Bij(aiaj + aja;)]],

where we have assumed that B;; = C;; and A;; is symmetric. The trace
is invariant to similarity transformations. Thus, a series of rotation
and scaling transformations can diagonalize this operator to,

ew[/l
7>

Tr[ew;(afaﬁrl/z)] _ H
1—e%%

i
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where w/* are the eigenvalues of GF, for G = A — 2Band F = A + 2B.
The parameters of the similarity transformations themselves are not
needed. The square of this trace is

1 1
Tef---P*=T]-—— |
vl i 2cosh w/ -1

which is invariant to the branch choice of w;. If we let u denote the
2n x 2n matrix,

A 2B
2B -Al

then it can be shown that the squared trace can also be expressed as

-1

Tr[---]* = (~1)" det [¢-1]

Including gradient terms and a constant energy offset adds a con-
tribution of the form g;(a; + aj) + h to the exponential argument.
The gradient terms can be eliminated using displacement similarity
transformations (which again leave the trace invariant), modifying
the total constant term to,

W=-g"(A+2B) 'g+h (16)
Thus, the squared trace of a general symmetric quadratic operator is
T[] = (=1)"det]e" — 1" x &

The exponential product in Eq. (15) must now be recast into a
single exponential operator, which can then be “diagonalized” in the
sense above. The trace is first symmetrized as

Tr[e(ﬁt—ﬁ)Ho e_itHl] _ Tr[e_THO e—ile]

= Tr[eiTHO/ZefitHl eiTHO/Z], (17)

where 7 = —it + . From here, the exponential product is carried out
in the finite matrix representation in a similar fashion as the zero-
temperature case. The full derivation is shown in Appendix B, which
includes the somewhat lengthy expressions for the final branch-cut
free and numerically stable result for C(¢, 8). The result is also well-
behaved in the T — 0 (8 — co) limit.

C. Simple anharmonic corrections

The anharmonicities of the initial and final state potential
energy surface both affect the auto-correlation function, the for-
mer by modifying the initial wavefunctions and partition function,
and the latter by modifying the propagation. Considering only the
zero-temperature limit, these can be expanded in a perturbation
series,

1) = [0) + APy + 22w ).
oI HEVO _ L+ D () + 226D (1)),
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where ) is a dummy order-sorting parameter and V' is the anhar-
monic contribution to the upper state surface. The anharmonic
term of the initial state surface, V, gives corrections to the ground
state |¥).

Formally, the complete first-order correction to the correlation
function is

A" (8) = A((0le ¥y + (¥ Ol 0) + (0l 4 ()0}

= Mole ™ (202 D) + D ()0} ).

The first-order initial state term [¥") can be computed straight-
forwardly using time-independent vibrational perturbation theory,
expanded in terms of the zeroth-order harmonic oscillator states,

¥ = 3 cmlm),

where m = {my, m,...,m,} are the n quantum numbers of the
zeroth-order states. The harmonic cross-correlation functions

{mle™™|0),

can in turn be computed in terms of Cy(t) using the multidimen-
sional recurrence relations derived by Fernandez and Tipping. "’
On the other hand, the final-state propagator correction u'(t)
requires a significantly more complex time-dependent treatment,
including the renormalization of secular terms,”® which is beyond
the scope of this paper. As will be seen below, however, the time-
independent initial state term is in many cases the dominant first-
order contribution, and the time-dependent final state term can be
neglected.

We anticipate this scenario to occur when there is a large upper
state gradient at the vertical geometry. In this case, the leading
anharmonic corrections are due to slight changes in the average
position (q) of the initial wavefunction |¥), which are amplified
by the upper state gradient and shift the effective vertical energy.
Accounting for cubic anharmonicity, the first-order displacement in
each normal coordinate can be evaluated using standard harmonic
oscillator matrix elements as

1
4(4),‘

(@i) = = 9>
J

where V = ézijk $iixqiqjqx are the ground-state anharmonic terms.
The approximate spectral shift is
AE upic # G- (q>
1 < Gigijj
Iy G, ()

4ij Wi

where G is the upper-state gradient at the vertical geometry.

