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ABSTRACT

Person identification is important in smart buildings to enable personalized services, such as monitoring individ-
uals’ gait health. Existing studies found that the structural vibrations induced by human footsteps provide both
identity and gait health information of individuals, such as a person’s walking speed, balance, and symmetry,
enabling personalized gait health monitoring in smart buildings. However, footstep-induced structural vibrations
not only depend on human walking patterns but also on a person’s footwear as the footstep force transmits from
the foot to the floor. This co-dependency leads to difficulty in identifying the owner of the footsteps when mul-
tiple people share the same space and each person has multiple pairs of footwear. In this study, we characterize
the effect of footwear on footstep-induced structural vibrations to recognize individuals even when they wear
different pairs of shoes (or barefoot). We develop a new metric named Force Transmissibility (FT) that measures
the proportion of forces transmitting from the foot to the floor through the footwear. This metric unifies the
effect of diverse shoe types, and we utilize this metric to enable robust person identification among various shoe
types. We evaluated our approach through real-world walking experiments with eight shoe types shared by four
participants. Our method achieves a 22% improvement in identifying the owner of the footsteps when compared
to a baseline without footwear considerations.
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1. INTRODUCTION

Person identification is crucial for various smart building applications, ranging from security and surveillance to
occupant health monitoring.! In recent years, there has been a growing need for personalized health monitoring
in buildings in the face of the emergent challenges of the aging population and climate change. To cater to this
need, existing studies have explored camera-based, wearable-based, and acoustic-based approaches,>* which
have proven to be effective in tracking people’s activity and/or gait. However, many of them have privacy
concerns or require individuals to wear devices, causing inconvenience and discomfort in daily life.> To overcome
these limitations, recent advancements in structural vibration sensing found that the floor vibrations induced by
human footsteps provide both identity and gait health information,5 19 such as a person’s walking speed, balance,
and symmetry. This approach has the advantages of being low-cost, non-intrusive, and device-free, which has
great potential to be widely adopted for personalized services (e.g., health monitoring) in smart buildings.

However, one of the main challenges in vibration-based person identification is the uncertainties in shoe types.
Specifically, footstep-induced structural vibrations depend both on the person’s walking pattern and the shoe
type because the shoe serves as the intermediate layer during the force transmission from the foot to the floor.!' 12
Given that it is unrealistic to ask individuals to wear the same footwear every day, this co-dependency leads to
difficulty in identifying the owner of the footsteps when multiple people share the same space and each person
has multiple pairs of footwear. While existing studies have achieved promising accuracy in person identification
using footstep-induced structural vibrations with participants wearing their own shoes,® 314 the effect of shoes
on the results has not been explored. Moreover, the uncertainty in people’s shoe types is high due to a large
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number of possible combinations of material, function, and thickness, making it difficult to model their effects
on floor vibrations.

In this study, we characterize the effect of footwear on footstep-induced structural vibrations to recognize
individuals even when they change shoes (or barefoot). To overcome the high uncertainty challenge in shoe
types, we first characterize the structural vibration induced by people wearing multiple shoe types to understand
its effect. Then, we develop a new metric named Force Transmissibility (F'T) to describe the footwear’s effect
on the floor vibration signals. This metric unifies the type of footwear from diverse categories by quantifying
the amount of forces transmitting through the sole based on its hardness and thickness, providing a standard
“shoe effect” scale regardless of its materials and functions. We utilize this metric to enable robust person
identification among changing footwear types. The person identification algorithm is achieved by a two-stage
classification model. In the first stage, we classify the footwear into various levels of FT based on the collected
footstep-induced structural vibration signals. In the second stage, we identify the difference in each person’s gait
pattern by comparing the data within the same FT level. The outputs of the algorithm are the footwear metric
FT as well as the owner of the footsteps.

The contributions of the paper are:

e We develop a vibration-based person identification system that is robust to various shoe types, which, to
the best of our knowledge, is the first work to achieve this goal.

e We characterize and model the footwear effect by formulating a new metric named Force Transmissibility
(FT), which quantifies the proportion of the forces being transmitted from the foot to the floor based on
the sole hardness and thickness.

e We evaluate the performance of our method through real-world experiments with participants walking in
diverse types of shoes.

