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Precision Swine Farming has the potential to directly benefit swine health and industry profit by automatically
monitoring the growth and health of pigs. We introduce the first system to use structural vibration to track
animals and the first system for automated characterization of piglet group activities, including nursing,
sleeping, and active times. PigSense uses physical knowledge of the structural vibration characteristics caused
by pig-activity-induced load changes to recognize different behaviors of the sow and piglets. For our system to
survive the harsh environment of the farrowing pen for three months, we designed simple, durable sensors
for physical fault tolerance, then installed many of them, pooling their data to achieve algorithmic fault
tolerance even when some do stop working. The key focus of this work was to create a robust system that
can withstand challenging environments, has limited installation and maintenance requirements, and uses
domain knowledge to precisely detect a variety of swine activities in noisy conditions while remaining flexible
enough to adapt to future activities and applications. We provided an extensive analysis and evaluation of
all-round swine activities and scenarios from our one-year field deployment across two pig farms in Thailand
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and the USA. To help assess the risk of crushing, farrowing sicknesses, and poor maternal behaviors, PigSense
achieves an average of 97.8% and 94% for sow posture and motion monitoring, respectively, and an average
of 96% and 71% for ingestion and excretion detection. To help farmers monitor piglet feeding, starvation,
and illness, PigSense achieves an average of 87.7%, 89.4%, and 81.9% in predicting different levels of nursing,
sleeping, and being active, respectively. In addition, we show that our monitoring of signal energy changes
allows the prediction of farrowing in advance, as well as status tracking during the farrowing process and
on the occasion of farrowing issues. Furthermore, PigSense also predicts the daily pattern and weight gain in
the lactation cycle with 89% accuracy, a metric that can be used to monitor the piglets’ growth progress over
the lactation cycle.
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1 INTRODUCTION

Precision Swine Farming has the potential to directly benefit swine health and industry profit
by automatically monitoring the growth and health of pigs. Implementing automatic monitoring
throughout the high-risk farrowing and lactation periods especially can prove instrumental to pig
farmers who wish to reduce risk and better protect their livestock. Reducing livestock mortality in
the pork industry thus benefits not only the pig farmers, but also sellers and consumers of pork all
over the world. Pork is one of the most popular meat products in the world and a huge worldwide
industry. In 2019, 120 million tons of pork were consumed worldwide, compared to 69 tons of
beef and 122 tons of chicken [30]. In pig production, farrowing mortality, lactation mortality, and
vitality of the piglets are major economic and animal welfare issues for farm owners. Currently,
the average lactation mortality in the US swine industry is nearly 18% [79]. lllness, piglet size,
and parent-induced injury all contribute to this issue [4, 9]. Thus, monitoring during the lactation
period is especially crucial, as it can allow caregivers to intervene in a timely manner to potential
risks. Traditional monitoring relies on farmers manually observing sows and piglets, which is
costly, time-consuming, and unreliable. In addition, manually handling the piglets to weigh them
causes stress and may expose them to health risks [73].

Prior work takes a number of approaches, including using video or image analysis, motion detec-
tion, or wearable sensors on the pigs. However, these approaches may come with severe drawbacks
when applied in the production farming environment. For example, image- and video-based ap-
proaches can monitor whole farrowing pens at once, but at the cost of large bandwidth, storage,
and data processing requirements [13, 16, 44, 50, 65, 94]. In many cases, these processing require-
ments lead to delays in communicating crucial health information, because it only becomes avail-
able to farmers when the data can be retrieved and processed, often after weaning is over and the
information is no longer relevant. In addition, video-based systems require a lighted area, which
at night could disrupt the pigs’ circadian rhythms, causing stress and harming the piglets [34].
Motion detection has been used to identify whether or not animals are active, but often fails to
identify subtler behaviors such as nursing [25]. Wearable sensors can solve these problems, but
face challenges with cost, application on the animals, battery life, and data transfer challenges that
hamper true scalability [28, 36, 52, 75].
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PigSense is the first system to use structural vibration to monitor animal behavior. It is non-
intrusive to the animals and requires much less processing and storage power than non-vibration-
based monitoring systems such as audio- or video-based systems. Our approach relies on the idea
that animal activity creates unique vibration patterns in the structure of holding pens [10, 20]. For
example, when pigs walk, their footsteps create vibration in the pen structure. When they lie down,
their weight changes the natural vibration of the structure. By sensing this vibration, we can infer
the different activities of the animals. We use geophone-based sensors attached to the floor of a
farrowing pen to sense the structural vibrations generated by different animal activities.

PigSense monitors the farrowing (birth) and lactation period, focusing on activity detection that
relates to piglet survival. Each farrowing pen that we monitor contains a single sow (a mother pig)
and several piglets. When a sow is ready to give birth, she is moved to an individual farrowing
pen, where she remains and nurses her piglets for three to four weeks. Both the farrowing pro-
cess and the ensuing lactation period carry risks for the piglets. During farrowing, these include
suffocation (which can occur during a long birth or when trapped in birth fluids after birth), hy-
pothermia, accidental crushing by the sow, and even savaging by the sow [31]. Studies show that
monitoring the farrowing process can halve piglet mortality rate during this time [41]. However,
there is currently no automatic farrowing detection process in commercial pig farming [64]. As
commercial farms grow, manually monitoring all sows becomes less feasible, necessitating a lower
maintenance automated process such as the one we introduce in this article. By tracking the sow’s
innate pre-nesting behaviors before birth, our structural vibration sensors can predict farrowing
the day before it begins. After birth, monitoring can detect symptoms of sow health status infor-
mation such as sickness or lameness, as well as maternal behaviors that affect her capability to
care for her newborns [52, 53, 61, 87]. In Section 4, we discuss how the structural vibration signal
can be used to detect farrowing onset or sickness in the pens. In Section 5, we show how PigSense
detects sow posture changes with up to 98% accuracy, which can reveal lameness or risk of piglet
crushing, as well as ingestion activities that are linked to sow health. In addition to sow monitoring,
PigSense directly monitors the piglet litter by detecting piglet nursing, active, and quiet periods in
each farrowing pen. Changes in these metrics can alert farmers to possible sickness in the piglets.
PigSense also gives a pen-level metric of piglet growth that can be used to help farmers deter-
mine if a pen is progressing normally without exposing them to the stress of manual handling and
weighing.

Challenges. The key focus of this work was to create a robust system that can withstand chal-
lenging environments, has limited installation and maintenance requirements, and uses domain
knowledge to precisely detect a variety of swine activities in noisy conditions while remaining
flexible enough to adapt to future activities and applications. With this in mind, we address three
major challenges:

1. Environmental Damage and Inconsistent Noise. Our first key challenge was withstanding the
unpredictable environmental noise and possible hardware malfunction we encountered in the de-
ployment environment. To cope with the challenging environment of an operational pig farm, our
system prioritizes two types of fault tolerance:

Physical fault tolerance describes the robustness of our hardware system to environmental
damage. Over several iterations of our hardware, we improve its robustness to individual node
failures and increase physical node protection to prevent those failures. To achieve this robustness,
we also focus on simplifying our inexpensive sensor nodes, allowing us to have multiple nodes that
we can use as backups.

Algorithmic fault tolerance describes the robustness of our algorithms in sensing unreliabil-
ity due to the deployment environment. This can be caused by inconsistent noise from temporary
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environmental changes (e.g., vibration from a sow urinating on a sensor) or differences in the struc-
tural response because the sow is lying in a different area of the pen. We also found inconsistencies
in different sensors’ data distributions due to unavoidable differences in their installation (e.g., sen-
sor tilt, placement on the farm floor, or damping due to the attachment method of the sensor). To
address these inconsistencies in the sensing nodes, PigSense performs individual analysis on each
sensor before combining the results.

2. Limited Site Visitation. Our second challenge resulted from deploying our system in a new
farming environment during a global pandemic, which necessitated the design of a system that
could easily be installed by remote technicians without the oversight of the design engineers and
tested remotely. Deployability describes the simplicity and replicability of the process used to
set up the initial sensor system and maintain it at the farm. Our deployments were impacted by
both human and swine global pandemics, which affected our ability to send researchers to the
farm. In our first deployment, farm visitation became severely restricted after the sensors had
been installed to protect the pigs from nearby outbreaks of African Swine Fever, which has posed
a devastating threat to the global pork industry [19]. In our second deployment, visitation was
restricted due to the novel human coronavirus. Therefore, it has been crucial to design systems
that can be deployed and physically maintained by locals who may not be part of the system
design team. Good deployability has the benefit of making our system more accessible and easier
to maintain even without the added challenge of visitation restriction.

3. General vs. Task-specific Features. Finally, our system faces the challenge of distinguishing
several behaviors that may happen concurrently, cause very similar structural vibrations to each
other, or rarely occur in the data. During our analysis, PigSense uses domain knowledge of swine
behavior and its effect on structural vibration to select features that are linked to the behaviors of
interest and thus less likely to be a result of sensor deployment variation or environmental noise.
This comes with a tradeoff of feature generalizability vs. precision during feature extraction
and selection. We can be most precise in identifying certain pig behaviors by limiting our algorithm
to recognize feature clusters that map specifically to those behaviors; however, doing so may cause
our system to miss additional pig behaviors we had not previously accommodated in the system
and also makes our system less versatile for adapting to non-pig-related environments. A careful
balance of this tradeoff allows our system to adapt to new environments and new monitoring
applications while still leveraging current domain knowledge to achieve precise results in noisy
and challenging environments.

Contributions. To address these challenges, this work provides the following contributions:

(1) The first system that uses structural vibration to sense animal activity, to the best of our
knowledge.

(2) Our experiences developing a failure-tolerant hardware and installation setup that is robust
to environmental hazards, reproducible, and simple to deploy.

