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Abstract

We introduce the Transformed Generative Pre-Trained Physics-Informed Neural
Networks (TGPT-PINN) for accomplishing nonlinear model order reduction (MOR)
of transport-dominated partial differential equations in an MOR-integrating PINNs
framework. Building on the recent development of the GPT-PINN that is a network-
of-networks design achieving snapshot-based model reduction, we design and test a
novel paradigm for nonlinear model reduction that can effectively tackle problems with
parameter-dependent discontinuities. Through incorporation of a shock-capturing loss
function component as well as a parameter-dependent transform layer, the TGPT-
PINN overcomes the limitations of linear model reduction in the transport-dominated
regime. We demonstrate this new capability for nonlinear model reduction in the PINNs
framework by several nontrivial parametric partial differential equations.

Key words: Nonlinear model order reduction, Physics-informed neural networks,
Meta-learning, Reduced basis method, Parametric systems

1 Introduction

Reduced order models (ROMs) are mainstays in computational science, playing an integral
role in design optimization, uncertainty quantification, and in the construction of digital
twins. ROMs can accelerate the evaluation of one-shot computational models in time-
dependent settings, and are also capable of substantial acceleration in multi-query modeling
for, e.g., parametric problems. We investigate ROMs for partial differential equation (PDE)
models in this paper. Although nonlinear model reduction has gained attention in recent
years, most of the established ROM theory and algorithms focus on linear model reduction
techniques that are known to be effective for diffusion-dominated PDE problems. How-
ever, such linear reduction approaches frequently fail when applied to PDEs that involve
transport-dominated phenomena. This failure arises from a fundamental mathematical lim-
itation: the slow decay of the Kolmogorov n width [27] for transport problems with dis-
continuities [22]. Many recent advances in ROMs have therefore sought nonlinear reduction
strategies that are not bound by the limitations of linear reduction.

Recent years have witnessed a wealth of nonlinear reduction methods being developed.
The first set of approaches involve transforms of the trial basis [7,18,21,29–32]. While these
transforms improve the approximation property of the surrogate space, they tend to rely on
additional knowledge about the problem and the transforms are typically not computable in
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an automatic way. The second set adopts neural networks as a component of its algorithm
[10,12,16,17,19,23], for which Franco et al. [12] proposed to approximate the solution map
by a neural network from parameter to the reduced representation of the solutions trained
by a deep autoencoder with theoretical analysis for the choice of its ROM dimensions. While
being more general, these methods tend to be purely data driven, attempting to capture
low-dimensional structure in a latent space representation, with large amount of data and
various degrees of success. The third is the optimal transport, specifically the Wasserstein
metric, based approaches [3,11,15]. While still nascent and more limited in applicability, it
provides a unique perspective grounded in a mathematically sound theory. Another class
of approaches use adaptive techniques where linear subspaces are progressively updated, for
example in time-dependent problems [25,26,30]. Some existing work also use a specific types
of nonlinear ansatz (such as judicious combinations of polynomial-type functions and neural
network functions) to inject nonlinear dynamics into a reduced model [1, 13].

This paper makes advances that sit at the intersection of physics-informed machine
learning and nonlinear reduced order modeling. We introduce the Transformed Generative
Pre-Trained Physics-Informed Neural Networks (TGPT-PINN), a framework that extends
Physics-Informed Neural Networks (PINNs) and reduced basis methods (RBM) to the non-
linear model reduction regime while maintaining the type of network structure and the
unsupervised nature of its learning. By introducing a novel transform layer in a GPT-
PINN, we enable the resolution of parameter-dependent discontinuity locations. Through
the use of PINNs in snapshot-based model reduction, we eliminate the need for intrusive
analysis and manipulation of existing PDE solvers; in particular, the “online” phase of the
multi-query contexts leverages a network of pre-trained PINN-type networks, and hence all
that must be explicitly manipulated is a PDE residual term in strong form and a transform
layer capturing the discontinuity. Moreover, the determination of the network parameters
in the transform layer are automatically achieved via back-propagation simultaneously with
weights of the pre-trained PINNs serving as the super neurons of the reduced network.
Lastly, we emphasize that our proposed approach is data-sparse. In fact, the number of
full-order queries needed of the TGPT-PINN is equal to the latent space dimension which
is much smaller than the number of queries needed to train the identity map of the autoen-
coder [12, 19]. Because the TGPT-PINN is an instance of snapshot-based model reduction,
it inherits the standard limitation of such approaches, namely that the accuracy is limited
by that of the underlying snapshot solutions (here PINN solutions) when the exact solution
to the PDEs is unknown. Our numerical results show that, as we improve the underlying
PINN solutions, our TGPT-PINN solution becomes more accurate too. This confirms the
effectiveness of the TGPT-PINN’s reduction strategy, while highlighting its dependence on
accuracy of snapshots, which is a limitation similar to any other snapshot-based reduced
order model.

We demonstrate the efficacy of the TGPT-PINN on several nontrivial examples. Its
efficacy on explicit parametric functions is first investigated to reveal the expressive strength
of the procedures for nonlinear model reduction. Next, the TGPT-PINN is applied to
solutions of parametric PDEs, where explicit solutions are not available and are computed
instead through a PINN-type formulation. We observe in this case as well that the TGPT-
PINN is very effective at accomplishing model reduction, with very little a priori knowledge
about a PDE, or even whether or not the solution has discontinuities.

As a novel effort in developing nonlinear reduction strategies, the main advance of our
proposed method is an extension of the newly developed GPT-PINN [8] to the nonlinear
reduction regime by integrating shifts and transforms into the neural network/GPT-PINN
framework. This is achieved by adding a transform layer to the developed GPT-PINN. The
benefit of this integration is two-fold. First, training inherits the greedy alrogithm-based
model reduction capability of the GPT-PINN automatically. Second, the addition of the
transform layer allows simultaneous training of the shift-and-transform network parameters
of the transform layer and the mode coefficients of the GPT-PINN layer. A particularly
important practical improvement is that the involved neural network is also hyper-reduced,
i.e. the architecture has orders of magnitude fewer trainable parameters than those in
[10,12,16,17,19].
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The newly proposed approach is tested in two steps. First, to isolate any influence due
to choice of a numerical (“truth”) solver, we test the case when the parametric function set
is analytically given. We show that, for the more challenging case when the Kolmogorov
width decays slowly due to a moving kink or discontinuity, the TGPT-PINN is able to
capture the parameter dependence exactly by one or a handful of neurons (while linear
approaches, such as the Empirical Interpolation Method (EIM) [2], fail to be effective). Next,
we investigate when u(x, µ) is the numerical solution to a parametric PDE, which involves
usage of a numerical solver. We show that, on examples when linear reduction does not work,
the TGPT-PINN achieves machine accuracy with one neuron (e.g., the transport equation
with a discontinuous initial condition whose speed is a parameter). On examples when
linear reduction does work well, the TGPT-PINN works by employing only one (nonlinear
reaction) or three (nonlinear reaction diffusion) neurons while achieving better accuracy
than the GPT-PINN with 10 neurons. This significant improvement is a manifestation of
the novel design of the TGPT-PINN, i.e., the addition of a trainable transform layer to a
network of pre-trained networks.

