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Abstract— Detecting gait abnormalities is crucial for as-
sessing fall risks and early identification of neuromuscu-
loskeletal disorders such as Parkinson’s and stroke. Tradi-
tional assessments in gait clinics are infrequent and pose
barriers, particularly for disadvantaged populations. Previ-
ous efforts have explored sensor-based approaches for in-
home gait assessments, yet they face limitations such as
visual obstructions (cameras), limited coverage (pressure
mats), and the need for device carrying (wearables and
insoles). To overcome these limitations, we introduce an
in-home gait abnormality detection system using footstep-
induced floor vibrations, enabling low-cost, non-intrusive,
device-free gait health monitoring. The main research chal-
lenge is the high uncertainty in floor vibrations due to
gait variations among people, making it challenging to
develop a generalizable model for new patients. To address
this, we analyze time-frequency-domain features of floor
vibration data during specific gait phases and develop a
feature transformation method through contrastive learn-
ing to address the between-people gait variation challenge.
Our method transforms the features from vibrations to an
embedding space where samples from different people stay
close to each other (robust to people variation) while nor-
mal and abnormal gait samples are far apart (sensitive to
gait abnormality). After that, gait abnormalities are detected
by a downstream classifier after feature transformation.
We evaluated our approach through a real-world walking
experiment with 21 participants and achieved an 85% to
95% mean accuracy in detecting various gait abnormalities.
This novel method overcomes prior limitations in in-home
gait assessments, offering accessible gait abnormality de-
tection without the need for intrusive devices or labels for
new patients.

Index Terms— Gait assessment, Gait disorders, Con-
trastive Learning, Sensors, Vibrations
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[. INTRODUCTION

Detecting gait abnormalities is essential for early identifica-
tion of the risk of trips and falls, and progressive/rehabilitation
tracking of neuromusculoskeletal disorders, such as joint im-
pairments, Parkinson’s, and stroke [1]-[4]. Gait abnormalities
are typically reflected in deviations of posture from normal
walking patterns and indicate underlying conditions that affect
neuromusculoskeletal systems [5]. Among them, analyzing
how the foot contacts and interacts with the floor during
walking is a critical aspect because it helps to understand
pathological conditions in gait such as foot drag and toe-
walking, as well as inferring how the ground reaction forces
act and are transmitted through the body [6].

Existing gait analysis relies on observational gait analysis
and the use of specialized sensing systems in well-calibrated
gait clinics such as motion capture systems, force plates,
and Electromyography (EMG) [7]-[9]. However, they require
in-person visits to gait clinics, often resulting in infrequent
and discontinuous results under controlled walking settings.
These systems are also expensive and require specialized
installation, and professionally trained staff to operate. As a
result, they also pose barriers for disadvantaged populations to
access healthcare services, especially for low-income families
who live in remote areas. To overcome these issues, studies
have explored portable devices that are more practical for
everyday use, such as video cameras, pressure mats, and
wearables [10]-[17]. However, the cameras require direct line-
of-sight and is sensitive to changing light conditions, and
their measurements are limited to body motion, making it
difficult to infer abnormal footstep force exerted onto the
floor. The pressure mats provide force-related information, but
they require sense deployment and thus have limited areas of
coverage. The wearables enable more ubiquitous usage, but
they require a person to carry devices on designated body
parts (e.g., wrist, legs, ankle), which may cause discomfort
and inconvenience. To overcome these limitations, prior works
have leveraged footstep-induced floor vibration sensing for
gait health monitoring [18]-[23], which is device-free, wide-
ranging, and perceived as more privacy-friendly. While floor
vibrations are sensitive to environmental disturbances, prior
studies have addressed these concerns through noise filtering
techniques and classification algorithms [24], [25]. For gait
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health monitoring, existing studies using this approach have
been successful in extracting basic parameters such as step
time and step frequency [26]-[28]. However, these approaches
have not looked into complex gait characteristics during initial
contact, stance, and foot clearance, making them unable to de-
tect gait abnormalities that are meaningful in clinical settings.
Moreover, the existing studies have not explored the effect of
various gait types, sensor layouts, or individual differences on
gait health monitoring.

In this study, we model footstep-induced floor vibrations
and develop gait phase-informed features from the vibration
signals within three representative stages in a gait cycle
to provide fine-grained, interpretable, and reliable in-home
gait assessments. The physical insight of this approach is
that as a person’s foot contacts the floor during each stage
of a gait cycle, there are significant differences in contact
forces between normal and abnormal gait, such as the angle,
magnitude, area, and duration. Such differences in contact
forces generate distinctive vibration wave patterns on the floor.
As these vibration waves propagate through the floor, we
capture their patterns by installing vibration sensors on the
floor surface. By analyzing the vibration signals, we infer
the characteristics of the dynamic foot-floor contact forces
within each stage of a gait cycle, including initial contact
type, weight translation speed, and quality of foot clearance,
which allows gait abnormality detection. Our approach is non-
intrusive, wide-ranged, and does not require device wearing,
which is suitable for continuous in-home monitoring, which
increases the availability and accessibility of gait assessment
services.

The main research challenge in developing our approach is
the high uncertainty in floor vibrations due to the variations
in walking styles among people. Prior studies found that
each individual has a unique gait, as a result of people’s
body configurations and walking habits [29]. This affects the
interaction pattern between the foot and the floor [25], [30]-
[32] and is mixed with the effect of gait abnormalities, making
it challenging to determine whether a certain deviation from
a typical normal gait is due to that person’s unique walking
habits or not. To overcome these challenges, we focus on 3
critical stages within a gait cycle that are of major concern
in clinical studies. They are 1) the initial contact stage, 2)
the weight translation stage during the stance phase, and 3)
the foot clearance stage during the swing phase. We first ex-
tract gait phase-informed features from floor vibration signals
during these 3 stages to represent normal and abnormal gait
characteristics. We then develop a person-invariant gait feature
transformation framework based on contrastive learning, with
the context of person and gait type information in order
to address the challenge of gait differences among people.
Conventional contrastive learning aims to extract features from
unlabelled input data that are similar within the same given
category and dissimilar outside of that category. To make our
method person-invariant, we leverage contrastive learning to
transform the vibration features into a space such that footstep
samples from different gait types (normal vs. abnormal) are
far apart and those from the same gait type stay close to each
other regardless of the gait differences among people. After

the transformation, we compare the embeddings of newly
observed footstep samples with that of the normal footsteps
to detect gait abnormalities, which translates the model esti-
mations into interpretable gait health insights tailored to each
person’s gait. The output of our approach is visualized through
a personalized risk profile during each critical stage showing
the distribution of all recorded gait cycles.
The contributions of the study are that we:

1) Develop the first floor vibration-based gait abnormality
detection system. Our system detects abnormal foot-
floor interactions during initial contact, stance, and
swing phase for efficient and non-intrusive gait health
monitoring at home;

2) Model the gait phase-informed features within a gait
cycle through a person-invariant feature transformation
based on contrastive learning to reduce uncertainties due
to the gait variations among people;

3) Evaluate the approach through a real-world walking
experiment with 21 participants and 60,000+ gait cycles
to demonstrate its effectiveness and robustness.