(3) An extended analysis of the relationship between structural vibration and various swine ac-
tivities, with one-year test data from multiple farms, along with a discussion of the tradeoff
between developing task-specific features based on physical and behavioral domain knowl-
edge and extracting more general features that are able to accomplish various tasks.

We deployed our system at two operating pig farms: a commercial pig farm in Lopburi, Thailand,
and the U.S. Meat Animal Research Center in Clay Center, Nebraska, United States. A total of eight
farrowing/lactating sows and litters were used in the studies, with data from a minimum of three
days before farrowing to approximately 25 days post-farrow.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 1. Publication date: October 2023.



PigSense: Structural Vibration-based Activity and Health Monitoring System for Pigs 1:5

4 Swine Behavior

Robust Sensing
Network

« Activity Pattern
and Structural « Weight Gain
V|brat|9n _ « Signs of Sickness
 Farminstalied L Characterization
Sow and Piglet Movements M
in Farrowing Crate m P
- « Sow Posture
l?lg—llnduced 5 Swine Activity « Sow Activity Type
Vibration Data Recognition - Piglet Group Activites
(Type and Level)

Fig. 1. A system diagram of PigSense. The system consists of three modules. The first module aims to acquire
the vibration data induced by pigs. The second and third modules extract features from the vibration data
to characterize the pig behavior patterns and infer their activity types and levels.

The rest of this article is organized as follows: Section 2 provides an overview of our PigSense
system. Then, we dive into the details of each module in the system. Section 3 presents the design
of our data acquisition system to maximize physical fault tolerance and deployability. Section 4
introduces how to characterize pig behaviors through the general features extracted from the vi-
bration data. Section 5 describes the entire recognition system to detect and classify various sow
and piglet activities. After that, we evaluate this system on two different long-term deployments
on operational pig farms and discuss the results in Section 6. In Section 7, we review the related
work, and finally, in Section 9, we conclude our work.

2 PIGSENSE SYSTEM OVERVIEW

This section presents an overview of the PigSense system. As shown in Figure 1, PigSense consists
of three modules, including (1) a farm-installed robust sensing network, (2) the characterization of
pig behavior and growth trends, and (3) sow and piglet activity and posture recognition.

The first module aims to acquire pig-induced vibration data using sensors attached underneath
the farrowing pen flooring. The goal for the hardware and installation process is to maximize phys-
ical fault tolerance and deployability, which will be discussed in detail in Section 3. After capturing
the vibration data induced by pigs, the second and third modules aim to understand the activity
patterns and recognize certain activities through both general and task-specific features extracted
from that data. Specifically, the objective of the second module is to characterize the swine be-
havior patterns through general features extracted from the vibration data (e.g., signal energy)
and assess how different types of general features can be used to spot patterns in the data (see
Section 4). In the third module, we describe the process of recognizing a comprehensive list of
activities for both the sow and the piglets and discuss the tradeoffs we made in deciding when to
use task-specific features to supplement the previously described general features (see Section 5).
The system’s output consists of the pigs’ general behavior patterns (including the weekly/daily
patterns, weight gain, and signs of sickness), the sow and piglet activity types, and their intensity
levels.

3 FARM-INSTALLED ROBUST SENSING NETWORK

This section introduces the sensing network for data acquisition. Our sensing network consists
of three tiers, as shown in Figure 2. The independent vibration sensors (Section 3.1) acquire the
vibration signal via geophones while affixed to the underside of the pen. We incorporate protec-
tive hardware and high sensor redundancy to maximize physical fault tolerance. The centralized
aggregator (Section 3.2) collects data from all of the sensors, storing and managing the flow of data
both within the sensor network and off-site where the processing occurs. Performing data analy-
sis away from the farm as described in Section 3.3 improves overall fault tolerance by separating
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Fig. 2. Adiagram of the PigSense sensing network. The tiered network design is shown, with the least reliable
and lowest-powered devices to the left.

the demands of environmental resilience and computation power into different network tiers. The
data output from this network is next analyzed using the methods described in Sections 4 and 5.

We found that the unpredictable and messy farm environment created our greatest reliability
challenge when collecting the sensor data. This tiered model enables the desired fault tolerance
by separating the tradeoffs of robustness, sensitivity, and adaptability. For example, we simplify
the individual nodes that are exposed to the harsh environment in and beneath the farrowing pen.
This simplification enhances the robustness of the individual nodes as described in Section 3.1 but
makes them less able to adapt on their own. Their sensitivity and adaptation are then handled via
reconfiguration from higher tiers. Device simplicity also contributes to deployability by reducing
the complexity necessary for installation.

3.1 Independent Geophone Sensor Nodes

Our sensing nodes rely on geophone sensors [78] to detect the structural vibrations described in
Section 4.1. Geophone sensitivity to subtle motion falls within our target sensing range (10™* to
107% m/s). Geophone sensors have many advantages in a smart farming scenario. As described
later in this section, they detect both movements and position changes of the pigs, including small
movements such as piglet head bobbing that occurs with nursing, which a camera may not easily
detect, since piglets are very small and often obscured by the sow.

The independent sensor nodes are individually robust and simple by design. Because they use
components with low processing power, they can restart quickly and without intervention after
errors such as temporary power loss, signal degradation, overflowing buffers, and minor node
damage (e.g., water ingress). Additionally, we can place several within each pen for redundancy,
while utilizing all nodes for recognition when available. Their robustness also contributes to de-
ployability by mitigating potential failures due to improper installation.

Using geophone sensors as opposed to other sensing modalities also enables the algorithmic fault
tolerance performed by the other modules. Because structural vibration responses are typically
in lower frequency ranges, the geophones can be sampled much more slowly than the standard
8-16 kHz of a microphone, producing less raw data. This allows us to have redundant sensors and
to upload data off-site for processing without being limited by low bandwidth or unreliable data
connections, which are common in remote farm environments.

3.2 Data Aggregator and System Manager

The aggregator module interfaces between the individual sensors and the off-site storage and pro-
cessing resources where most of the analysis is performed. We form the sensing network from a
single-board computer (SBC) connected to a commodity wireless router, as shown in Figure 3.
Each of the individual sensor nodes connects over WiFi to the router and communicates with the
SBC using MQTT, a lightweight machine-to-machine networking protocol. Wireless links are used
to avoid communication wiring, which is more sensitive to noise and hazards, from the farrowing
area. MQTT requires only a small code footprint and very little processing and network overhead
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Fig. 3. A network map for PigSense showing the connectivity between the physical components.

to transmit the captured data [8]. The SBC aggregates data from all of the sensors in addition to
providing system management and off-site upload capabilities.

Our network is configured in a simple star topology, as shown in Figure 3, but could be easily
reconfigured for better scalability. We estimate that up to 50 sensor nodes can be adequately served
before more complex network topologies will be necessary. The limiting factor in this case is the
bandwidth to record sensor data to a single storage drive. Note that with higher sensor counts,
efficient streaming data compression may be needed to accommodate the bandwidth constraints
in a farm environment.

3.2.1 Manageability Tradeoffs. Once installed, the PigSense system is physically inaccessible as
long as the instrumented pens are occupied due to the sensors’ location below the pen. Therefore,
any configuration or software updates must be performed remotely using the wireless link for data
transmission. The ability for remote management enables greater fault tolerance and deployability
for local workers who will have access to remote specialist support and system configuration.

Configuration and software updates require a tradeoff between system stability and adaptability.
Allowing for updates inherently costs some stability, since it allows changes during the operation
of the sensor network. Additionally, the communication channel for these updates is often unreli-
able because of the remote nature of pig farms, which tend to have unpredictable Wi-Fi and suffer
from occasional power outages. This introduces the risk of partial or corrupted updates that could
lead to a “bricked” condition where individual sensors can no longer communicate with the sys-
tem manager. However, the benefit of updates comes in system adaptability. Updateable sensor
software enables faster prototyping, since bugs can be fixed on the fly as needed. Configurability
enables system adjustment based on unknown and changing environmental and installation con-
ditions of, for example, sensor gain and sample rate. The tradeoff exists in balancing the competing
priorities of time to deployment, environmental adaptation, and probability of sensor failure.

We combine our engineering and management policies to balance the competing interests of sys-
tem reliability and robustness. Knowing that our communication channel is unreliable, we include
software-based safeguards to ensure that remotely transmitted changes are valid before applying
them. This is especially crucial with software updates, which could lead to a loss of connection
with a given sensor. Policy controls such as restricting configuration changes to times when the
pens are empty augment these safeguards. This restriction allows sensors that fail during updates
to be replaced before the pens are again occupied.

3.3 Off-site Storage and Processing

Storing and analyzing data off-site improves the robustness of the system along all three of our pri-
mary metrics. It improves the physical fault tolerance of the system by simply avoiding the hazards
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Fig. 4. Adiagram for sow and piglet behavior characterization through structural vibrations induced by their
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of the farm environment such as water, animal excrement, and interference from the pigs. While lig-
uid ingress is a common hazard in many environments, in the pig farm the acidity of animal urine
leads to degradation of the seals that could otherwise protect the sensor electronics. Since these
hazards make up the main source of failures, isolating our complex, high-computation resources
in a different location handily bypasses these potential failures. The system then achieves algorith-
mic fault tolerance using analysis techniques that combine data from multiple sensors, weighing
them based on reliability and the individual sensing task. Because of its complexity, this analysis
would be more difficult to implement on-site. Finally, by reducing the number of complex devices
required at the farm, off-site storage improves deployability within farms.

4 SWINE BEHAVIOR AND STRUCTURAL VIBRATION CHARACTERIZATION

In this section, we use the data collected through the sensing system to characterize swine behavior
and its effect on structural vibration. As shown in Figure 4, we first characterize the vibrations
induced by swine behaviors and discuss the features extracted (Section 4.1). Then, we demonstrate
how the structural vibration response can be used to analyze hourly, daily, and weekly patterns
in sow and piglet behavior in Sections 4.2 and 4.3. Finally, in 4.3.3, we show that deviation from
expected behavior patterns can signify sickness in the pigs.