The rest of this paper is organized as follows. Background materials including a mo-
tivating example, the PINN and GPT-PINN are briefly presented in Section 2. The main
algorithm is given in Section 3 with numerical results on three classess of analytically-given
functions and three types of equations detailed in Section 4. We draw conclusions in Section
5.

2 Background

This section is devoted to a brief introduction of the two ingredients leading to the TGPT-
PINN, namely snapshot transformations and the GPT-PINN for neural network based model
order reduction for parametric PDEs.

2.1 The Kolmogorov n-width and barrier

Let U be a Banach space, and let K be a set (or “manifold”) of functions that we wish to
approximate using elements of an n-dimensional subspace. The theoretically optimal per-
formance of such linear reduced order models is quantified by the Kolmogorov n-width [27],
which measures how well elements in K ⊂ U can be best approximated from a dimension-n
linear subspace Un ⊂ U ,

dn(K) = inf
dimUn=n

sup
u∈K

inf
ϕ∈Un

∥u− ϕ∥U .

The class K can be a set of functions that are encoded with a parameterization; in our
setting a more salient example is to consider K as the solution manifold of a (parametric)
partial differential equation, K = {uµ | µ ∈ D} ⊂ U , where µ 7→ uµ is the µ-parameterized
PDE solution operator, and D is frequently a subset of Rk for some k ∈ N.

The n-width dn(K) provides an accuracy lower bound for all reduced order models that
rely on linear reduction, i.e., by building approximations from a(ny) dimension-n subspace
Un. For example, the n-width is the best possible error when building Un from snapshots
or proper orthogonal decomposition (POD) modes. For many parametric PDEs that are
elliptic or parabolic in nature, dn(K) is known to decay exponentially in n [9]. For such cases,
constructive (i.e., computationally feasible) greedy methods have been proven to generate
reduced spaces that asymptotically match the Kolmogorov n-width [5, 6]. This fast decay
of the n-width along with the development of effective greedy algorithms are the driving
forces behind linear model reduction and its descendants, such as RBM and GPT-PINN,
respectively.

However, when facing solution manifolds generated by transport-dominated problems,
the Kolmogorov n-width decreases much slower. Ohlberger and Rave [22] proved that
dn(K) ∼ n−1/2 whereK is the solution manifold of a (relatively simple) transport dominated
problem. This extremely slow decay for transport-dominated problems is the fundamental
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reason that linear model order reduction methods are ineffective in this case, and motivates
the need to develop and exercise nonlinear model reduction approaches.

2.2 A motivating example for transformed snapshots

Consider the following example from [32],

u(x, µ) := ψ

Å
x

0.4 + µ
− 1

ã
, ψ(x) :=

®
exp
Ä
− 1

1−x2

ä
−1 ≤ x < − 1

2 ,

0 else.

The function ψ(x) is a discontinuous function at x = −1/2, which makes u(x, µ) discontinu-
ous at x = (µ+0.4)/2. We are therefore in a situation that the location of the discontinuity
depends on the parameter. Interpolatory type techniques in the parameter µ, including
classical polynomial interpolations and the EIM which is a standard tool in model order
reduction for the nonlinear and nonaffine setting, have limited effectiveness as demonstrated
in Figure 1. However, if we change the interpolation ansatz

u(x, µ) ≈
n∑

i=0

ℓi(µ)u(x, µ
i) −→ u(x, µ) ≈

n∑
i=0

ℓi(µ)u(ϕ(µ, µ
i)(x), µi), (2.1)

where ℓi are any basis (e.g., cardinal Lagrange interpolants associated to the µi), we can
design ϕ to eliminate the staircasing behavior. Here, ϕ(µ, η) represents a transform from
the “source” parameter η to the “target” parameter µ so that the jump locations match.
For this example, the choice

ϕ(µ, η)(x) =
0.4 + η

0.4 + µ
x,

would enable exact reconstruction with n = 0, i.e., u(ϕ(µ, η)(x), η) = u(x, µ). This shows
that sufficiently complicated transformation maps ϕ can restore expressive power in reduced
order models. However, we make a further observation that the even simpler map,

ϕ(µ, η)(x) = x+
η − µ
2

,

which is linear in (η, µ), is enough to ensure that the discontinuity locations are exactly
captured, and hence even relatively simple maps ϕ can provide enormous benefit. The
proposed TGPT-PINN procedure attempts to identify the map ϕ automatically. As a result,
the TGPT-PINN approximation of this function is indistinguishable from the exact solution
while the standard approaches produce noticeable staircases leading to large interpolation
errors, see Figure 1.

Figure 1: Shown on the left are 9 snapshots of u(x, µ) with various µ values. On the right are
the function at µ = 1.0 and its three kinds of interpolations, the polynomial interpolation from
snapshots with µ = 0.5, 0.85 and 1.2, the EIM approximation, and the TGPT-PINN interpolation.

2.3 PINN and GPT-PINN

Physics-informed neural networks (PINNs), popularized by Raissi et al. [28], have emerged
as an increasingly popular alternative to traditional numerical methods for PDEs in recent
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Figure 2: The GPT-PINN architecture [8]. A hyper-reduced network adaptively embeds pre-trained
PINNs at the nodes of its sole hidden layer. It then allows a quick online generation of a surrogate
solution at any given parameter value.

years. They adopt Deep Neural Networks (DNNs) to approximate the solutions of PDEs
while incorporating a strong physics-based PDE prior encoded into the loss function to
constrain the output of the DNN. In comparison to traditional numerical solvers, the advan-
tages of PINNs include that they are able to numerically solve the PDE without discretizing
the spatiotemporal domain, and that they can leverage automatic differentiation [4, 24] to
algorithmically minimize the residual in the loss. However, PINNs have some weaknesses.
For example, training a vanilla PINN is usually significantly slower than employing a classic
numerical method to solve the corresponding PDE. To address this shortcoming, the Gen-
erative Pre-Trained PINNs (GPT-PINNs) were developed [8] as a meta-learning approach
for parametric systems to reduce the architecture and corresponding number of trained pa-
rameters in a PINN, thereby reducing the computational time required to solve parametric
PDEs with PINNs. The GPT-PINN requires an initial (“offline”) investment cost dedi-
cated to learning the parametric dependence during the offline stage, which is guided by
a mathematically reliable greedy algorithm. With this initial investment, The GPT-PINN
is capable of providing significant computational savings in the multi-query and real-time
settings thanks to the fact that their marginal cost is of orders of magnitude lower than that
of an individual PINN solve [8].

