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ABSTRACT
Recommender systems (RSs) have gained widespread applications
across various domains owing to the superior ability to capture
users’ interests. However, the complexity and nuanced nature of
users’ interests, which span a wide range of diversity, pose a signifi-
cant challenge in delivering fair recommendations. In practice, user
preferences vary significantly; some users show a clear preference
toward certain item categories, while others have a broad interest
in diverse ones. Even though it is expected that all users should
receive high-quality recommendations, the effectiveness of RSs in
catering to this disparate interest diversity remains under-explored.

In this work, we investigate whether users with varied levels of
interest diversity are treated fairly. Our empirical experiments reveal
an inherent disparity: users with broader interests often receive
lower-quality recommendations. To mitigate this, we propose a
multi-interest framework that uses multiple (virtual) interest em-
beddings rather than single ones to represent users. Specifically, the
framework consists of stacked multi-interest representation layers,
which include an interest embedding generator that derives virtual
interests from shared parameters, and a center embedding aggrega-
tor that facilitates multi-hop aggregation. Experiments demonstrate
the effectiveness of the framework in achieving better trade-off be-
tween fairness and utility across various datasets and backbones.

CCS CONCEPTS
• Information systems → Recommender systems; • Social
and professional topics → User characteristics.
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1 INTRODUCTION
Recommender systems (RSs) have been widely applied in different
domains, such as news recommendation [20], friend recommenda-
tion [9], etc. While a plethora of RSs have been proposed [3, 4, 14,
25, 33], the main focus is on maximizing the overall utility, typically
measured by metrics like Recall, F1, and NDCG [1]. These metrics
offer a comprehensive view on the accuracy of recommendations
and the system’s ability in capturing user interests. However, solely
relying on these utility-basedmetrics can cause issues: (1) it hides bi-
ases across distinct user groups, posing fairness concerns; and (2) it
overshadows underlying performance bottlenecks, impeding poten-
tial utility enhancements. In light of these issues, recent studies have
adopted a group-centric lens for recommendations [18, 35, 36]. In-
vestigations have been conducted on user groups defined by explicit
attributes (i.e., sensitive features) [32], such as gender [36], race [44],
as well as implicit features (i.e., extracted from interactions) such
as number of interactions and amount of purchases [18, 35]. These
studies highlight group-specific biases and advocate for solutions
that ensure fairness. Given the rich existing literature focused on
explicit sensitive attributes, our study dives into the implicit fea-
tures and specifically focuses on a novel perspective termed user
interest diversity. We investigate the following research question:

Are users of varied interest diversity treated fairly in RSs?
Firstly, imbalanced user satisfaction could undermine the overall

utility of the platform and even result in dissatisfied users leaving
(i.e., increased user defection) [18, 35]. For example, in the context
of food recommendation in Fig. 1(A), some users prefer a limited
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Figure 1: Why diverse interests matter? Real-world RS exam-
ples (A) Food recommendation (B) Dating recommendation1.

number of cuisines while others have more flexible tastes. Satis-
fying all users is a primary goal. Secondly, if the platform fails to
equitably accommodate these diverse preferences, it not only raises
issues of user satisfaction but also poses significant ethical concerns.
Online dating recommendation in Fig. 1(B) serves as a pertinent
example. Users exhibit a spectrum of sexual orientations, including
homosexuality, bisexuality, heterosexuality, and more. While ho-
mosexual and heterosexual users have more specific preferences
related to gender interests, bisexual users might exhibit a broader
range of interests. Ensuring a fair system for users with varied in-
terest diversity is a core requirement for ethical consideration [43].

To explore the fairness of existing models towards users exhibit-
ing various levels of interest diversity, we conduct a preliminary
experiment with detailed analysis in Sec. 2. In particular, we con-
template two scenarios: one where item category information (e.g.,
movie genres) is available, and another where it is not. We then
define two interest diversity metrics. Following this, we categorize
users into groups based on interest diversity and compare the utility
metrics of the recommendations they receive. The results reveal
a pattern that users with higher interest diversity tend to receive
lower recommendation performance. This observation remains
consistent across multiple datasets, models, definitions of interest
diversity, and group partitions. Our experiments indicates that the
unfairness among user groups with varied interest diversity (i.e.,
user interest diversity unfairness) indeed exists. To alleviate such
unfairness without compromising the overall utility performance,
it’s necessary to enhance the recommendations for users with high
interest diversity, as this is the system’s performance bottleneck.
We explore the cause of performance disparity among user groups,
and our conclusion aligns with prior work [2, 41], which suggests
that a single embedding is insufficient to capture users’ interests.

To this end, we propose a multi-interest framework to improve
user interest diversity fairness, that can be integrated into existing
RS models. In our multi-interest framework, each user is composed
of a center embedding representing users’ main characteristic and
multiple virtual embeddings, reflecting users’ interests derived from
their interacted items. We develop multi-interest representation
layers to learn better user embeddings, especially for users with
high interest diversity. Each layer includes an interest embedding
generator that derives virtual interest embeddings from globally
shared interest parameters, and a center embedding aggregator that
facilitates multi-hop aggregation. As such, the designed mechanism
can automatically assign different interest numbers that are gen-
erally consistent with the interest diversity in an implicit manner.

1Note that the illustration does not represent authors’ perspective on binary genders.

Table 1: Notations.

Notations Descriptions
I𝑢 User 𝑢’s interactions I𝑢 = [𝑖1, 𝑖2, ..., 𝑖𝑑𝑢 ]
𝑑𝑢 Number of interactions
C𝑢 Category set of I𝑢
𝑁 𝑐
𝑢 Number of user 𝑢’s interaction in category 𝑐

Dcat/Demb User interest diversity via item category/embedding
𝜙 ( ·, · ) Similarity function
e𝑢 /e𝑖 User/Item embeddings
ẽ𝑢 /ẽ𝑖 Normalized User/Item embeddings
A/D Adjacency/Degree matrix
𝐾/𝑘 Number of interests/𝑘-th interest
𝑁 Number of users and items
𝑑 Embedding dimension
𝑦̂𝑢𝑖 Relevance score between user 𝑢 and item 𝑖
N𝑣𝑖

The neighborhood set of node 𝑣𝑖
E𝑙
𝐶

Center embeddings at layer 𝑙
E𝑙
𝑉

Virtual interest embeddings at layer 𝑙
w𝑙
𝑘

Global interest parameter of 𝑘-th interest at layer 𝑙
↓ /↑ The lower/higher the better

Experimental results validate the effectiveness of our framework
in achieving a better trade-off between fairness and utility perfor-
mance. Our main contributions are summarized as follows:
• Consistent Disparity Identification: We identify the unfair
treatment among users with varied interest diversity, where users
with broader interests tend to receive lower-quality recommen-
dation. This pattern has been empirically verified to be consistent
across datasets, models, diversity metrics, and group partitions.

