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Abstract—Social ties are at the heart of online social networks,
enabling users to exchange information, communicate, share
content, and build communities. However, an under-explored
aspect of these networks is the dissolution of online relation-
ships, which complements the studies of tie maintenance and
formation. A comprehensive understanding of these connections,
including their formation, dissolution, and potential prediction of
breakdowns, can provide a more detailed view of the network’s
dynamics and the evolution of interpersonal ties. However, a
notable barrier to studying these broken ties is the lack of
longitudinal, detailed data. This paper aims to address this gap
by creating a large-scale dataset of more than 120K Twitter users
over a period of 15 weeks (weekly snapshots). With this dataset,
we undertake an extensive analysis of links on Twitter. Our
investigation includes a range of features that span five distinct
categories on the Twitter social graph. These include structural
features such as centrality, content aspects like post polarity, user
profile characteristics (e.g., verified status), egocentric network
elements like reciprocity, and dense user representation, e.g.,
node2vec. Next, we conduct a thorough analysis of these features
to identify meaningful patterns. Ultimately, through extensive
experimentation, we employ several machine learning algorithms
to discern the impact of the extracted features on the prediction
of broken ties.

Index Terms—Broken Ties, Dissolved Ties, Unfollow, Twitter,
Social Media

I. INTRODUCTION

In today’s digital age, online social ties, a frequently under-

appreciated component, form the cornerstone of Online Social

Networks (OSN). Establishing these connections empowers

users to communicate, build relationships, share and acquire

information, promote businesses, and participate in numerous

other activities. Consequently, OSNs have intricately woven

themselves into human life, linking millions, or even billions,

of users through myriad connections. However, an aspect of

these ties that is equally significant but less examined is their

dissolution, commonly known as ‘unfollowing’ or ‘unfriend-

ing.’1 There are several reasons why studying the broken ties

in OSNs is crucial: Firstly, unlike tie formation, breakage is

a conscious and rational action based on past interactions [1].

Secondly, the disintegration of these ties can cause substantial

changes in the underlying online network structure, potentially

disrupting information diffusion or escalating polarization [2].

Lastly, severed ties can affect interpersonal relationships be-

yond online social media [3], [4]. Therefore, it is essential

to delve deeper into our understanding of social ties, mainly

1In this paper, the terms ‘broken tie’, ‘dissolved tie’ and ‘unfollow’
interchangeably. The same is true for ‘maintained/formed tie’ and ‘follow’.

focusing on their breakage. In doing so, we acknowledge the

importance of these ties in creating connections and in their

termination, reflecting the dynamic nature of relationships in

the digital world.

Nonetheless, the investigation of broken ties introduces sev-

eral obstacles. The first challenge lies in the identification of

instances of broken ties, which requires longitudinal network

data. To more accurately determine the time of tie dissolution,

this data needs to be of a high temporal resolution. The

second challenge is that the maintenance and dissolution of

ties depend on various structural and behavioral factors. This

complexity necessitates meticulous data collection and feature

extraction. The third challenge arises from the necessity of

conducting an exhaustive, large-scale data analysis to identify

informative patterns about broken ties, an approach that exist-

ing studies have not fully implemented [5]. Finally, although

predicting broken ties holds substantial value, current research

has not sufficiently emphasized developing a robust model

capable of predicting future tie dissolution with precision [6].

This paper analyzes and predicts Twitter breakups to address

these issues. Twitter is ideal for this investigation because it

is public and users can follow accounts without approval. We

start with a dataset of over 120K Twitter accounts, 15 weekly

snapshots of the network, posted content, and other details. To

our knowledge, this Twitter dataset is the first with temporal

precision and scale. This dataset is used to extract hetero-

geneous features from the evolving Twitter network. These

include structural features like user centrality, content-related

features like Tweet subjectivity, user profile attributes like self-

declared bio information, egocentric traits like reciprocity, and

dense user representation (node embeddings). These features

help us analyze broken ties in established ties. We use multiple

machine learning models to show that these features can

predict future broken ties, even for users not in the training

data. Finally, this paper makes three main contributions:

p We create a large-scale social network encompassing over

120K Twitter users. This network includes not only their

content but also 15 weekly temporal snapshots, providing

insight into users’ unfollowing activities.

p We extract a multitude of features from various perspec-

tives based on our dataset. We conduct analysis on broken

ties from various perspectives based on extracted features.

p We use the extracted features and develop several ma-

chine learning models capable of predicting broken ties

with high performance.