The GPT-PINN architecture, depicted in Figure 2, is a network-of-networks, where acti-
vation functions in the sole hidden layer of the outer network are chosen in a customized way.
The inner networks, defining the activation functions, are full pre-trained PINNs instanti-
ated by the PDE solutions at a set of adaptively-selected parameter values {µ1, µ2, · · · , µn}
chosen by a greedy algorithm. The corresponding outer-/meta-network is hyper-reduced in
comparison to the inner networks, having only one hidden layer. Moreover, this meta layer
adaptively “learns” the parametric dependence of the system and can “grow” its hidden
layer one super neuron/network at a time. The GPT-PINN is capable of generating approx-
imate solutions for the parametric system across the entire parameter domain accurately
and efficiently, with a cost independent of the size of the full PINN.
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3 The TGPT-PINN algorithm

The insight provided by Section 2.2 is that, to achieve nonlinear model order reduction, one
way is to compose the snapshot with a parameter-dependent transformation. This is the
basic idea of the TGPT-PINN whose schematic design is shown in Figure 3. It seeks to
approximate u(x, t;µ) as follows,

u(x, t;µ) ≈
N∑
i=1

ci(µ)u(Tµ,µi(x, t);µi). (3.1)

All the quantities, N , ci(µ), µ
i, Tµ,µi and u(x, t;µi), are obtained through training in a

two-step procedure. The first step is an “offline” step that trains µi, N and u(x, t;µi); this
step can be expensive as we require well-resolved solutions u to PDEs and we must sweep
over the parameter domain D ⊂ Rk to identify parameter values µi. The second step is an
“online” step that, given an arbitrary µ, computes Tµ,µi and ci(µ) for i ∈ [N ] = {1, · · · , N}.
This second step is much more computationally efficient, training a neural network with only
N(d2+3d+3) degrees of freedom, i.e., linear in the number of snapsots N and substantially
fewer degrees of freedom than required for even a single snapshot u. More explicitly, the
TGPT-PINN is the following two-step procedure:

i = 1, µ1, “Offline”: PDE/residual
Minimize LPINN−−−−−−−−−−→ u(·, ·;µi)

Sufficient accuracy−−−−−−−−−−−−→ N := i

↑ ↓ Insufficient accuracy

µi ←−−−−−−−−−−−−−−−
Search parameter space

i += 1

“Online”: µ
Minimize LTGPT

PINN−−−−−−−−−−−→ ci(µ), Tµ,µi(·, ·), i ∈ [N ]
(3.1)−−−→ u(·, ·;µ)

The “online” step is visualized in Figure 3. The main strength of this approach is that
function composition is natural and straightforward in neural networks - simply adding
a layer or block, and the network parameters defining the transformation can be trained
together with the mode coefficients {ci(µ)}Ni=1 in the GPT-PINN block of the network. The
loss functions LPINN and LTGPT

PINN are described in the coming sections. All minimization steps
are performed using somewhat standard neural network optimization and back-propagation
procedures.

Figure 3: The TGPT-PINN design schematic. For any given parameter value µ, a µ-dependent loss
is constructed and the coefficients cj(µ) and the weights and biases in Tµ,µi are trained.
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3.1 PDE formulation

We define our problem to be the following time-dependent PDE on the spatial domain
Ω ⊂ Rd with boundary ∂Ω, and parametric domain µ ∈ D:

∂

∂t
u(x, t;µ) + F [u(x, t;µ)] = 0, x ∈ Ω, t ∈ [0, T ], µ ∈ D

G(u)(x, t;µ) = 0, x ∈ ∂Ω, t ∈ [0, T ], µ ∈ D
u(x, 0;µ) = u0(x;µ), x ∈ Ω, µ ∈ D.

(3.2)

Here F is a differential operator and G denotes a boundary operator [8]. Our goal is to
compute the numerical solution to this PDE, which we shall accomplish using the TGPT-
PINN methodology.

The remainder of this section is devoted to describing the particulars of the TGPT-PINN.
In Section 3.2 we will introduce an approach that modifies the “offline” portion of the TGPT-
PINN to enhance its ability to resolve discontinuities in the solution for transport-dominated
problems.

3.2 Offline: The PINN solver

We discuss the “offline” procedure of the TGPT-PINN that computes u(·, ·;µ) for a given,
fixed µ. In particular, we will use µ = µi in u for the TGPT-PINN. Because µ is fixed in
this section, we frequently omit writing the µ-dependence in what follows. The idealized
loss function that we use corresponds to a standard PINN loss function,

L(u) = Lint(u) + εi

∫
Ω

∥u(x, 0)− u0(x)∥22 dx+ εb

∫
∂Ω×[0,T ]

∥G(u)(x, t)∥22dx dt, (3.3)

which is constructed by summing losses corresponding to the residual of the PDE, the initial
values and the boundary conditions, and the domain-interior loss is given by,

Lint(u) :=

∫
Ω×(0,T ]

∥∥∥∥λ(x, t) Å ∂∂tu(x, t) + F(u)(x, t)ã∥∥∥∥22 dx dt.
We choose the weighting constants as εi = 1 and εb = 1. In practice, PINNs-type losses can
suffer from the exploding or vanishing gradient problem when solutions are discontinuous.
The factor λ above is introduced to ameliorate this effect, and is designed to attenuate
the loss when the gradient of the solution is large. We therefore introduce the following
“shock-capturing weighting” factor in the calculation of the residual of the PDE, which was
originally proposed in Liu et al. [20],

λ(x, t) =
1

ελ |∇ · u|+ 1
.

We choose ελ = 0.1. The PINNs approach chooses a discretization for u and minimizes the
loss function through optimization. Like a standard PINN, we use a fully connected neural
network ψµ

NN(x, t) to approximate u, where the weights and biases of ψµ
NN are optimized.

The loss L is approximated through a sampling/quadrature-type procedure. In particular,
the actual discretized loss that is optimized is,

LPINN (ψν
NN) =

1

|Co|
∑

(x,t)∈Co

∥∥∥∥λ · Å ∂∂t (ψν
NN) (x, t) + F (ψν

NN) (x, t)

ã∥∥∥∥2
2

+ εb ·
1

|C∂ |
∑

(x,t)∈C∂

∥G (ψν
NN) (x, t)∥

2
2 + εi ·

1

|Ci|
∑
x∈Ci

∥ψν
NN(x, 0)− u0(x)∥

2
2 .

(3.4)

Above, we sample collocation/training points in certain fashion (described below) from the
PDE spatiotemporal domain Co ⊂ Ω × (0, T ), spatiotemporal boundary C∂ ⊂ ∂Ω × [0, T ],
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and spatial interior Ci ⊂ Ω, and use them to form an approximation of the continuous loss
(3.3). In our examples, the boundary operator G is taken to be a spatially periodic one for
simplicity.