D. Linear Herzberg-Teller corrections

Accounting for the vibrational dependence of the electronic
transition dipole moment requires consideration of the full dipole
auto-correlation function, which for the zero-temperature case is

ARTICLE scitation.org/journalljcp

Do(t) = (0lu(@)e™" u()l0), (19)

where we assume the transition dipole function u(q) is real. The
Franck-Condon approximation truncates the dipole function to
its value at the initial state equilibrium geometry u, = u(q = 0),
so that Dy(t) ~ p;Co(t). For electronic transitions where y, = 0 by
symmetry or p(q) varies strongly near q = 0, the linear and possi-
bly higher-order q-dependence of y (the so-called Herzberg-Teller
effect) needs to be accounted for.
Here, we consider just linear dependence,

() = pe + D 0 g,

where Oip = Op/0q,|. are the equilibrium transition dipole deriva-
tives. The wavefunction u(q)|0) can be expanded in terms of the
vacuum and one-quantum excited states. The cross-correlation
functions of each of these terms are evaluated using the same
recurrence relations as in Sec. II C. A similar procedure can
be used to efficiently combine linear Herzberg-Teller effects
with the anharmonic ground state that includes first-order cubic
corrections [¥1).

As with the cubic anharmonicity corrections, the linear dipole
dependence will be particularly important when there is a large
upper state gradient at the vertical geometry. We can estimate
the shift to the effective vertical energy by evaluating the average
displacement of ¢|0), which to first order is

\ _ (Olugiul0)
@) = o)
pe

i.e., the fractional dipole derivative. The expected spectral energy
shift analogous to Eq. (18) is

AEur ~ G- (q)

= ZG,-%. (20)

lll. EXAMPLES

We now explore various applications of the harmonic corre-
lation function and its low-order anharmonic and Herzberg-Teller
corrections as implemented in the NITROGEN Python package.”’
Focus is placed on systems for which the time-domain approach
is most appropriate. The correctness of the implementation for
bound harmonic calculations has been verified by comparison
with frequency-domain programs® and for unbound problems
by comparison with numerical wavepacket propagation on low-
dimensional model potentials.

A. Dissociative excited states of F, and HOCI

The absorption spectrum of the dissociative A-X transition
of F, provides a simple one-dimensional example to compare the
harmonic correlation and its low-order corrections to the corre-
sponding numerically exact results on a given potential energy curve.
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We calculated the potential energy and transition dipole curves on
a grid of 16 points spaced evenly over r € [1.2,1.8] A at the frozen-
core coupled-cluster singles, doubles, and triples (CCSDT) level of
theory’® with an aug-cc-pVQZ basis set’! for the X state and its
equation-of-motion (EOM) variant* for the excited A state. (All
electronic structure calculations were performed with the CFOUR
package.””) The transition dipole curve was calculated from the
geometric mean of the left and right EOM expectation values.
Each curve was fitted to an eighth-order polynomial in the scaled
coordinate x = e, with a = 1.0 A, from which derivatives were
calculated. The potential energy and transition dipole curves are
shown in Fig. 1(a).

The effects of anharmonicity in the X state surface are illus-
trated in the top panel of Fig. 1(b), where the numerically exact
FC spectrum is compared against the harmonic simulation and that
which includes first-order ground-state cubic corrections. The first-
order spectrum agrees closely with the exact result. The shift of the
spectral peak is about —580 cm™, while the simple cubic-gradient
approximation [Eq. (18)] predicts —780 cm™'. The corresponding
shifts from the linear Herzberg-Teller corrections are shown in the
bottom panel of Fig. 1(b), where the exact y(r)-dependent sim-
ulation is compared with the harmonic FC simulation and that
which includes both first-order cubic and linear Herzberg-Teller
corrections. The shift between the simulations with and with-
out Herzberg-Teller corrections is —360 cm™. The corresponding
estimate of this shift [Eq. (20)] is =350 em™L

The experimentally measured 298 K absorption cross sections™
are compared with the first-order cubic/linear Herzberg-Teller sim-
ulation in Fig. 1(c). The absolute absorption cross section is related
to the dipole spectral density D(w) as