4.1 General Characterization of Pig-induced Structural Vibration

When a pig steps or lays down in its pen, its interaction with the structure induces the structure
to vibrate. When a mature pig (approximately 300 kg [46]) stands versus lies on the structure, the
load on the structure changes significantly. When the pig stands or steps, the load can be modeled
as a point load, whereas when the pig is lying down, the load can be modeled as a uniformly
distributed load. This alters the structural vibration response under the same support condition.
In a 2 m X 1.8 m individual farrowing pen, this change in load distribution directly impacts the
structural ambient vibration, which can be detected via vibration sensors attached to the surface.

The surface-mounted vibration sensor captures these changes in surface ambient vibration.
When the load distribution changes, the modal properties of the structure (e.g., fundamental fre-
quencies, mode shapes, and damping ratio) shift, changing the frequency response of the ambi-
ent vibration. In addition, when excitation (e.g., a piglet running) is applied as dynamic point
load, it induces the surface to deform and un-deform, which generates predominantly Rayleigh-
Lamb waves [89]. Piglet nursing and piglet play induce waves of this type. These waves propa-
gate through the pen structure and can be captured by the vibration sensor as impulsive signal
segments.

The feature analysis we perform on each vibration signal to track various animal activities is
carefully designed to reflect our physical knowledge of the resulting structural responses. For ex-
ample, we use the frequency characteristics of the load distribution change for sow lying detection,
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Fig. 5. Representative vibration features from (1) time-domain, (2) frequency-domain, (3) wavelet-domain,
extracted from active and inactive times during a day.

while our knowledge of impulsive signal propagation enables the detection of piglet nursing. Both
of these help us track piglet growth, characterized by impulsive activities from increasingly heavy
piglets.

We use the techniques below to extract general features from our vibration data, visualized in
Figure 5:

e Time-domain signal features: Here, we look at the maximum, minimum, mean, and vari-
ance of signal segments, which typically contain information about the intensity of the an-
imals’ movements. Since the sow is much heavier than the piglets in the farrowing pen,
she induces stronger vibration signals than the piglets. These features allow activity separa-
tion between the sow and the piglets. In addition, the signal energy allows us to detect the
strength of the motion. For example, the comparatively smaller motion of typical nursing
activity induces vibrations with lower energy, while active piglets (i.e., more than five piglets
running around) induce higher energy signals.

e Frequency-domain signal features: For this analysis, we extract the maximum, minimum,
mean, and variance of the Fourier Transform of each signal segment. These features provide
valuable information about the types of force that the sow or piglets exert against the floor.
For example, the sow’s standing posture results in vibration data with a higher, wider fre-
quency band because the vibration starts at the points where the sow’s hooves meet the
ground. In contrast, the signals from the lying posture have a narrower frequency band
and lower frequency because they result from a load more uniformly distributed across the

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 1. Publication date: October 2023.



1:10 Y. Dong et al.

sow’s body. These signals are concentrated at about 25 Hz, which may be the fundamental
frequency of the structure.

e Wavelet-domain signal features: Here, we calculate the maximum, minimum, mean, and
variance wavelet coefficients of each signal segment. The wavelet coefficients are defined
as the signal magnitudes after the wavelet transforms, which represent the vibration char-
acteristics in both time- and frequency-domain. Therefore, wavelet coefficients capture the
relationship between time- and frequency-domain information, allowing us to relate the
activity intensity and type through time-frequency dependency.

4.2 Monitoring Piglet Behavior Patterns with Structural Vibration

The vibration response of the structure to piglet movement can be demonstrated when monitor-
ing daily and weekly periods of the preweaning cycle. Specifically, monitoring the energy of the
vibration signal over weeks allows for the tracking of piglet growth, discussed in Section 4.2.1.
In Section 4.2.2, we show that more detailed characterization using time, frequency, and wavelet-
domain features can be used to monitor patterns in daily piglet behaviors.

4.2.1 Long-term Weight Monitoring. Long-term weight monitoring over the lactation period is
essential to increasing the productivity of pig farms [56]. Understanding the weight gain per pen
would help the producer estimate the average litter gain continuously over time, indicating piglet
and sow health status and farm productivity. In practice, this information will help to evaluate
the efficiency of the current farming strategy and lead to higher productivity through follow-up
iterations of adjustments.

In this study, we estimate the cumulative weight of the piglets in the same pen (who share
the same mother). This provides a reasonable estimation of the productivity of the mother pig,
which serves as an important basis for sow phenomics and management. The piglets’ weight gains
are reflected by their stepping forces on the ground; we can establish long-term weight profiles
based on their day-to-day activity intensity patterns. On a daily basis, piglets are active at different
times for different activities such as suckling, playing, resting, and so on. The intensity and type of
activity vary as their body weight increases and behavior patterns change. However, this growth
occurs slowly over time and is hard to see day-to-day.

To capture the long-term weight gain for each pen, signal energy is an effective indicator, be-
cause it is the cumulative energy of the floor vibration generated by the pigs, representing the
overall activity intensity over time. To quantify the relationship between vibration signals and
piglets’ weight gain, we conducted a correlation analysis between the signal energy variation and
weight increase over the lactation period.

We first calculate the normalized signal energy to accommodate each sensor’s differences in
signal magnitudes. To normalize the signals, we first subtract the cumulative daily energy by the
lowest energy among all days and then divide it by the difference between the highest and lowest
energy so the values are between 0 and 1.

With the ground truth for the weight gain of the piglets and the signal energy calculated from
the sensors, we then conduct hypothesis testing using t-statistic and set our null and alternative
hypothesis as Hy : p £ 0,Hs : p > 0, where p is the correlation coefficient. If the correlation
coefficient is significantly different from zero (i.e., the null hypothesis is rejected), then we can
verify the correlation between signal energy and piglet weight gain.

In light of the observation that signal energy is sensitive to sensor reliability, we use sensor
redundancy to cope with unreliable observations. Since each sensor produces a signal energy value
and there are five sensors in each pen, we dropped the faulty sensors and took the average of the
normalized signal energy for the rest of the sensors. We will discuss the results in Section 6.6.
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Fig. 6. Sample vibration signal over one day with morning and afternoon active times.

4.2.2  Short-term Active Level Monitoring. Short-term active level monitoring refers to the daily
and hourly pattern clustering of the pig’s behaviors. It is important to provide timely pig health
status and activity patterns to detect abnormal shifts in daily farm operations. For example, sup-
pose the active level during the afternoon feeding session is significantly lower than usual. In
that case, the farm staff will need to check on the health status of the pigs or adjust the feeding
amount.

To keep track of the active level of the pigs, we utilize the time-, frequency-, and wavelet-domain
features extracted in Section 5.1 to discover the patterns and trends in pigs’ daily and weekly active
levels. We first define different time resolutions to better assess the activity patterns, including:
(1) daily (including morning, afternoon, and night), (2) weekly (including different weeks during
lactation).

For example, Figure 6 shows the vibration signals from one sensor on a typical day. We observe
two typical active periods for the morning and the afternoon, characterized by larger signal am-
plitudes within a two-hour duration. These two active times correspond to the feeding and farm
staff check-in time on the farm.

To visualize the active levels and detect abnormal behaviors, we conduct principal component
analysis (PCA) to reduce the feature dimensionality. The active times form visually distinguish-
able clusters after the dimension reduction (discussed in Section 6.6). With these clusters as our
reference for healthy piglets, we can detect abnormal behaviors represented by data points that
deviate from the cluster centroids. Once we collect enough data points through long-term moni-
toring, the active period at different times will be more noticeable, and the results will be reliable.
We then predict the active level using the K-nearest neighbors (KNN) classifier. This is because
it captures the gradual change between different active levels by considering the distance between
the data samples during classification. With this knowledge, the farm staff can obtain insights into
the piglet’s daily and weekly patterns, which help them to select good mother pigs to increase
productivity and detect anomalies to decrease the lactation mortality rate.

4.3 Monitoring Sow Behavior Patterns with Structural Vibration

The vibration response of the structure to sow movement can be demonstrated when monitoring
different periods of the swine farrowing and lactation cycles. In Section 4.3.1, we discuss how
analyzing the vibration signal in the days before farrowing can predict the onset of farrowing in
advance. In Section 4.3.2, we show how the process of farrowing can be characterized through
structural vibration.
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Fig. 7. Daily signal energy increases right before farrowing from three different farrowing cycles in our first
deployment location. Behind the daily energy, we show the grayed-out energy for six-hour windows with
a sliding window of three hours to show the highly variable nature of the sow activity can obscure the
detection of pre-nesting behavior.

4.3.1 Detection of Nesting Behaviors. The farrowing process carries severe risks for the piglets,
with an average survival rate in large herds of only 87% [83]. Studies show that monitoring the
farrowing process can halve the mortality rate during this time [41]. By detecting a sow’s pre-
birth nesting behaviors through their activity, our vibration sensors can predict farrowing the
day before it begins. These nesting behaviors are inherited and universal among the pig and boar
family Suidae [92]. In the wild, the sow will first isolate herself from the herd and look for a
suitable location, then start building a nest 24 hours before birth. The most intensive nest-building
activity occurs 12 to 6 hours before farrowing. The primary nest-building activities include digging
a shallow hole and then collecting and placing materials such as branches and bushes to keep
her piglets warm and sheltered. In the farrowing pen environment commonly used in production
farming, the sow does not have the ability to engage fully in these behaviors. Instead, she paws
at the floor, changes position frequently, and spends more time standing during this period [92].
Studies had shown that when housed in pens, sows transition from an average of 3 hours a day
spent standing in the week before birth to an average of 7 hours a day spent standing in the
24 hours before birth, while the number of standing-lying transitions increases fivefold [64]. We
hypothesized that these changes in behavior cause significantly more movement in the farrowing
pen and, consequently, more energy in our vibration signal. Figure 7 shows the mean normalized
vibration energy across sensors for the five days preceding birth from three farrowing cycles in
our first deployment. For each cycle, the daily energy is shown in color. For each of our farrowing
cycles, the daily energy is fairly steady until it increases on the final day, which we relate to the pre-
nesting behaviors earlier described. Behind the daily energy, we show the grayed-out energy for
6-hour windows with a sliding window of 3 hours. We can see that as the sow’s activity is highly
variable, even 6-hour windows are too precise to see the overall increase in activity that precedes
farrowing clearly. We found a single energy reading for each 24-hour period to be the most useful in
predicting farrowing. We normalize this reading by the number of collected samples for that day to
control for lost sensor data and add algorithmic fault tolerance. We can also use our characterization
of sow posture to recognize sow nesting behaviors, which we will demonstrate in the evaluation.