To evaluate our approach, we conducted real-world experiments with four participants wearing eight different
types of footwear, including barefoot. Our algorithm achieved a 22% accuracy increase in identifying these
people when compared with the baseline which did not account for footwear differences. The results emphasize
the significance of footwear in vibration-based person identification and demonstrate the effectiveness of our
approach.

2. THE EFFECT OF FOOTWEAR ON FLOOR VIBRATIONS

In this section, we characterize the effect of footwear on footstep-induced floor vibrations and model its influence
based on the characterization results. First, we quantify the variability in the resultant vibration signals caused by
footwear to understand the significance of the problem. Then, we characterize the effect of shoes on the resultant
vibration signals based on empirical data. Finally, we develop a new metric named Force Transmissibility (F'T)
to model the footwear effect on footstep-induced floor vibrations.

2.1 Quantify the Vibration Signal Variability Caused by Footwear

We quantify the signal variability caused by footwear using the data collected in our multi-people, multi-footwear
walking experiments (the details will be introduced in Section 4). Existing studies have identified and decomposed
multiple sources of variability in footstep-induced floor vibrations, such as the personal walking style and floor
heterogeneity across various footstep locations.'* In this study, we expand the scope to include the variability
caused by footwear.

To begin with, we extract the frequency spectrum of each footstep as the representative features for variability
comparison. This is because the frequency spectrum summarizes the distribution of various frequency components
within a single footstep, which has been found to represent a person’s gait effectively.'® To compare the variability
caused by footwear, we regard person and footstep location as a controlled variable and compute the mean
variance among footstep samples induced by different shoe types. Similarly, to compute the variability caused
by people and floor heterogeneity, we regard footwear as the controlled variable and compute the mean variance
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Figure 1. Effect of footwear on footstep-induced floor vibrations in terms of the 1) decay rate (upper) and 2) peak
magnitudes (lower) of the individual footstep signals. The value of these two features shows clear trends among various
shoe types.

of the frequency spectrum correspondingly. The overall variability is then calculated by summing all of the
variances.

Based on the calculation above, we find that the variability percentage caused by footwear, person, and
floor are 52.1%, 22.1%, and 25.8%, respectively. This means that footwear makes the greatest contribution to
signal variability, which underscores the significant impact it has on footstep-induced floor vibration. Therefore,
it is essential to model and reduce the footwear variability for robust and accurate person identification for
personalized health monitoring.

2.2 Characterize the Footwear Effect on Floor Vibrations

We characterize the footwear effect on floor vibrations by extracting features that follow a specific trend with
respect to shoe types. Specifically, we find that 1) peak magnitudes and 2) decay rate of the floor vibration
signal are effective features to represent the footwear’s influence on floor vibrations, visualized in Figure 1.

2.2.1 Footwear Effect on the Peak Magnitude of Vibration Signal

The peak magnitude refers to the maximum value of the vibration signal induced by each individual footstep.
While a person’s foot exerts forces on the floor during walking, the footwear adds an extra layer that adjusts
the peak magnitude by absorbing and re-distributing the force through its cushioning system. This results in
a reduced peak magnitude depending on the level of cushioning of the shoe. For example, when people walk
barefoot, there is no cushion between the feet and the floor. As a result, the force underneath the foot is directly
exerted on the floor, resulting in a large peak magnitude when walking barefoot. Figure 1 (lower) shows the
trend of peak magnitude across various shoe types - as the cushioning level (i.e., stiffness) of the shoe becomes
higher, the peak value decreases accordingly.

In the context of person identification, we find that the peak magnitude is more sensitive in recognizing people
when the shoes they wear are less stiff. This is because the forces a person exerts on the shoes depend highly on
people’s habits and body weights, and footwear with softer soles (e.g., running shoes) absorb the forces more.
The absorption of forces results makes the person’s weight and walking style biometrics less significant, leading
to less distinguishable peak magnitudes among various individuals. This means that the peak magnitude is an
effective feature in person identification when the person is walking barefoot or in stiffer footwear. Conversely,
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the peak magnitude of the footstep-induced vibration signal may not represent the actual walking characteristics
of the person when the footwear is relatively soft (i.e., with lower FT).