0(w) = A x g x wD(w),

Wavenumber (cm™)

where g, is the electronic degeneracy and A = 2% [3eohc ~ 2.6891

x 1078 cm?/(eap)?. The A state of F, has IT symmetry, so that
g, = 2. The agreement between the calculated spectrum, which has
not been scaled or shifted, and the experimental data is excellent.
As an example of a dissociative system with bound spectator
modes, we examined the absorption spectrum of the A and B
states of HOCI, both of which dissociate to OH + Cl. The force
constants and transition dipole derivatives were determined by

a polynomial fit to a grid of 120 ab initio points near the X
state equilibrium geometry calculated at the same frozen-core

25 A

20 A

15 A

10 4

5 -

Abs. cross section (102° cm?)

0 -
25000 30000 35000 40000 45000 50000
Wavenumber (cm™)

FIG. 2. The absorption spectrum of the A-X and B-X bands of HOCI.
The EOM-CCSDT/aug-cc-pVQZ simulation includes first-order cubic and linear
Herzberg-Teller corrections. The contributions from the A (red, dashed) and B
(blue, dotted-dashed) states are shown together with their sum (black, solid). The
experimental data points (dots) are at 298 K.
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(EOM-)CCSDT/aug-cc-pVQZ level of theory employed for F,.
The experimental absorption cross sections’ ~’ are compared with
the simulation with first-order cubic and linear Herzberg-Teller
corrections in Fig. 2.

The single largest discrepancy is the total intensity of the
B-X band. That is, the error arises primarily from the ab initio
transition dipole. The accurate shape and breadth of both band
systems indicate that the approximate correlation functions and
force-fields are accurate. The low-energy shoulder in the experimen-
tal spectrum is due to weak absorption from the lowest-lying triplet
state,” and a full treatment of the absolute intensities of this sys-
tem requires that spin-orbit interactions with the triplet manifold be
taken into account,” well outside the scope of the present study. We
also note that finite-temperature effects, calculated at the harmonic
approximation, are minor for these systems at 298 K.

B. Accessing isomerization barriers: CH,NH

Methyleneimine, CH,NH, is the simplest imine. It has a planar
ground-state equilibrium structure,”” and as in the isoelectronic
case of ethylene, relaxes to a non-planar geometry with a dihedral
angle of 90° between the CNH and CH, planes in its first singlet
valence excited state."”"' The two equivalent non-planar C; minima
of the excited state are connected by a planar C,, transition state
with a linear CNH bond angle.”” Thus, at the ground-state equi-
librium geometry, the excited state is best described as a displaced
transition state, possessing a large gradient along the CNH bond
angle (initially relaxing toward 180°) and imaginary frequencies
for both the NH torsion and CH, out-of-plane angles. Upon A-X
excitation, the ground state vibrational wavepacket will quickly
relax along these degrees of freedom leading to a broad absorption
envelope.”

To simulate the absorption spectrum, we computed the force
fields and transition dipole of the X and A states at the frozen-core
EOM-CCSD(T)(a)*/aug-cc-pVQZ level of theory.” The harmonic

>
[

— Expt
l —-—— gaEn.
J\“ W)“ —=-= Cubic + HT
6 J M Hm “'M ‘
5 \’ “ 'IM I

Abs. cross section (10" cm?)

) ~
! ol ~
N e

25000 30000 35000

Wavenumber (cm™)

20000
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N
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Wavenumber (cm™)

35000

FIG. 3. The absorption spectrum of the A-X band of CH,NH. The room-
temperature experimental spectrum“? is shown with the harmonic (black, dashed)
and first-order cubic/linear Herzberg-Teller-corrected (black, solid) simulations
at the EOM-CCSD(T)(a)*/aug-cc-pVQZ level of theory. (Simulated resolution
= 1050 cm~" FWHM.) A scaled simulation with the vertical energy decreased by
450 cm~" and the transition dipole increased by 7% is also shown (red, solid).

and first-order cubic/linear Herzberg-Teller-corrected simulations
are compared with the room-temperature experimental spectrum*’
in Fig. 3. The simulation is slightly too high in energy and too
low in intensity. Given the relatively small effect of the cubic and
Herzberg-Teller corrections, we speculate that this error arises pri-
marily from the vertical electronic energy and equilibrium transition
dipole. Indeed, modest shifts of —450 cm ! to the vertical energy and
+7% to the transition dipole bring the simulation in close agreement
with the measurements.