The training points must be carefully chosen in the presence of discontinuities. In general
it is well known that the distribution of training points can impact the network performance.
In particular, dense concentration of training points near the spatiotemporal vicinity of a
discontinuity can effectively enhance the network performance in approximating the PDE
solutions with jumps. For the transport equation, the location of the discontinuity is often
determined by the parameters. Therefore, to achieve better network performance, in practice
it is necessary for the training/sampling points to be constructed in a parameter-dependent
fashion.

Finally, we remark that the above construction optimizes for “meta-neurons”, i.e. the
networks within the GPT-PINN. For some of our test cases, in particular those in Section
4.1, we use analytically available formulas for u(·, ·;µi), and in those examples the entire
PINN apparatus is simply replaced with this explicit function evaluation.

3.3 TGPT-PINN

As shown by Figure 3, the hidden layers of the TGPT-PINN include initially a transform
layer and, similar to GPT-PINN [8], are followed by a meta-PINN layer with pre-trained
PINNs as activation functions. The novel contribution is the transform layer that allows
the TGPT-PINN to achieve nonlinear model order reduction. This transform layer allows
us to further explore the potential of the full PINNs used as the activation function, thus
significantly enhancing the expressivity of the (pre-trained) full PINNs, even with only one
pre-trained PINN in a single neuron in the hidden layer. This boost of expressivity from
the parameter-dependent transform layer allow us to construct a hyper-reduced neural net-
work of pre-trained full networks featuring parameter-dependent discontinuous functions. In
particular, we achieve sizes of the outer network that are much smaller than what the Kol-
mogorov width of the problem implies is optimal for linear reduction of transport-dominated
problems.

3.3.1 Design of the transform layer

The source-to-target transform layer Tµ,η in (3.1) of the proposed TGPT-PINN is abstractly,

Tµ,µi(x, t) : Ω× [0, T ] −→ Ω× [0, T ],

and in principle it should be surjective. In this paper, we set it as

Tµ,η(x, t) := ModΩ,T

Å
Wµ,η

Å
x
t

ã
+ bµ,η

ã
, η = µ1, . . . , µN . (3.5)

Here, Wµ,η ∈ R(d+1)×(d+1), and bµ,η ∈ Rd+1 making Tµ,η a simple linear transformation
that depends on µ and η. In particular, the dependence on µ is enforced through “online”
training. Moreover, to make sure that the range of Tµ,η is exactly Ω × [0, T ], we apply
ModΩ,T (·) which is an element-wise modulo map, ensuring that each component of T outputs
on the appropriate slice of Ω× [0, T ]. Our notation of (µ, η) subscripts on Wµ,η is meant to
reveal that W depends on both η (i.e., indexing the particular snapshot) as well as µ (i.e.,
the given value of the parameter in the online phase affects the value of the weights trained
through minimization).

We use the particular form of T above for all the experiments in this paper. However,
the general framework of the TGPT-PINN is not limited by the relatively simple choice
of T above. For example, T could itself be a deep neural network. Our simple choice is
motivted by the discussion in Section 2.2, demonstrating that even simple linear-type maps
can be effective for transport-based problems. In particular, T can be trained to stretch or
shrink the (x, t) variables, and in particular can be trained to expand spectral content in
the frequency domain. For this reason, as shown by our numerical examples, the proposed
architecture also works well for much more complicated problems that don’t just feature
transport with constant speed.

8



3.3.2 Online phase training

The transformation (3.5) and the TGPT-PINN ansatz (3.1) mean that a given TGPT-
PINN with n PINNs (pre-trained at {µ1, . . . , µn}) has the following n(d2 +3d+3) network
parameters to train

Θ(µ) :=
{
{Wµ,µi}ni=1, {bµ,µi}ni=1, {ci(µ)}ni=1

}
. (3.6)

Similar to the GPT-PINN, this number of network parameters is independent of the ar-
chitecture parameters used to train the individual PINNs, and depends strictly linearly on
n, the number of snapshots. With the network version of the TGPT-PINN ansatz (3.1)
denoted by

Ψ
Θ(µ)
NN (x, t) :=

n∑
i=1

ci(µ)Ψ
µi

NN(Tµ,µi(x, t)), (3.7)

the loss function of the TGPT-PINN is set to be the same loss as the full PINN, consisting
of three parts: the residual of the PDE and the losses corresponding to the initial value
condition and the boundary condition

LTGPT
PINN (Θ(µ)) =

1

|Cro |
∑

(x,t)∈Co

∥∥∥∥λ · Å ∂∂t ÄΨΘ(µ)
NN

ä
(x, t) + F

Ä
Ψ

Θ(µ)
NN

ä
(x, t)

ã∥∥∥∥2
2

+ εb ·
1

| Cr∂ |
∑

(x,t)∈C∂

∥∥∥G ÄΨΘ(µ)
NN

ä
(x, t)

∥∥∥2
2
+ εi ·

1

|Cri |
∑
x∈Ci

∥∥∥ΨΘ(µ)
NN (x, 0)− u0(x)

∥∥∥2
2
.

(3.8)
The online collocation sets Cro ⊂ Ω× [0, T ], Cr∂ ⊂ ∂Ω× [0, T ] and Cri ⊂ Ω need not be related
to their full PINN counterparts Co, C∂ and Ci, but in this paper we take them to be the
same sets for simplicity. The training of Θ(µ) is accomplished through standard automatic
differentiation and back propagation. See Ref. [8] for more details on this step, such as
precomputations for fast training of the reduced network, and the non-intrusiveness of the
(T)GPT-PINN.

3.3.3 Offline training of the TGPT-PINN

Algorithm 1 TGPT-PINN for parametric PDE: Offline stage

Input: A random (or given) µ1, training set Ξtrain ⊂ D, full PINN.

1: Train a full PINN at µ1 to obtain Ψµ1

NN. Precompute quantities necessary for
∇Θ(µ)LTGPT

PINN at collocation nodes Cro , Cr∂ , and Cri . Set n = 2.
2: while stopping criteria not met, do
3: Train the (n−1)-neuron TGPT-PINN at µ for all µ ∈ Ξtrain and record the indicator

∆r
NN(Θ(µ)).

4: Choose µn = arg max
µ∈Ξtrain

∆r
NN(µ).

5: Train a full PINN at µn to obtain Ψµn

NN. Precompute quantities necessary for
∇ΘLTGPT

PINN at collocation nodes Cro , Cr∂ , and Cri .
6: Update the TGPT PINN by adding a neuron to the hidden TGPT-PINN layer to

construct the n-neuron TGPT-PINN.
7: Set n← n+ 1.
8: end while

Output: N -neuron TGPT-PINN, with N being the terminal index.