• Multi-interest Framework Design: We delve into the potential
reason causing the disparity from the embedding space where we
observe the insufficiency of using single embedding to represent
users and items due to their complex multi-faceted interactions.
This motivates us to propose a multi-interest framework which
is both model-agnostic and parameter-efficient.

• Better Fairness-Utility Tradeoff: Our proposed multi-interest
framework outperforms the backbone models and fairness base-
lines by achieving the optimal balance between fairness and
utility. Also, it offers superior and more balanced embedding
alignment, along with more diverse recommendations.

2 USER INTEREST DIVERSITY UNFAIRNESS
In this section, we investigate how existing RSs treat users with
varied levels of interest diversity. First, we formally define interest
diversity, concatering two scenarios where item category is avail-
able or not. Then, we categorize users into groups with varied levels
of interest diversity. Ultimately, we demonstrate the performance
across different groups using two representative recommendation
models: LightGCN [14] and CAGCN∗ [33]. The disparate group per-
formance reveals the existence of user interest diversity unfairness.
Notations used in the paper are summarized in Table 1.

2.1 Interest Diversity Definition
User interest diversity aims to measure the dissimilarity of the
items interacted with each user in the training data (i.e., users’
historical interactions). Based on whether category information is
available, we define interest diversity based on item category or
item embedding.
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Figure 2: Group recommendation performance (Recall ↑): the pattern that users with more diverse interests generally receive
lower recommendation quality is consistent across various datasets,models, diversity metrics, and group partitions. A larger
group ID indicates a higher level of user interest diversity.

Definition 2.1. Interest Diversity via Item Category. Given
user 𝑢’s historical interaction I𝑢 = [𝑖1, 𝑖2, ..., 𝑖𝑑𝑢 ] where 𝑑𝑢 is the
number of interactions and C𝑢 is the set of categories of items user
𝑢 has interacted with, 𝑁𝑐𝑢 denotes the number of items from user
𝑢’s interaction belonging to category 𝑐 , we define user 𝑢’s interest
diversity Dcat (𝑢) following Simpson’s Index of Diversity [27]:

Dcat (𝑢) = 1 −
∑
𝑐∈C𝑢 𝑁

𝑐
𝑢 (𝑁𝑐𝑢 − 1)

|I𝑢 | ( |I𝑢 | − 1) . (1)

Definition 2.2. Interest Diversity via Item Embedding. Given
the pretrained item embeddings, user𝑢’s interest diversity Demb (𝑢)
is as follows:

Demb (𝑢) = 1 − E(𝑖,𝑖′ ) ∈I𝑢×I𝑢𝜙 (e𝑖 , e𝑖′ ), (2)

where 𝜙 (e𝑖 , e𝑖′ ) =
e𝑖 ·e𝑖′

∥e𝑖 ∥ ∥e𝑖′ ∥ is the cosine similarity between the
embeddings of two items 𝑖, 𝑖′.

Essentially, Dcat (𝑢) measures the probability that two randomly
sampled items are from different categories, and Demb (𝑢) measures
the dissimilarity between the interacted items in their embedding
space. For both scenarios, a larger value indicates a higher level of
interest diversity. Unless specified, we use Dcat for default.

2.2 Group Partition
Given users’ interest diversity, we group users with k-means cluster-
ing [21]. The number of clusters is determined using the commonly-
used elbow method [28]. The assignment of clusters subsequently
defines the group partition, with a higher group ID indicating a
higher diversity of interests. It’s worth noting that there are al-
ternative methods to group users, e.g., dividing users into equal
sized groups based on number of users, or range of user interest
diversity. Unless specified otherwise, we primarily rely on k-means
clustering in the experiments.

2.3 Preliminary Results
Given the exceptional performance of utilizing graphs in RSs, we
select two graph-based models for evaluation: LightGCN [14] and
CAGCN∗ [33]. The former is a widely recognized and frequently
used model. The latter is a newer development and improves the
overall utility by reducing the emphasis of neighbors not adhering
to the main interest which is closely related to our topic.

We evaluate them on four datasets including ml-1m, epinion,
embmetics, and anime, the details of which will be described in

Sec. 5.1.1. The preliminary results across different scenarios are
illustrated in Fig. 2. Specifically, Fig. 2(A) is the group utility perfor-
mance (Recall) where groups are divided based on k-means cluster-
ing with Dcat as the diversity metric. The curves suggest a trend that
as interest diversity increases, the group utility performance gener-
ally decreases. This pattern is observable across multiple datasets
and models. We also explore another diversity definition Demb in
Fig. 2(B) which shows a similar trend. Additionally, we obtain re-
sults based on different group partitions including the equal user
number and equal user interest diversity range in Fig. 2(C). The
results show a consistent trend across various datasets, models,
diversity metrics, and group partitions that users with diverse in-
terests generally receive a lower recommendation quality. This
indicates the existence of user interest diversity unfairness, which
jeopardizes the user experience for user with diverse interests.

3 SOURCE OF UNFAIRNESS AND
MOTIVATION OF MULTI-INTEREST

To mitigate user interest diversity unfairness identified in Sec. 2, we
dive into the source from the alignment and misalignment between
user and item embeddings. Our empirical findings indicate a trend in
alignment that correlates with the observed performance disparities:
user group with diverse interests has poor performance as well as
poor alignment. We hypothesize that the suboptimal alignment
arises from the inadequacy of using single embedding to align
user’s diverse interests (illustrated in Fig. 4).

Since the core component in majority RSs is to learn high-quality
user and item embeddings, we investigate the root cause of user in-
terest diversity unfairness from the embedding space. Prior research
has underscored the correlation between embedding alignment
(i.e., the capacity to bring users and their associated items closer
in the embedding space) and utility performance [29, 30]. A supe-
rior alignment typically correlates with a better performance. The
alignment definition is as follows:

Alignment = E(𝑢,𝑖 )∼𝑝pos ∥ẽ𝑢 − ẽ𝑖 ∥2 , (3)

where ẽ𝑢 and ẽ𝑖 are the 𝑙2 normalized user and item embeddings
from historical interacted pairs. It measures the Euclidean distance
in the unit hypersphere and a lower Alignment score (aka. shorter
distance) corresponds to better utility performance. To uncover the
potential reason for unfair recommendation performance across
different user groups, we measure the average Alignment in each
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Figure 3: Group-level embedding alignment (↓) of ml-1m
dataset based on LightGCN and CAGCN∗.

group. Results on ml-1m in Fig. 3 (results for other datasets are
included in Appendix A) show that (1) CAGCN∗ exhibits superior
alignment compared to LightGCN, a consistency mirrored in the
performance illustrated in Fig. 2; (2) Users displaying a broader
spectrum of interests tend to have larger Alignment scores in the
embedding space. This suggests that the current recommendation
models are not effective in aligning users and items, particularly
when users have a wide array of interests.