II. RELATED WORK

A. Follow Prediction

Link prediction, a prominent area of research in social

networks, seeks to forecast future relationships. Researchers

have primarily employed supervised machine learning for this

purpose, framing it as a classification task [7]. This approach

leverages both topological and content-based characteristics,

including explicit network edges or implicit ones formed due

to one node’s actions on another [8]. Topological features like

Common Neighbors, preferential attachment, shortest path, or

node degree have been particularly informative. These meth-

ods successfully predict links between tightly interconnected

users [9]. Researchers have also fused explicit topological data

and content-based features, outperforming conventional meth-

ods in link prediction tasks [10], [11]. Unsupervised machine

learning methods and Global-based Probabilistic Approaches

have also been explored, segmenting networks into commu-

nities or generating edge labels based on the likelihood of

existence [12], [13]. However, these approaches often neglect

edge attributes, focusing only on structural features. Other

studies proposed that Twitter is a hybrid of a social network

and a news source, enabling both information dissemination

and the exchange of ideas among members [14]. In this line

of research, models incorporating geographical information,

user content networks, tweet credibility, and temporal data

emerged, enabling more accurate forecasting and more nu-

anced relationship predictions [15].

B. Unfollow Prediction

While existing studies have delved into online social con-

nections, most present significant limitations. Early research

mainly centered on single static network snapshots, neglect-

ing temporal information [16], [17], [18], [19]. While some

studies using longitudinal data do exist, they have offered only

minimal focus on social tie maintenance [20], [21], [22], [23].

Work on tie dissolution is even rarer, with some primarily

computational studies centered on dyadic relationships or non-

explanatory predictions/classifications [1], [24], [25], [5], and

others building on existing social theories [26], [27]. However,

these theory-grounded studies lack in-depth analysis and de-

velopment of new theories on online social tie dissolution, are

less experimental, and typically use smaller survey data.

Our work, to the best of our knowledge, stands as the first

to combine 1) multiple fine-grained weekly network snapshots

(15 weeks), 2) over 120K users with diverse online data, 3)

a comprehensive analysis of broken ties highlighting various

user and network features, and 4) accurate prediction of future

broken ties using historical network snapshots.

III. PROBLEM STATEMENT

We operate under the assumption that there are T available

Twitter social graphs (snapshots), each represented by Gt =
(U,Et), where 1 ≤ t ≤ T . In this notation, U denotes the set

of users (nodes), and Et refers to the set of edges between the

nodes in U . We also assume that the users remain constant,

with only the edges varying across snapshots. A directed edge

from user ui to uj (ui, uj ∈ U ) is denoted as (ui, uj) ∈ Et.

Based on this notation, we define the following entities related

to social ties.

p Follower: At timestamp t, user ui is a follower of user

uj if (ui, uj) ∈ Et.

p Followee: At timestamp t, user uj is a followee of user

ui if (ui, uj) ∈ Et.

p Follow: An edge (ui, uj) is labeled as follow if (ui, uj) /∈
Et and (ui, uj) ∈ Et+1.

p Unfollower: User ui is an unfollower if (ui, uj) ∈ Et

and (ui, uj) /∈ Et+1. Consequently, edge (ui, uj) signi-

fies an unfollow event at time t.
p Unfollowee: User uj becomes an unfollowee if (ui, uj) ∈

Et and (ui, uj) /∈ Et+1.

With the above notation and definitions, this paper focuses

on two major tasks.

Broken Tie Analysis: Given T Twitter network snapshots

and network-related and user-related features, we aim to

uncover intriguing patterns and trends that enhance our

understanding of the dynamics of tie formation and dissolution

on social media.

Broken Tie Prediction: We aim to develop a machine learn-

ing model M trained on T − k Twitter network snapshots

and network-related and user-related features. The model is

designed to predict the status of edges (ui, uj) (follow or un-

follow) for subsequent snapshots {T −k+1, T −k+2, · · · , T }.