4.3.2  Farrowing Process Characterization. Farrowing process monitoring is critical to ensure
the successful farrowing of the sow and the survival of the newborn piglets. Monitoring the farrow-
ing process involves capturing the sow’s movement and the time when individual piglets are giving
birth. This enables the farm staff to identify issues, including stillbirths, weakness/exhaustion, and
long duration between the birth of individual piglets, and then intervene to improve the piglet sur-
vival rate. Labor shortages in rural areas have resulted in under-staffed swine production units,
thus, having a system to notify workers of which sows to focus their attention will improve
farrowing success and more efficiently use limited labor resources.
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Fig. 8. A representative illustration of the signal energy trend during the farrowing process.

A normal farrowing process takes 2-4 hours to complete neonatal delivery. As the sow
approaches the delivery phase, she will become either calmer or more restless as the uterine
contractions intensify, depending on the sow’s farrowing experience. This can be indicated by
the frequency of posture changes. Before the birth of the first piglet, the sow lies down on one
side and has intermittent abdominal muscle straining, usually accompanied by shivering (when
the sow draws her upper hind leg upwards). After the first born, the straining usually becomes
milder gradually and only intensifies just before a piglet expulsion. During a typical farrowing
process, the sow gives birth to an average of 10 piglets at an interval of 10-20 minutes, with a
resting period after the first 2—4 piglets.

We observe the farrowing process from the structural vibration signals to understand the stages
of farrowing with the change of sow postures. Figure 8 shows the changing signal energy during
the process of farrowing from a sow. From this process, we observe that the sow appears to be
calm before the farrowing with only slight adjustments of postures within an hour. As the farrow-
ing process starts, the sow stays calm for around 30 minutes and then starts changing postures
frequently for 10 minutes before the birth of the second piglet. Between the second and the sixth
births, the sow appears to be restless and frequently changes from lying to kneeling, even standing
for 10 minutes. The last six piglets are delivered in a row at less than 10-minute intervals. During
that time, the sow remains motionless on the floor. The complete farrowing process lasts 3.5 hours
from March 5th 23:25 to March 6th 02:52. The sow resumes the regular kneeling and lying activity
30 minutes after the farrowing.

4.3.3  Sow Sickness Characterization. Sow sickness during farrowing can significantly increase
the piglet mortality rate during the lactation period. Such diseases include mastitis, metritis,
agalactia (MMA), gastric ulceration, and so on [7, 33]. These diseases result in reduced milk
production, loss/deprivation of appetite, fever for the sow, vomiting, and a high risk of death for the
piglets. Detecting sickness through abnormally low signal energy can provide timely treatments
to the pigs.

To understand how sickness is reflected through the structural vibration signals, we look into
an example from our deployment when the sow had mastitis, which caused sickness (enteritis) in
the piglets. As shown in Figure 9, the beginning of the sickness is characterized by a slight drop in
cumulative signal energy per day. Typically, the energy in the signal keeps increasing as the piglets
gain more weight over time. Thus, the drop in signal energy over several consecutive days clearly
indicates abnormal behaviors. On the 4th day of decreasing energy, the sickness was observed
by staff as the piglets started vomiting and became inactive. Treatment was provided to both the
sow and the piglets on the following days to relieve the symptoms. The signal energy reaches the
minimum on January 30th, and the active level in the pen starts to resume in the following week.
On February 2nd, the veterinarian checked that the piglets recovered from the disease, and the
signal energy soon increased in the following days.
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Fig. 9. A representative illustration of the signal energy dropping during the sickness period.
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Fig. 10. A system diagram for sow and piglet activity recognition through structural vibrations induced by
their daily behaviors.

5 SWINE ACTIVITY RECOGNITION

In this section, we recognize critical swine activities to understand their daily behaviors in
the farrowing pens, as described in Figure 10. To achieve these, we first pre-process the vi-
bration signals and extract features that contain physical characteristics of the swine activities
(Section 5.1). Then, we use supervised learning to recognize the activities of the sow and the piglets.
These activities include (1) posture changes, ingestion, and excretion of the sow (Section 5.2) and
(2) nursing and activity level of the piglets (Section 5.3).

5.1 Vibration Signal Processing and Feature Extraction

To extract swine activity information from the vibration signals, we (1) pre-process the signals
to remove the noises and then (2) extract features that can reflect the general characteristics of
different activities. As discussed in Section 4, the insights behind these features are interpreted
based on their physical meanings.

5.1.1 Signal Processing for Swine Activity Recognition. Structural vibration signals induced by
the sow and/or the piglets are pre-processed to remove environmental and sensory noise. First,
a low pass filter of 250 Hz is applied to remove high-frequency noises caused by the electrical
components and sensors. The 250 Hz cap was chosen based on prior knowledge about the range
of effective signals induced by activities. This operation also reduces the amount of data to be dealt
with, which reduces the computational time by half for later analysis. Then, an adaptive Wiener
filter is applied to remove the white noise in the signal, which allows activities that result in lower
amplitude signals, such as piglet nursing, to be observed in the ground vibrations.

After noise filtering, the structural vibration signals are then processed in 5-second sliding win-
dows for feature extraction (see Figure 11). The length of the sliding window was chosen based
on the tradeoff between accurate prediction and the duration of a single event. A longer window

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 1. Publication date: October 2023.



PigSense: Structural Vibration-based Activity and Health Monitoring System for Pigs 1:15

G L
Be]
- —
B
< 0=~
8ol
=3
W -4F

s sliding windows

. d
233400 233410 233420 233430 233440
Time Mar 05, 2021

Fig. 11. A representative sample of pre-processed ground vibration signals with sliding windows.

typically provides more accurate prediction, because it allows more of the signal to be seen so it
is more robust to abrupt noises. However, the sow may change postures during that long window,
leading to low time resolution in segmenting different activity types. In our study, the length of
5 seconds was chosen because we observed that the minimum duration of the sow keeping the
same posture is typically 5 seconds (which is typically sitting, because it is a transition posture be-
tween kneeling and standing). The same sliding window length is chosen to predict piglet group
activities based on the same consideration. These sliding windows have a 50% overlap in time,
which captures the temporal dependency between two adjacent windows.

5.1.2  General and Task-specific Feature Extraction for Swine Activity Recognition. Vibration sig-
nal features that represent their motions are extracted to recognize the posture and feeding ac-
tivities of the sow and piglets over time. These features are divided into two main categories:
(1) general features and (2) task-specific features, as summarized in Figure 12. The general
features enable a more efficient machine learning framework when different types of activities
happen simultaneously. Extracting general features also enables system flexibility to adapt to new
activities that need attention on the farm. Task-specific features provide accuracy improvement
on top of the general features to precisely recognize individual activities and improve sample
efficiency for these tasks.

To enable both the generalizability and precision in feature extraction, we first extract a
set of general features to cover the breadth of our monitoring tasks and then select or add task-
specific features to capture the signal characteristics that are unique to a certain activity type.
For example, in piglet nursing detection, we first pre-train the model using general features to
determine the most important features among all; then, we characterize the nursing activity and
extract nursing-related features such as the mean absolute amplitude of the signal; finally, we
combine these features for real training and testing.

o General features: The general features include the mean, variance, maximum, and min-
imum values of signal magnitudes in the time-, frequency-, and time-frequency- domains
(as discussed in Section 4.1), which are found to be effective in classifying different types
of activities in prior works [12, 68, 70]. Since they contain information about the activity
type and intensity, these features are generally applicable for recognizing different activities
of the sow and piglets and are reusable for new types of activities. As a result, extracting
these features significantly reduces the computation time, because they are shared among
different recognition tasks.

o Task-specific features: The task-specific features are customized features for specific ac-
tivity recognition tasks to improve the model performance. For example, the sow ingestion
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Fig. 12. Fusion of general features and task-specific features for swine activity recognition. The general
features enable generalizability of various tasks, and the task-specific features enhance the accuracy of each
individual task.

behavior is predicted through the interaction between the sow and the feeding tray and
water nozzles, so analyzing signal amplitude distributions within a specific frequency band
corresponds to that interaction (e.g., 20-30 Hz) and produces high accuracy in predictions.
These features contain physical and behavioral domain knowledge, which serves as an
effective complement to the general features.

With both general and task-specific features, we can relate the structural vibration with the
physical characteristics of the growing piglets by comparing them with the ground truth, which
further enables the prediction and interpretation of vibration-based swine activity recognition.

Features extracted from the signals are then compressed through principal component anal-
ysis (PCA) to reduce the sampling sparsity in the feature space. With PCA, the distribution of
samples is visualized, and the basis vectors are examined to assess the importance of the fea-
tures and the separability of different postures/activities. A preliminary test shows that the first
10 components cover 98% of variance in a sample day of vibration data.

5.1.3 Interpretable Statistical Modeling and Prediction of Pig Activities. To predict and recognize
various pig activities, we choose the tree-based machine learning models (i.e., the random forest
and gradient-boosted tree) because of their high learning capacity and low cost in the data pro-
cessing facility. In addition, recent advancements in machine learning suggest that tree-based clas-
sifiers have superior performance in optimizing the tradeoff between model interpretability and
capacity in high-stakes applications, such as human/animal healthcare and financial investments.