Fig.4(A) depicts the alignment challenge for user with high inter-
est diversity. When the user is represented by a single embedding,
to achieve an optimal alignment with every interacted item, the
learned single embedding falls in-between the interacted items.
This results in a poor alignment with the real interests. Such insuffi-
ciency of using single embedding to align interacted items, that are
from diverse interests, motivates us to use multiple embeddings to
represent different user interests [2, 17, 41]. As shown in Fig. 4(B),
the user has multiple embeddings. For items belonging to diverse
interests, the embeddings can be automatically obtained and they
have a better alignment with the corresponding interacted items in
the embedding space. Comparing the scenarios of single-interest
and multi-interest, we find that owing to a better alignment, the
recommended items in Fig. 4(B) are more accurate than Fig. 4(A).
This underscores the potential of the multi-interest approach. We
also conduct experiments in Appendix B to investigate whether the
unfairness is due to interest shift, which is not the major cause.

4 THE MULTI-INTEREST FRAMEWORK
To mitigate unfairness, we propose a multi-interest framework
where each user is represented by multiple (virtual) interest embed-
dings. Based on the proposed framework, we improve the alignment
for users with high interest diversity, thereby improving their rec-
ommendation performance and alleviating the performance bias.
Next, we give an overview of the framework in Sec. 4.1, elaborate
the component details in Sec. 4.2 and optimization in Sec. 4.3.

4.1 Model Architecture
Fig. 5 shows the multi-interest framework where each user/item
has different types of embeddings, including (1) center embeddings
E𝑙
𝐶
∈ R𝑁×𝑑 representing users/items main characteristic/features

where 𝑁 is the number of node (including users and items) and 𝑑
is the dimension; (2) interest (virtual) embeddings E𝑙

𝑉
∈ R𝑁×𝐾×𝑑

which relate to specific interests where 𝐾 is the number of inter-
ests (for simplicity, we denote E𝑉 as virtual embeddings hereafter).
Among these embeddings, center embeddings are learnable param-
eters while the virtual embeddings are calculated based on center
embeddings via attentions. This mechanism avoids introducing a

Figure 4: Multi-interest motivation: single embedding is in-
sufficient to capture users’ diverse interests.

large number of learnable parameters by sharing the global interest
w𝑙
𝑘
in the attention mechanism. We represent the 𝑘-th virtual em-

bedding of node 𝑣𝑢 as E𝐿
𝑉
[𝑣𝑢 , 𝑘] and the user center embedding as

E𝐿
𝐶
[𝑣𝑢 ]. Similar notations apply to the item side. We illustrate the

motivation of using multiple embeddings for items in Appendix C.
With these notations, the framework is as follows: (1) Given

the user-item bipartite graph, user and item embeddings are ob-
tained through the multi-interest representation layers (details in
Sec. 4.2);(2) After obtaining the embeddings, the relevance score
𝑦𝑢𝑖 for user, item pair (𝑣𝑢 , 𝑣𝑖 ) is calculated based on the last layer
representations where L is the number of hops:

𝑦𝑢𝑖 =
𝐾max
𝑘=1

E𝐿𝑉 [𝑣𝑢 , 𝑘]⊤E𝐿𝐶 [𝑣𝑖 ] +
𝐾max
𝑘=1

E𝐿𝑉 [𝑣𝑖 , 𝑘]⊤E𝐿𝐶 [𝑣𝑢 ]; (4)

(3) These predicted relevance scores are optimized via Bayesian
Personalized Ranking Loss (BPR) loss [25] LBPR.

Note that the relevance score in Eq.(4) is different from the cal-
culation in previous recommendation models [14, 33] or multi-
interest-based session recommendation [2, 41]. In previous works,
because user and item only have single embeddings, the dot product
between the user and the item embedding (i.e., e𝑢⊤e𝑖 ) denotes their
relevance score. In multi-interest based session recommendation,
only items have learnable parameters and users/sessions are cal-
culated based on items (𝐾 embeddings with e𝑘𝑢 denoting the 𝑘-th
interest) and therefore max𝐾

𝑘=1 e
𝑘
𝑢
⊤
e𝑖 is sufficient to update the item

embeddings. However, similar to LightGCN, we have both user and
item embeddings to learn. Simply optimizing the traditional multi-
interest relevance score that is commonly used in session-based
representation cannot utilize user embeddings, indicating it is not
suitable in our case. Therefore, we use the symmetric scores shown
in Eq.(4) where both user and item embeddings are optimized.

4.2 Multi-Interest Representation Layer
Next, we introduce the details of multi-interest representation layer,
which is at the core of the architecture and designed to learn, cal-
culate and aggregate multiple embeddings. The model is composed
of stacked layers to deliver the final user and item embeddings.

4.2.1 Interest embedding generation: Virtual embeddings of 𝑙-th
layer for node 𝑣 and𝑘-th interest (i.e., E𝑙

𝑉
[𝑣, 𝑘]) is calculated in Eq.(5)

as the weighted average of the center embeddings of neighbors. The
weight is calculated in Eq.(6) based on Softmax attentionmechanism
where𝑇 is the temperature to control the Softmax smoothness. The
input logits to Softmax function are cosine distances between virtual
embeddings and the global interest w𝑙

𝑘
. Intuitively, if an item is
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Figure 5: Multi-interest framework (interest number equals two): rather than a single embedding, each user/item is represented
by multiple embeddings (i.e., center and virtual). Center embeddings and global interest embeddings are learnable parameters
while the interest (virtual) embeddings are calulated without assigning extra parameters.

related to the 𝑘-th interest, the attention will be higher and lead
to larger contribution to the aggregates from this item. Therefore,
E𝑙
𝑉
[𝑣, 𝑘] captures information related to 𝑘-th interest.