With the online solver described above, the offline training amounts to the application
of the greedy algorithm outlined in Algorithm 1. The meta-network adaptively “learns”
the parametric dependence of the system and “grows” the TGPT-PINN hidden layer and
enriches the transform layer one neuron and transformation at a time. At every step,
we select the parameter value that is worst approximated by the current meta-network.
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Specifically, we first randomly select, in a discretized parameter domain Ξtrain ⊂ D, one
parameter value µ1 and train the associated (highly accurate) PINN Ψµ1

NN. The algorithm
then decides how to “grow” its meta-network by scanning the entire discrete parameter

space Ξtrain and, for each parameter value, training this reduced network (of 1 neuron Ψµ1

NN).
As it scans, it records an error indicator ∆r

NN(Θ(µ)) at every location. The next parameter
value µ2 is the one generating the largest error indicator. The algorithm then proceeds by
training a full PINN at µ2 and therefore grows its hidden PINN layer into two neurons with

customized (but pre-trained) activation functions Ψµ1

NN and Ψµ2

NN. This process is repeated
until the stopping criteria is met which can be either that the error indicator is sufficiently
small or a pre-selected size of the reduced network is met.

4 Numerical results

In this section, we test the proposed TGPT-PINN and report numerical results. This is done
with two types of experiments. First, to separate the influence of the PINN solver which is
analogous to the “truth” discretization in traditional RBM methods, we test the case when
u(x, µ) is a known function with different types of regularity. Next, we treat u(x, µ) as a
solution to a parameterized PDE, numerically computed using a PINN solver. The code
for all these examples are published on GitHub at https://github.com/DuktigYajie/TGPT-
PINN.

4.1 TGPT-PINN vs EIM as function approximators

We first test the case when
u(x, µ) : Ω×D −→ R

is analytically given, and compare the TGPT-PINN with the EIM [2] which is the standard
approach in model order reduction for approximating nonlinear and nonaffine functions.
Table 1 lists the results when both approaches are applied to 7 functions of different regu-
larities.

EIM TGPT-PINN
Function Ω D |Ξtrain|

#basis L2 error #basis L2 error

sin(x+ µ) [π, π] [−5, 5] 201 3 7.6e-15 1 1.2e-14

sin(µx) [−π, π] [1, 2] 201 17 1.8e-15 1 9.9e-13

sin(µ1(x+ µ2)) [−π, π] [−5, 5]2 20× 20 21 2.0e-14 1 9.9e-11

192 4.2e-04
max(sin(x+ µ), 0) [−π, π] [−5, 5] 201

193 2.3e-15
1 9.7e-15

|x+ µ| [−10, 10] [−5, 5] 201
101 8.1e-02

1 4.9e-15
102 5.6e-14

100 1.9e-01
ψ
Ä

x
0.4+µ − 1

ä
[-1,1] [−1, 1] 201

101 6.9e-16
10 1.5e-05

1√
(x−µ1)2+(y−µ2)2

[−1, 1]2 [−1,−0.01]2 21× 21 150 3.8e-15 1 9.9e-13

Table 1: Results for Sections 4.1 and 4.1.1 to 4.1.3: Comparison of the EIM and the proposed
TGPT-PINN as function approximators. The parameter space D is discretized to Ξtrain using
|Ξtrain| equispaced points.

The first three of 7 functions in Table 1 are smooth functions. We observe that the
TGPT-PINN is able to capture the parameter dependence exactly and, as a result, approx-
imates each of these functions by one neuron to machine precision. Because the parametric
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dependence for these functions is smooth, the EIM is also able to approximate the functions
to machine accuracy. However, it requires many more basis functions since it is a linear
reduction approach (while the TGPT-PINN is nonlinear). We discuss the remaining four
functions, which have different types of regularity, in the sections below.

4.1.1 Functions with moving kinks

When u(x, µ) = max(sin(x+µ), 0) or |x+µ| (rows 4 and 5 of Table 1), we have at least one
kink (point of discontinuity of the derivative) and the location of the kink depends on µ. See
Figure 4 for the convergence history for the EIM along with plots of the function snapshots
for different µ values. We observe relatively slow convergence for the EIM, reaching two
digits with 99 snapshots. On the other hand, the TGPT-PINN only relies on one snapshot
to achieve machine accuracy (see rows 4 and 5 of Table 1) for each of these two parametric
functions.
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Figure 4: Results from Section 4.1.1 paired with rows 4 and 5 of Table 1: Snapshots and EIM
histories of convergence for functions with moving kinks. (a, b) u(x, µ) = max(sin(x + µ), 0); and
(c, d) u(x, µ) = |x+ µ| .

4.1.2 Functions with moving discontinuities

We next test the following example from [32] which features a moving discontinuity as
explained in Section 2.2,

u(x, µ) := ψ

Å
x

0.4 + µ
− 1

ã
, ψ(x) :=

®
exp
Ä
− 1

1−x2

ä
−1 ≤ x < − 1

2 ,

0, else.

The summary of results is given by row 6 of Table 1. The function ψ(x) is discontinuous
at x = −1/2 which means that u(x, µ) is discontinuous at a parameter-dependent location
x = (µ + 0.4)/2. Furthermore, we note that when µ > −0.4, x∗ = (µ + 0.4)/2 > 0 is a
discontinuity point of u(x, µ) which is clamped to zero for x > x∗. On the other hand, when
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µ < −0.4, then x∗ < 0 is the discontinuity point of u(x, µ), and u is clamped to zero for
x < x∗.

(a) (b)

Figure 5: Results from Section 4.1.2 paired with row 6 of Table 1: TGPT-PINN histories of
convergence when the number of neurons increases for functions with a moving discontinuity,
u(x, µ) = ψ

Ä
x

0.4+µ
− 1
ä
. (a) µ ∈ [0, 1] with 101 equispaced points; (b) µ ∈ [−1, 1] with 201

equispaced points.

We observe in row 6 of Table 1 that the EIM fails to capture this family of functions
even with all but one snapshots from the entire discretized domain. On the other hand, the
TGPT-PINN successfully reaches 6 digits of accuracy by 10 neurons. Since this example is
more difficult than the previous ones, we conduct a further example to investigate the impact
of the parameter space: We compare the TGPT-PINN performance using (D,Ξtrain) =
([0, 1], 101), and (D,Ξtrain) = ([−1, 1], 201). The latter is the setup in Table 1. As we
increase the number of neurons in the hidden layer, Figure 5 shows the change of the
L2 norm of the error committed by the approximate TGPT-PINN solution. The exact
function and its approximation with 1, 6, and 10 neurons are shown in Figure 6. The visual
agreement between the exact function and its TGPT-PINN approximation is confirmed by
the computed error indicating an accuracy of 5 to 6 digits.