2.2.2 Footwear Effect on the Decay Rate of Vibration Signal

The decay rate is defined as the rate of exponential decay in the upper contour of the signal after reaching the
maximum amplitude in the time domain, which typically represents the damping effect in the vibration.'® To
extract the decay rate, we pick the first five peaks after the maximum magnitude in the signal and fit them using
an exponential function, which gives a relatively consistent decay rate.

We find that the decay rate in footstep-induced floor vibration is affected by both personal walking patterns
and shoe types. A healthy adult typically lands on their heels during normal walking, making the force concen-
trate on the contact area between the heel and the floor in a short duration of time.'S This effect is particularly
significant when people are walking barefoot, the forces of which are impulsive and similar to hammer strikes.
However, the force concentration is less significant when people wear shoes because the insole and outsole redis-
tribute the force over a larger contact area and for a longer time. Figure 1 shows decay rate decreases as the
shoe gets softer (FT decreases). This means that when people wear footwear, especially sneakers with soft soles,
the force between the shoe and the floor is less impulsive but more similar to continuous force with variations
over time. In addition, we observe the decay rate is sensitive to people even when they wear the same type of
shoes, meaning that it contains personalized gait information in addition to the footwear effect.

Input Force

Insole
Qutole

Output Force

Figure 2. Simplified model of a shoe to demonstrate the force transmission through the inner and outer layer of the sole.

2.3 Model the Footwear Effect on Floor Vibrations

We model the footwear effect on floor vibration signals by formulating a new metric named Force Transmissibility
(FT). FT represents the level of force transmission between the foot and the floor due to the footwear effect.
Given the positive correlation between hardness and Young’s modulus in polymers,'” polymer materials with
higher hardness tend to experience less energy dissipation from deformation, resulting in a higher FT. Hence,
the hardness per unit thickness % could be an indicator of FT magnitude. Based on a two-layer sole model that
is commonly used to describe footwear types (see Figure 2), the FT of the footwear system is then calculated

based on the thickness and the hardness of the insole and outsole in Equation 1 below:

h t h t h h
FT=—"x 2 4252 - Rl (1)
ty,  tit+ta to t1 4t t +to

where t; and t, represent the insole and outsole thickness, and h; and hy represent the hardness of insole and
outsole, respectively. In this equation, the terms %1 and %2 represent insole and outsole hardness per unit
thickness, and thltz and tliitz describes the proportion of insole and outsole out of the entire thickness. By
multiplying the mean hardness with the thickness proportion, we first obtain the FT of the insole and outsole,
respectively. Then, by summing up the FT of both soles, we obtain the overall FT of a given footwear. Equation 1
signifies that the FT of the footwear increases with sole hardness and decreases with sole thickness, which aligns
with the physical intuition that stiffer soles make the force easier to transmit while softer soles absorb more

forces and energy.
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To validate the effectiveness of our F'T formulation, we plot the distribution of samples for different types of
shoes (dots with different colors) in the axis defined by tl}j:tz and tl}ft2 in Equation 1 as Figure 3. We observe a
clear separation among various shoe types, indicating that FT is effective in describing the distinctive properties

among various shoe types.
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Figure 3. Visualization of various shoe types with respect to FT and its sub-components. The clear separation in dots
validates F'T’s effectiveness in describing the difference among various shoe types.

3. FOOTWEAR-INFORMED PERSON IDENTIFICATION SYSTEM

We develop a robust person identification system that is aware of footwear types, described in Figure 4. The main
idea of our system is to recognize people when they wear shoes with similar physical properties (i.e., FT level).
Our system consists of three modules: 1) data pre-processing, 2) footwear FT classification, and 3) footwear-
specific person identification. In order to recognize the walker, we first estimate the footwear F'T level based on
the resultant vibration signals, and then compare the walker’s vibration pattern with the data collected at the
same FT level to determine the walker’s identity. The details of each module are introduced in the following
subsections.