E𝑙𝑉 [𝑣, 𝑘] =
∑︁
𝑣𝑛∈N𝑣

𝑎𝑙
𝑘,𝑣𝑛

E𝑙𝐶 [𝑣𝑛] (5)

𝑎𝑙
𝑘,𝑣𝑛

=
exp(𝜙 (E𝑙

𝐶
[𝑣𝑛],w𝑙𝑘 )/𝑇 )∑

𝑖 exp(𝜙 (E𝑙𝐶 [𝑣𝑛],w
𝑙
𝑖
)/𝑇 )

(6)

4.2.2 Center embedding aggregator: We adopt the similar approach
as LightGCN [14] to update embeddings based on topology of the
graph. Different from LightGCN, we use virtual embeddings to
update the center embedding as in Eq.(7). Since virtual embeddings
have extra dimension in interest, these embeddings need to be
transformed to the same dimension as center embedding before the
aggregation. We use an argmax operator to select the interest id
of the “matching slide” called mid. The embeddings of mid index
has the highest dot product similarity with the node’s center em-
bedding. Such operator has been commonly used in multi-interest
literature [2, 41] and has been verified to have faster convergence
and better performance compared with other ways to use multi-
interests [17]. For each node 𝑣 whose center embedding is E𝑙

𝐶
[𝑣],

the id of the matching slide for one neighbor node 𝑣𝑛 ∈ N𝑣 is:

mid(𝑣, 𝑣𝑛, 𝑙) = argmax𝐾
𝑘=1 (E

𝑙
𝑉 [𝑣𝑛, 𝑘]

⊤
E𝑙𝐶 [𝑣])

Given the “matching slide,” the aggregation process is as follows:

E𝑙+1𝐶 [𝑣] =
∑︁
𝑣𝑛∈N𝑣

1√︁
𝑑𝑣𝑑𝑣𝑛

E𝑙𝑉 [𝑣𝑛,mid(𝑣, 𝑣𝑛, 𝑙)] (7)

4.3 Optimization
We utilize the BPR loss [25] (LBPR) to train our multi-interest RS.

LBPR = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈D
log𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) + 𝜆Θ∥Θ∥2,

where D = {(𝑢, 𝑖, 𝑗) |𝑢 ∈ U ∧ 𝑖 ∈ I+
𝑢 ∧ 𝑗 ∈ I−

𝑢 } is the training
dataset andU is the total user set, I+

𝑢 /I−
𝑢 are the item sets that user

Table 2: Dataset statistics.

Dataset # Edges # Users # Items # Category
ml-1m 223305 5645 2357 18
epinion 163320 11875 11164 26
cosmetics 930275 53238 28310 400
anime 901328 40112 4514 76

𝑢 has/hasn’t interacted with. 𝜎 (·) is Sigmoid function. Θ denotes
the model parameter with 𝜆Θ controlling the 𝐿2 norm regulation
to prevent over-fitting. 𝑦𝑢𝑖 is the predicted preference/relevance
score computed based on Eq.(4).

5 EXPERIMENTS
In this section, we evaluate the performance of our multi-interest
framework on on real-world datasets and compare the utility and
fairness performancewith various representativemethods. Through
experiments, we aim to answer the following research questions:
• RQ1: Does our proposed multi-interest framework achieve a
better utility-fairness trade-off than the baseline methods?

• RQ2: Is the multi-interest framework able to learn higher-quality
embeddings with better alignment?

• RQ3: Can the proposed framework learn to match the number of
interest embeddings with the diversity of historical interactions?

• RQ4: Can the multi-interest framework provide extra benefits
beyond accuracy and fairness, e.g., recommendation diversity?

• RQ5: How do the hyperparameters affect the performance?

5.1 Experimental Setup
5.1.1 Datasets. We evaluate the proposed multi-interest frame-
work on four datasets including ml-1m, epinion, cosmetics, and
anime2. We pre-process data by (1) filtering edges by maintain-
ing the highest rating score so that the remaining edges show
strong preferences; and (2) applying k-core filtering iteratively
to remove users with interaction number smaller than 5. After
that, we randomly split the dataset into train/validation/test based

2Datasets are available at: ml-1m, epinion, cosmetics, anime
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Table 3: Fairness and utility performance for various models denoted by Backbone-Method (Each model is composed of the
recommendation backbone and fairness method). The best is highlighted in bold and the runner-up is underlined.

Backbone Method ml-1m epinion cosmetics anime Avg
RankRecall↑ Unfairness↓ Recall↑ Unfairness↓ Recall↑ Unfairness↓ Recall↑ Unfairness↓

LightGCN

Vanilla 0.3087 0.0376/0.1018 0.0904 0.0320/0.0378 0.2116 0.1260/0.1942 0.4015 0.0384/0.098 2.08
DRO 0.3143 0.0409/0.1047 0.0926 0.0377/0.0.451 0.2104 0.1296/0.2013 0.4029 0.0453/0.1102 2.92
ARL 0.2973 0.0376/0.1058 0.0850 0.0316/0.0381 0.1941 0.1199/0.1730 0.3844 0.0407/0.1110 2.83
Multi 0.3116 0.0385/0.0856 0.0901 0.0364/0.0222 0.2405 0.1193/0.1494 0.4239 0.0430/0.1136 1.92

CAGCN∗

Vanilla 0.3141 0.0429/0.1054 0.0948 0.0380/0.0373 0.2286 0.1332/0.1903 0.4044 0.0415/0.1096 2.83
DRO 0.3173 0.0401/0.0946 0.0927 0.0383/0.0375 0.2294 0.1350/0.1891 0.4024 0.0414/0.1012 2.58
ARL 0.3024 0.0367/0.1121 0.0912 0.0354/0.0380 0.2167 0.1257/0.1734 0.3884 0.0413/0.0985 2.67
Multi 0.3107 0.0411/0.0921 0.0922 0.0378/0.0212 0.2548 0.1297/0.1368 0.4237 0.0417/0.0904 1.92

on 60%/20%/20% proportions. The statistics of the pre-processed
datasets are summarized in Table 2.

5.1.2 Baselines. To verify whether our framework can achieve a
better trade-off between fairness and utility, and further general-
ize to different backbones, we compare the performance of two
representative recommendation backbones (LightGCN [14] and
CAGCN∗ [33]) before/after equipping our proposed multi-interest
framework. For a fair comparison, we also apply other fair base-
lines to the backbones including DRO [13] and ARL [16]. Note that
all these methods are group-agnostic which means that the group
partition is unavailable during training. More descriptions about
compared methods and implementation details are in Appendix D3.
The number of parameters are reported in Appendix E.

5.1.3 Metrics. For utility performance, we adopt Recall@20 and
NDCG@20. For fairness performance, we use the standard devia-
tion of the utility performance across user groups. The deviation
measures the performance gap among groups, and a larger score sig-
nifies lower fairness. Based on group partitions via interest diversity
metrics Dcat and Demb, we report two corresponding (un)fairness
scores. This setting can evaluate whether the group-agnostic mod-
els are effective for different group partitions.

5.2 Performance Comparison (RQ1)
We present the utility and fairness scores in Table 3 (The results
based on another utility metric NDCG is included in Appendix G).
Since the standard deviations for all methods across various seeds
are negligible compared with the main performance, we leave them
out. From the result, we draw several observations:
• The multi-interest framework has the best fairness-utility trade-off
in general. Our proposed method achieves the best and runner
up performance in most of the times when compared with other
methods. Upon calculating the average rank for each method,
ours emerges as the leader in both backbones. While the current
rank of 1.92 indicates some room for enhancement towards the
optimal rank of 1, it underscores the efficacy and potential of the
multi-interest framework in balancing fairness and utility.

