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Abstract

The long standing Zarankiewicz’s conjecture states that the crossing number cr(K,, ) of the complete bipartite graph is
Z(m,n) := {%J{’%JBJ{%J Using flag algebras we show that cr(K,,,) > 0.9118 - Z(n, n) + o(n*). We also show that the rectilinear

crossing number ¢r(K,,,) of K, is at least 0.987 - Z(n,n) + o(n*). Finally, we show that if a drawing of K, has no K4 that has
exactly two crossings, and these crossings share exactly one vertex, then it has at least Z(n, n) + o(n*) crossings. This is a local
restriction inspired by Turdn type problems that gives an asymptotically tight result.
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Fig. 1. Zarankiewicz’s drawing of K ¢

1. Introduction

We recall that the crossing number cr(G) of a graph G is the minimum number of pairwise crossings of edges in a
drawing of G in the plane.

The systematic study of crossing numbers of graphs seems to date back to a question by Paul Turdn in 1944. While
working in a brick factory outside Budapest, where his work consisted of pushing wagon loads of bricks from kilns
to storage sites, Turdn noted that rail wagons tended to derail at crossings of tracks, and he wondered what was the
best way to design a brickyard, in the sense that the number of track crossings is minimized. In modern graph theory
terminology, this question is equivalent to: what is the crossing number cr(X,, ,) of the complete bipartite graph K, ,?
As pointed out by Beineke and Wilson in their lively survey [1], this problem has a curious history. Zarankiewicz
thought he had solved the problem [2]. Around a decade later, his main argument was found to have an unpluggable
gap [3]. In any case, Zarankiewicz did exhibit a natural way to draw K, , with exactly

2o = |32 31"

crossings, see Figure 1 for an example. To this day, no drawing of K,,, with fewer than Z(m, n) crossings has been
found, and cr(K,, ,) = Z(m, n) has become known as Zarankiewicz’s Conjecture. This conjecture has been settled only
when min{m, n} < 6 [4], and in a few additional small cases [5].

There seems to be a consensus among researchers interested in the conjecture that this holds, but that attempting to
settle it exactly is a hopeless task. One of the reasons may be that there are many constructions that have asymptotically
Z(m,n) crossings. For example, every geodesic drawing of K2, on the sphere such that for each vertex there is
another vertex in the same class drawn in its antipodal location has exactly Z(2m, 2n) crossings. For this reason, most
efforts on this problem are nowadays focused on its asymptotic version. The asymptotic version of Zarankiewicz’s
Conjecture reads cr(K,,,) = m?n?/16 + o(m*n?). This weaker version also remains open. We focus on the diagonal
case which reads as follows.

Conjecture 1. cr(K,,) = n*/16 + o(n*).

To compare the asymptotic results, we let

. cr(Kpn)
L := lim —,
n—eo Z(n,n)

so that Conjecture 1 may be equivalently paraphrased by saying that L = 1.
Kleitman [4] showed that cr(Ks,) = Z(5,n), and an easy counting argument shows that this implies that L > 0.8.
De Klerk, Maharry, Pasechnik, Richter, and Salazar [6] gave a lower bound on cr(K7,) using semidefinite program-
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Fig. 2. We let F denote a drawing of K34 with two crossings sharing exactly one vertex, such as the one illustrated above. Here the solid edges are
crossed, while the dashed are uncrossed.

ming (SDP) implying L > 0.83. A further improvement to L > 0.859 follows from De Klerk, Pasechnik, and
Schrijver [7] who also used SDP to give a lower bound on cr(Ky,). For a fixed m > 3, deciding whether or not
Zarankiewicz’s conjecture holds for K, , is a finite problem for every n > m, see [6]. Recently, Brosch and Polak [8]
used SDP to provide lower bounds on cr(Kjg,), ct(Kji ), cr(Kj2,), and cr(Kj3,) giving L > 0.8878. Using flag
algebras, Norin and Zwols [9] obtained the following.

Theorem 2 (Norin and Zwols [9]). L > 0.905. In other words cr(K,,,) > 0.905n*/16 + o(n*).