C. Highly displaced vertical geometry: NO,

NO; exhibits a large change in geometry upon transition to
its first excited electronic state, with an equilibrium < ONO bond

B 1.0
E
505
S
Y | S T S
0 100 200 300 400 500
C Time (fs)
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o]
£
5
'-8 0.5 A
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2]
2]
2 00 . . . . . .
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FIG. 4. The absorption spectrum of the A-X band of NO,. (a) The experimental spectrum*®“® at 203 K (thin solid) is shown with the harmonic (red, dashed) and first-order
cubic/linear Herzberg-Teller-corrected (blue, dotted-dashed) simulations (FWHM = 500 cm~"). The absolute value of the harmonic auto-correlation function shows periodic
wavepacket revivals (b), leading to regular vibrational progressions in a high-resolution (FWHM = 85 cm—") simulation (c).
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angle of 134° in the X state and 102° in the A state,” leading
to an extended Franck-Condon envelope. We simulated the A — X
absorption spectrum using equation-of-motion ionization poten-
tial (EOMIP)-CCSD(T)(a)* /aug-cc-pVQZ force fields based on an
NO; anion reference wavefunction. We assume a vertical transi-
tion dipole of 0.302 a.u. based on the high-level multi-reference
configuration interaction (MRCI) calculations of Ndengué et al.**
and supplement this with fractional dipole derivatives calculated
with the equation-of-motion excited state method at the singles and
doubles level (EOMEE-CCSD/aug-cc-pVQZ) using the neutral X
state reference wavefunction. Figure 4(a) compares the experimental
spectrum obtained at 203 K*>** with the harmonic and ground-
state-cubic/linear Herzberg-Teller spectra, simulated with a Gaus-
sian FWHM resolution of 500 cm™'. As with previous examples,
the corrections have a significant effect on the harmonic spectrum.
The pseudo-Jahn-Teller B and C states, which are neglected here,
also make a small contribution to the absorption cross section at
the low energy part of the band. While accounting for these states
requires a much more elaborate treatment,** it appears that the
cubic/linear Herzberg-Teller simulation of the A — X system alone
accounts quantitatively for the gross features of the spectrum.

Because the A state is still treated harmonically, the auto-
correlation function exhibits a regular series of revivals [Fig. 4(b)].
The corresponding high-resolution spectrum [85 cm™ FWHM,
Fig. 4(c)] contains extended vibrational progressions. As discussed
further below, these high-resolution features are not expected to be
quantitatively meaningful at this level of approximation but have
been included here for illustrative purposes.

IV. DISCUSSION

The parameters of a vibronic spectrum are naturally par-
titioned into nearly independent contributions from the vertical
electronic energy, the transition dipole, and their respective force-
fields or derivatives. As the examples above show, when the potential
energy surfaces of interest are approximately quadratic, the spec-
tral contours can be accurately reproduced by analytical harmonic
correlation functions augmented by low-order anharmonic and
Herzberg-Teller corrections. In this limit, the remaining disagree-
ment with measurements appears to be dominated by purely elec-
tronic errors in the vertical energy and oscillator strength. We stress
that in dissociative or quasi-unbound spectra, what might normally
be categorized separately as “energy” vs “intensity” effects are intrin-
sically convoluted. An accurate prediction of even basic descriptors,
such as the peak spectral wavelength, requires a balanced treatment
of both. Indeed, this convolution poses a challenge to extensive
quantum chemical benchmarking of vertical energies and oscillator
strengths. A relatively inexpensive vibrational treatment as pre-
sented here may help bridge this gap, at least for those systems
that possess simple enough potential energy surfaces in the vertical
region.