IV. DATASET

TABLE I: Weekly Twitter dataset statistics (15 weeks)

Network Property Value

Total users 123,829
Total ties 2,922,732
# Verified accounts 3,829
Avg weekly new followers 10,855
Avg weekly new unfollowers 465
Avg weekly new Tweets 1,175,846
Percentage Verified Users 1.687
Avg Followees Count per User 205
Avg Followers Count per User 150
Diameter (longest shortest path) 8
Avg new tweets (w/ mentions) 2,021

Twitter provided the large-scale, evolving social network

and detailed online user data our study needed. Twitter’s

API academic access made data collection much easier. From

2019 to 2021, we collected weekly snapshot data for 123,829

Twitter users. This dataset includes users’ social connections

and tweets. An author’s Twitter breadth-first search identified

130,000 users. We excluded users who changed their privacy

settings or deactivated accounts during data collection to refine

this set. Initial fundamental statistics were performed on 15-

week data. Table reftab:twitterdataset shows these preliminary

results. Importantly, Twitter and its APIs do not provide

information about dissolved social ties. User retention and ex-

perience may be the reason. Thus, longitudinal data collection

of the same users’ social connections is the only way to obtain



such data. Our study used 15-week data for computational

efficiency.

V. BROKEN TIE ANALYSIS

Twitter connections, or “ties,” show how users interact. On-

line connections show influence, information spread, emotions,

and user ideas. These interactions influence trends, thoughts,

and even real-life events. Understanding these ties improves

social media use, content creation, fighting misinformation,

and online behavior. Different perspectives help us understand

Twitter ties. Five categories highlight different aspects of

these ties in our analysis. Our detailed broken tie analysis

relies on these categories. Our Twitter ties study uses these

characteristics. This helps us understand Twitter’s complex

social network and its implications.

A. Sociocentric Network Structure Analysis

The sociocentric network analysis provides insights into

the broader social context within which individuals interact,

allowing us to understand not only direct relationships but also

the larger networks within which they are embedded. It moves

beyond merely examining a user’s immediate connections (i.e.,

whom they follow and who follows them) to also look at the

connections between a user’s connections and the overall struc-

ture of the network. Concerning broken ties, understanding the

sociocentric structure can help shed light on the causes and

implications of tie dissolution. For instance, tie dissolution

may be influenced by indirect connections, such as shared

followers or mutual friends, and the broader network structure,

like the user’s position within their community (e.g., their

centrality). Therefore, sociocentric network analysis is vital for

gaining a deeper understanding of the complex dynamics of

tie formation and dissolution on social platforms like Twitter.

We examine two classes of sociocentric structural features:

network centrality and the predicted community. Network

centrality encompasses various measures, including in-degree

and out-degree, Eigenvector, betweenness, hubs, authority, and

PageRank. These measures serve to quantify the influence or

prominence of a node within the network structure. As for the

predicted community, we utilize Spectral Clustering to identify

distinct communities within the network. This process begins

with the calculation of the graph’s normalized Laplacian

matrix, followed by the use of its Eigenvectors to cluster

the nodes. Through this methodology, we have identified five

separate communities in the network data spanning 15 weeks.

Figure 1 presents the analysis of sociocentric structural

features, comprising four centrality measures and predicted

community. Centrality measures are categorized into three bins

(i.e., high, medium, and low), while the predicted community

feature corresponds to five extracted communities. We derive

the following observations from the results illustrated in Fig-

ure 1.

Ð Unfollowers with high in-degrees and unfollowees with

low in-degrees generally experience fewer unfollow

events. This may be attributed to the likelihood that users

with low in-degrees have fewer but stronger ties. Hence

they are less likely to be unfollowed. Conversely, suppose

an unfollower has a low in-degree, and the unfollowee

has a high in-degree (e.g., an ordinary user follows a

celebrity). In that case, the chance of unfollowing is

higher due to the relatively low tie strength between the

parties involved.

Ð Regarding out-degree binning, we observe that unfol-

lowees with a low out-degree (fewer than 39 connections)

account for the most significant increase in unfollow

events. Such users may need more reciprocal connections

and maintain high standards for whom they follow.