Their result was presented in a talk but never published in a paper. Norin and Zwols were the first to apply flag
algebras to crossing numbers. Their result inspired other applications of flag algebras in graph drawing and geome-
try [10, 11, 12]. Using their method we obtained a slight improvement of the result.

Theorem 3. L > 0.9118. In other words cr(K,,,) > 0.9118n*/16 + o(n™).

It is common to look at restrictions of the drawings to try and get improved bounds. We recall that in a rectilinear
drawing of a graph each edge is drawn as a straight segment, and the rectilinear crossing number ct(G) of a graph G is
the minimum number of pairwise crossings of edges in a rectilinear drawing of G. Note that Zarankiewicz’s original
drawings of K,,, are actually rectilinear. For the rectilinear version of Zarankiewicz’s conjecture, we can significantly
improve the bound from Theorem 3.

Theorem 4. ¢7(K,,,) > 0.987n*/16 + o(n*).

Another restriction one can make is that some given subdrawing does not appear. This sort of condition is
reminscent of Turdn type problems from extremal graph theory, which go as follows. Let F be a graph. What is
the maximum number of edges in an n-vertex graph not containing F as a (possibly induced) subgraph? In our case,
let F be a drawing of K34 with two crossings sharing exactly one vertex, see Figure 2. For example for a vertex set
{uy, us, u3, vi, v, v3, v4} the pairs of crossing edges may be (u;vi, uyv,) and (u;vy, uzvs). This creates a local combi-
natorial constraint rather than a geometrical constraint. Observe that F does not appear in Zarankiewicz’s drawing of
K, ». This restriction allows us to give an asymptotically correct bound.

Theorem 5. If K ,?n is a drawing of K, , where no K3 4 induces exactly two crossings sharing one vertex, then K,?n has
at least n*/16 + o(n*) crossings.

In the next section we give a brief introduction to flag algebras, the main method used in this paper. Then we
describe the more particular setup we use in this paper. Sections 3, 4, and 5 deal with the proofs of Theorems 3, 4,
and 5, respectively.

1.1. Notation
We distinguish a graph G from its drawing by denoting a drawing of G by G”. We denote the crossing number of

a graph G by cr(G). For a drawing G?, cr(GP) is the number of crossings in G”. For a set of vertices X, we denote the
induced subgraph of G by G[X] and G”[X] denotes the subdrawing of G” induced by X.
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2. Flag Algebras
2.1. General Bipartite Setup

Flag algebras is a tool developed by Razborov [13] for solving problems in extremal combinatorics. It has a variety
of applications due to its generality. It can be applied to graphs, hypergraphs, oriented graphs, and other combinatorial
structures [ 14, 15, 16, 17]. Here we give a very brief introduction somewhat tweaked for drawings of complete bipartite
graphs by stating the basic definitions and claims. Proofs of the claims made in this section can be found in [13].

We call a drawing of a graph good if (a) adjacent edges intersect only at their common endvertex; (b) any two edges
have at most one intersection; and (c) intersections of two nonadjacent edges are crossings, not tangential. Crossing-
minimal drawings are necessarily good. Since we investigate crossing-minimal drawings of graphs and their induced
subdrawings, we assume that all drawings are good.

To streamline the exposition, we assume that complete bipartite graphs are vertex 2-colored, where one part is red
and the other part is blue. Notation KD means a drawing of K,;, where the red part has r vertices and the blue part

has b vertices. We use V, (K ) and Vb(K ) to denote the set of red and blue vertices, respectively. The following
text uses the notion of 1som0rph1rns of two drawings of graphs that we specify later. The choice of isomorphism is
not important for the theory but it is crucial for applications. For now we require that there are only finitely many
non-isomorphic drawings of K, foreachr,b > 0.