The random forest and gradient boosting tree classifiers are both ensemble learning methods
that classify pig activities by leveraging a multitude of decision trees to learn the complex data
patterns in the vibration signals. By combining multiple decision trees, the model mitigates the
over-fitting problem in individual decision trees while enhancing the model capacity through
the cumulative power of multiple trees. The main difference between these two models is how
the decision trees are created and aggregated: While the random forest builds each tree indepen-
dently, gradient boosting builds each tree to correct the error from the previous one.

Both tree-based models are highly interpretable such that the feature importance is obtained
based on the nodes’ impurity and probability in decision trees. Therefore, the farm owners and
animal researchers can understand how the decision is made by visualizing the weight of each
individual feature.
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Moreover, these tree-based models produce similar accuracy as the state-of-the-art deep learn-
ing techniques during our evaluation. Our results show that our model matches or slightly out-
performs the convolutional neural networks (CNN) by 4% in accuracy. The details will be
discussed in Section 6.

5.2 Sow Posture and Activity Monitoring

Sow posture and activity monitoring provide important information about her health status and
her capability to take care of the newborns [53, 61, 87]. Typical daily activities of the sow include
posture changes, ingestion, and excretion. In this section, we detect these activities and make
predictions for their current activity status by learning the representative features for each activity
from the vibration signals.

5.2.1  Sow Posture Monitoring and Posture Change Detection. In this section, we monitor the
sow’s posture and detect the transitions between postures. Monitoring the sow’s posture is an
important indicator of her health status and comfort level. For example, standing is an indication
of heat stress. Monitoring the duration of standing allows the farm to ensure the room temperature
is suitable. In addition, up and down movement duration indicates the risk of piglet crushing [53,
61, 87]. A sudden move downwards from standing to lying may crush the piglets underneath,
leading to an increased mortality rate. Prior to giving birth, frequent postural changes are also an
indication of the onset of labor and/or dystocia, signaling a critical need for human assistance with
piglet delivery.

The postures of the sow are divided into three categories: standing, sitting/kneeling, and lying
(see Figure 13). The transitional posture change is categorized into up and down motions. When
the sow moves from lying to sitting/kneeling or from sitting/kneeling to standing, the motion is
considered as “up” When the sow moves from standing to sitting/kneeling or from sitting/kneeling
to lying, the motion is considered “down.” Since the up and down motion depends on the posture
before and after, we first classify the postures within each sliding window. We then use the pre-
dicted posture to determine if there is an up or down motion between the adjacent windows.

Sow Posture Classification. To predict the current posture of the sow, we apply a gradient-
boosted tree classifier with the general features extracted in Section 5.1.2. The gradient-boosted
tree was chosen because it enables non-linear fitting by adding a large number of weak learners and
handles missing data automatically due to short-duration hardware disconnections. The main intu-
ition behind the model is as follows: Different postures induce different impulses in the frequency
domain so they can be distinguished through the frequency-domain features. When the sow is in
a standing posture, she induces higher frequency vibrations; when she is in the sitting/kneeling
posture, signals with lower frequency than standing postures are induced; when the sow is lying,
the dominant frequency accumulates around the natural frequency range of the structure.

While the vibrations induced by the sow dominate the overall signal, piglets may experience
bursts of activity that induce significant impulsive excitation concurrent with sow behaviors. Sig-
nal windows containing these piglet movements appear similar to the standing sow, resulting in
errors in predictions. In addition, there are environmental disturbances on the farm, such as a
person walking, water discharging, or intense activities from the nearby pen, which also leads to
misclassifications in sow posture predictions. To correct the predictions from these windows, the
predicted results are then smoothed through a moving majority vote algorithm over every five
windows. This approach will be discussed and evaluated in Section 6.4.1.

Sow Up and Down Motion Detection. Detecting up and down motion means capturing the
sow’s transitions between standing, sitting/kneeling, and lying, which are short-duration events
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Fig. 13. Representative images of different sow postures observed during the deployment.

that induce significant vibrations. To detect up and down motion in the vibration signals, we de-
signed a peak-picking algorithm over the moving energy of signals, because the sow’s change of
postures typically induces significant impulses to the ground. If an energy peak is detected within
two consecutive windows with different postures, then an “up” or “down” label is assigned to the
5-second period centered around the energy peak. However, this energy change may also result
from other activities, such as sudden excitement from the piglets and environmental disturbances.
To verify and classify up and down motion after the detection, we leverage the predictions in the
static postures to infer the time of motion and type of motion, because the up and down motion can
only occur between two different postures. For example, if two consecutive windows are predicted
as standing and lying, then a “down” motion is very likely to occur in between.

5.2.2  Sow Ingestion and Excretion Detection. In this section, we monitor the sow’s ingestion
and excretion activities to assess her digestive status. Sow ingestion and excretion detection is
key to understanding sow health. The frequency and duration of ingestion events, as well as the
frequency of excretion events, are critical indicators of digestive health, where common ailments
include ulcers and constipation. Early warning signs for these two problems would facilitate early
treatment and rapid recovery. In addition, ingestion patterns can predict other common health
problems, as intake is reduced when an animal has a fever. A common disease is mastitis, metri-
tis, and agalactia (MMA), leading to a high incidence of lactation mortality in piglets [85]. Finally,
excretion patterns dramatically increase in preparation for farrowing and are an important
behavior signaling the onset of parturition.

Sow Ingestion Detection. Sow ingestion activity includes eating and drinking (see
Figure 14). They are detected mainly through task-specific features based on the vibration charac-
teristics of the feeding trays (for eating) and the water nozzles (for drinking) because of the unique
physical interactions between the sow and the feeding components. The feeding tray and the wa-
ter nozzle have different materials and shapes and therefore induce vibrations in different patterns
from the floor. Feeding trays are connected to the pen through two metal bars. When the sow is
eating, the metal bar knocks the pen through irregular impulses, which generate high-frequency
vibration signals. In contrast, the water pipe for the drinkers attaches to the pen tightly, which
generates regular and low-frequency impulses.

While sow ingestion activities induce unique patterns in ground vibrations, one significant chal-
lenge is the unbalanced sample between ingesting and not ingesting, which introduces biases
toward the majority class and fails to detect ingestion events. To overcome this challenge, we
assign higher weights to the loss function for the ingestion class. The weight value depends on
the proportion of the number of samples in these two classes. Finally, sow ingestion activity is de-
tected through a random forest classifier. The parameters of the classifier were chosen heuristically
during preliminary testing with three days of data.
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Fig. 14. Representative images of sow ingestion and excretion: (1) eating from a feeding tray, (2) drinking
through a water nozzle, (3) excretion.

Sow Excretion Detection. Sow excretion activity includes urinating and defecating (see
Figure 14). While these two activities are essential indicators of the sow’s digestive health, they
are challenging to detect, because the vibrations induced from liquid and solid dropping on the
floor are significantly smaller than the sow’s motion. To overcome this drawback, we utilize the
insights that (1) the sow typically excretes when she is standing, and (2) the sensor that is closer
to the back of the sow is more sensitive to excretion.

Therefore, we detect the sow excretion activity based on the posture predictions and then learn
general and task-specific features from the vibrations captured by the two sensors at the back,
because the sow is typically constrained to face forward. The task-specific features include the
amplitudes in high-frequency ranges (i.e., more than 100 Hz) and the proportion of high-frequency
to lower-frequency (i.e., less than 30 Hz) amplitudes. The excretion detection algorithm is activated
when the sow posture is predicted as standing. Then, we apply the random forest classifier to
detect urinating and defecating activities using the two sensors at the back. The urinating activity
is characterized by a short duration of signals with random and similar maximum amplitudes (i.e.,
like white noises but with much higher amplitudes). The defecating activity is characterized by a
series of irregular impulses on the floor.

Similar to the sow ingestion activities, the sample number of the excretion activities is signif-
icantly unbalanced compared to the overall standing time. Therefore, we apply a weighted loss
function during prediction.

5.3 Piglet Group Activity Monitoring

Characterizing piglet group activity is critical for monitoring piglets’ health and understanding
their development stages. This is because the activity of normal piglets shows periodic patterns
in response to variations in light, temperature, and feeding routines. A sudden change in activity
pattern will indicate an acute change in health status. If a group of piglets is not hitting the target
activity level, then that is an indication that the producer should be alerted to watch this particular
litter. For example, if piglets are not nursing often enough or long enough while sleeping longer
than usual, then they may be at risk for illness or starvation. However, if the piglets are nursing
well, then their sow displays good maternal behaviors and may be a good candidate to breed addi-
tional litters. To this end, we chose three critical piglet activities to characterize: nursing, sleeping,
and being active.

5.3.1 Group Activity Characterization. Piglet group activity characterization refers to the cu-
mulative numbers of piglets engaged in different activities, such as nursing, sleeping, and so on.
The piglets in each pen are regarded as a single group. The number of piglets engaged in each
activity defines the intensity of that activity. There are two main challenges in characterizing the
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Nursing

Fig. 15. Typical piglet activities: (1) nursing, (2) sleeping near the sow, and (3) being active and walk-
ing/running around.

piglet group activity. The first challenge is that it is hard to accurately count the number of piglets
engaged in different activities due to the small size of the piglets and the reliance on a top-down
camera. Newborn piglets are too small to distinguish when they are crowded together, and often
one piglet is hidden behind another in the frame or behind part of the sow. Piglets frequently
fall asleep while still suckling, and it can be hard to tell if they are sleeping or nursing. Nurs-
ing frequency and duration after labeling with our study were found to be within the expected
ranges [2, 43]. The second challenge is that it is more demanding to predict piglet group activity
than to detect a specific sow activity because it involves more piglets and activities, which often
overlap within a group. To address these challenges, PigSense divides the piglet group activities
into three types: nursing, sleeping, and being active. Each activity type is then characterized sep-
arately, which allows us to use targeted task-specific features based on physical and behavioral
domain knowledge to more precisely characterize each activity. It also allows us to handle cases
of overlapping activities, as the activities are characterized in parallel.

