
ABSTRACT 

This study aims to detect abnormal human gait patterns through the dynamic re- 
sponse of floor structures during foot-floor interactions. Gait abnormality detection is 
critical for the early discovery and progressive tracking of musculoskeletal and neu- 
rological disorders, such as Parkinson’s and Cerebral Palsy. Especially, analyzing the 
foot-floor contacts during walking provides important insights into gait patterns, such as 
contact area, contact force, and contact time, enabling gait abnormality detection through 
these measurements. Existing studies use various sensing devices to capture such infor- 
mation, including cameras, wearables, and force plates. However, the former two lack 
force-related information, making it difficult to identify the causes of gait health issues, 
while the latter has limited coverage of the walking path. 

In this study, we leverage footstep-induced structural vibrations to infer foot-floor 
contact profiles, which allows force-informed and more wide-ranged gait abnormality 
detection. The main challenge lies in modeling the complex force transfer mechanism 
between the foot and the floor surfaces, leading to difficulty in reconstructing the force 
and contact profile during foot-floor interaction using structural vibrations. To overcome 
the challenge, we first characterize the floor vibration for each contact type (e.g., heel, 
midfoot, and toe contact) to understand how contact forces and areas affect the induced 
floor vibration. Then, we leverage the time-frequency response spectrum resulting from 
those contacts to develop features that are representative of each contact type. Finally, 
gait abnormalities are detected by comparing the predicted foot-floor contact force and 
motion with the healthy gait. To evaluate our approach, we conducted a real-world 
walking experiment with 8 subjects. Our approach achieves 91.6% and 96.7% accuracy 
in predicting contact type and time, respectively, leading to 91.9% accuracy in detecting 
various types of gait abnormalities, including asymmetry, dragging, and midfoot/toe 
contacts. 

INTRODUCTION 

Structural vibrations induced by human footsteps during walking contain important 
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gait pattern information, allowing ubiquitous gait health monitoring and abnormality de-
tection in daily life [1, 2]. Detecting gait abnormalities is critical for the early discovery
and progressive tracking of musculoskeletal and neurological disorders, such as Parkin-
son’s and Cerebral Palsy [3–5]. Gait abnormalities are typically reflected in deviations of
posture, balance, and speed of walking from normal walking patterns, which indicates
underlying conditions that affect the muscle groups or nervous systems [6]. Among
them, analyzing the dynamic interaction between the foot and the floor during walking
is a critical aspect because it helps to understand how the ground reaction forces act and
transmit through the body [7]. Modeling the foot-floor contact can inform the gait health
status to provide better design of medical interventions in neurological/musculoskeletal
disorders, manage fall risks, and prevent further injuries or complications.

There are existing studies that detect gait abnormalities during walking, including
force plates, wearable devices, and cameras [8–12]. Force plates are the most commonly
used technique for measuring foot-floor contact forces during walking. However, the
coverage of a force plate is typically limited to one footstep only. Cameras and wearables
measure the movement of the foot. They are more portable and wide-ranged than force
plates and are more practical for everyday use. However, the camera measurements are
limited to kinematic aspects of the gait, making it difficult to infer the joint forces and
identify abnormal loading patterns. The wearables require a person to carry devices,
which may cause discomfort and inconvenience.

In this study, we leverage footstep-induced floor vibrations to detect gait abnormal-
ities in foot-floor contacts during walking. The primary intuition is, as a person’s foot
contacts the floor and generates structural vibrations during walking, we capture those
vibrations through floor-mounted geophone sensors. By analyzing the vibration sig-
nals, we infer the foot-floor contact profiles, including contact type and duration. Our
approach is non-invasive, wide-ranged (up to 20 m range [13]), and produces more com-
prehensive gait information that informs both force and movement.

The main challenge of this study is the complex mechanism during the foot-floor
contact - not only the characteristics of the contact (i.e., force magnitude, direction,
contact area) are changing when walking, they are also entangled with the dynamic
property of the structure in the observed vibrations. To overcome this challenge, we
first identify foot-floor contact types that are commonly described in medical settings
and characterize their influence on the resultant vibrations. Then, we leverage the time-
frequency response spectrum resulting from those contacts to develop features that are
representative of each contact type. Finally, we detect abnormal gait patterns through
machine learning, which translates the model estimations into clinical insights about
gait health.

The contributions of the study are that we:
1. Develop a novel approach to detect abnormal gait using footstep-induced floor

vibrations;
2. Characterize structural vibrations induced by foot-floor contacts to develop repre-

sentative features; and
3. Evaluate our approach through a real-world human experiment to demonstrate its

effectiveness
We conducted a real-world walking experiment with 8 human subjects. Our ap-

proach achieves 91.6% and 96.7% accuracy in predicting contact type and duration,
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Figure 1. Illustration of three types of foot-floor contacts and vertical footstep force
variations during the contacts.

respectively, and achieves a 91.9% accuracy in detecting various types of gait abnormal-
ities. (including toe-walking, dragging, and asymmetry), which establishes its efficacy
in gait health monitoring.