We conducted a real-world walking experiment with 21
participants. Our approach achieves an 85%, 90%, and 95%
mean test accuracy in detecting gait abnormalities for each gait
cycle during initial contact, stance phase, and swing phase,
respectively. Overall, our approach has an average of 0.81 test
F1 score in classifying four types of gait, including normal
gait, gait with flatfoot/toe initial contact, gait with flexed-knee
in stance phase, and gait with foot drag in swing phase, which
establishes its efficacy in in-home gait assessments.

[1. RELATED WORK

In this section, we summarize the related work on gait ab-
normality detection, mainly from two perspectives: 1) existing
sensing systems, and 2) prior work on floor vibration-based
gait monitoring.

A. Existing Sensing Systems on Gait Health Monitoring

Existing sensing systems in gait health monitoring are sum-
marized in Table II-A to include their qualitative advantages
and disadvantages in real-world settings.

Based on the comparison above, gait health monitoring in
non-clinical settings presents considerable challenges. Specifi-
cally, users’ expectations regarding convenience, comfort, and
privacy protection are notably higher, while the daily living
environment is typically noisier and more complex compared
to clinical settings. Despite these challenges, floor vibration
sensing offers distinct advantages: it is non-invasive, covers a
wide range, and is perceived as more privacy-friendly for daily
use. However, this approach remains relatively under-explored,
and challenges related to the floor types and between-person
variations have yet to be adequately addressed. Therefore, our
study and future work will focus on floor vibration sensing
and endeavor to develop solutions to overcome its challenges.
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TABLE |
QUALITATIVE COMPARISON OF THE EXISTING SENSING SYSTEMS FOR GAIT ANALYSIS
Sensing Method Setting Advantages Disadvantages
(C/NC)*
MoCap System C Accurate body motion Expensive; Require professional training and calibration
EMG C Capture muscle activation Limited muscle coverage
Force Plates C/NC Accurate ground reaction force Limited footstep coverage (one footstep per plate)
Pressure mat C/NC Capture ground reaction force distribution Dense sensor array; Limited area of coverage
Cameras C/NC Interpretable body motion; Large coverage Require clear line of sight; Privacy concerns
Wearables (IMU) NC Versatile movement capture; convenient Require carrying devices; Limited body motion coverage
Pressure insole NC Capture ground reaction force distribution Discomfort and inconvenience due to device wearing
Acoustics NC Contactless; Large coverage Noisy signals; Privacy concerns due to voice recording
RF/Wi-Fi NC Contactless; Robust to obstructions Noisy signals; Interference with the surroundings
Floor vibration NC Low cost, Contactless; Large coverage; Privacy friendly | Noisy signals; Sensitive to the floor and person contexts

*C/NC: Clinical/Non-Clinical setting

B. Prior Work on Floor Vibration-based Gait Health
Monitoring

In the domain of gait health monitoring via footstep-induced
floor vibrations, existing studies primarily serve exploratory
purposes, with evaluations predominantly centered on feasi-
bility assessments. Prior studies involve noise filtering and
occupant detection, temporal gait parameter estimation, foot-
step localization, and left-right balance estimation. We provide
an overview by categorizing these studies and summarize the
main idea behind these methods.

One challenge when using footstep-induced floor vibration
for occupant characterization is the mixture of environmental
noises and human-induced vibration signals. To mitigate this
issue, previous research has employed noise reduction tech-
niques, such as low-pass filters and Wiener filters, combined
with classification models to differentiate between footsteps
and other signals. The approach involves filtering out noises
and identifying peaks associated with footstep events in the
time domain [25]. Then, we leverage the frequency domain
of the vibration signals to classify human footsteps out of the
other noises [24].

After reducing noises, existing studies have looked into
temporal and spatial gait parameter estimation, such as the
step time, step length, and cadence [20], [21], [33]-[35]. This
is typically accomplished through the application of a peak-
picking algorithm on the raw signal and/or the continuous
wavelet transform (CWT) spectrum, followed by the selection
of the range containing the predominant signal energy.

In addition, prior work also succeeded in estimating the
cumulative ground reaction force and the left-right balance
using the signal energy normalized by the person-to-sensor
distances [36], [37]. To address the challenge that the vibration
wave attenuates as the person walks away from the sensor,
the method leverages the footstep localization algorithm to
compensate for the energy loss due to attenuation. With the
estimated gait forces per footstep, the study assessed the left
and right foot balance by taking the ratio of the estimated
forces.

Moreover, in order to overcome data misalignment chal-
lenges due to the variations of walking paths, floor types, shoe
types, sensor locations, the number of walkers, and more, our
prior work has explored models based on transfer learning

to automatically align the data across various domains [21],
[38], [39]. The main idea is to learn a mapping function
that transforms the data from one domain to another in an
unsupervised setting. This will make our model more adaptive
across various real-world scenarios.

However, the existing studies have several limitations, in-
cluding 1) lack of detection of gait abnormalities, and 2)
overlook the challenge of person-to-person variations. In this
paper, we bridge this research gap by tackling these limi-
tations through the development of the first person-invariant
gait abnormality detection system using footstep-induced floor
vibrations. Our work pushes the boundaries by bridging the
engineering developments on floor vibration sensing with real-
world medical practices.