Next, we examine the convergent network parameters for the more challenging case with
µ ∈ [−1, 1] to confirm that it aligns with our theoretical understanding of this discontinuous
function. We examine the function approximation with 10 neurons

u(x;µ) ≈
10∑
i=1

ci(µ)u(wi(µ)x+ bi(µ), µ
i), (4.1)

where in order to line up the discontinuity, we know the exact shift should be bexacti =
µi+0.4

2 − wi
µ+0.4

2 . We list in Table 2 the results of {(µi, wi, bi, ci) : i = 1, · · · , 10} for an
unseen parameter value µ = 0.595, i.e., this parameter was not in the training set for offline
construction. The left half of the table shows the results when we fix wi = 1 and the
right part corresponds to when the wi’s are trainable parameters. We see that the network
training is highly effective as all the bi’s coincide with their exact value in both cases. It
is interesting to note that, for both cases, relatively larger discrepancies |bi − bexacti | occur
when ci is relatively small which is a testament to the robustness of the algorithm.

4.1.3 2D functions close to being degenerate

We now consider the classical 2-dimensional nonlinear and nonaffine function from [14],

u(x, y;µ1, µ2) =
1√

(x− µ1)2 + (y − µ2)2
on (x, y) ∈ [0, 1]2,

parameterized by (µ1, µ2) ∈ [−1,−0.01]2. Due to the setup of the physical and parameter
domains, this family contains functions that are very close to being singular for certain
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(a) (d)

(b) (e)

(c) (f)

Figure 6: Results from Section 4.1.2 paired with row 6 of Table 1: Function with a moving discon-
tinuity u(x, µ) = ψ

Ä
x

0.4+µ
− 1
ä
and its approximation with 1, 6, and 10 neurons (top to bottom).

The solid lines describe the exact solutions and the dash lines are the TGPT-PINN solutions for
different µ. (a-c) training set µ ∈ [0, 1] with 101 equispaced points and solutions of µ = 0.005, 0.505
and 0.995 being displayed; (d-f) training set µ ∈ [−1, 1] with 201 equispaced points and solutions
of µ = −0.995,−0.505, 0.005, 0.505 and 0.995 being displayed.
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µ = 0.595, wi = 1 fixed, final loss 1.23e-05 µ = 0.595, wi trainable, final loss 8.12e-06

i µi wi |bi − bexacti | bi ci µi wi |bi − bexacti | bi ci

1 1.0 1 1.5e-08 0.20 -2.34e-02 1.0 1.14 2.98e-08 0.13 3.85e-01

2 -0.99 1 1.8e-07 -0.80 9.20e-42 -0.99 0.47 1.79e-07 -0.53 -5.17e-42

3 0.03 1 0.0e-00 -0.28 -1.71e-1 -0.09 0.77 5.96e-08 -0.23 1.34e-01

4 -0.55 1 1.2e-07 -0.57 8.52e-41 -0.55 0.62 1.19e-07 -0.38 -3.45e-41

5 -0.29 1 3.0e-08 -0.44 -2.62e-02 -0.33 0.69 0.00e-00 -0.31 7.21e-03

6 0.44 1 1.5e-08 -0.08 8.84e-01 0.31 0.90 1.49e-08 -0.10 9.47e-01

7 -0.47 1 1.2e-07 -0.53 -4.40e-41 -0.47 0.64 8.94e-08 -0.36 2.51e-41

8 -0.75 1 1.2e-07 -0.67 -4.97e-41 -0.72 0.56 1.19e-07 -0.44 2.15e-41

9 -0.17 1 3.0e-08 -0.38 -7.01e-02 -0.25 0.72 8.94e-08 -0.28 -2.79e-02

10 -0.33 1 3.0e-08 -0.46 8.50e-03 0.08 0.83 7.45e-08 -0.17 -4.44e-01

Table 2: Results for Section 4.1.2 paired with row 6 of Table 1: Trained TGPT-PINN network
parameters at µ = 0.595 for the function with moving discontinuities.

parameter value. The EIM (see Figure 7) needs about 120 basis functions to reach an
accuracy of 10−12 while the TGPT-PINN requires only one neuron, u(x, y; (−1,−1)), to
achieve the same accuracy for all parameters in the parameter space discretized by a 21×21
grid. The solution, the errors, and the training history corresponding to two locations of
the parameter domain committed by the TGPT-PINN surrogate are plotted in Figure 8.

0 50 100 150 200
n

10
-15

10
-10

10
-5

10
0

E

Figure 7: Results for Section 4.1.3 paired with row 7 of Table 1: EIM history of convergence for
the 2D functions close to being degenerate.

4.2 TGPT-PINN for parametric PDEs

In this section, we test the TGPT-PINN algorithm on three pPDEs, the linear transport
equation parameterized by the wave speed (first example, Section 4.2.1), the nonlinear 1D-
reaction equation parameterized by the reaction coefficiant (second example, Section 4.2.2),
and the 1D nonlinear reaction-diffusion equation parameterized by the viscosity and reaction
coefficient (third example, Section 4.2.3). The overall conclusions are as follows:
• Section 4.2.1: For wave-like problems when linear reduction does not work, the TGPT-
PINN can achieve significant accuracy because transport-based parameter dependence
can be efficiently approximated by the novel transform layer. For our particular example,
only one neuron is needed to achieve machine precision accuracy.

• Sections 4.2.2 and 4.2.3: On problems when linear model reduction can work effectively,
and in particular when the GPT-PINN performs well, the TGPT-PINN works using a
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(a) TGPT-PINN Loss (b) TGPT-PINN error

(c) TGPT-PINN Loss (d) TGPT-PINN error

Figure 8: Results for Section 4.1.3 paired with row 7 of Table 1 for the 2D functions close to being
degenerate: TGPT-PINN error (right) committed by the TGPT-PINN solution with one neuron at
a corner and the center of the parameter domain. Shown on the left are the corresponding training
histories.
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very small number of snapshots (1 and 3, respectively), and achieves better accuracy
with this small number of snapshots than the GPT-PINN with a much larger number of
snapshots.

This vast improvement is a manifestation of the novel design of the TGPT-PINN: the addi-
tion of a trainable transform layer to a network of pre-trained networks.

4.2.1 1D transport equation

Consider the following example [32],

ut + νux = 0, for 0 < t < 2, x ∈ [−1, 1],

u(x, 0) = g(x) :=

ß
0, −0.5 < x < 0.5,
1, else.