Defining Group Activity Types and Levels. Piglet activities can be divided into nursing,
sleeping, and being active. Nursing is a complex, multi-phase process defined by four stages: initi-
ation, pre-let down, let down, and post-let down, which represent approaching the udder, stimulat-
ing the udder, receiving the milk, and post-milk suckling. When labeling our data, it is difficult to
distinguish the final three stages by sight. Prior approaches to this issue when monitoring piglets
opted to disregard the individual phases, instead tracking each overall suckling period [84, 88].
Therefore, for individual piglets, we define nursing as suckling at the udder. Sleeping represents
any activity during which a piglet stays quiet and still. Being active refers to other activities except
nursing and sleeping, such as wandering, running, playing, and so on. Figure 15 shows these three
typical activities of piglets.

Each group activity is divided into different intensity levels based on the distribution of the
number of piglets engaged in this activity. The exact division ranges are shown in histograms in
Figure 16. For nursing, if there are 0 to 4 piglets nursing, then it is defined as light nursing level; if
there are 5 to 9 piglets nursing, then it is defined as medium nursing level; if there are 10+ piglets
nursing, then it is defined as high nursing level. This corresponds with the definition given by
Thomsson et al. and used in our previous work, which defines “nursing/suckling” as any time when
at least five piglets are suckling [10, 84]. By this definition, “medium” or “high” nursing would both
be considered nursing, while “light” nursing would not be considered a nursing event. Sleeping
intensity levels include light (0 to 2 piglets) and high (2+ piglets). The intensity levels of “active”
include light (0-2 piglets), medium (3-6 piglets), and high (7+ piglets). Classifying the piglet group
activities into different intensity levels has two advantages: (1) Minor artificial counting errors have
a negligible effect when focusing on levels instead of the particular number of piglets engaged in
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Fig. 17. Group activity overview. The figure gives an overview of piglet group activity composition in the
first two-and-a-half hours after sow farrowing. Four subplots show four different sensors in a pen. In each
subplot, the black line indicates the sensor’s vibration data, which is different from other subplots, since the
sensors’ locations are different. The colored stack bars represent the number of piglets engaged in a specific
activity.

an activity. (2) The resulting description of the piglet group activity is more intuitive. For example,
the group activity at 4:30 am can be easily depicted with a set of activity levels: high nursing level,
light sleeping level, and light active level.

Figure 17 presents an overview of the piglet group activity in the first two-and-a-half hours after
sow farrowing. The black line in each subplot represents the vibration data (velocity) of different
sensors, whose layouts can be seen in Figure 21, pen 3. The colored bars indicate the number of
piglets engaged in three activities. The figure shows that nursing and being active have obvious
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Fig. 18. This representative plot shows that nursing behavior creates a lower amplitude irregular pattern in
the vibration signal when compared to active piglets.

periodic patterns, which align with our expectations. The piglet group tends to be very active every
40 to 60 minutes. The number of piglets engaged in nursing tends to be small when the number of
piglets involved in being active is large. The highest amplitude vibration data corresponds to the
case where more piglets are engaged in being active. The vibration data varies between subplots,
as sensors in different locations are sensitive to different activities. For example, Sensor 32, in the
center of the pen, shows higher responsiveness to nursing activity.

Classifying Group Activity Levels. PigSense builds an activity-level classification model for
each piglet group activity. We start by extracting the time-domain and frequency-domain signal
features mentioned in Section 5.1.2. Due to the complexity of classifying overlapping activities
with multiple piglets, we add various task-specific features to our general features to improve the
model performance and then heuristically select features for each activity based on a small test set.
Our task-specific features are informed by behavioral knowledge such as the location or timing
of specific piglet activities and physical knowledge about the expected wave propagation through
the structure caused by various activities. We discuss this domain knowledge and how it informed
task-specific features for each classifier in the following sections.

Nursing: Based on our observations, nursing piglets move their heads back and forth in a fast
regular motion as they stimulate the sow’s udder. This suckling motion of several piglets causes
dynamic excitation of the structure, which is captured most clearly by the vibration sensor in the
center of the pen, which is underneath the sow’s udder. Figure 18 shows a representative sample of
vibration data from the sensor in the center of the pen. We can see that the superposition of multi-
ple nursing piglets results in an irregular pattern with lower signal amplitudes, as observed by the
sensor. In addition, based on our preliminary observations of the data, the number of peaks tends
to decrease as the number of nursing piglets increases. Therefore, we expect that our frequency-
domain signal features from the central sensor will effectively capture the changes in frequency
caused by the overlapping suckling motion of several piglets. The corresponding frequency and
prominence of peaks in the time domain are also extracted as additional features to help quantify
the phenomenon.

Sleeping: Unlike the other categories, sleeping tends to be characterized by a lack of other
activities, as it does not create excitation of the structure. As with nursing, piglets tend to fall
asleep near the sow, so we expect the sensor in the center of the pen to be the most useful. Our
challenge here is detecting the stillness of piglets without relying on a quiet environment, as the
structure is also affected by sow activity and ambient noise. As piglet activities happen faster than
sow activities, we leverage hyper-local time domain features to detect small piglet movements
(or lack thereof) within the larger signal segments. Our 5-second signal segment is divided into
1-second frames with a step size of 0.002 second. The variances of each frame are calculated, and
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Fig. 19. Local variance features. The figure shows the local variance features in the time domain. Variances
of the most unstable parts and the most stable parts are extracted in this case. The blue curve indicates a
sensor’s vibration data for five seconds. The red-filled area is the most unstable one second, from which
period the maximum local variance is extracted. The green-filled area is the most stable one second, from
which period the minimum local variance is extracted.

the maximum and minimum variances are used as features, reflecting the amount of local change
in the most unstable and most stable parts of the signal segment. Figure 19 shows the local variance
features in a single time-domain signal segment. The blue line shows the vibration data, the red-
filled area is the most unstable 1-second section with the highest variance, and the green-filled
area is the most stable with the lowest variance.

Active: The “active” category includes the widest variety of impulsive motion in the largest
possible area, as piglets may walk, run, or play anywhere in a pen, in contrast to nursing and
sleeping, which tends to happen near the sow. This piglet motion induces the pen surface to de-
form and un-deform, which generates predominantly Rayleigh-Lamb waves [89]. These waves
propagate through the pen structure and can be captured by the vibration sensors as impulsive
signal segments with a wide frequency spread. Therefore, we expect our signal to affect multiple
frequency bands and to vary based on the type, intensity, and location of the active movements.
To address this, the skewness and kurtosis of the Fourier Transform are extracted to character-
ize the shape of the signal segment curve in the frequency domain. Skewness can measure how
skewed a curve is, and kurtosis is used to measure the relative peakedness of the curve. We also add
the variance-based local features discussed in the sleeping category to detect small piglet move-
ments. Short-duration piglet activities such as jumping might be submerged, because the general
time-domain features are calculated among the whole signal segments. The local variances are
designed to address this problem (Figure 19).

When characterizing piglet group activities, PigSense faces the challenge of selecting features
sensitive to different group activity levels while also being insensitive to irrelevant activities such
as the motion of the sow. Using all possible features would lead to overfitting irrelevant activities in
or near the pen. Therefore, after we have added our task-specific features to the general feature set,
critical features are heuristically chosen from the initial features. Here, we use the random forest
algorithm, which can be applied to rank the importance of variables in a classification problem and
speed up our feature selection. Although the feature selection method is outcome-oriented, and
essential features are chosen based on their classification performance on the test set, the results
match our observations and expectations well.

For classifying piglet group nursing and sleeping levels, only basic statistics of frequency bands
and local variance are included as essential features. Other features, such as energy features, other
time domain features, as well as time-frequency domain features, are excluded. This is because
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piglet nursing and sleeping tend to induce more special and regular structural vibrations, which
can be reflected in some elementary statistics of frequency bands. Importing local variance fea-
tures is to eliminate interference from active piglets, since these features are designed to catch
momentary piglet movements, such as jumping or turning over.

For classifying the “active” category, more essential features are selected except basic statistics of
frequency bands and local variance, including skewness, kurtosis, and the frequency correspond-
ing to the maximum of frequency bands as well as energy features in the time domain. Other time-
domain and time-frequency domain features are removed. Local variance features are selected,
since they can reflect the intensity of temporary piglet movements. Energy features in the time
domain are chosen to measure the intensity of general movements and get rid of the interference
of sow’s movements. Particular structural vibration patterns of different “active” levels can be indi-
cated by keeping basic statistics of frequency bands. As a supplement, skewness, kurtosis, and the
frequency corresponding to the maximum of frequency bands are also incorporated as essential
features for distinguishing frequency bands’ shapes. Because, according to our observations, the
shapes of frequency bands tend to be different among different “active” categories, even if they lie
in a similar range. More detailed feature selection results will be discussed in Section 6.5.

Before evaluation, all vibration data is normalized to zero mean and one standard deviation to
boost the convergence speed of model training. The random forest algorithm is deployed again
to classify the final group activity levels, because it does not require data to conform to certain
assumptions and is suitable for solving high-dimensional input problems. However, for each group
activity, the number of samples in different classes varies significantly (Figure 16), which can cause
poor performance in minority classes. Therefore, samples with imbalanced labels are repeated
randomly in the training set before being fed into the group activity classification model.

6 EVALUATION

We evaluate our system through long-term deployments in pig farms in Thailand and the United
States. In this section, we first introduce the detailed deployment setup in these two sites and
present the overall results for sow and piglet activity recognition (Sections 6.1 and 6.2). Then, we
discuss the iterative design process of the hardware and the lessons learned over the course of this
two-year field deployment experience (Section 6.3). Finally, we conduct a detailed analysis of the
results for sow and piglet activity recognition (Sections 6.4 and 6.5).