CHARACTERIZING FOOTSTEP-INDUCED STRUCTURAL VIBRATIONS FOR
ABNORMAL CONTACT DETECTION

In this section, we characterize the complex mechanism during foot-floor contact
when walking. Specifically, we first discuss how various contact types affect the resultant
vibrations and then conduct time-frequency response analysis to quantify and interpret
such effects.

Background of Foot-Floor Contact Types
To characterize various foot-floor contacts during walking, we first group them into

three types that are commonly described in medical settings [14, 15], including 1) heel
contact, 2) midfoot contact, and 3) toe contact. As shown in Figure 1, each type of
contact has a distinct form in terms of contact area and force distribution. To understand
the force transfer mechanism during the foot-floor contact, we also measure the footstep
forces (ground reaction force (GRF) in clinical terms) during these contacts.

• Heel Contact: A heel contact is when the heel of the foot strikes the floor first,
which is typical in healthy adults. The force has both frictional and normal com-
ponents and the normal component magnitude varies around the body weight.

• Midfoot Contact: A midfoot means the entire foot contacts the floor first, which
is an indication of abnormal gait with insufficient ankle dorsiflexion. The duration
of the contact is longer with fewer force variations.

• Toe Contact: A toe contact means the toe strikes the floor whereas the heel re-
mains lifted. This is typically seen in individuals with later-stage gait disorders
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Figure 2. Structural dynamics model for foot-floor contact.

where excessive muscle contraction occurs. The force is significantly larger due
to the impulse of the toe strike.

Modeling Foot-Floor Contacts using Dynamic Floor Response Analysis
To examine how various foot-floor contacts and structural properties affect the resul-

tant floor vibration, we formulate the problem by simplifying the complex situation. We
first assume that each footstep exerts a force Fl(t) at a simply supported beam within the
linear elastic range, as described in Figure 2.

Based on the equation of motion [16], we have:

Mü(t) + Cu̇(t) +Ku(t) = Fl(t) = �S(t)üf (t) (1)

where S(t) is the equivalent spatial loading matrix, which can be further expressed
as the multiplication of body weight Mbw and the spatial distribution of the force ◆(t)
(i.e., S(t) = Mbw◆(t)). üf (t) is the foot acceleration, which is proportional to the force
described in Figure 1.

In order to simplify the complex temporal and spatial dependency, we focus on the
initial contact and assume the contact surface and force are constant during that time (i.e.,
S(t) = S). This is because the main difference between the three contact types is the
initial contact force and surface, which results in distinct vibration patterns. Assuming
temporal and spatial independence, we leverage modal decomposition and Fourier trans-
form, resulting in the modal displacement response and the time-frequency response as
follows:

ui(t) = Pi�iDi(t) ) Fui(t) = PiF�iDi(t) (2)

where Pi = 1
m⇤

i
�T
i S is the modal participation factor of i-th mode; �i describes the

mode shape; Di(t) describes the generalized modal displacement resulting from the foot
acceleration üf (t).

In summary, the above derivation suggests that the time-frequency response of the

floor is determined by 1) the body weight, 2) the spatial distribution of the footstep

force, 3) the foot acceleration, as in amplitude and direction during the contact. This
formulation provides a theoretical foundation for modeling and predicting various foot-
floor contact types.

Time-Frequency Response Analysis for Typical Foot-Floor Contacts
After establishing the theoretical basis, we conduct a time-frequency response analy-

sis of the observed floor vibration to discuss its relation to typical contact characteristics.
Figure 3 demonstrates the time domain, frequency domain, and wavelet (time-frequency)
domain data plots of the floor vibration under typical foot-floor contacts from the same
person. The peaks and hotspots in the wavelet plot indicate the activated modes under a
specific contact. We observe that midfoot contact induces lower modes (11, 53 Hz) than
heel/toe contacts (11, 53, 80, 112, 165, 200 Hz).
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Figure 3. Floor vibration induced by typical foot-floor contacts from time, frequency, and
wavelet domain.

To understand how the above observation is related to the foot-floor contact formu-
lation, a qualitative analysis is summarized below:

• Effect of the Body Weight: The amplitude in the frequency spectrum increases
proportionally to the body weight because the modal participation factor is S =
Mbw◆. For the same person, the body weight does not affect the variation of the
frequency spectrum across contact types as the body weight is typically constant.

• Effect of the Contact Area: A larger contact area by midfoot contact typically
induces lower modes of vibration than heel/toe contacts. This is because the modal
participation factor is an inner product of the spatial loading matrix S and mode
shape �i, which can be regarded as a weighted sum of the mode shape amplitudes
within the contact area. For a wider spread load distribution S for the midfoot
contact, a higher mode produces a smaller sum because it is more likely to have
oscillations in shape within the contact area that cancel out in the inner product. A
lower mode is less likely to have oscillation within the contact area. On the other
hand, a more concentrated load S results in a higher inner product even for higher
mode because it is less likely to have oscillations within that narrow contact area.

• Effect of the Force Direction: A force applied in the horizontal direction along
the floor surface typically induces higher modes than the same force applied in the
vertical direction. This is because the horizontal force affects the vertical vibration
mainly through the floor thickness with waves that have shorter wavelengths. As
a result, the modal participation factor for higher modes is larger for horizontal
forces.
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Figure 4. The abnormal gait detection framework.