‘ 3.1 Data Pre- 3.2 Footwear FT 3.3 Footwear-Specific
WHM% ~.1jr-4“'::4hw~n processing Estimation Person Identification
a8 Person
* Noise reduction » * FT-sensitive feature » * Person-sensitive feature » 1D
¢ Left-right footsteps extraction extraction
Footstep-Induced pairing * Nonlinear classification * Nonlinear classification
Floor Vibration

A

Barefoot High FT Medium FT  Low FT
( J

Footwear Type

Figure 4. System overview
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3.1 Data Pre-processing

The data pre-processing module aims to reduce the noises in the raw signals and segment the signal into groups
of footsteps. For noise reduction, a low-pass filter and a Wiener filter are applied to reduce the high-frequency
electrical noises and background noises in the environment.

After noise filtering, we detect individual footsteps through a peak detection algorithm to separate continuous
walking signals into individual footsteps.” This method helps us to extract the two consecutive steps that are
closest to the sensor, which not only has the best signal-to-noise ratio but also reduces the variability caused by
floor heterogeneity among various footstep locations.

Next, we group left and right footsteps into pairs to incorporate potential left-right asymmetry during walking,
which is a commonly observed gait abnormality in medical practices. The grouping adds additional gait health
information through the combination of features from both feet, making it easier to distinguish between people
who walk normally and asymmetrically.

3.2 Footwear Force Transmissibility (FT) Estimation

This module aims to estimate footwear F'T level based on the resultant vibration signals. In order to identify
people who wear shoes with similar physical properties, we divide FT values into four levels: 1) barefoot, 2)
high FT, 3) medium FT, and 4) low FT. The discretization is conducted based on the empirical observation
of significant shoe type shifts as the FT value changes. Specifically, the low FT level includes soft shoes such
as running shoes and sneakers, the medium FT level shifts towards sandals, while the high FT level includes
stiffer footwear such as dress shoes and boots. The FT levels are determined through a non-linear classifier (i.e.,
support vector machine) using the peak magnitude and decay rate as FT-sensitive features. Details on how these
features reflect the shoe types are discussed in Section 2.2.

3.3 Footwear-Specific Person Identification

Once the FT level is determined to represent the footwear category, we extract person-sensitive features for
person identification. These features include continuous wavelet transform (CWT) coefficients, power spectrum
density (PSD) spectrum, as well as the decay rate and peak magnitudes. These features have been shown to be
effective in representing the unique walking patterns of individuals.'®'* The decay rate and peak magnitudes are
included here because they are sensitive to both footwear and people, as discussed in Section 2.2. In addition, we
develop a footwear-specific feature selection algorithm to reduce the feature dimension for more efficient model
training. This step is important because the feature importance varies among various footwear due to the shift
in frequency components. In order to search for the most sensitive frequency under the current footwear, we use
the efficient forward feature selection method to reduce the PSD and CWT feature dimension.'® After that, we
use a support vector machine (SVM) model with a radial basis function kernel to train the person identification
classifier. The model is chosen based on empirical performance comparison among multiple commonly used
non-linear classifiers. The output of our method is the identity of the walker.

4. REAL-WORLD EVALUATION

To evaluate our approach, we conducted a real-world walking experiment with 4 healthy participants with similar
shoe sizes to share the same set of footwear. During the experiment, each participant walked with 8 types of
footwear (including barefoot) to create 32 different combinations of footwear and person. Our results show
promising accuracy in estimating FT levels and recognizing people when they wear randomly chosen shoes.

4.1 Experiment Setup

The experiment involves two steps: 1) footwear property measurement and 2) floor vibration sensing during
walking. We repeated the two-step experiment for each of the 32 person-footwear combinations.

To measure the footwear properties and determine the FT levels, we measured the thickness (mm) and
hardness (HA) of the shoes using tape and a Durometer for both the footwear’s insole and outsole. Note that all
the insole thicknesses were rounded to 5 mm for efficiency of measurement. Then, we compute the FT of each
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Figure 5. Footwear types and their FT levels measured in the experiment
Table 1. Footwear properties

Shoe types Insole properties Outsole properties Footwear Transmissibility (FT)
Hardness (HA) Thickness (mm) | Hardness (HA) Thickness (mm)

Under Armour Sandal 31.7 5 24.8 10 7.56
Li-Ning Sneaker 23.2 5 25 37 3.31
On-Running Sneaker 28.3 5 35 34 5.81
Car Shoe Casual Shoe 51.2 5 54.2 30 17.32
Alexander McQueen Casual Shoe 63.3 5 66.2 45 27.31
Hogan Sneaker 23.3 5 31.7 55 2.85
Cartelo Dress Shoe 45.8 5 63.3 25 20.85

shoe type using Equation 1. The average measured footwear properties and their corresponding FT levels are
summarized in Table 1 and Figure 5.