6.1 Field Deployment Setups

In this section, we provide an overview of our deployment in two pig farms: (1) a commercial farm
in Thailand and (2) a research farm in the USA. We deployed our system in these two farms over
the course of a year and evaluated PigSense in various tasks introduced in Section 5.

6.1.1  Real-world Evaluation at an Operating Pig Farm in Thailand. We deployed PigSense for
three months at a commercial farm in Lopburi, Thailand, from April 2nd—June 9th, 2019. As the
animals used in the study were not used solely in this collaboration and were not supported by
our funding, our institutions’ IACUCs determined that a protocol review was not needed for this
study. We did not interact with or change the animal environment in any meaningful way, but
simply monitored them from afar while the farm continued normal operations.

We installed the sensors in three farrowing pens designed for a single sow and her piglets. A
farrowing pen is shown in Figure 20(b). Each pen has 10 sensors installed on the underside of the
floor of the pen, 2 each in 5 different locations, as shown in Figure 20(c). In this deployment, we use
two configurations for the placement of the geophone sensors as part of our iterative design pro-
cess described in Section 6.3. First, we glued the sensor directly to the farrowing pen, connecting it
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Fig. 20. Our experimental setup at our first deployment in Thailand: (a) Our waterproof sensor box, with
a sensor inside and a waterproof connector for power. (b) Our sensor was installed on the underside of a
farrowing pen. (c) A diagram of the location of our sensors and ground truth camera in a farrowing pen.

6 ft 6 ft 6 ft

Crate 1 Crate 2 Crate 3
(a) (b)

Fig. 21. Our experimental setup at our second deployment in the United States: (a) the sensor layout in three
different types of pens. (b) installing concealed sensor boxes underneath the flooring.

with a waterproof cable. In the second configuration, we put the sensor inside the waterproof box
to better protect it from the elements at the cost of a weaker connection to the structure, which is
more durable than the first configuration.

6.1.2  Real-world Evaluation in an Animal Research Farm in the U.S. We deployed PigSense for
one year at the U.S. Meat Animal Research Center in Nebraska, USA, from January 13th 2021-
January 21st, 2022 with five lactation cycles recorded. Data collection was performed in accordance
with federal and institutional regulations regarding proper animal care practices and was approved
by the U.S. Center for Animal Research Institutional Animal Care and Use Committee as EO#143.0.

We installed 15 sensors over three different types of pens, with 5 sensors in each pen. As shown
in Figure 21(a), the layout consists of 1 sensor in the middle of the pen to capture the vibration
from the sow and 4 sensors at the edge of the pen to measure the vibrations from the piglets. All
sensors are concealed in plastic boxes to prevent damage from high-pressure water during cleaning
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Fig. 22. Results comparison between two different deployments. In general, the performance of our model is
consistent across these two sites. Compared with the Thailand deployment, our method achieves a slightly
higher accuracy on the data collected from the USDA deployment because of the iterative improvement of
the hardware.

and excretion from the sow during operation (see Figure 21(b)). The sensors were all installed
underneath the pen, fixed with multiple zip-ties to ensure firm coupling with the floor structure.

For this deployment, we standardized the sensor node design based on our previous experiences.
Section 6.3 will detail the iterative design process and lessons learned in more detail. Each sensor
was contained within a watertight enclosure, including the geophone inside positioned for intu-
itive installation below the pen. As the first deployment performed without direct oversight from
the sensor engineers due to COVID-19 pandemic restrictions, this deployment tested the remote
management and deployability aspects of the PigSense system.

6.2 Overall Performance

Our swine activity recognition method (described in Section 5) is evaluated with the data col-
lected from two field deployments presented in Section 6.1. Figure 22 shows the overall evaluation
results for both deployment sites. From the figure, we observe that the performance of our model
is consistent across these two sites, which demonstrates the robustness of PigSense in various en-
vironmental conditions. Compared with the Thailand deployment, our method achieves a slightly
higher accuracy on the data collected from the USDA deployment in the sow position detection and
piglet nursing detection model, resulting from the iterative improvement of the hardware (which
will be discussed in Section 6.3). In addition, the evaluation performances in these two datasets
have relatively high variability for the sow motion detection model, sow motion classification,
and people detection model. This is because the distribution of labels is seriously imbalanced for
these three models. Take people detection as an example—only about 100 samples whose labels
are positive are among nearly 30,000 samples in both datasets. In this case, even though principal
components are extracted before training the model, the model’s evaluation performance will still
be influenced by some processes with randomnesses, such as oversampling for samples whose la-
bels are imbalanced. According to the repeated tests, the difference in the F-1 scores between the
results from the USDA and the Thailand deployments was generally no more than 0.1.

6.3 Deployment-informed Iterative Design

Over the course of several deployments, we gathered data that allowed us to steadily improve our
hardware, resulting in a robust yet sensitive system that can stand up to its challenging environ-
ment while still providing reliable data. Here, we describe our design decisions and lessons learned
through multiple deployments.
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6.3.1 Environmental Effects. Before our first deployment, we knew that the physical environ-
ment of the farrowing pen would provide our sensors with serious environmental challenges. How-
ever, it was impossible to fully anticipate how our sensors would handle exposure until deploying
and witnessing the environmental damage first-hand. Over several deployments, we found the
primary damage sources to be liquid ingress, chemical exposure, and mechanical damage from
high-pressure cleaning jets.

Most of the environmental hazards come from the animals themselves or their care. For example,
the primary chemical hazards come from animal waste, such as pig urine and excrement. These
contain chemicals such as urea and natural acids that damage the seals and casing of our sensors.
The liquids from animal waste, drinking water, and the jets used to clean the sewers also frequently
drench the area where our sensors are deployed, potentially ingressing the casing. Since our sen-
sors are made of metal and sensitive electronics, they are vulnerable to short circuits from water
or degradation from chemical exposure. Thus, the individual sensor nodes needed to be both wa-
tertight and chemical-resistant while still maintaining enough sensitivity to accurately track the
pigs’ movements.

6.3.2  Accounting for Animal Behavior. The pigs’ reactions to sensors in their pen dictated the
location and power supply constraints. We placed the sensors underneath the floor of the pen to
prevent the pigs from disturbing them. After noticing the pigs congregating around the sensor
nodes, we realized that we needed to further reduce the attraction of the pigs to the nodes. Thus,
we also removed indicator lights where possible and oriented them away from the pigs so only
plain plastic was visible through the pen floor.

Powering our sensors was also constrained by animal behavior. Since the time between farrow-
ing and weaning is typically a month or greater, we determined that the sensors needed an external
power supply. Wiring the sensors to the building’s power supply came with its own challenges,
however. In one instance, an escaped pig ran into the power supply module on the wall and pulled
the cord, cutting power to two of the sensors. Ironically, in this case, the pig activity that we set
out to monitor proved to be our hardware’s undoing.

6.3.3 Effects of Sensor Positioning. To further understand the impact of structural variation
on the system, we installed multiple sensors under each farrowing pen. We placed two sensors
each at five different locations for each rectangular pen, as shown in Figure 20(c). This allowed us
to explore and reduce the impacts on the data distribution and examine the effect of having the
sensors inside the protective box vs. attached directly to the underside of the floor.

Comparing Sensor Mounting. We found that the sensors inside the box had a somewhat
dampened response at frequencies under 100 Hz, but often showed an improved response at fre-
quencies above 100 Hz. We attribute this to the zip-tie connection between the protective box and
the floor grating, which may have allowed the box to vibrate more freely than the floor itself while
also blocking some of the incoming low-frequency signals. Despite this, we found the sensors in
both configurations provided equally useful data in our long-term and short-term algorithms. Thus,
in the interest of deployability and physical fault tolerance, later deployments used only geophones
installed inside the protective box.

Comparing Sensor Locations. In all the pens, the highest accuracy for classifying a partic-
ular activity depended on the location, not the sensor mounting. However, this location varies
with the activity types. In the Thailand deployments, we found that the best sensors for detect-
ing laying were next to the feeder and the water dispenser, while the best sensors for detecting
nursing were in the middle. This is likely because nursing usually happened in the middle of the
pen, while standing occurred primarily in the feeding and drinking areas. While there were some
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Fig. 23. Mean time between failures (MTBF) for individual nodes across deployments of different hard-
ware revisions. For version 2.2, two bars are shown: one the raw failure rate, and the other after excluding
installation-related failures, which were a major unexpected factor in node failures.

discrepancies in this comparison, they came from pens with a different layout and a large number
of failed sensors, leaving few locations to compare.

6.3.4 Deployable and Manufacturable Design. For the early deployments in Thailand (see
Section 6.1.1), the design focus for the sensor nodes was rapid prototyping. This focus enabled
the iterative design process, but eventually, the hand-assembly required counteracted the redun-
dancy desired for fault tolerance. Thus, scalability and redundancy demanded a shift to a rapidly
constructible sensor node with a relatively stable design.

After several iterations, we found that producing redundant nodes necessitated a shift to a sta-
ble, manufacturable design. The prototyping-focused designs were more modular, but this also
produced many design variations between deployment iterations. Design stability is needed for
more rapid assembly while also enabling deployability by those already working in the farm envi-
ronment. This means, for example, that we standardized the nodes to a single configuration and
uniform enclosure. Additionally, the geophone inside is positioned for correct orientation when
the intuitive mounting surface is against the underside of the farrowing pen, reducing the likeli-
hood of installation mishaps. Having a consistent design enabled a streamlined installation process
that could be carried out with minimal oversight from the sensor designers.