The exact solution to the problem is given by u(x, t) = g(x − νt), so that the parameter ν
determines the direction and speed of propagation for the solution of the equation.
Sampling for the PINN loss function. For fixed ν, this problem is challenging to train
a PINN on because of the discontinuity in (x, t). To ameliorate this difficulty, we choose
sampling points for the loss function in a standard randomized fashion over the (x, t) domain,
but we additionally place extra training points near the discontinuity. For details, for the
first term of the loss function (3.8) corresponding to the PDE residual in the domain interior,
a 400 × 400 equidistant grid is created over the domain, and 10,000 points are randomly
subsampled as the training set, with a relatively concentrated distribution near the vicinity
of the discontinuity bands. We choose 60% of the points by randomly subsampling within an
(x, t) distance of 0.1 of the disconinuity. 20% more points are subsampled from equidistant
points whose (x, t) distance from the discontinuity takes values in [0.1, 0.2]. The remaining
20% of the points are subsampled from the remaining points. A similar procedure is done
for the initial condition training grid, where a total of 1000 points are randomly subsampled
from 104 equispaced points in x, with a higher concentration of points subsampled close to
the discontinuity.
PINN results. The full PINN for this transport equation is a fully connected neural
network with [2, 20, 20, 20, 1] neurons across its layers. The activation function used is
tanh(·). The PINN is trained with a learning rate of 0.001, a maximum of 4e5 iterations,
a tolerance of 1e-6, and the Adam optimizer. We take ν = 0.0 and train a full PINN. The
reduction in loss of the network in a single random experiment is shown in Figure 9 (a-c),
showing that the PINN is relatively accurate.
TGPT-PINN results. We conducted tests on a discretized parameter set of 41 equispaced
samples over µ = ν ∈ [−10, 10], with an accuracy tolerance of 1e-5, a learning rate of 0.05,
and a maximum iteration count of 105. We use only N = 1 snapshot, manually choosing
µ1 = 0. The variation of loss, solutions, and errors under the two extreme parameter values,
ν = ±10 (the hardest parameter values to approximate) are shown in Figure 9 (d-i).

4.2.2 1D reaction PDE

The one-dimensional reaction problem is a hyperbolic PDE that is commonly used to model
chemical reactions,

∂u

∂t
− ρu(1− u) = 0, (x, t) ∈ [0, 2π]× [0, 1],

u(x, 0) = h(x), x ∈ [0, 2π],

u(0, t) = u(2π, t), t ≥ 0,

(4.2)

where ρ > 0 is the reaction coefficient. We take the initial condition as,

h(x) = exp

Å
− (x− π)2

2(π/4)2

ã
. (4.3)
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(a) PINN solution (b) PINN error (c) PINN Loss

(d) TGPT-PINN solution (e) TGPT-PINN error (f) TGPT-PINN Loss

(g) TGPT-PINN solution (h) TGPT-PINN error (i) TGPT-PINN Loss

Figure 9: Results for Section 4.2.1. Top row: Full PINN for ν = 0.0. Middle row: TGPT-PINN at
ν = −10.0. Bottom row: TGPT-PINN for ν = 10.0. Both middle and bottom are approximated
using the only PINN from the top row.
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The equation has a simple analytical solution:

u(x, t) =
h(x) exp(ρt)

h(x) exp(ρt) + 1− h(x)
. (4.4)

PINN results: The PINN we employ is a fully connected neural network with layer widths
[2, 20, 20, 20, 1] with λ ≡ 1 in Lint(u) of the PINN loss function (3.3). The training samples
are randomly selected, but we use an optimized activation function introduced in [33]:

WaveAct(x) = w1 ∗ sin(x) + w2 ∗ cos(x), (4.5)

where w1 and w2 are trainable hyperparameters. Numerical experiments demonstrate that
such an activation function is more suitable for solving reaction equations compared to
traditional activation functions. Figure 10 presents the accuracy and loss reduction of the
full PINN for parameters ρ = 1 and 10. This problem is difficult to numerically solve for
large values of the parameter ρ. One can observe this difficultly in Figure 10 where ρ = 10
requires substantially more epochs to successfully train; this is due to the more complex
nature of the phase transition layer for larger ρ.

(a) Exact solution (b) PINN solution (c) PINN error (d) PINN Loss

(e) Exact solution (f) PINN solution (g) PINN error (h) PINN Loss

Figure 10: Results for Section 4.2.2: PINN snapshots for ρ = 1.0 (top) and 10.0 (bottom).

GPT/TGPT-PINN results: We solve the problem using both the GPT-PINN and
TGPT-PINN for ρ ∈ [1, 10], and compare the histories of convergence for the loss as the
hyper-reduced neural networks gradually grow. The results of the loss and parameter selec-
tion are shown in Figure 11. From the analytical solution of the problem, it can be observed
that all solutions can be obtained through ρ-dependent (x, t) alignment and shift operations
from one reference solution. Figure 11 demonstrates this in practice: the TGPT-PINN with
just one neuron can capture the parametric dependence and achieve better approximation
than the (linear) GPT-PINN with 10 neurons. This is true even though we have manually
selected the single snapshot for the TGPT-PINN as the “easiest” (i.e., smallest) value of ρ
in the parameter domain. In Figure 12 and Figure 13 we show a comparison of solutions
obtained by the GPT-PINN and TGPT-PINN for the relatively large values of ρ = 3.25 and
ρ = 9.85. We observe that although the TGPT-PINN solution with 1 neuron is indeed more
accurate than the GPT-PINN solution with 10 neurons, they are both significantly large in
parts of the space-time domain for the more challenging case of ρ = 9.85 (around 40%, see
Figure 13 (c) and (g)). However, we remark that this large error is purely inherited from
the underlying PINN solution. Indeed, in Figure 14, we replace the full PINN solution by a
network of the same structure but trained via supervised learning from the exact solution
(4.4). The resulting TGPT-PINN error decreased from 40% to below 2%. This confirms the
effectiveness of the TGPT-PINN’s reduction strategy, while highlighting its dependence on
accurate snapshots, similar to any other snapshot-based reduced order model.
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(a) (b) (c)

Figure 11: Results for Section 4.2.2: Comparison of the GPT-PINN and TGPT-PINN for the
reaction equation in terms of histories of convergence (a, c) and parameter selection (b).

(a) Exact solution (b) GPT-PINN solution (c) GPT-PINN error (d) GPT-PINN Loss

(e) Exact solution (f) TGPT-PINN solution (g) TGPT-PINN error (h) TGPT-PINN Loss

Figure 12: Results for Section 4.2.2: GPT-PINN (top, with 10 neurons) and TGPT-PINN (bottom,
with 1 neuron) results for ρ = 3.25.

(a) Exact solution (b) GPT-PINN solution (c) GPT-PINN error (d) GPT-PINN Loss

(e) Exact solution (f) TGPT-PINN solution (g) TGPT-PINN error (h) TGPT-PINN Loss

Figure 13: Results for Section 4.2.2: GPT-PINN (top, with 10 neurons) and TGPT-PINN (bottom,
with 1 neuron) results for ρ = 9.85.

19



(a) Exact solution (b) TGPT-PINN solution (c) TGPT-PINN error (d) TGPT-PINN Loss

(e) Exact solution (f) TGPT-PINN solution (g) TGPT-PINN error (h) TGPT-PINN Loss

Figure 14: TGPT-PINN results for Section 4.2.2 with a more accurate underlying PINN: ρ = 3.25
(top) and ρ = 9.85 (bottom). The error is much smaller than those in Figures 12 and 13.