Let KDb and K”, be two drawings, where r; < r, and by < by. Let X, C 'V, (KDb Yand X, C Vb(KD ) be
subsets of red and blue vertices respectively picked uniformly at random where |X,| = r and |X;| = b;. Denote by
P(KD b ) the probability that K” ’ ,,[X- U Xp] is isomorphic to K, . This is also a density of KD , in Kf by

Let 9’7 denote the collection of all drawrngs of all complete bipartite graphs up to isomorphism. Let 7", » denote those
drawings in F with red and blue parts of size r and b, respectively. Let R¥ denote the set of all formal finite linear
combinations of drawings in ¥ with real coefficients. Let % be a linear subspace generated by all linear combinations
of

Kb, - > P(KD,KP)KP,
KPeF, 1y

where ' > rand b’ > b.

The algebra A is the space RF factorized by K. Observe that addition and multiplication by a real number are
naturally defined in A. Next we introduce a multiplication of two drawings in . Let K r1 by Kg », € ¥ . Fix one
KP € Frirypyin,- Let X, € V(KP) and Xp,, € Vi,(KP) be subsets picked uniformly at random, where |X,,| = r|
and |Xp,| = b;. Let X, = V.(KP)\ X,, and X}, = V,(KP) \ X;,. Denote by P(K,?,b,’ ; KP) the probability that

KP[X,, U X;,] is isomorphic to KDh and KP[X,, U X;,] is isomorphic to Kf;bz. Define

r2,by°

KD, KD, = > PP, KD, K”)KP. (1)

r2,by r2,by?
KDE?—r]wz.bez

This multiplication has a unique linear extension to R which yields a well-defined multiplication in A. This is
proved formally in [13, Lemma 2.4]. Notice that a multiplication of drawings is a linear combination of some other
drawings on more vertices.

For each o in ¥, define all drawings with a fixed labeled copy of o by F7. It is possible to define an algebra A”
built from 7 in a similar way as A is built from ¥ . See [11] or [13] for more details.
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A sequence of drawings of graphs (K,f,,)nzl is said to be convergent if for every drawing K? € ¥ the following
limit converges

lim P(K”, kD).

n—oo

A compactness argument using Tychonoff’s theorem yields that every infinite sequence has a convergent subsequence.
Let (KP,)u>1 be a convergent sequence. Let ¢(K”) := lim,_..o P(K”, K2, for every K” € ¥ and extend ¢ to A by
linearity. The mapping ¢ can be seen as the limit of the sequence (K,?n)nzl- The resulting mapping ¢ : A — R is
actually a homomorphism satisfying ¢(K?) € [0, 1] for every K? € F.

Let Hom* (A, R) be the set of all homomorphisms i from the algebra A to R such that y(K”) > 0 for every
KP € F. This set of homomorphisms is exactly the set of all limits of convergent sequences in 7, see [13, Theorem
3.3].

Similarly to Hom* (A, R), it is possible to define Hom* (A7, R) as limits of convergent sequences where each
drawing has a fixed labeled subdrawing of o. Finally, there is a linear unlabeling operator [.] . : AT — A such that
if $7(A7) > 0 for some A € A, then ¢([A],) > 0.

The proofs in the paper are constructed as follows. For fixed r and b we want to find a constant C such that for all
¢ € Hom* (A, R)

¢[ 7 er(F) F] > C. @)

FeF,p

Letting C := mingcg,, cr(F) would work but it may be improved. We do it using sums of squares obtained in A” for
various o. Denote by T a set of types, some labeled drawings from 7. We do the following for each o € T. Pick
r',b’ > 1 such that 2r' —|V,.(0)| = r and 20’ — |V,,(0)| = b. This is necessary since we will perform multiplications and
we need the result as a linear combination in ¥,p; recall (1). Let n, = |F ‘Zb,| and let F” be a vector with an arbitrary
ordering of elements from #7,,. Then for every ¢ € Hom™ (A, R) and a positive semidefinite matrix M, € R"*" the
following holds

OS(ﬁ([[(FO')TMU-F(’HO_):qﬁ[Z cF(M(,.,O')F], 3)

FeFrp

where cp(M,-, o) are real numbers depending on F, M, and o-. Since some entries in M, may be negative, also some
cr(M,, o) may be negative. This is what makes the approach work. Equations (2) and (3) can be combined since they
are linear combinations in ¥, ;. Using linearity of ¢ we get