Ð Concerning eigenvector centrality, we notice that most

unfollow events occur along the diagonal, reflecting the

nature of eigenvector centrality where a user’s centrality

is passed onto her connections. This suggests that users of

similar importance (according to eigenvector centrality)

are more likely to be connected.

Ð For betweenness centrality, unfollowees with medium

betweenness values tend to be unfollowed less frequently.

However, if an unfollowee’s betweenness value is low, the

higher betweenness centrality of an unfollower increases

the likelihood of unfollowing events. This trend is re-

versed when the betweenness of the unfollowee is high.

Users with high betweenness centrality are more likely

to bridge different communities (being on many shortest

paths), making them more likely to be unfollowed by

users from different communities.

Ð Considering the predicted community plots, we observe

three larger and two smaller communities. Most unfollow

events (> 90%) occur within a community, likely due

to the majority of user connections being within their

respective communities. Thus, most opportunities to un-

follow also exist within a community.

These observations suggest that the unfollower and unfol-

lowee’s structural centrality scores are associated with unfol-

lowing behavior. Moreover, the community structure tends to

have a localized effect on unfollowing.

B. Egocentric Network Structure Analysis

Egocentric structure network analysis looks at a user’s

immediate connections, or “friends,” and the relationships

between those friends. Features of the egocentric network,

such as the number of mutual followers, the ratio of followers

to followees, and the density of connections among a user’s

followers, can provide important clues about the user’s posi-

tion within the network and their potential for tie dissolution.

Overall, egocentric structure network analysis enables a more

nuanced understanding of a user’s local network, allowing us

to identify patterns that might predict tie dissolution more

accurately. The features under this category include:

p # Lost followees: This feature tracks the count of ac-

counts a user has ceased following within a certain time

frame.

p # New followees: This feature quantifies the number

of accounts a user has begun following within a given

period.



Fig. 1: CDF plots and binning for a subset of structural features

Fig. 2: CDF plots and binning for a subset of egocentric network features

p # Lost followers: This feature registers the number of

users who have unfollowed a specific account over a

certain time frame.

p # New followers: This feature logs the count of users who

have started following a particular account within a set

time period.

p Follow-back ratio: This feature calculates the ratio of

follow-backs (following a user who follows you) to the

total followees.

p # Followers / # Followees: Similar to the follow-back

ratio, this feature measures the ratio of followers to

followees, a metric found to correlate with social ties on

Twitter [28].

Figure 2 presents the analysis results for several egocentric

network features. Based on these results, we make the follow-

ing observations:

Ð In the ‘Gained Followers’ plot, the x-axis represents the

quantile range of the unfollowee’s gained percentage of

followers, and the y-axis represents the quantile range

for the unfollower’s gained percentage of followees (from

one week to the next). Over 50% of unfollow events occur

when the unfollowee’s gained followers fall within the

top 20% quantile (i.e., the last column corresponding to

the 80-100 range). We surmise that this occurs because

unfollowee users who are highly active in expanding their

ego network (perhaps indiscriminately) are more likely



to be subject to unfollowing events from other users.

The most significant contribution comes from unfollowers

who have also gained a substantial number of followers

(i.e., the bin of 80-100 and 80-100).

Ð The next plot, ’Lost Followers’, shows the quantile range

of the unfollowee’s lost % of followees on the x-axis,

while the y-axis shows the unfollower’s lost % of follow-

ers. Notably, over 80% of the unfollow incidents occur to

unfollowees in the highest bin of the lost % of followees.

This suggests that if a user loses a significant number of

connections, they are likely to continue losing additional

connections. This trend is similar to preferential attach-

ment in evolving networks [29], but in this case, it applies

to lost ties rather than gained ones.

Ð The ‘Ratio Follow Back’ plots in Figure 2 clearly show

that reciprocal ties are stronger. Specifically, users with a

higher proportion of reciprocal ties are less likely to be

unfollowed. This finding aligns with the notion that recip-

rocal links in the network strengthen the user’s position

and reduce the likelihood of them being unfollowed.

Fig. 3: The changes in % of gained/lost followers (top plot)

and % of gained/lost followees (lower plot) of unfollower and

unfollowee.