4.2.3 Reaction-diffusion PDE

The reaction-diffusion system is where a diffusion operator is added to the reaction equation
above. The system has the formulation with periodic boundary conditions as follows:

∂u

∂t
− ν ∂

2u

∂x2
− ρu(1− u) = 0, (x, t) ∈ [0, 2π]× [0, 1],

u(x, 0) = h(x), x ∈ [0, 2π],

u(0, t) = u(2πt), t ≥ 0,

(4.6)

where h(x) is as in (4.3), and ν > 0 is the diffusion coefficient.
This equation has the following analytical solution:

u(x, t) = F−1

Å
F

Å
h(x) exp(ρt)

h(x) exp(ρt) + 1− h(x)

ã
e−νk2t

ã
, (4.7)

where F and F−1 are the Fourier transform pair, and k denotes frequency in the Fourier
domain.
PINN results: The PINN snapshot solver employs a fully connected neural network with
dimensions [2, 40, 40, 40, 1] with λ ≡ 1 in Lint(u) of the PINN loss function (3.3). The
training samples are randomly selected, but we again employ the optimized activation func-
tion from [33] in (4.5). In Figure 15 we show the accuracy and loss reduction of PINN for
the parameter choice (ν, ρ) = (1, 1) (top row) and (5, 5) (bottom row). Note that as the
parameters ν, ρ increase, the difficulty of solving the problem significantly increases.
GPT/TGPT-PINN results: We set the parameter domain to be (ρ, ν) ∈ [1, 5] × [1, 5],
and the training set to be an 11 × 11 equispaced grid on this domain. Figure 16 shows the
histories of convergence (left) and the locations of the two hyper-reduced networks (middle)
as the number of neurons increases when they are trained offline. On the right is the result
when they are tested online at 49 random locaions not seen during training. It is clear that
the TGPT-PINN consistently outperforms the GPT-PINN. In fact, with barely 3 neurons, it
already outperforms the GPT-PINN with 10 neurons in terms of loss decay. With 2 neurons,
its worst case performance is about the same as the best case for GPT-PINN. We present
the solutions obtained at two unseen parameter values for both the GPT-PINN (first row)
and TGPT-PINN (second row) in Figure 17 and Figure 18. Once again, we note that the
large TGPT-PINN error in parts of the space-time domain (around 40%, see Figure 18 (c)
and (g)) is inherited from the underlying PINN solver. In Figure 19, we replace the full
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(a) Exact solution (b) PINN solution (c) PINN error (d) PINN Loss

(e) Exact solution (f) PINN solution (g) PINN error (h) PINN Loss

Figure 15: Results for Section 4.2.3: Full PINN for ν = 1, ρ = 1 (top) and ν = 5, ρ = 5 (bottom).

PINN solutions by a network of the same structure but trained via supervised learning from
the exact solution (4.7). The resulting TGPT-PINN error decreased from 40% to about 6%,
confirming the effectiveness of the TGPT-PINN.

(a) (b) (c)

Figure 16: Results for Section 4.2.3 for (T)GPT-PINN for the reaction-diffusion equation: (a)
Worst-case history of convergence during training, (b) parameter domain locations determined by
the methods, and (c) box plots of the losses when tested online on unseen locations.

4.2.4 2D transport equation

To show the effectiveness of the TGPT-PINN algorithm for higher dimensions, we consider
the 2D counterpart of the transport equation tested in Section 4.2.1,

ut + (µux1 + νux2) = 0, for 0 < t < 2,x ∈ [−1, 1]× [−1, 1],

u(x, 0) = g(x) :=

ß
1, −0.5 < x1, x2 < 0.5,
0, else.

Here (µ, ν) ∈ [−10, 10]× [−10, 10] delineate the speeds of propagation along each direction.
The exact solution to the problem is given by u(x, t) = g(x1 − µt, x2 − νt). The full PINN
has architecture [3, 40, 40, 40, 40, 1] for the number of neurons in the six layers. The
collocation points, the activation function, and the learning rate remain the same as 1D
while the maximum number of iterations is 6 × 104. We take µ = ν = 0.0 and train a full
PINN as the single neuron in the GPT-PINN layer of the TGPT-PINN. The reduction in
loss of the network in a single random experiment is shown in Figure 20 (a-f).
TGPT-PINN results. We conducted tests on a uniform 21 × 21 equi-spaced points over
the parameter domain [−10, 10] × [−10, 10] with an accuracy tolerance of 10−4, a learning
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(a) Exact solution (b) GPT-PINN solution (c) GPT-PINN error (d) GPT-PINN Loss

(e) Exact solution (f) TGPT-PINN solution (g) TGPT-PINN error (h) TGPT-PINN Loss

Figure 17: Results for Section 4.2.3: GPT-PINN (top, with 10 neurons) and TGPT-PINN (bottom,
with 3 neurons) results for ρ = 1.5 and ν = 1.5.

(a) Exact solution (b) GPT-PINN solution (c) GPT-PINN error (d) GPT-PINN Loss

(e) Exact solution (f) TGPT-PINN solution (g) TGPT-PINN error (h) TGPT-PINN Loss

Figure 18: Results for Section 4.2.3: GPT-PINN (top, with 10 neurons) and TGPT-PINN (bottom,
with 3 neurons) results for ρ = 2.5 and ν = 4.5.
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(a) Exact solution (b) TGPT-PINN solution (c) TGPT-PINN error (d) TGPT-PINN Loss

(e) Exact solution (f) TGPT-PINN solution (g) TGPT-PINN error (h) TGPT-PINN Loss

Figure 19: TGPT-PINN results for Section 4.2.3 with a more accurate underlying PINN: (a-d)
ρ = 1.5 and ν = 1.5; and (e-h) ρ = 2.5 and ν = 4.5. 3 neurons are used for both cases. The error is
much smaller than those in Figures 17 and 18.

rate of 1, and a maximum iteration count of 105. Figure 21(a-d) displays the results of
the loss variation under the four extreme parameter values µ = ±10 and ν = ±10. Figure
21(e-g) illustrates the exact solutions, the TGPT-PINN solutions, and the errors under the
extreme parameter value (−10, 10) , which is one of the most challenging cases. These results
clearly demonstrate that the TGPT-PINN is highly effective for this 2D (in space) case.

5 Conclusion

We have introduced and investigated TGPT-PINN, a physics-informed nonlinear model
reduction framework. By combining the practical efficacy of PINNs-based PDE solutions
with model reduction using the GPT-PINN template and introducing new discontinuity-
approximating strategies and nonlinear transform layers, the TGPT-PINN can overcome
the limitations of linear model reduction in the transport-dominated regime and is effective
on a wide range of practical PDE problems.
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