The applications above have focused on systems with unstruc-
tured spectra, the envelopes of which are determined by the initial
decay of the correlation function. This is not an inherent limitation
of the time-dependent approach. In specific cases of conventional
bound-to-bound transitions where the regions of the PES accessi-
ble to the propagating wavepacket are accurately described in the
harmonic approximation, the long-time behavior of the correlation

ARTICLE scitation.org/journalljcp

function is reliable, and in all cases, the frequency-domain and
time-domain results will of course be equivalent. When the vertical
geometry is highly displaced from the upper-state minimum, how-
ever, the long-time behavior of the harmonic correlation function
will not be accurate. The A state of NO, examined above is a
good example of this. Here, the vertical geometry is displaced from
the upper state minimum by approximately AQ = 10 in terms of
the dimensionless bending normal coordinate. Although the har-
monic correlation function exhibits partial revivals at the vibrational
periods of the harmonic normal modes, these revivals are not mean-
ingful given that between them the wavepacket traverses an extended
region of the PES poorly described by the harmonic expansion.
The same problem effectively occurs in a harmonic frequency-
domain simulation. Accurate long-time simulations may be possible
using time-dependent perturbation theory if the relevant region of
the PES is well approximated with low-order anharmonic correc-
tions. Bound vibrational modes, in particular, will probably require
some sort of renormalized perturbative expansion of the correlation
function.”"’

Finally, while we have focused on electronic absorption spec-
tra, these methods are applicable to other techniques where FC or
low-order Herzberg-Teller approximations are routinely employed,
including photodetachment, photoionization, and photoelectron
spectroscopy,*® as well as non-radiative processes.”’ ' It may also
be possible to incorporate directly rotational effects such as ori-
gin shifts or axis-switching,” which are important mostly for light
molecules, especially small hydrides. Other terms in the rovibra-
tional Hamiltonian, such as Coriolis coupling, should naturally be
considered as higher-order perturbative anharmonic corrections to
this framework are developed.

V. CONCLUSIONS

We have presented a new derivation of the multidimensional
harmonic oscillator auto-correlation function focused on the ana-
Iytical and numerical issues associated with branch-cuts and stable
finite-precision arithmetic. Together with the lowest-order anhar-
monic and Herzberg-Teller corrections, these results provide a
simple means to simulating vibronic spectra that access unbound
or negative curvature potential energy surfaces. The development
of higher-order time-dependent perturbation theory corrections
presents a promising avenue for future work.
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APPENDIX A: DERIVATION OF EQS. (8) AND (9)

We first consider the purely quadratic sub-algebra represented
by the matrices y, which have the general form,

A 2B
2¢ AT

This is simply the center block of the full matrix representation,
Eq. (7). For an exponential argument —iH¢, this simplifies to

—-it|[W+K -W+K

U= P >
W-K -W-K

where W and K are defined in Eq. (2). This matrix has right
eigenvectors

and left eigenvectors

1Al Al
L Tolar Lt
A AL

so that y can be diagonalized as

. 0 0 ).,
p=-itx L L.
0 -ZQ

This permits its exponential to be simply expressed as

0
d-cl|® £ (A1)
0 e

where e* = exp[+iZQt].
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The full matrix representation of the general quadratic Hamil-
tonian, including gradient and constant terms, is

o [¢" ] -2n

—f

M=]0 U
g
0 0 0

0 [gT fT]Hk—l [gT fT:I#k—Z -f
g
M* = 0 #k ‘uk—l —f ’
g
0 0 0

for k > 2. By direct summation, the matrix exponential is, therefore,

f

U [g" e - [g8 flu@ -u-n| |-2n
g
M_
© T 0 ¢ (e -1) f
g
0 0 1

(A2)

: : " fa’ Blalal
We now consider the disentangled operator, & el B 4

Al (al a485/2) C ! . .
i (@ 4+03/2) gCai% 814: The matrix representation of each exponen-

tial factor can be evaluated using Eq. (A2). We assume a Hermitian
Hamiltonian, for which B’ = C’, A’ = A'T, and g' = f'. After matrix
multiplication, the final product is

1 [ng B 2g/Te—A’BI g/TefA’:I nge—A’g/ o
N —4B'eNB 2BV g+ 2B'e_Alg'
0 —A' L/ —A’ -A" s - (A3)
—-2¢ "B e e’ g
0 0 1

Equating Egs. (A2) and (A3) allows us to solve for the disentangled
parameters block-by-block. For example, the lower-right element of
the central 2n x 27 block yields