[1l. METHOD

In this section, we introduce the framework of gait abnor-
mality detection through footstep-induced floor vibrations. As
shown in Figure 1, our framework consists of three modules:
1) Gait Data Acquisition, 2) Gait Feature Extraction, and 3)
Gait Abnormality Detection. In the following subsections, we
present the purpose, components, and algorithms in each of
the three modules, respectively.

A. Gait Data Acquisition

We develop a low-cost, maintainable floor vibration sens-
ing system for gait data acquisition and pre-processing the
footstep-induced floor vibration signals through noise filters
and footstep detection algorithms.

The floor vibration sensing system leverages multiple geo-
phone sensor nodes connected with a self-designed printed
circuit board (PCB) for signal amplification and analog-to-
digital conversion (ADC) as shown in Module 1 of Figure 1.
Each independent sensor node is individually robust and
simple by design based on our prior work [40]. Geophone
sensors have many advantages in human gait monitoring. The
sensing system can be operated by low power (compatible
with a 2200mAh 11.1V lipo battery) and is low cost. They are
designed to restart quickly and without intervention after errors
such as temporary power loss, signal degradation, overflowing
buffers, and minor node damage. Compared to accelerometers
and microphones, a geophone’s frequency range aligns well
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Fig. 1.
gait feature extraction, and 3) gait abnormality detection.

with the effective range of human gait-induced floor vibrations,
and it is perceived as more privacy-friendly for in-home usage
than microphones. The sensing range of each node depends
on the floor properties. When tested on a wooden floor with
500x amplification, each sensor covers up to a 20-meter
radius. All participants have provided written informed consent
and/or assent and all experiments are conducted in accordance
with the approved protocols under relevant guidelines and
regulations of Stanford Research Compliance Office (RCO)
with approved protocol number IRB-55372 on 08/20/20 by
the Stanford Institutional Review Board (IRB).

The noise filtering sub-module aims to reduce noises that
are not relevant to human gait. We use a lowpass and a Wiener
filter. The lowpass filter serves the purpose of eliminating
high-frequency noises due to electrical interference and/or
mechanical vibrations. The lowpass filter is configured with a
threshold of 500 Hz. This setting allows us to retain the vital
gait information present in floor vibration data, specifically the
range from 5 to 250 Hz, as demonstrated in prior work [19].
In addition, the Wiener filter serves the purpose of reducing
background environmental noises [41]. This filter takes in a
3-second signal segment containing only background noise,
leverages its frequency spectrum, and filters out the noise
spectrum from signals.

The footstep detection sub-module aims to detect individual
footsteps from the continuous vibration signals collected by
our sensing system. Our algorithm is developed based on
peak identification within the wavelet coefficients. We apply
wavelet transformation to the entire signal using the Morlet
wavelet, a widely adopted wavelet known for its computational
efficiency and suitability for capturing time-varying, non-
stationary signals [42]. Given that footstep-induced vibration
signals possess an inherently impulsive nature due to the short
foot-floor contact duration, we narrow our focus to the natural
frequency range typically found in floor structures (5-30 Hz)
when analyzing the wavelet coefficients. Within this range,
we identify the peaks in the wavelet coefficients as footstep
impulses. In addition, since footsteps tend to occur in repetitive
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Overview of our floor vibration-based gait abnormality detection framework, which consists of three modules: 1) gait data acquisition, 2)

patterns in the vibration signals as a person continues to walk,
we set the minimum number of consecutive impulses to three.
This enables us to distinguish footsteps from other human-
induced impulse signals, such as items dropping and doors
opening/closing, which has been evaluated in our prior work
with satisfactory classification accuracy [24].

B. Gait Feature Extraction

We extract gait features from floor vibration signals by
first segmenting the gait cycle into three foot-floor interaction
stages and then extracting features from these stages based
on the physical relationship between footstep force and floor
vibrations.

1) Gait Cycle Segmentation: In medical practices, human
walking is assessed based on the segmentation of gait cycles.
A gait cycle is a fundamental unit of human walking, defined
as the time interval of locomotion between two successive
strikes (initial contacts) of the same foot [43]. A typical gait
cycle consists of two phases: 1) the stance phase when the foot
is in contact with the floor and 2) the swing phase, where the
foot lifts off from the floor and swings in the air. In this study,
we focus on three foot-floor interaction stages of a gait cycle
based on the occurrence of various types of gait abnormalities,
including initial contact, stance phase, and swing phase.

In this sub-module, we extract the time between initial
contact and foot-off, which divides a gait cycle into segments
that correspond to stance and swing phases as shown in
Module 2 of Figure 1. To begin with, we identify gait cycles
by grouping the previously detected footsteps detailed in
Section III-A. Since a standard gait cycle consists of one
foot’s strike and the subsequent strike of the opposite foot,
we pair each consecutive left and right footstep to form a gait
cycle group. Subsequently, we determine the timing of foot
strikes and foot-offs to segment the gait cycle. To achieve
this, we compute the sum of wavelet coefficients within the
dominant frequency ranges of the floor (around 23 Hz for our
testing floor) and the higher frequency range in which the foot
strike-induced vibration signals typically lie. This calculation
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(a) Vibration Features (1 Person)
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Fig. 2.

(b) Vibration Features (3 People)
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Visualization of extracted features through 2D t-SNE feature plots. (a) shows that the vibration features from 1 person show a clear

distinction between different gait types, indicating the effectiveness of our features. (b) shows the feature from 3 people, which has significant
overlapping between people, signifying the challenge posed by the individual differences.

yields two distinct time series: one for detecting foot strikes,
associated with higher frequencies, and another for foot-offs,
related to lower frequencies, following the characterization
from our prior work [21]. We then leverage peak detection
algorithms on these resulting wavelet coefficient time series
to identify specific times of interest.

To extract the initial contact time, when the higher fre-
quencies first become prominent, we apply a reverse sliding
window technique, starting from a peak and proceeding to a
valley. This approach enables us to pinpoint the time when
the vibration signal amplitude begins to rise, signifying the
moment of foot strike. In addition, the foot-off time is detected
as the peak of the lower-frequency component because it is
the time when the damped free vibration starts to attenuate the
signal. Finally, each gait cycle is divided into segments based
on these foot strike and foot-off times. This division allows us
to identify the various foot-floor contact stages accurately.