To delve deeper into the egocentric network, Figure 3 show-

cases the variations in the percentage of gained or lost fol-

lowers and followees of unfollowers and unfollowees. These

alterations are captured from weekly snapshot i to i + 1. As

demonstrated by Figure 3, the social graph is growing denser

as the percentage of followers and followees gained persis-

tently outstrips the percentage lost. Notably, the values for

followers and followees gained or lost, particularly the ratios

between these values, maintain remarkable consistency across

various time snapshots. Consequently, even though severed

connections momentarily reduce the size of the egocentric

networks of unfollowers and unfollowees, users typically form

new connections. As a result, both the individual egocentric

networks and the overall social graph exhibit continuous

expansion over time.

C. User Content Analysis

Understanding the nuances of online connections often

requires analyzing user-generated content such as tweets,

retweets, and hashtags [24]. These pieces of content can reveal

user sentiment, topic of interest, level of engagement, and

more. Therefore, the second category of features we consider

for broken tie analysis focuses on this user-generated content.

Below, we elaborate on these features:

p Hashtag similarity: This feature quantifies the degree of

similarity between the hashtags utilized by two users. For

this purpose, we employ Fuzzywuzzy [30], a tool that

determines similarity ratios between text tokens based on

the Jaccard similarity algorithm.

p Tweet polarity: This feature assesses the sentiment ex-

pressed in a tweet, with values ranging from -1 (indicating

negativity) to 1 (indicating positivity).

p Tweet subjectivity: This metric gauges the subjectiv-

ity inherent in a tweet, with values extending from 0

(signifying objectivity) to 1 (indicating subjectivity). To

derive polarity and subjectivity, we utilized the Textblob

sentiment analysis library [31].

p Tweet word count: This feature represents the count of

words contained in a tweet.

p # Mentions: This feature denotes the frequency of men-

tions of a user’s handle in tweets.

p # Mentions from (un)follower to (un)followee: This fea-

ture measures the number of times an (un)follower has

mentioned the (un)followee.

p # Mentions from (un)followee to (un)follower: This

feature accounts for the frequency with which an

(un)followee has mentioned the (un)follower.

p # Hashtags: This quantifies the total count of hashtags

used by a user.

p # Tweets containing URL: This feature notes the number

of tweets that incorporate a URL.

p # Tweets containing symbols: This feature tallies the

number of tweets containing symbols.

Figure 4 displays the results pertaining to content polarity

and subjectivity. The upper segment of this figure presents the

cumulative distribution function (CDF) for content polarity

and subjectivity. Based on these distributions, we establish

a cut-off point to categorize polarity and subjectivity scores

into two bins: high and low. The lower segment of Figure 4

depicts the percentage of broken ties associated with the four

combinations of polarity and subjectivity, considering both

parties involved in a broken tie: the unfollower and unfollowee.

Note that we implemented a similar binning strategy for most

feature analysis experiments. The observations from Figure 4

are as follows:



Fig. 4: CDF plots and binning for polarity, subjectivity, and mentions within the content

Ð Irrespective of the unfollowers’ average tweet polarity,

they exhibit a higher likelihood of unfollowing users

possessing a high tweet polarity score.

Ð A surge in the count of unfollows is observed when the

unfollower’s average tweet polarity is low.

Ð The majority of unfollows occur between users whose

average tweet subjectivity mirrors their own.

These observations indicate that the subjectivity and polarity

of user-generated content significantly influence the dissolu-

tion of online ties on Twitter.

D. User Profile Analysis

A user’s profile is a snapshot of their chosen online identity,

showcasing information they have elected to share publicly. It

typically includes elements like their username, bio, location,

profile picture, cover photo, and, potentially, a website link.

These elements can provide insightful details about users’

interests, personality traits, and affiliations, which could in-

fluence their social ties. Verified accounts, for example, often

belong to public figures or notable individuals in various fields.