• The multi-interest framework works better with large dataset. In
cosmetics dataset, which has the highest count of items and
categories, our method consistently delivers enhanced perfor-
mance in both fairness and utility. Given the diversity of items
and categories, learning varied interests becomes more essential,

3Our code and datasets are available at: Code.

amplifying the advantages. We dive into more details about the
impact of items and categories in Appendix H.

• The multi-interest framework is more stable across backbones com-
pared with other fairness baselines (i.e., DRO and ARL). DRO and
ARL rank higher than the base model CAGCN∗, however, their
rank drops when integrated into LightGCN. This underscores the
complexity of maintaining an optimal balance across different
models. Furthermore, such distinct performance variations of
DRO and ARL across different backbones can be attributed to
their inherent design. These methods were specifically designed
to enhance the performance for instances with suboptimal rec-
ommendations. While Fig. 2 demonstrates that the user group
with diverse interests has the poorest average performance and
is expected to gain the most, other factors, such as the percentage
of under-performing users in each group, play a role. If other
groups have a higher proportion of users with poor recommenda-
tions, they might obtain greater benefits, thereby increasing the
unfairness. Therefore, we can observe in some cases (e.g., DRO
in ml-1m with LightGCN backbone) that the utility improves
and the fairness drops. Such percentage in each group can vary
across models, resulting in high instability of DRO and ARL due
to their heavy reliance on the performance distribution. This
suggests that DRO and ARL are not universally effective in the
current context. In contrast, the multi-interest framework relies
on the underlying interests rather than performance, which is
more closely related to the current setting and more stable.

5.3 Representation Quality (RQ2)
Multiple embeddings are expected to learn a better embedding dis-
tribution compared with single embeddings (Fig. 4), especially for
the embedding alignment between user and interacted items. To
evaluate this, we calculate the average alignment based on the back-
bones and their multi-version. Table 4 shows that multi-interest
improves the alignment consistently. This suggests that the frame-
work effectively brings users and their interacted items closer in the
embedding space. However, an intriguing observation arises when
examining performance metrics. While the improved alignment in
CAGCN∗ leads to superior utility performance compared to Light-
GCN in Table 3, the enhanced alignment in the multi-version does
not always result in better utility performance relative to the back-
bones. This inconsistency may arise from the trade-off between
alignment and uniformity [29]. Specifically, while alignment im-
proves, it could lead to reduced uniformity in the multi-version due
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Table 4: Embedding alignment (Results with improved align-
ment compared with backbone are highlighted in bold).

Method ml-1m epinion cosmetics anime
LightGCN 0.8774 0.5951 0.7937 1.0165

Multi-LightGCN 0.5007 0.4111 0.5396 0.7514
CAGCN∗ 0.7512 0.5429 0.7069 0.9118

Multi-CAGCN∗ 0.4315 0.2973 0.4694 0.7176

Figure 6: Group-level embedding alignment of ml-1m dataset
based on two backbones.

to more user embeddings, which offsets the anticipated enhance-
ments. The nuanced interplay between alignment and uniformity,
and strategies to effectively balance them, present intriguing av-
enues for future exploration in multi-interest scenario.

Beyond evaluating overall alignment, we delve into embedding
alignment at the group level. In Fig. 6, there’s a discernible trend
when comparing the backbone to its multi-version: alignment ap-
pears more evenly distributed across different groups. Since align-
ment is closely related to the utility performance, it contributes to a
fair recommendation across groups, which follows our expectation.

5.4 Interest Matching (RQ3)
For each user, our multi-interest framework initially assigns the
same number of interests (i.e.,𝐾 ). Given the underlying assumption
that users exhibit varied levels of interest diversity, can the model
autonomously adjust the number of interests even if it begins with
an equal allocation? To answer this question, we obtain the set of
interests that matches the recommended items (i.e., for each item,
the matched interest is the specific interest that has the maximum
relevance score) and calculate the average matched interest num-
ber for each group. Results in Fig. 7 show that for the first three
groups, users with more diverse interests have been assigned a
larger interest number, indicating that our model has the ability to
distinguish different interest diversity and can automatically cater
to user preferences to some extend. However, the trend for the last
two groups is not consistent, which leave us a future direction to
explicitly assign interest number based on user interest diversity in
addition to the current implicit way.

5.5 Recommendation Diversity (RQ4)
We measure the diversity of the recommended item sets. The re-
sults are presented in Table 5 based on two diversity metrics: Dcat
in Eq.(1) and Demb in Eq.(2). First, the cosmetics dataset, which

Table 5: Diversity measured by Dcat and Demb (Results with
improved diversity compared with backbone are in bold).

Diversity Method ml-1m epinion cosmetics anime

Dcat

LightGCN 0.3852 0.5477 0.6849 0.3193
Multi-LightGCN 0.3768 0.5454 0.6110 0.3300
CAGCN∗ 0.3786 0.5382 0.6611 0.3206
Multi-CAGCN∗ 0.4182 0.6667 0.7639 0.3573

Demb

LightGCN 0.3189 0.2871 0.4271 0.5134
Multi-LightGCN 0.3206 0.3338 0.3781 0.4557
CAGCN∗ 0.3934 0.3292 0.3833 0.4259
Multi-CAGCN∗ 0.5229 0.3987 0.4919 0.4009

Figure 7: Average interest number for each group on ml-1m.

has the highest number of categories among the datasets, consis-
tently exhibits the greatest diversity in comparison to the other
datasets. Second, CAGCN∗ has a slightly reduced Dcat than Light-
GCN. This is attributed to CAGCN∗’s mechanism: it assigns higher
pre-computed topological-based weights to neighbors that are more
densely connected to the center node (i.e., nodes that are topologi-
cally more similar). While certain nodes gain emphasis, others get
overshadowed. This reduces the likelihood of recommendations
based on less-similar users, resulting in the drop in diversity. Third,
multi-CAGCN∗ has a consistent diversity enhancement (in both
Dcat andDemb) comparedwith the backbone (with enhancements in
7/8 cases). We hypothesize that CAGCN∗ learns more accurate user
interests and incorporating higher-quality embeddings amplifies
the advantages of our multi-interest framework.

5.6 Sensitivity Analysis (RQ5)
There are two hyperparameters in the model: the number of inter-
ests and the number of hops. From Fig. 8, we draw the following
observations. A larger interest number could contribute to the util-
ity performance but not necessary maintain a higher performance.
This could be due to the increasing learning difficulty and over-
fitting risk. Our multi-model prefers a smaller hop since (1) the
multi-interest representation layer in Sec. 4.2 aggregates neighbor-
hood information, serving as an implicit hop; (2) more layers would
result in a higher level of smoothness which hides the diversity.