2) Gait Phase-Informed Feature Extraction: With the seg-
mented gait cycle, we extract features from three perspectives:
1) gait cycle features, 2) foot-floor interaction stage features,
and 3) floor/sensor features. In particular, the foot-floor inter-
action stage features are tailored to the various types of gait
abnormalities at initial contact, during the stance phase and
swing phase, respectively. The floor/sensor features provide
the context of the sensor configurations on the floor to enhance
model generalizability across various floors and sensor layouts.
The features we extracted are summarized below.

o Gait Cycle Features. The gait cycle features aim to de-
scribe the general characteristics of a data sample. These
features include the left/right foot indicator, signal energy,
and variance every 0.1 sec, as well as the mean power
spectral density every 10 Hz of each gait cycle. These
features provide an implicit description of the gait cycle
that potentially informs the type of gait abnormalities.

o Initial Contact Features. The initial contact features
include the mean wavelet coefficients of each 10 Hz
frequency range for each 0.2-sec range around the initial
contact time. The frequency resolution is chosen based on
the observation of the minimal interval between various

modal frequencies. For the temporal range, we focus
on the wavelet coefficients 0.1 sec before and after the
initial contact time to allow imprecise estimations from
the previous segmentation algorithm while minimizing
the feature dimension for efficient model training.

o Stance Phase Features. The stance phase features in-
clude the proportion of lower frequency components (<
60 Hz) among the overall frequency spectrum during the
segmented stance phase. The threshold is chosen based
on preliminary testing on the floor structure, where we
observe that the 1°* and 2"% modes of the floor are both
below 60 Hz. To mitigate error propagation from the
gait cycle segmentation, we incorporate a 0.1-sec margin
before and after the stance phase when computing the
frequency spectrum.

« Swing Phase Features. The swing phase features include
the number and amplitude of the peaks within the high-
frequency range (100-200 Hz) in wavelet coefficients
within the swing phase. The frequency range is chosen
based on the observed typical frequencies induced by foot
drags. Similar to the stance phase features, we incorporate
a 0.1-sec margin before and after the swing phase to allow
up to 50% estimation error from the previous step.

o Floor/Sensor Features. To provide the context of the
floor and sensing system, we include the sensor number
and gait cycle number as one-hot-encoded features. The
sensor number refers to the label of each sensor, which
helps to distinguish the signal variations due to common
hardware flaws during manufacturing and the coupling
effect between individual sensors and the floor. The
gait cycle number informs the location of the footstep
relative to the sensors, which helps to incorporate the
heterogeneity in the floor properties and the variations of
footstep-to-sensor distances.

These features are first concatenated and then processed
through missing-data handling and standardization algorithms
to compile a clean and complete dataset. The standardization
algorithm normalizes the features to the same scale to min-
imize the biased penalty in gradient descent during training.
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Fig. 3. An example of the contrastive feature transformation process through sampling and contrastive learning. For each anchor sample, we

select a positive sample and multiple negative samples to train a feature transformation encoder through contrastive loss, which pulls together the
anchor and positive sample (sample with the same gait type but from a different person) while pushing apart the anchor and the negative samples

(samples with different gait types) in the embedded feature space.

After that, we apply a feature selection model to filter out the
less effective features and preserve the ones that provide the
most gait-related information. Specifically, we use the random
forest model to compute the feature importance using the
training data and labels, which indicates the contribution of
each feature to the model’s predictive performance. We narrow
down the feature number to 64 to enable efficient training,
the pattern of which concerning each gait type is shown in
Figure 2.

While the extracted features represent gait abnormalities,
they also contain information on between-person variations
during walking, leading to difficulty generalizing to new
patients. As we observe from Figure 2a, the extracted vibration
features from 1 person are effective for gait abnormality
detection as there are clear distinctions among various types
of gait. However, when visualizing the features from 3 people
(see Figure 2b), we find that the features from various gait
types are less separable due to the difference among various
people’s gait. For example, there are significant overlaps
between normal gait (red dots) and flexed-knee gait (yellow
dots) because each person has a unique gait, which is re-
flected through the floor vibration data as discussed in our
prior work on floor vibration-based person identification [30],
[31]. As a result, a person’s normal walking gait may share
similar features as another person’s flexed-knee gait, making
it challenging to detect gait abnormality for people who have
no pre-recorded data. This calls for a person-invariant gait
abnormality detection method that can be generalized to newly
observed people, which is introduced in the following Section.

C. Gait Abnormality Detection

With the extracted features, we develop a person-invariant
gait abnormality detection method by first transforming the

features into an embedding space such that the difference
among various gait types (e.g., normal vs. abnormal gaits)
is preserved while the difference among various individuals is
reduced. After the transformation, we leverage a linear probing
to compare the gait abnormality templates with the newly
observed data to detect abnormal gait.

1) Gait Feature Transformation via Contrastive Learning: To
achieve the person-invariant goal, gait feature transformation
involves two steps: the development of a person- and gait-
aware sampler and a contrastive learning model [44]-[46].
An example of feature transformation through sampling and
contrastive learning is described in Figure 3.

During person- and gait-aware sampling, each gait cycle
sample is defined as an anchor. For each anchor, the sampler
selects a corresponding positive sample (which belongs to the
same gait type as the anchor but from a different person) and
multiple negative samples (which belong to different gait types
from the anchor) from the training data. The positive sample
is selected from a different person from the anchor to force
the model to recognize the difference between individuals and
close this gap. The negative samples are selected from each
of the different types of gait abnormality regardless of the
person, enabling the model to distinguish between different
gait abnormality types.

The contrastive loss we use is based on InfoNCE [46],
where NCE stands for Noise-Contrastive Estimation, which
is based on the principle of maximizing mutual information
between positive pairs and minimizing it between negative
pairs. InfoNCE has shown promise in time series data and has
superior performance when working with siamese encoders
(i.e., same encoder for different gait samples) for similarity
comparison [47]-[49], which aligns with the goal of our
abnormal gait detection problem.
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The encoder described in Figure 3 is a 3-layer neural
network, with a hidden dimension of 256, which is a common
choice for many basic machine learning tasks. It can capture
non-linear representations in the data while being efficient and
simple enough to mitigate over-fitting. The depth and the size
of the neural network are chosen based on a grid search among
various sets of model parameters.