As a result, followers might be less likely to dissolve ties

with such accounts, given their public standing and the unique,

authoritative content they provide. The profile-based features

are described as follows:

p Verified account: This feature indicates whether a user’s

account has received Twitter’s verification.

p # Subscribed lists: This feature accounts for the number

of lists a user is subscribed to.

p Favorite count: This feature denotes the count of tweets

a user has marked as favorites.

p Presence of Profile Image: This feature signifies whether

a user has uploaded a profile image.

p Bio similarity: This feature measures the degree of

similarity between the bios of two users. For this, we

employ Fuzzywuzzy [30], which calculates similarity

ratios between text tokens based on the Jaccard similarity

algorithm.

p # Tweets: This feature represents the count of tweets a

user has posted.

p # Followers: This feature records the total number of a

user’s followers.

p # Followees: This feature indicates the count of users

followed by a user. We have included the last three

features in this category as they are easily visible on

a Twitter user profile and can serve as distinguishing

identifiers, particularly in the case of the follower count.

Figure 5 showcases the results of analyzing user profile

features, specifically focusing on three distinct attributes. First,

we only demonstrate the binning for verified and unverified

categories for verification status. In terms of the number of

tweets, Figure 5 displays both the CDF plot, three binning

categories (low, medium, and high for exact cut-off values),

and the weekly changes in the average number of tweets,

normalized by the number of users in each unfollower and

unfollowee category. A similar methodology is employed for

calculating weekly favorites counts. Based on the analytical

results reflected in Figure 5, we draw the following observa-

tions:

Ð As demonstrated in Table I, a significant majority of

Twitter users possess unverified accounts, which ex-

plains why 98.1% of the unfollow incidents fall into

the unverified-unverified bin. Nonetheless, an intriguing

pattern emerges when considering the percentages in off-

diagonal elements. Verified users unfollowing unverified

accounts constitute five times more unfollow incidents

than unverified accounts unfollowing verified accounts.

Ð In relation to favorites counts, both unfollowers and



Fig. 5: CDF plots and binning for several user profile features

unfollowees exhibit similar behaviors for the most part,

with the exception of week 9.

Ð There is a negative correlation between the activity levels

of unfollowers (measured by the number of tweets posted)

and the likelihood of unfollowing. This could potentially

be attributed to the increased chances of interaction and

engagement between the unfollower and the unfollowee,

along with their content. Conversely, a high tweet posting

rate for the unfollowee correlates with an increased

likelihood of being unfollowed. This is consistent with

previous research in [32] where authors demonstrated that

high tweet bursts by users leads to their unfollowing.

Drawing from these observations, we can conclude that

profile features such as account verification and tweeting rate

exhibit associations with broken ties on Twitter.

E. Dense User Representation Analysis

Building upon the progress in neural networks, particularly

graph representation learning, we can obtain dense user repre-

sentations, or ‘node embeddings’. These embeddings encapsu-

late critical information about users, their social interactions,

and their communities. Our hypothesis is that these node

embeddings evolve over time, reflecting the dynamic nature

of the graph structure due to the creation and dissolution of

social ties. To extract these dense user representations, we

employed the Node2vec method [33]. This technique allows

for a flexible neighborhood sampling strategy, bridging the gap

between Breadth-First Search (BFS) and Depth-First Search

(DFS) by introducing a bias-random walk procedure.

To examine the dense user representations, we compute

the change in Euclidean distance between the embeddings of

(un)followers and (un)followees from week 1 to week 15. The

results are presented in Figure 6. We study both follow and

unfollow incidents and consider the number of directional ties

between users at the time of the follow/unfollow event. For a

follow event, this can be either 1 (a user follows another)

or 2 (mutual following). For an unfollow event, there are

three potential scenarios: 0 (no remaining ties), 1 (one user

continues to follow the other), or 2 (a user unfollows another

and then subsequently follows back again). In addition, we

segregate users into two categories based on their in-degree,

distinguishing between those with high in-degree (H) and low

in-degree (L). This separation is crucial as users with high

(low) in-degrees tend to be more well-known (less-known)

and have larger (smaller) communities. This factor impacts

the user representations generated by Node2vec, which aims to

create representations for users within similar neighborhoods.

The bottom part of Figure 6 displays the results across

weeks without this in-degree segregation. Based on the results

showcased in Figure 6, we make the following observations.

p Notably, users who end up without ties following an

unfollow event generally experience an increased distance

between their embeddings. This implies that the dissolu-

tion of a tie typically results in the two associated nodes

moving farther apart within the user representation space.