—A’

e (AJAI - A-e‘Af),

1
4
where ¢ has been expanded using Eq. (A1). The matrix inverse
of this expression gives Eq. (8). Similarly, equating the upper-right
elements and solving for k' gives Eq. (9).
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APPENDIX B: DERIVATION Applying this procedure to Eq. (B1) yields

OF THE FINITE-TEMPERATURE TRACE
2
- -G
Beginning with the symmetric form of the thermal trace, B = —itVo + t—[GT GT]C{( —n(g—ﬁ_lf_lﬁ) 111}5 - .
Eq. (17), the matrix representation of each factor is directly 4 T - - G

exponentiated and then multiplied. The final product is

The regularization of the gradient terms starts with expanding

-ty ¢ aap P o a6, this expression for h’. The matrix inversion is handled block-wise
1 ﬁ [G G ]LQL § B3 [G G ]EEL G +2itVo assuming the bottom-right block and its respective Schur comple-
ment are invertible. Then, the matrix multiplication is carried out
s s it 1p e , and terms are recollected as single-block expressions. After lengthy
0 3 PLeL”™ 13 / %g / Lnl~ G algebra, the result has the same form as Eq. (9),
t2
0 0 1 W= -itVy+ —G' (Ay - AT(A; -A)'G,
(B1) 16
where & = exp[W7] and where
- - r=("-¢)-6ip7'e,, (B2a)
e 0 _|n 0 r .
€= 0 o > = 0 rl+ > +(6__CTD—16+) 6—1/2(A +£—1/2cTD—lC£—1/2)
oo T x £2(0--C"D0,), (B2b)
(= g -
> 0 {+ >2 0 El 21
and
We now note a useful relation that allows us to evaluate /', defined . ~
in Eq. (16), using only elements of the exponentiated representation, 0. =A™ + Az,
Eq. (A2), not the quadratic operator argument itself. First, subtract A2 A e AT A et ATVEY2 _ g
identity from e” and invert, then sandwich this between the upper d ( ve B , -¢ _)Tf ’
and right edges of the exponential representation. Finally, subtract C=Ae’Al-A e Ay,

the upper-right corner element and divide by 2. The result is D=Ave' AT —A_e AT — 47!,

It 7 171 1|8 T 1 In the zero temperature limit, ffl — 0, only the first line
E[g g ]/4 +h=-g (A+2B) g+h of T remains [Eq. (B2a)], and it reduces to the vacuum expec-
8 tation value expression above. Its regularization is handled
= similarly,
(" =¢)-6:D7'0, = (1) + (2) + (3),
(1) ="y = AL (Ace" AL —A_e AT — 48 ALy
=y e [1-AT(A e AT A AT - 45_1)_1A+e+]11_
—q et |1-(1-e A (Ae Al + 4{71)A1)71];17
= e[ (e AT (A AT+ a8 HAL) (1- e AT (Ae AT+ 48 )AL
= AT (Ae AT+ 48 DAL (1 - AT (Ae AT + 48 DA Ty,
(2) ==20" =y ATD Ay,
(3) =—n"AT(Ave’ AT —A_e AT —487)"A_y” + transpose
= (1-A7 (Ae AT + 45 A e ) AT Ay + transpose.
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The remaining terms are
0--C'D7'0, = (1) + (2) + (3) + (4),
(1) =Anq" = A" AL(Ave" AL —Ae AL — 48 ) 'Ay?
=A[1-(-AT (A AT w4 L)
= A [ - AT (A AT a8 AL ) T (DAY (Ane AT+ aE AL [y
= A (1-A(A—e AT+ a8 YA ) AT (ALe AT + 48Ny,
(2) = A +Ase AID Ay,
(3) = -A_e'AL(Ave' AT —A e AT a8 Ay
= A (1-A7 (A AT+ 48 AL ) AT ALY,
(4) =Ave AT(Ave' AT —A_e AT a8 ALyt
=Ave ATAL (1 - AT (Ae AT+ 48 )AL Ty