2) Gait Abnormality Detection through Linear Probing: We
now aim to answer the question: Are the representations
learned by contrastive loss useful for the downstream classi-
fication task? To study the quality of the learned embeddings,
we follow the widely used linear probing protocol [46], [50]-
[53], where we train a simple logistic regression model on
top of the frozen encoder network and use test accuracy as a
proxy for representation quality. This linear probing protocol is
commonly used to evaluate contrastive learning methods. This
is because, if the learned representations allow a simple linear
classifier to achieve good performance on a specific task, then
it suggests that the representation has captured general and
discriminative features about the data.

In this study, linear probing is also used as a downstream
classifier for gait abnormality detection. To achieve this, we
first train three separate linear classifiers using the learned
embeddings from each of the three foot-floor contact stages,
and then test the classifiers on the embeddings from the newly
observed samples. We integrate the embedding from multiple
sensors using a weighted loss during linear probing for gait
abnormality detection [54]. The weight is assigned based on
the signal-to-noise ratio of the data - closer sensors typically
have higher weights as their signal amplitudes relative to the
noise amplitudes are significantly higher than the sensors that
are farther away. During testing, the embeddings from the
newly observed samples are computed by feeding through the
trained encoder, which transforms the new features into the
embedding space. Such siamese architecture (i.e., perfectly
symmetrical train and test encoders) has been shown to work
well with contrastive loss in numerous existing studies [55],
[56].

The detection results are whether or not a person has gait
abnormality during initial contact, stance phase, and swing
phase, respectively. To understand the specific type of gait
abnormalities, we focus on four typical gait types in this
study, including normal walking, gait with flatfoot/toe contact,
flexed-knee gait, and gait with foot drag, and predict the type
to which the test sample is most likely to belong. All the
results are produced for individual gait cycles to preserve
the distribution of a person’s gait and are further used for
visualization of personalized gait abnormality risk profiles,
which is described in Section IV-C.

IV. EVALUATION AND RESULTS

To evaluate our approach, we conducted a real-world walk-
ing experiment with 21 human subjects and collected 62,404
gait cycles. In this section, we first introduce the evaluation
setup, and then discuss the overall results of abnormal gait
detection, and finally create diagrams to visualize the person-
alized gait abnormality risk profiles.

A. Evaluation Setup

The evaluation setup consists of the experiment setup and
the data preparation. We first introduce the field experiment
setup (including equipment, procedures, and data flow), and
then describe the data preparation process (including labeling,
train-test splits, and model parameters).

The experiment involves two sets of sensors: 1) four geo-
phones mounted on the surface of the floor for vibration data
collection and 2) a Vicon Motion Capture (MoCap) system to
capture the walking posture of each subject for ground truth.
The vibration sensors are placed at the side of the walking
path as shown in Figure 4a,c, with a sampling frequency of
500 Hz. The analog signals are converted into digital signals
and amplified to a range of -5 to 5 V through Vicon Locker
Lab to enable synchronization between camera and vibration
data [57]. The data are stored on a desktop server to mimic
the actual data flow in home environments. The floor vibration
system can also be adapted to multi-room settings using the
wireless sensor network with Wi-Fi-based data transmission
developed in our prior work [58].

During the experiment, each of the 21 participants walked
across a 7-meter long walkway for 30-40 trials according
to four types of gait to simulate the normal and abnormal
contacts, including normal walking, abnormal initial contact
(flatfoot or toe contact), flexed-knee gait, and foot dragging
(see Figure 4b). Each trial typically consists of 6-8 gait cycles.
The participant characteristics are summarized in Table II. All
participants have provided written informed consent and/or
assent and all experiments are conducted in accordance with
the approved IRB (IRB-55372) by the Stanford Institutional
Review Board as mentioned in Section III-A. During each
walking trial, the participant first stands still and then ac-
celerates to reach a constant speed. The walking speed is
chosen by the walker during normal walking and qualitatively
instructed during abnormal walking by medical experts. The
specific instructions provided by the medical experts include 1)
qualitative characteristics of each gait abnormality type (e.g.,
toe strike instead of heel strike), 2) muscle activation sequence
and status (e.g., relaxing the calf muscles while contracting
the quadriceps during leg swings), and 3) thresholds for the
desired ranges of motion in hip, knee, and ankle joints. These
instructions lead to more realistic abnormal gait while keeping
the natural variability of different people within each gait
abnormality type. When reaching the end of the walkway, the
subject decelerates and stops walking. The operation of the
MoCap system involves 16 markers attached to the subject’s
lower limbs in accordance with the Plug-in gait lower body
model in Vicon MoCap System [57], producing records of
locomotion during walking with a sampling frequency of 100
Hz. The data are manually labeled by a trained expert. The
labels include the “initial contact” and “toe off” time for
each gait cycle (see Figure 4d for a sample gait cycle in
vibration with decomposed frequency components). Among
all the collected data, samples with insufficient data quality
or unrealistic abnormal walking patterns are discarded as
determined by the medical experts. Overall, there is a total
of 62,404 labeled gait cycles summarized in our dataset, each
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Fig. 4. Real-world walking experiment setup. (a) shows the human walking experiment in action with the vibration sensors mounted at the edge
of the walkway. (b) presents examples of gait types during the experiment. (c) describes the vibration sensor layout and the dimensions of the
walkway. (d) shows a sample gait cycle with initial contact, stance phase, and swing phase.

further attached with a person label and a gait type label.
For data preparation, we split the train and test data through
random selections among subjects. In our evaluation, ~80%
of the subjects belong to the training set (rounded to 17
people) and the rest belong to the test set (rounded to 4
people). While the majority of the existing studies using floor
vibration for human monitoring use footstep-level train-test
split [19], [30], [38], our evaluation uses the subject-level
split, which has multiple benefits and better reflects the real-
world scenario. The subject-level split allows evaluation of our
model performance for previously unobserved people, which
shows the robustness and generalizability of the model to
new subjects. In our problem, it validates the effectiveness
of the person-invariant feature transformation. In addition,
the subject-level split also aligns with the practical setting
where the need for gait abnormality detection typically comes
from new patients. The reported performance of the models is
computed by averaging 10 random selections to represent the
overall performance, assuming that the variance of 10 random
tests is representative of all possible train-test combinations.
To demonstrate the effectiveness of our contrastive learning
approach, we use a baseline model (a 3-layer feedforward
neural network encoder) that replaces the contrastive loss with
cross-entropy loss in Figure 3. The model parameters are tuned
through a grid search algorithm via 5-fold cross-validation on
the training data, and the selected parameters are used for
model testing. The tuned parameters include the learning rate,
the number of neurons in the hidden layers, the dimension of
the embedding space, the number of negative samples for each
anchor, and the batch size. Both the baseline model and our
model are optimized through parameter tuning to produce a

fair comparison.