During the walking trials, each participant walked on a 7.31-meter-long wooden walkway. While the partici-
pants share the same shoe size, their weights and heights are different to incorporate personal variations. Each
person walked along the walkway 5 times in each type of shoe, and each trial consisted of around 10 footsteps.
The experiment was conducted in a quiet room to mitigate environmental disturbances. To capture the floor
vibration generated by people’s walking, we deployed four geophone sensors (SM-24) on the surface of the floor
slab to measure the vertical floor vibration. Each geophone sensor was connected to an operational amplifier
(LVM385) and then a National Instrument DAQ device to amplify the signal and convert the analog signals into
digital time series data. The geophone sensors have a sampling frequency of 25.6 kHz, and the layout of the
sensors is illustrated in Figure 6.
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(a) Sensor Layout (b) Walking Experiment

Figure 6. Experiment setup for real-world walking with various footwear: (a) sensor layout, (b) walking experiment

4.2 Results

Our method has an 84% accuracy in estimating footwear FT and a 71% accuracy in recognizing four people
wearing randomly chosen footwear. Compared with the baseline method without footwear FT estimation, our
method achieves a 22% accuracy improvement over the baseline (which only has 49% accuracy in person identifi-
cation). Figure 7 shows the accuracy comparison between our method and the baseline approach as the number
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of footwear increases. As observed from the figure, the two methods have the same accuracy for person identifica-
tion when only one type of footwear is considered. However, as more types of footwear are added, the baseline’s
accuracy in person identification drops significantly, indicating that the baseline struggles to distinguish if certain
signal characteristics are due to the footwear or the person. In comparison, our system showed robustness as
the number of shoe types increased - the drop in person identification accuracy is less significant as observed in
Figure 7.

100

-e-Baseline Method
-e-Our Method

90

80

Accuracy (%)

60

50

40

Number of Footwears

Figure 7. Comparison of person identification accuracy between our method and the baseline without FT estimation. Our
method has higher and more consistent accuracy as the number of footwear increases.

In addition, we find that the person identification accuracy differs within each of the FT levels, as shown in
Figure 8. Specifically, as the FT level decreases, the person identification accuracy drops significantly. This is
because a person’s unique gait characteristics may be masked by the footwear as the cushioning system absorbs
and re-distributes the force underneath the foot.

100
90

80

Accuracy (%)

60

40
Barefoot High FT Medium FT Low FT

Footwear Force Transmissibility (FT)
Figure 8. Effect of FT on person identification accuracy. The accuracy drops significantly as the FT decreases, meaning
that softer shoes may mask an individual’s unique walking patterns.

5. CONCLUSION AND FUTURE WORK

In this study, we develop a robust person identification system across various shoe types through footstep-induced
floor vibrations. We characterize the effect of footwear on footstep-induced structural vibrations and develop a
new metric named Force Transmissibility (FT) to quantify such effect. Through a real-world walking experiment
with eight shoe types, our method has an 84% accuracy in footwear FT level estimation, which helps to improve
the person identification accuracy by 22% (from 49% to 71%) when people have multiple shoes. We found
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that footwear with lower FT levels may mask the walking characteristics of individuals, while walking barefoot
maintains their walking characteristics, leading to the best accuracy in person identification.

Our future work aims to overcome the challenge in low FT cases when inferring people’s identity and gait
health. For example, we plan to explore transfer learning to convert the vibration signals from various footwear to
barefoot to address this challenge. We also plan to examine the effect of footwear on extracting gait parameters
and detecting gait abnormalities. These efforts could ultimately lead to improved accuracy and reliability in
personalized gait health monitoring in smart indoor spaces.
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