6 RELATEDWORKS
6.1 Fairness in Recommender Systems
The majority RS development is concentrated predominantly on
utility performance enhancement. However, emergent concerns
regarding the equitable treatment of diverse user groups have mo-
tivated the advent of fairness-aware recommender systems [19,
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Figure 8: Sensitivity analysis on Multi-LightGCN.

31, 42]. Researchers have divided users into groups and investi-
gated the group-level unfairness based on various criteria which
can be summarized into two primary categories [42]: (1) explicit
features, which involve sensitive features such as gender [7, 36],
race [12, 44] and age [10]; (2) implicit features, which are extracted
from interactions such as the number of interactions (i.e., degree)
and the amount of purchases [11, 18, 24, 35]. While the explicit
features are vital to fairness discourse, they are often inaccessible
due to privacy policies or users’ reluctance to share such informa-
tion. Consequently, our research focuses on implicit features given
the profusion of user interactions in recommendation scenarios.
Despite the significance of all previously mentioned features, our
study explores a novel perspective within the realm of implicit fea-
tures called user interest diversity considering its close relationship
with the RS goal and its high relevance to real-world applications.
Additionally, while most works adopt group information during
training [19, 29], recent works have also explored group-agnostic
directions with the assumption that group partitions are not avail-
able during the optimization [13, 16]. In this work, we follow this
setting considering there are various ways to divide users into
groups. Our goal is to develop a model that upholds fairness across
diverse group divisions rather than catering to specific partition.

6.2 Multi-Interest Recommender Systems
The main idea of multi-interest solutions is that single embedding
is insufficient to represent node’s features, hence necessitating the
deployment of multiple embeddings. This idea has been exten-
sively employed in session-based recommendations - depending
on how the interests are obtained, the solutions fall into attention-
based and category-based methods. The attention-based methods
extract interests from the interactions into interest embeddings
based on the attention mechanism. MIND [17] initializes the ef-
fort to extract interests based on dynamic capsule routing. After
that, ComiRec [2] leverages self-attention to learn multiple inter-
ests. While ComiRec [2] considers the item-to-interest relationship,
Re4 [41] models interest-to-item relationship by adding regular-
izations. The cluster-based methods perform clustering on the in-
teracted items and obtain representative embedding per cluster
to depict interests. PinnerSage [22] clusters interacted items with
Ward hierarchical clustering method [34], and utilizes the embed-
ding of the center item, which minimizes distance sum to other

items within the cluster, to depict user’s interests. MIP [26] assigns
each interest as representation of the latest interacted item in each
cluster. Additionally, MIP learns weight to represent preference
over each interest and integrates it into the relevance score.

Beyond their application within RSs, multi-interest idea has also
been applied in other representation learning tasks. For instance, the
multi-interest-based random walk [23, 39] assigns each node a tar-
get embedding along with multiple context embeddings. Similarly,
in the multi-interest-based Graph Neural Network (GNN)[5, 37],
each node is characterized by several embeddings and an additional
membership embedding that signifies the association with each
interest. The principle of node partitioning[8] has also been adapted
to accommodate multi-interest strategies, where a node is divided
into several virtual nodes based on neighborhood structure, whose
embeddings represent the original node [38].

In contrast, we delve into multi-interest in direct recommenda-
tion, emphasizing the importance of learning both user and item
embeddings. Notably, in contrast to numerous studies [5, 8, 23, 40]
that increase parameter size for user representation, we employ
shared global interest parameters for all users. This approach allows
us to compute virtual interests in a parameter-efficient manner.

7 CONCLUSION
In this study, we examine whether users with varied levels of inter-
est diversity are treated similarly/fairly in recommendation systems.
Initial findings reveal a consistent disparity among user groups
across different models, datasets, diversity metrics, and group par-
titions. This indicates the existence of User Interest Diversity Un-
fairness. Specifically, users with a broader range of interests often
receive lower-quality recommendations, which has a negative im-
pact on the user fairness and overall utility. Delving into the embed-
ding space, we notice a trend linking group embedding alignment
and utility performance. This suggests that a single embedding
may not adequately represent diverse interests. To address this, we
introduce a multi-interest framework where users are character-
ized by multiple (virtual) interest embeddings. Evaluation on two
representative recommendation system backbones demonstrates
that our approach better balances fairness and utility. Additionally,
the learned embeddings have higher-quality and more balanced
alignment in the embedding space. The proposed framework also
provides more diverse recommendations. In future research, we
aim to enhance the interest generation component. Currently this
component is based on Softmax attention, other attentions or gen-
erative methods can be used to derive interest embeddings. For
instance, we can incorporate text information and leverage large
language models (LLM) for interest extraction/generation [6, 15].
The trade-off between alignment and uniformity within the realm
of multi-interest also merits investigation.
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A GROUP-LEVEL EMBEDDING ALIGNMENT
In this section, we present the group embedding alignment on Light-
GCN and CAGCN∗ on the other three datasets in Fig. 9. Generally,
the trend is similar to the one in Fig. 3. When interest diversity
increases, the embedding alignment shows a poor performance.
The trend when using Demb as diversity metric is more consistent.

Figure 9: Group-level embedding alignment on epinion, cos-
metics, and anime datasets based on LightGCN and CAGCN∗.

B INTEREST SHIFT

Table 7: Correlation between train and test dataset.

Correlation metric (train / test) ml-1m epinion cosmetics anime
Pearson Correlation 0.9376 0.9981 0.9986 0.9492

Spearman Correlation Coefficient 0.9000 1.000 1.000 0.9000
Kendall Correlation Coefficient 0.8000 1.000 1.000 0.8000

Table 8: Correlation between train and train+test dataset.

Correlation metric (train / train+test) ml-1m epinion cosmetics anime
Pearson Correlation 0.9990 0.9999 0.9999 0.9997

Spearman Correlation Coefficient 1.000 1.000 1.000 1.000
Kendall Correlation Coefficient 1.000 1.000 1.000 1.000

To investigate weather the unfairness is due to the disparity in inter-
est diversity or interest shift. We conducted additional experiments
to measure the correlation among interest diversity in the train and
test datasets. We adopt two settings where we (1) compare the inter-
est diversity between train dataset and test dataset; (2) compare the
interest diversity between train dataset and the dataset including
both train and test datasets. Specifically, we calculate the interest
diversity for each user in the train and test (or train+test) datasets
respectively, obtain an average score for each group, and then use
different correlation metrics to obtain the correlation scores.