B. Results on Abnormal Gait Detection

Overall, our method achieves an 85%, 90%, and 95% mean
test accuracy in detecting gait abnormalities for each gait cycle
during initial contact, stance phase, and swing phase, respec-
tively (see Table III). Compared to the baseline models without
person-invariant contrastive learning, our method has a 1.3 x to
2.1x error reduction in detecting abnormalities among various
foot-floor interaction stages. The deep learning models (LSTM
and CNN) have similar or worse performance than many of the
statistical learning models, are more unstable during training,
and require significant effort on hyperparameter tuning due to
the higher model complexity.

It is worth noting that all evaluation results are described
for individual gait cycles instead of a walking trial or a
person. This provides better granularity of information and
allows further integration of predicted outcomes as a person
typically has multiple walking trials and each trial consists of
multiple gait cycles. For example, our prior work on gait-based
disease progression tracking aggregates the information from
individual gait cycles for each walking trial and then for a per-
son’s overall gait patterns through hierarchical models, which
has shown to improve the prediction accuracy from ~70%
to ~90% [59]. In addition, predicting individual gait cycles
enables flexibility in downstream tasks such as estimating the
distribution of normal and abnormal footsteps within a trial or
a person.

1) Effectiveness of the Person-Invariant Feature Transforma-
tion: We evaluate the effectiveness of the person-invariant
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TABLE Il
PARTICIPANT CHARACTERISTICS (N=21). PARAMETERS ARE GIVEN AS MEAN * STANDARD DEVIATION OR COUNTS IN CASE OF SEX.
Age (yrs) | Gender (F/M) | Height (cm) | Weight (kg) | Left Leg Length (cm) | Right Leg Length (cm) | Knee Width (cm) | Ankle Width (cm)
24.6 + 3.0 11/9 1694 +£99|63.8 + 14.2 87.7 + 6.6 87.6 + 6.4 98 £ 1.2 7.1 £ 0.5
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Fig. 5. Effectiveness of the person-invariant feature transformation. (a) Our method outperforms the baseline model in gait abnormality detection
for abnormalities during initial contact, stance phase, and swing phase, respectively. (b) 2D t-SNE plot of the embedding space (from all
test participants) shows less overlapping among different gait types compared with Figure 2b, demonstrating the effectiveness of the feature
transformation. (c)(d) Our method has a 20.9% improvement in F1 score over the baseline when comparing the test confusion matrices for gait type

classification.

TABLE Ill
FLOOR VIBRATION-BASED GAIT ABNORMALITY DETECTION ACCURACY
Model Abnormal | Abnormal | Abnormal
Initial Contact | Stance Swing
Naive Bayes 0.6868 0.6899 0.9132
Quadratic Discriminant Analysis 0.7079 0.7384 0.9316
K-Nearest Neighbors 0.8049 0.7964 0.9301
Decision Tree 0.7535 0.7709 0.9177
Random Forest 0.7823 0.7049 0.9269
AdaBoost 0.8006 0.7848 0.9280
Multi-Layer Perceptron 0.8120 0.7941 0.9328
Long-Short-Term Memory 0.8171 0.8142 0.7025
(LSTM)

Convolutional Neural Network 0.7592 0.6570 0.6513

(1D-CNN)
Our Method 0.8510 0.9041 0.9521

contrastive learning through an ablation study to compare the
same model framework before and after the feature trans-
formation, the results of which are summarized in Figure 5.
After the feature transformation, Our method has improved

the performance for all gait abnormality types. Figure 5b
visualizes the t-SNE plot of the embedding space from 17
randomly selected training subjects. The plot is generated
by compressing the high-dimensional embeddings into 2D
space by preserving their relative location in the space. In this
plot, we observe a clear separation of the feature embeddings
among various gait types (including normal and abnormal gait)
after the feature transformation. Compared to the similar plot
(Figure 2b) presented in Section III-B, there is significantly
less overlapping of features in the embedding space than the
feature space. This establishes the efficacy of our person-
aware sampling and contrastive learning approach for person-
invariant gait abnormality detection. The detailed discussion
of the individual difference is presented in Section V-A.

In addition to abnormality detection, we also evaluate the
performance of our method in classifying various gait types,
including normal walking, flatfoot/toe contact, flexed-knee
gait, and gait with foot drag. Our method has an average of
0.81 test F1 score per gait cycle with a 20.9% improvement
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Fig. 6. Comparison between the gait type templates and the new observations in the embedding space. Each gait type has a unique pattern in the
transformed embedding space. The new observations are first transformed to this embedding space and then compared with the templates through

similarity measures to identify the most similar gait type.

over the model before transformation. Specifically, our method
has better precision in all gait types (seen when comparing the
percentages along the diagonal line between Figure 5c and
d). Similar to the abnormality detection results, both baseline
and our method have the highest precision for classifying
abnormal swing as it is most obviously distinct from normal
walking. The lowest precision lies in the normal gait pre-
diction due to potential variations among gait cycles during
walking. The false positive rate (the first row of Figure 5d)
in detecting abnormalities is higher than the false negative
rate (the first column of Figure 5d). This can be caused by
the accelerating and decelerating gait cycles during normal
walking. For example, when a person accelerates, the center
of mass tends to lean forward and the footstep force has fewer
horizontal components than normal heel strikes and tends to
be more similar to toe strikes. The evaluation results establish
the efficacy of our method for gait abnormality detection and
gait type classification.

C. Results on Personalized Gait Abnormality Risks

We define and develop personalized risk profiles to visualize
each person’s gait abnormality risks based on the distribution
of similarity measures between the gait type template and the
embeddings of the new observations.