¢[ ) F] > ¢[ ) F] = ([P MF ) = ¢>{ > cFF]

FeFrp FeF,p oeT FeFrp
>0
> min (cF) - ¢ Z F|= min(cp) =C,
FE'ﬁ‘b FETA;, FET‘,—J,

| —
=1
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where the coefficients ¢y are functions of the M, s since they are obtained as ¢y := cr(F) — Y., cp(My, o). The goal is
to obtain the largest possible C, which means solving

max min (cg). 4
M,,0€T Feﬁb( r) “)

This is a semidefinite program that can be numerically solved. We used solvers CSDP [18] and Mosek [19]. Notice
that if one proves for some A € A that ¢(A) > 0 for every ¢ € Hom* (A, R), then —y - ¢(A) for a parameter y > 0 can
be added to the calculation.

Finally, in order to obtain a rigorous bound, the numerical solution needs to be rounded to a rational solution.
It can be done using software we developed in SageMath [20]. For more details about ideas behind the rounding
see [21, 22]. The proofs are certified by the positive semidefinite the matrices M, s that can be obtained at http:
//1lidicky.name/pub/knn/. There is no need to solve a semidefinite program in order to verify the solution.

The machinery of flag algebras works with limits of convergent sequences. The same machinery can be applied
also in K,fn but multiplication (1) will come with an additive error O(1/n). Since the number of multiplications in
our calculations is finite, the limit result can be transferred to a result about a (sufficiently large) graph at the cost of
O(1/n) error.

2.2. Isomorphism

In order to apply the method of flag algebras to crossing numbers, we need to define when two drawings are
isomorphic. Let G be a drawing of a graph. The following types of information can be extracted from GP°.

(C1) For each pair of edges e; and e, whether or not they cross each other.
(C2) For each quadruple Q c V(GP), whether G[Q] induces a crossing or not.

In case of a rectilinear drawing, the following information can be also extracted from GP°.

(C3) For vertices uy, us, us, ug whether or not line uu; crosses the segment usu,.
(C4) For vertices uy, uy, us if u3 is on the left or right of the line uju,.
(C5) For each vertex the cyclic clockwise order of its neighbors (that is, the rofation at the vertex).

The lists above are not exhaustive and there may be other possibilities of what information to extract from G”. Notice
that distinct drawings can result in identical configurations in ¥ . Typically preserving more information about the
drawings gives stronger bounds. On the other hand, flag algebras needs to work with a list of all drawings in %, for
some fixed r, b, and larger 7, b usually give better bounds. For computational purposes, |7, needs to be under 200,000.
Itis not clear if it is better to have smaller , b with configurations keeping more information from the drawing or larger
r, b and configurations with less information.

3. General Drawings

In this section we describe the proof of Theorem 3. The main step is the following lemma whose proof is using
flag algebras.

Lemma 6. For every sufficiently large n, in every drawing of K,, , the average number of crossings over all subgraphs
isomorphic to Kz 4 is greater than 4.1.

Proof. We used isomorphism (C1). We obtained all drawings of K34 up to isomorphisms under (C1), denoted here
by F34 from a program developed by Norin and Zwols [23]. In this setting, |F34] = 6393. Using flag algebras, we
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obtained that for every ¢ € Hom™ (A, R):

= 4000000000000000000000000000000000000000000 4.103445537516957.

164137821 7826979825224 197 432
¢[ D CI(KD)KD] 641378215006782697982522480001975856089943

KPeFs4

In addition to using (3), we included the following constraints. Let K? € %33 and K? be obtained from K? by
swapping red and blue colors. The included constraints are K” = K?. Without these symmetry constraints, the lower
bound would be 4.0929. O

Proof of Theorem 3. Let K,lzn be a drawing of K, ,. We proceed by double-counting the pairs of crossings and copies
of K34 in K2, containing them. Each copy of K, in K7, is in 2(n — 2)(";2) = n® + o(n?) different copies of K34 in

K,‘:n. On the other hand, there are 2(3’)(2) copies of K34 in Kfzn and by Lemma 6 the average number of crossings per
copy is at least 4.1. This gives

(1 + o(n*))er(KP,) > 4.1/72n" + o(n”)
cr(KP ) > 82/9-1n*/16 + o(n*) = 0.911 - n*/16 + o(n*).

nn

In the proof of Lemma 6 we also tried isomorphism using (C2). Under (C2), |£3 4| = 355, which greatly increases
the speed of the calculation but the resulting bound 4.044 is weaker.