and
A+EVETDTICE R = (1) + (2) + (3),
(1) =&"P[-Ae AL+ Ae" Al (Ave" AT - Ae AT - a8 7) AT A ]
= f_l/zA_e+[—1 + AI(A+e+AI —A_e AT - 45_1)_1A+e+]A7_-E_1/2
SE A [l (1- e AT (Ae AT g TAL) T AT
= f‘l/zAJ[e‘A;l(A,e‘Af +4EDAL (1 - e AT (Ae AT + 4{“)1\;)‘1}1&?5“/2
=EVPA AT (AL AT + a5 YA (1— e AT (AL AT + 48 YA TIATE?
(2) = 5*1/2[A+e*AI + A+e*ATD*‘A,e*AI]£*1/2 —4,
3) = —f_l/zA_e+AI(A+e+AI —Ae AT - 45_1)_1A_6_AIE_1/2 + transpose
= —fﬁl/zA_(l ~AV (Ae AT+ 4571)Aief)flAllA_efAszl/z + transpose.
(
The remaining factor of the thermal correlation function con- The harmonic partition function is
tains the purely quadratic part of the thermal trace and the initial
purely q p
state partition function, Zy. Together, these are Zo(B) = 1
;2 sinh w;f/2
1
=(-1)'— _ —w;T[2 —iw;it)2 1
(*) ( ) det[ef‘fl]Zg = Ue e 71—6*“’4;
—1)" B -1 _ i
_ (Zz) det [§1/2£§£ 1§1/2 _ 1] _ Z(')([)’) det[e WT/Ze th/z])
0 where Z{ is the partition function with the leading exponential fac-
_ (-1)" -1 —17-! tor removed, i.e., with respect to the zero-point energy. The purel
= det[LeL ™ -&7'] . b p gy Hhe purely
z - = quadratic contribution is then

|
(%) = (-n)" det[felwt] det [Lgc—l _§_1]7

zp?
-1
—1/2 - -1/2
:(_l)neitTrW det 3 o r e 0 L,_lf 2 o B 1 0
Z o 1| o & o 1| |o &
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:( ) ertTrW det

1, _ _
46 (A AT - A et AT 2
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—transpose

1 - . 1 _ -
z¢ S AT A ADE LA AL - A AL -
1 -1/2 T + ATy g—1/2 !
T et 1- Zf (Ave Ay —A_e"AD)E 1 +transpose
g JAeAT-AeADEY (A AL A A -

Before continuing, we can already see that in the low T limit,
&' 50 and the determinant reduces to the vacuum expectation
value result.

We now factor this matrix determinant into that of the lower-
right block and its Schur complement,

A B .
det = det(D) det(A - BD™ C).
C D
The first factor is
det[i(A+e+A£ —A e AT)- 5_1]

1 _ _ ;
:det[ZAJreJrAI(l —Ae AT (Ae AT +4& 1))]

= det (A,/2)"¢" " de[ 1 - Are AT (Ae AT + 48]

As with the zero-temperature case, the last factor is calculated by
multiplying its eigenvalues, each of which does not cross the nega-
tive real axis. The principal square root can then be taken without
crossing branch-cuts.

The second factor, the Schur complement, is

1, _ _
det[l - Zf 1/2(A+e AL —Ae"AT + (Ae" AL - AeAT)
x (Are" AT —A e AT — 48!

x (Are" AT - A_e‘AI))f“/Z].

In the e* — oo limit, all diverging terms cancel exactly. To remove
all instances of e*, we evaluate the total expression as

det[l - if‘l/z(. .. )5—1/2]’

where

|
(-)=()+2)+3),
(1) =Ae"AT(Ae AT —A e AT —487) A e AT — A _eTAT
A AT (A AT+ a1 - ALe AT (Ae AT+ 48 TIALAT,
(2) =Ase AT(Ave' AT —A e AT 48 A e AT+ AL AT
=Ace [Af(l AL AT (A AT v 45 TN AT A e + 1]AI,
(3) = -Are AT(Ave' AT — A e AT —487) T A" AT + transpose
=-Are AT(1-Ae AN (Ae AL +4871)) TAL AT + transpose.

We again assert that the eigenvalues of this matrix do not
cross the negative real axis, which provides for a branch-cut free
factorization of the principal square root.
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