1) Templates of Normal and Abnormal Gaits: To visual-
ize the effectiveness of the trained embeddings for person-
invariant gait type classification, we develop templates for
each gait type and obtain the similarity measures between
templates and test samples. The gait type templates are com-
puted by averaging all the training embeddings of the same
gait type among multiple people to determine the centroids
of each gait type. Then, we compare the similarity between
the embeddings from new observations and the embedding
templates from the training foot-floor contact data through
a similarity metric to predict the type of gait abnormalities.
For similarity comparison, we choose cosine similarity as the
metric, because it is scale-invariant and captures the directional
difference between vectors in an embedding space. In addition,
cosine similarity is more interpretable as it produces values
between -1 and 1, where 1 indicates identical directions, O

indicates orthogonal (unrelated) directions, and -1 indicates
exactly opposite directions. These values are intuitive and
can be easily interpreted. Figure 6 shows an example of the
templates and test samples in the embedding space.

In this example, each gait type template has a unique
pattern in the transformed embedding space, representing
the significant difference between normal and abnormal gait,
as well as the difference among various abnormality types
during initial contact, stance phase, and swing phase. When
computing the similarity between new observations and the
templates, sample 1 has the highest similarity with the normal
gait, and sample 2 is more similar to the gait with abnormal
swing (i.e., foot drag), which can be observed in the patterns
shown in Figure 6.

2) Personalized Profile of Gait Abnormalities: We develop
personalized profiles of gait abnormalities based on the cosine
similarity between a person’s gait samples and the gait type
templates. We apply a scaling function to convert the similarity
to risk values from O to 1. During this process, we quantify
the risk through the scaled metric that is representative of the
relative risk of each type of gait abnormality. We assume that
the risk values for each gait are independent and thus do not
add up to a fixed sum. This is because the types of gait are not
mutually exclusive, meaning that a person may have multiple
types of gait abnormalities at the same time.

Figure 7 shows the personalized profiles of two test subjects.
Overall, we observe variations in both people’s gait, which
are indicated by the scattered dots along the horizontal axis.
In this example, the distribution of gait cycle similarities of
person 1 has a smaller variance than that of person 2 (shown
as the shorter length of the box plot for person 1), meaning
that person 1 has a more consistent gait and fewer variations.
When comparing each abnormality type, person 1 has a lower
risk than person 2 in general, as observed in the lower mean
value in the box plot. In particular, person 2 has a higher risk
of abnormal initial contact as the similarity with the abnormal
initial contact template is high and the similarity with the
normal gait template is lower and varies significantly. These
profiles provide insights into a person’s overall gait pattern as
well as the distributions among gait cycles. Compared with
the existing clinical reports that focus on a specific gait cycle,
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Personalized gait abnormality risk profile for two test subjects with their natural gait: (a) shows person 1’s profile and (b) shows person

2’s profile. Each dot represents a gait cycle. Person 2 has higher variability among gait cycles than person 1 and has significantly high risks of

abnormal initial contact based on the similarity to the gait type templates.

our method provides information on the variation over many
gait cycles, which can reduce the sampling bias and bring in
new opportunities for long-term monitoring in daily life.

V. DISCUSSION

We discuss the effect of individual differences on gait
abnormality detection and show that our feature transformation
can effectively be generalized for various people, gait types,
and sensor locations.

A. Discussion on Person-to-Person Variations

To address the challenge posed by individual differences
in gait patterns, our method transforms the features into an
embedding space where individual differences are reduced
and gait type differences are amplified. We visualize the fea-
tures/embedding before and after transformation with respect
to various people to discuss the effect of person-to-person
variations, as shown in Figure 8. In the feature space (upper
row of Figure 8), there is a significant difference among
different people’s data within the same type of gait (i.e., clear
separation in different colors for each gait type). In contrast,
the embedding space plots (lower row of Figure 8) show that
there is little separation between different people under the
same type of gait, meaning that the transformation is effective
in reducing between-people differences.

Based on the gait type templates, we compare the similarity
of the feature embeddings across gait types and people and
visualize them in Figure 9. When plotting the feature em-
bedding by gait type (see Figure 9a), we observe that the
embeddings from the same type of gait have significantly
higher similarity than the embeddings across different gait
types, forming a bright diagonal line in the matrix (brighter
color means higher similarity). It is worth noting that there
are also many similar samples between the normal gait and
the gait with flatfoot/toe contacts, which means that it is
more difficult to distinguish between these two gait types than
between the others. This may be because some individuals’
normal gait may be more similar to flatfoot contact and there
are significant variations among various gait cycles as a person
accelerates or decelerates. On the other hand, there are several

samples in foot drag that have higher similarity with normal
gait. This is because the foot drag may not be present in
every gait cycle as a person walks even when the person
has gait abnormalities during the swing phase. To this end,
we combine the information from individual gait cycles to
a representative gait pattern of a person, which is visualized
through personalized gait abnormality risk profiles (which will
be introduced in Section IV-C). In Figure 9b, we observe
that there are evenly distributed bright areas when plotting
the similarity by people. This means that the same person’s
gait cycles do not always have similar features except for
the samples within the same gait type. The brighter areas of
the diagonal line also indicate that samples from the same
gait type of multiple people become similar after the feature
transformation, meaning that the individual differences have
been reduced.

In addition to the individual difference in walking patterns,
the number of training samples from each individual may also
differ, which can lead to over-fitting due to the imbalanced data
distribution. This problem can be addressed by re-sampling the
data using techniques such as randomization, Monte Carlo, or
Bootstrap in future work.

In summary, the results above demonstrate that our method
is robust to person-to-person variations, resulting from the
person-invariant feature transformation. Our method has suc-
cessfully reduced the individual differences and distinguished
among different gait types (including normal gait and various
types of abnormal gait).