4. Rectilinear Drawings
In this section we describe the proof of Theorem 4.

Lemma 7. For every sufficiently large n, in every rectilinear drawing of K, , the expected number of crossings in a
K4 4 chosen uniformly at random is more than 8.8837.

Proof. We used isomorphism (C4). To obtain rectilinear drawings of K4, we start with all rectilinear drawings of
Kg found by Aichholzer [24] and try all possible splits into K4 4. This eventually lead to a program using 112401
configurations. Using flag algebras, we obtain

> ~ 8. .
~ 1000000000000000000000000000000000000000000 8.883777481283804

8883777481283804668150619490360970766373630
¢( Z c—r(KD)KD]

KPeFy4

In order to make the problem feasible, we included the following constraints. Let K” € ¥, 4 and K be obtained
from K? by swapping red and blue colors. Instead of including the constraints K? = KP, we reduced the number of
variables. Notice that we used 112401 configurations while |4 4| = 231922. Unlike in Lemma 6, these constraints did
not improve the result but they made it computable. O
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Proof of Theorem 4. Let KnDﬂ be a rectilinear drawing of K, ,. By double-counting the pairs of crossings and copies
of K44 in K,f,, containing them and using Lemma 7 we get

(1/4n* + o(n*))er(KL,) > 8.8837/24°n® + o(n®)
¢r(D) > 8.8837/9 - n*/16 + o(n*) > 0.987 - n*/16 + o(n*).

5. Turan Type Restrictions

In this section we prove Theorem 5. It is enough to work with (C2), translating the problem to a 4-uniform hyper-
graph setting.

Lemma 8. For sufficiently large n, in every drawing of K, the expected number of crossings in a random K3 4 is at
least 4.5.

Proof. We used isomorphism (C2) to work with 73 4. We started with the drawings used in Lemma 6 under (C1) and
applied (C2) to them. This gave 355 drawings up to isomorphism. Removing the drawings with two crossing sharing
exactly one vertex resulted in |#3 4| = 354. Using flag algebras, we obtained that for every ¢ € Hom* (A, R)

¢[ Z cr(KD)KD}Z9/2.

KPeFs4

O

Proof of Theorem 3. Let K,fn be a drawing of K,,,. Using exactly the same argument as in Theorem 3 and Lemma 8
we obtain

1 + o(n®))er(KP)) > 4.5/72n" + o(n”)

n,n

cr(KP ) > n*/16 + o(n®).

6. Conclusion

Flag algebras are applicable to other variants of crossing number. For rectilinear drawings where the red and blue
vertices are separated by a straight line we obtained L = 0.995. For 2-page drawings, in which there is a simple closed
curve containing all the vertices but not crossing any edge, we obtained L = 0.976. Finally, for rectilinear separated 2-
page drawings we obtained L = 0.99998. This last bound is definitely of interest, since there exist rectilinear separated
2-page drawings with exactly Z(n, n) crossings.
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Appendix A. Tight Constructions

Lemma 8 is asymptotically tight. This gives a set X C 34 such that every construction that asymptotically gives
4.5 can contain nontrivial densities only for drawings in X. More precisely, for every ¢ € Hom™ (A, R) satisfying

¢[ Z cr(KD)KD]=9/2

KPeF34

the following holds: for every KP € 34 if ¢(K?) > 0 we have that KP € X. While |F34| = 354, we get [X| = 19.
We depict X below by indicating which vertices are red and blue and then each line corresponds to one 4-edge. This
short list suggests there may be a nice description of the extremal construction. However, X is still larger than the list
generated by the construction depicted in Figure 1, which has only 6 configurations that are depicted as the first 6 in
the following list containing all configurations in X.
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