We reported the mean and standard deviation for group inter-
est diversity for all datasets in Table 6, which shows that interest
diversity in train and test (or train+test) datasets at a group level
has a similar pattern. We also reported their correlation under var-
ious correlation metrics in Tables 7 and 8. The high correlations
between the train and test datasets indicate that at the group level,
there are no major interest diversity shifts. The correlation between
train and train+test is even higher since including the train dataset

makes the difference in interactions smaller. We would like to note
however these high correlations are likely related to the dataset
splitting for obtaining train/val/test datasets, which was randomly
split following usual convention. In the future, we hope to explore
the combination of multi-interest, continual learning, and interest
diversity shifts with temporal splits, as we believe this will require
dedicated methods and more detailed initial analysis to eventually
tackle the potential interest diversity shifts of some users.

C MOTIVATION OF ITEM SIDE
The virtual embeddings of items function similarly to those of users.
Different users have different interests. Accordingly, they interact
with items based on different interests. The virtual embeddings of
items capture the aspects related to those interests. For instance, if
a user purchased a painting of a basketball player due to an interest
in sports, then the aspect related to sports rather than art aspect
will be extracted from this item (i.e., virtual item embedding) for
the aggregation. If we only use a single embedding for the item,
it then becomes challenging to distinguish/extract these different
aspects and irrelevant/noisy aspect information will be aggregated.
Therefore, the virtual embeddings of items facilitate learning user
virtual interest embeddings. Additionally, such virtual embeddings
can be further utilized for more fine-grained recommendations
(i.e., interest-aware recommendations where explicit interest is
given rather than the current implicit interest encoded in user
embeddings), which we leave as future work.

This is also a design choice based on the observation that most
RS have a symmetric architecture (e.g., the symmetric proprieties of
the user-item bipartite graph) where users and items are treated in
the same way during the computation. The symmetric style has the
following benefits (1) it has a unified logic for processing users and
items, which is easier for implementation and understanding; (2) it
facilitates the matrix computation since user and item embeddings
can be stacked together, which would be efficient.

D BASELINE DESCRIPTIONS AND
IMPLEMENTATION DETAILS

The descriptions for the compared methods are as follows:
• LightGCN [14] is a GNN-based method that aggregates high-
order neighborhood information and simplifies traditional GCN
by removing the linear transformation and nonlinear activation.

• CAGCN∗ [33] is a fusionmodel of LightGCN [14] andCollaboration-
Aware Graph Convolutional Network (CAGCN) [33]. It analyzes
how message-passing captures collaborative filtering (CF) effect
and pre-computes a topological metric, Common Interacted Ratio
(CIR), for collaboration-aware propagation.

• DRO [13] is a group-agnostic optimization approach that aims
to improve the performance of the worst-case instances via dis-
tributionally robust learning.

• ARL [16] is a group-agnostic optimization approach that lever-
ages an adversary module to automatically adjust the weight
in the training loss so that instances with higher loss will be
assigned higher weights.

• Multi is the multi-interest framework proposed in this paper.
It learns multiple interest embeddings to represent each user to
mitigate the performance gap among user groups.
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Table 6: Group interest diversity in various datasets.

Interest Diversity 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5
ml-1m-train 0.08±0.00 0.32±0.00 0.51±0.00 0.65±0.00 0.83±0.00
ml-1m-test 0.18± 0.01 0.39±0.01 0.50±0.00 0.57±0.01 0.55±0.10

ml-1m-train+test 0.11±0.00 0.33±0.00 0.51±0.00 0.63±0.00 0.76±0.00
epinion-train 0.05±0.00 0.31±0.00 0.52±0.00 0.72±0.00 0.87±0.00
epinion-test 0.21±0.01 0.44±0.02 0.57±0.00 0.72±0.01 0.82±0.00

epinion-train+test 0.09±0.00 0.34±0.00 0.54±0.00 0.72±0.00 0.86±0.00
cosmetics-train 0.04±0.00 0.31±0.00 0.53±0.00 0.72±0.00 0.90±0.00
cosmetics-test 0.16±0.00 0.42±0.01 0.58±0.01 0.73±0.00 0.87±0.00

cosmetics-train+test 0.07±0.00 0.33±0.00 0.54±0.00 0.72±0.00 0.89±0.00
anime-train 0.12±0.00 0.32±0.00 0.48±0.00 0.66±0.00 0.82±0.01
anime-test 0.27±0.01 0.35±0.00 0.42±0.00 0.45±0.00 0.45±0.02

anime-train+test 0.16±0.00 0.32±0.00 0.46±0.00 0.60±0.00 0.73±0.01

Table 9: The number of parameters in backbones and the fairness approaches.

Backbone Method ml-1m epinion cosmetics anime dataset(#user, #item)

LightGCN/CAGCN∗

Vanilla 256064 737248 2609536 1428032 (#user + #item) · 𝑑
DRO +0 +0 +0 +0 +0
ARL +33 +33 +33 +33 +(d+1)
Multi +1536 +1536 +1536 +1536 +(#hops · #interest · 𝑑 )

For all methods, we use Adam optimizer for training and set the
learning rate to 0.001, batch size to 2048, L2 coefficient to 0.001,
and embedding dimension to 32. We early stop the training pro-
cess when the best validation score remains unchanged for 25
epochs. Trend coefficient in CAGCN∗ is set to 1.0. Temperature
in the Softmax function is set to 2.0. The model hyperparameters
are selected based on the best recall value during validation. For
each model, we tune the number of hops within {1, 2, 3}. Addition-
ally, for DRO-based model, we tune the hyperparameter 𝜂 within
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For our model, we tune interest number
within {2, 4, 8, 16}. We run the experiments three times and report
the average results. The best hyperparameters for each model are
reported in Appendix F. When applied on CAGCN∗ backbone, the
aggregation weights in Eq.(7) is substituted with the pre-computed
topological-based weights introduced in work [33].

E NUMBER OF PARAMETERS
We report the parameter numbers in Table 9 where the + means
extra parameters compared with the backbone and 𝑑 is the em-
bedding dimension. The number of parameters in LightGCN and
CAGCN∗ backbones are the same which equals to (#user+#item) ·𝑑
where 𝑑 is the embedding dimension (𝑑 = 32 in our paper). DRO
does not introduce new parameters so its number equals the one of
backbone. ARL has an adversarial module in which we adopt the
same one-layer architecture as in the original paper. Its parameters
include the transformation from 𝑑 to 1. The number equals 𝑑 + 1
where 1 is the bias. For our model, the extra parameters are the
global embeddings w in Eq.(6) whose shape is (#hops, #interest, 𝑑).
Its size equals (#hops · #interest · 𝑑). As claimed in the paper, we
tune the number of hops within {1, 2, 3} and interest number within
{2, 4, 8, 16}. We report the maximum number among all hyperpa-
rameters (i.e., 3 hops and 16 interests). For all models, the number
of extra parameters compared with the backbones is negligible.

As discussed in related works, traditional multi-interest frame-
works that directly learn multiple embeddings will introduce a large
number of additional parameters. The small number of extra param-
eters in our model is owing to the design of virtual embedding. We
proposed the globally shared parameter w and then computed the
virtual embeddings based on the original embedding and shared
embedding, largely reducing the parameter size.