An exception occurs when both the unfollower and un-

followee have high in-degrees. This outcome is expected

given that individuals with numerous connections, who

were previously connected, likely share numerous com-

mon ties. Since user representations depend on common

neighbors, two individuals with many shared connections

would likely remain close in the user representation space

even if their direct connection is dissolved.

p Since user representation is derived from an undirected

graph rather than a directed graph, if at least one direc-

tional tie exists between two users, the user representation



Fig. 6: Dense user representation plots

algorithm treats it as a reciprocal tie. Therefore, as

shown on the left-hand side images, for pairs of users

maintaining a single tie while experiencing an unfollow

event, the average change in distance is nearly negligible.

There is a bin for users maintaining two ties despite

experiencing an unfollow event. However, such cases,

where a user unfollows another only to refollow later,

are rare and expectedly associated with higher standard

error bars.

VI. BROKEN TIE PREDICTION

In the preceding section, we focused on the analysis of bro-

ken ties. Here, we extend the analysis by developing models

capable of predicting broken ties. This approach serves two

principal objectives. Firstly, it allows us to validate the features

extracted as beneficial and informative for predicting broken

ties. Secondly, it aids in understanding the future evolution

of the social network. Such knowledge can be employed for

several downstream applications, including friend recommen-

dation, client retention, popularity maintenance, and business

growth. The models developed take user features as input

and predict whether a follow (maintained tie), or an unfollow

(broken tie) relationship exists between them. Therefore, this

task reduces to binary classification. The experimental settings

and obtained results are elaborated upon in the subsequent

subsections.

There are many published works on link prediction, and it

would be worthwhile to discuss why we cannot use such tech-

niques in broken tie prediction. Link prediction strategies are

effective for follow prediction and cannot be directly applied

to broken tie prediction due to different governing dynamics

and factors. Follow prediction models usually consider features

like shared interests, mutual acquaintances, and demographic

similarities [34], [35]. In contrast, broken tie prediction must

account for factors like posting frequency, content relevance

or quality, and shifting interests over time [3]. The temporal

dynamics also differ; follow events can happen anytime, while

unfollow events are typically reactionary, instigated by specific

incidents or posts [24]. Additionally, broken tie prediction

encounters issues with data availability and bias. Unlike follow

prediction, which benefits from plentiful historical data, un-

follow events are less frequent, harder to observe directly and

cause a class imbalance problem [36]. Lastly, the nature of the

problem contributes to the complexity of broken tie prediction.

Broken tie prediction is inherently more challenging because

it is an imbalanced classification problem—the number of

retained follows substantially outweighs the broken ties.

A. Experimental Settings

This section details the experimental settings, including train

and test split, evaluation metrics, implementation details, and

machine learning prediction models.

Training and Test Split. The proportion of unfollows in

our dataset is significantly smaller than follows (constituting

1.08% of all ties). To reduce computational cost and facilitate

model training, we constructed a balanced subset of data



employing the NearMiss algorithm [37], with a ratio of 1

unfollow to 10 follows. To render our prediction practical

and useful, we used historical weekly snapshots for training

and future data for testing. Specifically, we trained models

on data from weeks 1 to 11 and used weeks 12 to 15 for

testing, denoted as the Entire Future Snapshots test set. We

also created a Disjoint Users Test set, excluding any dyadic

ties where users were present in the training set, ensuring the

train and test user sets were utterly disjoint.

TABLE II: Performance of broken tie prediction

Model Test set Acc AUC Recall Precision F-1 Kappa

Light
Gradient
Boosting
Machine

Entire
Future

Snapshots

Unfollow0.9550.983 0.909 0.911 0.910 0.880
Follow 0.9620.985 0.921 0.929 0.925 0.900
Total 0.9590.9500.7023 0.860 0.818 0.808

Disjoint
Users
Test

Unfollow0.8450.753 0.796 0.858 0.818 0.800
Follow 0.9760.965 0.985 0.854 0.981 0.794
Total 0.9590.950 0.702 0.860 0.818 0.800