Since the area of midfoot contact is larger than the heel/toe contact and the force di-
rection is mostly vertical, it tends to induce lower modes than the heel/toe contact. In
addition, the toe contact has a less proportion of horizontal force than the heel contact, so
it has a lower proportion of the high-frequency components (�100 Hz) in the spectrum.

Based on the analysis above, we develop features using the frequency spectrum of the
vibration signals to represent the characteristics of the various foot-floor contact types.
The features include the amplitudes at the union of dominant frequencies induced by
these three contacts.

ABNORMAL GAIT DETECTION USING FOOTSTEP-INDUCED FLOOR VI-
BRATIONS

Based on clinical studies, abnormal foot-floor contacts typically manifest distinct
contact types and durations. For example, toe-walking is a pathological gait with toe
contacts, and limping has an asymmetrical contact duration [5, 14, 15].

Our framework for abnormal gait detection incorporates both contact type and du-
ration, shown in Figure 4. First, we pre-process the input floor vibrations generated
from footsteps through noise filters and footstep detection algorithms - for noise filter-
ing, we use the lowpass and wiener filters; for footstep detection, we set thresholds on
cumulative wavelet coefficients [1]. Then, we detect the initial contact time when the
higher frequencies are first activated and the foot-off time when the free vibration starts
to dominate the spectrum, as developed in our prior work [2]. Meanwhile, we model
the contact types using the frequency response features discussed in the previous sec-
tion. Finally, we compare the similarity between these features and the pre-collected
data from the typical contacts (both normal and abnormal) through a similarity-aware
machine learning model to predict the probability of the incoming data being abnormal.

In our approach, a support vector machine with a radial basis function kernel is
used to maximize the cluster margins between normal contact and each of the abnormal
contact types. This is because the model has a good balance between bias and variance,
and can learn from a limited amount of training data.

To further empower the model to be aware of similarity, we apply Platt scaling to fit



Figure 5. Experiment setup with geophones (data) and Vicon cameras (ground truth).

Figure 6. Contact types visualized in time-frequency response features using t-SNE (left).
Accuracy of contact type prediction for three subjects (right).

the margins for each sample, which provides a unified measurement of how similar the
observed footsteps are to the abnormal ones [17], described as follows:

P (y = abnormal|f(xi)) =
1

1 + exp(wf(xi) + b)
(3)

where f(xi) is the margin of sample xi, w, b are the parameters of the probablistic scaling
model. The larger the probability is, the more likely the observed footstep is abnormal.

EVALUATION THROUGH REAL-WORLD WALKING EXPERIMENTS

To evaluate the effectiveness of our approach, we conducted a real-world walking ex-
periment with 8 human subjects (ages 18-40 years old). All experiments were conducted
in accordance with the approved IRBs.

Experiment Setup
The experiment setup involves four geophones for data collection and a Vicon Mo-

tion Capture system for ground truth. The geophones are placed at the side of a wooden
walkway as shown in Figure 5.

During the experiment, 5 test subjects walk across the walkway 30-40 times using
their natural gait (which may or may not have abnormal contacts). 3 control subjects
walk according to four types of abnormal gaits to simulate the abnormal contacts, in-
cluding midfoot strike, toe-walking, dragging, and walking asymmetry.

Results and Discussion
Contact Type Prediction. Our approach has an average of 91.6% and 96.7% accu-

racy in predicting contact types and duration using the features extracted from the time-



Figure 7. Dragging and asymmetry visualized in time-frequency features using t-SNE.

Figure 8. Mean accuracy of abnormal gait detection among 8 participants (left). Proba-
bility of having abnormal contacts for a sample subject (right).

frequency response analysis. Figure 6 (left) shows that these features produce distinct
clusters for different contact types through t-SNE visualization. Figure 6 (right) shows
consistent accuracy of the 3 control subjects.

Abnormal Gait Detection. Our approach has an average of 91.9% accuracy in de-
tecting four types of abnormal contacts (see Figure 8 (left)). Figure 7 shows the features
from time-frequency analysis form distinct clusters for dragging and asymmetry gait,
respectively. Through our similarity-aware model, we compute the probability of having
abnormal contacts for each test subject. Figure 8 (right) shows a sample subject’s prob-
ability profile among the four abnormal types as an example. For this sample subject,
the median values are relatively low despite the variation among footsteps, which means
his/her gait is unlikely to be abnormal.

CONCLUDING REMARKS

In this study, we leverage footstep-induced floor vibrations to detect gait abnormal-
ities in foot-floor contacts during walking. To overcome the challenge of the complex
force transfer mechanism during the contacts, we characterize the vibration signals in-
duced by three typical foot-floor contacts through dynamics formulation and controlled
experiments. We introduce an abnormal gait detection framework that models contact
time and type to make predictions on the abnormal contact probability. We evaluate
our approach through a real-world experiment and results show promising accuracy in
predicting contact types and detecting abnormal gait patterns.
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