F BEST HYPERPARAMETERS
For each model, we tune the number of hops within {1, 2, 3}. Ad-
ditionally, for DRO-based model, we tune the hyperparameter 𝜂
within {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. For our model, we tune interest
number within {2, 4, 8, 16}.

Best hyperparameters for each model on three seeds are as fol-
lows (the order of datasets is ml-1m, epinion, cosmetics, and anime):

(1) LightGCN as backbone:
• LightGCN (number of hops): [3,3,2], [3,3,3], [2,2,2], [3,3,3].
• DRO (number of hops): [2,2,2], [3,3,3], [2,2,2], [2,2,2], [2,2,2];
(𝜂): [0.6,0.6,0.6], [0.6,0.6,0.6], [0.0,0.0,0.0], [0.6,0.6,0.6].

• ARL (number of hops): [2,2,2], [2,3,3], [3,2,2], [2,3,2].
• Multi (number of hops): [2,1,1], [2,2,2], [2,2,2], [1,1,1];
(number of interests): [16,8,4], [8,4,8], [4,16,16], [2,4,2].

(2) CAGCN∗ as backbone:
• CAGCN∗ (number of hops): [3,3,3], [3,3,3], [3,3,3], [1,1,1].
• DRO (number of hops): [3,3,3], [3,3,3], [3,3,3], [1,2,1];
(𝜂): [0.6,0.6,0.6], [0.0,0.0,0.4], [0.0,0.0,0.0], [0.6,0.6,0.6].

• ARL (number of hops): [3,3,2], [3,3,3], [3,3,3], [2,2,2].
• Multi (number of hops): [1,1,1], [2,2,2], [2,2,2], [1,1,1];
(number of interests): [16,8,4], [16,8,2], [4,16,8], [8,2,2].

G FAIRNESS AND UTILITY TRADE-OFF
In this section, we report another utility performance NDCG and
its corresponding fairness metric (i.e., the standard deviation of
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Table 10: Performance (NDCG) on LightGCN backbone (The best is highlighted in bold and the runner-up is underlined).

Method ml-1m epinion cosmetics anime
NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ Avg Rank↓

LightGCN 0.2335 0.0133/0.0307 0.0462 0.0166/0.0153 0.1154 0.0643/0.1021 0.2594 0.0154/0.0513 2.33
DRO-LightGCN 0.2368 0.0139/0.0292 0.0473 0.0192/0.0188 0.1158 0.0670/0.1076 0.2553 0.0141/0.0514 2.75
ARL-LightGCN 0.2258 0.0138/0.0324 0.0438 0.0167/0.0178 0.1063 0.0607/0.0897 0.2466 0.0156/0.0483 3.00
Multi-LightGCN 0.2363 0.0137/0.0499 0.0464 0.0184/0.0093 0.1373 0.0592/0.0756 0.2852 0.0176/0.0471 1.92

Table 11: Performance (NDCG) on CAGCN∗ backbone (The best is highlighted in bold and the runner-up is underlined).

Method ml-1m epinion cosmetics anime
NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ NDCG↑ Unfairness↓ Avg Rank↓

CAGCN∗ 0.2382 0.0138/0.0249 0.0492 0.0196/0.0143 0.1288 0.0692/0.1027 0.2619 0.0164/0.0521 2.33
DRO-CAGCN∗ 0.2418 0.0144/0.0246 0.0483 0.0197/0.0148 0.1296 0.0708/0.1025 0.2613 0.0161/0.0554 2.67
ARL-CAGCN∗ 0.2295 0.0126/0.0318 0.0471 0.0183/0.0180 0.1218 0.0640/0.0899 0.2591 0.0185/0.0556 3.00
Multi-CAGCN∗ 0.2352 0.0132/0.0592 0.0480 0.0192/0.0107 0.1472 0.0663/0.0704 0.2875 0.0168/0.0446 2.00

group NDCG performance) in Table 10 and Table 11 based on two
backbones. Note that the models are the same as in Table 3 which
are selected based on the best recall value. Similar to Table 3, our
proposed multi-interest framework has the highest rank among all
compared methods, indicating its effectiveness in balancing fairness
and utility performance.

H IMPACT OF ITEM AND CATEGORY
NUMBER

To dive into the impact of item number and category number on
fairness performance, we conducted additional experiments. The
main idea is to sample datasets of different sizes (e.g., in terms of
item number, category number) from the original large datasets,
run the framework, and observe fairness performance to see the
impact. For the convenience of sampling, we chose the largest
dataset cosmetics to allow a wide range of sizes. We conducted two
settings (1) Datasets with different numbers of items and categories
(2) Datasets with different numbers of items and a similar number
of categories. The results indicate that category number has a large
impact on fairness and a dataset with a larger category number
tends to have a larger unfairness.

H.1 Datasets with different numbers of items
and categories

We randomly sampled a fixed number of items (5000/10000/15000)
from the original item sets and formed a new interaction list by
keeping (user, item) pairs where item is in the sampled set. After
that, we performed the same preprocessing steps and trained our
multi-framework based on LightGCN as described in the paper.
Note that the item numbers will be smaller than the initial sample
number due to the preprocessing steps. The dataset statistics and
fairness results are reported where the dataset name is denoted
as cosmetics-sample number. Table 12 shows that according to the
sampling method, a larger item number would lead to a larger

dataset with more edges, users, items, and categories. As the dataset
becomes larger in all metrics, unfairness also increases.

Table 12: Fairness on sampled data based on item number.

Dataset #Edges #Users #Items #Category Fairness
cosmetics-5000 24574 4306 2134 254 0.0662
cosmetics-10000 82269 12354 5999 335 0.0784
cosmetics-15000 145752 19795 10089 366 0.0929

H.2 Datasets with different numbers of items
and a similar number of categories

In this setting, we aim to control the number of categories to have
a better understanding of the impact. Therefore, we designed a new
sampling method where we kept a fixed proportion (0.5/0.7/0.9) of
items in each category so that the category number would roughly
remain the same. Similarly, we also do the preprocessing steps. The
datasets are denoted as cosmetics-proportion. The results in Table 13
show that the category number of each dataset is the same under
our control. The increased sample proportions result in a larger
edge, user, and item number. However, the fairness performance is
similar for these datasets.

Table 13: Fairness on sampled data based on proportion.

dataset #Edges #Users #Items #Category Fairness
cosmetics-0.5 257494 28942 13082 400 0.1160
cosmetics-0.7 386516 39082 18999 400 0.1084
cosmetics-0.9 519466 48499 25051 400 0.1178

Based on the results in these two settings, we hypothesize that
the fairness performance is largely likely to be impacted by the
category number.
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