Extreme
Gradient
Boosting
Machine

Entire
Future

Snapshots

Unfollow0.8720.855 0.779 0.824 0.732 0.709
Follow 0.9650.899 0.834 0.827 0.745 0.724
Total 0.9520.938 0.747 0.868 0.803 0.785

Disjoint
Users
Test

Unfollow0.8290.899 0.755 0.831 0.791 0.745
Follow 0.9750.970 0.984 0.865 0.980 0.838
Total 0.9670.956 0.746 0.877 0.806 0.789

Random
Forest

Entire
Future

Snapshots

Unfollow0.9190.754 0.651 0.660 0.658 0.611
Follow 0.9430.898 0.739 0.676 0.753 0.604
Total 0.9460.928 0.718 0.670 0.635 0.608

Disjoint
Users
Test

Unfollow0.8220.867 0.721 0.653 0.768 0.608
Follow 0.9720.984 0.984 0.856 0.978 0.880
Total 0.9570.926 0.768 0.766 0.767 0.744

Evaluation Metrics. We employed seven key indicators to

evaluate the efficacy of our unfollow prediction, including

accuracy, precision, F-1 score, recall, AUC (area under the

curve), and the Kappa metric. The latter measures the model’s

predictive accuracy by comparing observed and expected

accuracy.

Implementation Details. After extracting all features as ex-

plained in Section V, we normalized them and removed

perfect collinearity. We employed the Pycaret library [38]

to investigate eleven classification models, from which we

selected the best three tuned models. We used 10-fold cross-

validation on the training set for hyperparameter tuning.

Machine Learning Prediction Models. We employed three

popular and traditional machine learning classification meth-

ods for the broken tie prediction: Random Forest, Extreme

Gradient Boosting Machine, and Light Gradient Boosting

Machine.

B. Experimental Results

Table II presents the performance of different approaches

on two distinct train and test splits for predicting follow and

unfollow instances. We observe the high performance of the

models across the board, demonstrating the efficacy of our

feature extraction for the task of broken tie prediction. Further,

high performance on the Disjoint Users Test set indicates

the generalizability of the models to unseen users in dyadic

ties. Notably, the Light Gradient Boosting Machine exhibits

Fig. 7: Importance of each feature based on the Light Gradient

Boosting Machine. Feature importance ratios are 0.1729 for

Sociocentric Network Structure, 0.4054 for Egocentric Net-

work Structure, 0.1349 for User Content, 0.2657 for User

Profile, and 0.0172 for Dense User Representation features.

exceptional performance, rendering it suitable for real-world

applications interested in mapping the evolution of the Twitter

network.

C. Feature Importance

Based on our best model, the Light Gradient Boosting

Machine, we determined the importance of each feature and

category, as demonstrated in Figure 7. Except for the dense

user representation, all feature categories play a significant role

in broken tie prediction. Notably, the two egocentric network

features (# Lost followers and # Lost followees) lead in broken

tie prediction, underscoring the potential of egocentric network

dynamics to forecast future tie statuses.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a large-scale and longitudinal

dataset of Twitter social networks spanning over 15 weeks.

Leveraging this data, we thoroughly analyzed broken ties on

Twitter from multiple perspectives. This analysis revealed in-

teresting patterns in the complex nature of evolving social ties

on social media. Using our extracted rich and comprehensive

feature sets, we employed several popular machine learning

algorithms and predicted broken ties. Our predictions exhibited

high performance according to several metrics (e.g., F1-score

and AUC). Utilizing the dataset and prediction models, we

can more accurately understand and predict the evolution of

relationships between social media users, which has potential

applications in understanding user behavior, political cam-

paigns, and influencer marketing.

Looking towards the future, we aim to leverage the capabil-

ities of deep learning models to predict impending unfollow



events and to delve deeper into the correlation between the

derived features and social unfollowing patterns. Furthermore,

we also intend to explore the application of graph neural

networks in this context, as these models can capture the

complex interactions within social networks more effectively.

In addition, we plan to investigate the causal relationships

that drive the unfollowing phenomenon, which will involve

creating sophisticated models that can handle temporal data

and complex social interactions. These lines of investigation

will not only provide a deeper understanding of unfollow

behavior but could also improve Twitter engagement and user

retention strategies for both individuals and organizations.
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