B. Discussion on Gait Type Variations

The detection of abnormal initial contact, abnormal stance,
and abnormal swing has an F-1 score of 0.8513, 0.9174,
and 0.9494, respectively, as shown in Figure 10. This means
the performance of our method varies with the types of
gait abnormalities. Among all the gait abnormality types, we
observe that the abnormal swing has the highest accuracy
for both baseline models and our method. This is because
there are obvious differences in vibration signals induced by
additional foot-floor contacts during the swing phase when
compared to no contact in normal walking. Also, the false
negative rate is low for abnormal swing detection, which
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Fig. 8. Comparison of t-SNE feature plots before and after the feature transformation from 3 randomly selected test subjects (dots with different
colors). For each gait type, there is a significant difference among various people’s gait before the transformation (upper row, representing the feature
space); After the transformation, such difference is significantly reduced as people’s embeddings align with each other (lower row, representing the
embedding space).
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Fig. 9. Cosine similarity of the transformed features visualized by (a) gait type and (b) person, with a scale from -1 to 1 (including 8067 gait cycles
in the test set). (a) shows that the transformed embeddings within the same gait type (along the diagonal) have higher similarity than the others. (b)
shows that the transformed embeddings are invariant to different people as the high-similarity samples are evenly distributed among test individuals.

means the model is highly sensitive, and thus fewer cases weight translation speed of flexed knee gait can be similar
of gait abnormalities are missed. Conversely, the abnormal to normal gait at the beginning of walking and is likely to
initial contacts (i.e., flatfoot/toe contact) detection has the decrease significantly after a certain distance due to muscle
lowest accuracy for both models, mainly because of the short fatigue.

duration of initial contact (typically within 0.2 sec). We also
observe that the number of false positives for abnormal initial
contact is larger than that of the false negatives, which can be
explained by the variations in angle and force combinations
during normal walking. For example, some individuals tend to
lean forward, which makes them more likely to have a flatfoot
initial contact. By comparison, the abnormal stance detection
has a higher false negative rate, which means some abnormal
samples are regarded as normal. This may be because the

It is worth noting that our method only detects gait ab-
normalities within the scope of existing abnormal gait data.
Since contrastive loss focuses on distinguishing the difference
between normal and abnormal gait based on the training
data, it may not generalize well to previously unobserved gait
types. However, our method can be easily adapted to new
abnormality types by adjusting the person- and gait-aware
sampler to generate more negative samples (i.e., abnormal gait
types) in Figure 3.
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Fig. 10. The performance of gait abnormality detection across various
gait types, including (a) abnormal initial contact, (b) abnormal stance,
and (c) abnormal swing. Abnormal swing detection has the best perfor-
mance among all types.

TABLE IV
EFFECT OF DIFFERENT SENSORS ON DETECTION ACCURACY

Sensor Abnormal Initial | Abnormal Stance | Abnormal Swing
Contact
Sen 1 0.8203 0.8591 0.9291
Sen 2 0.8338 0.8350 0.9348
Sen 3 0.8143 0.8412 0.9362
Sen 4 0.8426 0.8726 0.9425
All Sensors 0.8510 0.9041 0.9521

The analysis above shows that the performance difference
among gait types can be explained by the unique character-
istics of each gait type. In the future, we will explore other
types of variations such as the walking speed, walking path,
floor type, shoe type, and so on to transfer the person-invariant
learning model into speed-, path-, floor-, and shoe-invariant
models. Moreover, we plan to further balance the trade-off
between false positives and false negatives and explore more
types of gait.

C. Discussion on Sensor Location Variations

We evaluate the effect of sensor location on gait abnormality
detection results, which are summarized in Table IV. Sen 1,
Sen 2, Sen 3, and Sen 4 represent individual sensors labeled
in Figure 4, respectively. From Table IV, we observe that Sen
4 has the best performance among all. This is because Sen 4
has the best signal-to-noise ratio (SNR) as it is located near
the center of the walkway (i.e., closer to the majority of the
footsteps) and right above the mid-span between two joists
(i.e., more significant floor vibration there). While Sen 1 is
also near the center of the walkway, it is placed on top of a
joist where the vibration is less significant due to the higher
stiffness. Sen 2 and Sen 3 have similar performances as their
locations are symmetrical. Since they are placed closer to the
two ends of the walkway, the SNR for footsteps landing at
the other end is significantly lower than those of Sen 4. This
analysis indicates that placing sensors in the middle of the
walkway and/or at less rigid locations of the floor structure is
more desirable and tends to produce better results.

The results also show that the number of sensors can
be significantly reduced in practical settings. Compared with
using all four sensors for gait abnormality detection, there is
a 1% to 7% performance drop when using one sensor only.
This means that while combining multiple sensors boosts the
detection accuracy, the improvement is marginal, and using a

single sensor still offers better accuracy than the majority of
the baseline model using four sensors (compare with Table III).

Moreover, integrating multiple sensor modalities may fur-
ther enhance the performance by capturing multifaceted infor-
mation. For example, existing studies using temporary setups
of phone cameras provide complementary body motion infor-
mation to our approach [60], which has been found to improve
the accuracy for vibration-based gait analysis [35]. Wearable
devices such as wrist band with Inertial measurement unit
(IMU) [61] and electromyography (EMG) devices [4] provide
extra information on upper extremity and muscle activation
that are difficult to be captured by floor vibration. To this end,
integrating these sensor modalities offers promising avenues
for future research.

VI. CONCLUSION AND FUTURE WORK

In this study, we develop a new gait abnormality detection
method using footstep-induced floor vibration for low-cost
and non-intrusive in-home gait assessments. To achieve this,
we develop a floor vibration sensing system and characterize
how common gait abnormality types affect the resultant floor
vibrations. The main challenge in developing our approach
is high uncertainty in floor vibrations due to the different
walking styles among people. To address this challenge,
we develop a person-invariant feature transformation method
through contrastive learning with a person- and gait-aware
sampling strategy. This method learns an embedding space
in which gait samples from different people stay close to
each other while those from different gait types are far apart.
After that, gait abnormalities are detected by comparing their
embeddings with those of the normal gait. We design a
visualization for personalized gait abnormality risk profiles
to summarize the outcome of our method. We conducted
a real-world walking experiment with 21 participants and
obtained 85%, 90%, and 95% mean test accuracy in detecting
gait abnormalities per gait cycle during initial contact, stance
phase, and swing phase, respectively, and achieved a 0.81
F1 score in classifying four types of gait, including normal
walking, gait with toe/flatfoot contacts, flexed-knee gait, and
gait with foot drag. The evaluation results demonstrated the
promise of floor vibration-based gait abnormality detection.

In the future, we aim to enable long-term, continuous
tracking of gait changes by deploying our system in people’s
homes. To achieve this goal, we will focus on a specific type
of gait disorder that is difficult to detect and collect data from
real patients. During the data modeling development, we will
address practical issues such as the data distribution disparities
among various home environments and the integration of
multiple sensing modalities. We plan to work with elder
care centers to test our system and develop models to tackle
challenges associated with multiple types of floors, sensors,
and varying stages of diseases.
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