Our final design suggests a framework for designing reliable, manufacturable, and deployable
sensors. First, the analog signal paths are overdesigned, and specialty components are replaced
wherever possible with generic alternatives. This enables both improved manufacturability and
improved deployability through tolerance to minor orientation and changes. Second, installation
steps required at the farm are reduced to a minimum. Fewer installation steps translated directly
to less system knowledge required to install a working sensor network. Finally, our sensors can be
remotely monitored and managed, allowing the engineers to perform more detailed steps remotely
during or soon after installation.

6.3.5 Sensor Reliability Results. We evaluate the reliability of our sensors in the farm environ-
ment by tracking the rate of individual sensor node failures. Specifically, we consider the “failed”
condition when a node no longer provides any useful data, the same as in our previous work [14].
The results from this evaluation are shown in Figure 23 according to hardware revision.

The revision numbers listed in Figure 23 represent different snapshots of our iterative design pro-
cess. Version 2.1 is the final iteration deployed in Thailand. While the earlier revisions lost sensors
so quickly that they could not monitor an entire farrowing period [10], the final iteration managed
an average of six days between node failures. The 2.2 revision was very similar to v2.1 but proved
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Fig. 24. (a) The first two principal components after PCA show the features are separable among different
sow postures. (b) Confusion matrix in predicting lying, sitting/kneeling, and standing postures without label
smoothing. (c) Confusion matrix in motion detection.

more robust during the run of the system. This version suffered, however, from many failures re-
lated to installation. For the most recent revision, applying the deployability principles described
in Section 6.3.4 led to nodes that proved more robust to both installation and environmental haz-
ards. In the most recent deployment, only a single sensor failed between both the installation and
a full lactation cycle, demonstrating the improvements made to sensor robustness, deployability,
and error recovery.

6.4 Results for Sow Posture and Activity Monitoring

In this section, we summarize the results of sow activity recognition, including sow posture and
motion prediction (Section 6.4.1) and ingestion and excretion detection (Section 6.4.2).

6.4.1 Prediction of Sow Posture and Detection of Posture Changes.

Sow Posture Classification. PigSense achieved 100%, 95.5%, and 90.9% test accuracy in de-
tecting lying, sitting/kneeling, and standing postures, respectively (see Figure 24(b)). As we ob-
served from the figure below, features from different postures are visually separable, observing
the first two principal components represented by the x- and y-axis. We found that the first prin-
cipal component has a basis function that contains mainly the normalized signal energy, which
matches the observation that the activity intensity increases significantly as the sow switches from
lying to sitting/kneeling and then standing. However, samples from the lying behavior overlap
with the sitting/kneeling, as well as standing, leading to misclassifications that bias toward the ly-
ing postures (see the first column in the confusion matrix). This may result from the time windows
when the sow is standing, sitting, or kneeling without any movements. In this case, it is difficult
to tell the sow’s posture from the ground vibrations.

To reduce this bias due to the motionless period, a smoothing method over the predictions is
applied (as discussed in the method section). Figure 25 shows the ground truth (blue color) and
the predictions (yellow color) before and after the smoothing. As observed, the predictions from
each window are smoothed by the majority of the adjacent windows, which allows the motionless
period to be predicted by nearby time slots with movements.

As a result, the accuracy improved to 99.9%, 99.8%, and 93.7% for lying, sitting/kneeling, and
standing postures, respectively, after correcting the bias.

Up and Down Motion Detection. Our method has a 95% F1-score in prediction by inferring
the motions from the posture predictions (see Figure 24(c)). The error mainly comes from the
predictions in the postures. The accuracy is also affected by the time resolution in sliding windows,
because sow motion usually happens within the length of our sliding windows. While we use the
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Fig. 25. A representative sample series of sow posture changes before and after smoothing: The thick blue
line indicates the ground truth, and the thin orange line denotes the predictions.

middle time of the adjacent sliding windows to represent the start and the end of the motion, they
are not precise enough to approximate the true motion time.

6.4.2 Detection Results for Sow Ingestion and Excretion.

Sow Ingestion Detection. PigSense achieved 96% F1-score in sow ingestion. As observed in
Figure 26(a), the feature importance plot from the random forest classifier shows that the mean and
variance of magnitudes in lower frequency bands are significantly more important in detecting the
ingestion activity. This indicates that the ground vibration induced by the sow feeding equipment
mainly concentrates in the 0-100 Hz frequency bands. Since eating and drinking have movement
rhythms, these bands’ variance is also important. Figures 26(c) and (d) show the separable feature
patterns of ingestion activities for the sow. Principal component 3 (i.e., the x-axis in the figure) has
basis functions mainly contributed by the mean amplitudes over 50-100 Hz. Principal component
9 (i.e., the y-axis in the figure) has basis functions mainly contributed by the variance of frequency
amplitudes over 0-50 Hz, which validates our hypothesis that the signal induced by the feeding
equipment contributes to the classification performance.

Sow Excretion Detection. PigSense has a 71% F1-score in excretion detection. The accuracy
is relatively lower than the other activities. This is mainly because when the sow urinates or defe-
cates, the liquid and the solid drops induce significantly lighter vibrations than stepping or hitting
the eating tray. Such vibrations are also instant and easily buried by the piglet activities nearby.

6.5 Results for Piglet Activity Monitoring

In piglet group activity classification, PigSense achieved 87.7%, 89.4%, and 81.9% F1-scores after
smoothing (the same method used in detecting sow activities) in classifying nursing level, sleep-
ing level, and being active level, respectively. The feature selection results show that the three
classification models can achieve acceptable accuracy (more than 80%) with less than 30 features
(see Figure 27). To achieve the best performance, only 5 features are selected in the nursing level
and sleeping level classification model. However, 20 features are selected in the “being active” clas-
sification model, because the active state presented the most varied forms of vibration patterns.
Figure 28 shows the confusion matrix of the classification results, which will be discussed in the
following sections.
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cation models can achieve acceptable accuracy without too many features. Only 5 features are selected in
the nursing level and sleeping level classification model for optimal performance. However, due to the high
complexity of the problem, 20 features are selected in the “being active” level classification model.

Piglet Nursing Level Classification. PigSense has an 87.7% F1-score for piglet nursing level
classification. The five features include three frequency band features (50 Hz, 170 Hz, and 210 Hz)
and two local minimal variance features. It could be noted from the confusion matrix that the
classification accuracy of the medium nursing level is not as good as other nursing levels. The
medium nursing level means all three activities might be somewhat active, which is the most com-
plicated case when classifying group activity levels. The overall good performance of the model
mainly comes from the internal regularity of the nursing activity, which is well characterized in the
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Fig. 28. The confusion matrix of piglet group activity level classification results: (a) nursing, (b) sleeping near
the sow, and (c) being active.

frequency domain. While not originally chosen to detect levels of nursing, the local variance fea-
tures may help quantify the reduced number of peaks in the signal we see when the number of
nursing piglets increases (see Figure 18 and Section 5.3.1).

Piglet Sleeping Level Classification. PigSense has an 89.4% F1-score for piglet sleeping level
classification. The five features include two frequency band features (150 Hz, 170 Hz) and three
local minimal variance features. It can be found that the sleeping level is sensitive to some signal
features in the high-frequency domain. The local minimal variance in the time domain measures
the stability and stillness of a sensor, which plays a vital role in classifying sleeping levels. The
relatively good performance of the model is partly because the classification task is binary, which
is more straightforward than the other classifiers.

Piglet “Being Active” Level Classification. PigSense has an 81.9% F1-score for piglet “be-
ing active” level classification. The 20 features include 15 frequency band features ranging from
10 Hz to 170 Hz, 4 local variance features, and 1 signal energy feature. The 20 features also cover
all the sensors. This is because piglets can walk, run, or play around anywhere, unlike nursing and
sleeping. In this case, all sensors’ vibration data is indispensable for classification. The model does
not perform as well as the other two models because, as defined in Section 5.3.1, “being active”
includes any activity except nursing and sleeping, such as walking around, running, rolling on
the ground, and so on. Three active levels are only an approximate description of these kinds of
activities. The varying types of activity included in this category add representation complexity,
which is why more features need to be selected in this model. Looking at the confusion matrix, we
also see that the classification accuracy of the high “being active” level is lower than other “being
active” levels, which is partly subject to the lower number of samples in this class.

The slightly lower accuracy for our piglet activity classification may be partly due to the lower
precision of our piglet activity labels, as explained in Section 5.3. However, nursing frequency
and duration after labeling with our study were found to be within the expected ranges [2, 43].
Results for piglet group activity classification show the validity of features selected in Section 5.3.1,
especially the statistics of frequency bands and local variance in the time domain. It is also worth
noting that features extracted from the sensor under sow are essential in all three group activity
levels’ classification models, which shows that we can extract piglet-specific features in the midst
of vibration caused by sow activity. This is the case when monitoring sleeping and active piglets,
as these behaviors are relatively independent of the sow. In the case of nursing, our system also uses
vibration information related to sow posture to inform the piglet activity monitoring, as piglets
can only nurse when the sow is in the lying position.
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Fig. 29. Cluster visualization using PCA: (a) different time in a day (79.1% test accuracy) (b) different weeks
in a lactation period (81.8% test accuracy).

6.6 Results for Piglet Growth Monitoring

The results of piglet growth monitoring include the unsupervised clustering of their behavior
patterns and tracking of their weight gain over the lactation period. The behavior patterns are
assessed in two different time resolutions, including daily activity patterns and monthly growth
patterns. The weight gain is monitored over the entire lactation period and is compared with the
signal energy from the vibration data.

6.6.1 Activity and Growth Patterns. For daily and weekly pattern clustering, we focus on the
accuracy of every single sensor instead of all sensors. This allows us to be flexible in dropping any
sensor that fails during the long-term deployment. To combine different sensor outputs, we select
the sensors that maintain connectivity and function throughout the targeted period and plot them
in the same figure. As an example, Figure 29 is obtained from sensors 162 and 164 from Pen No. 2,
which maintains a good connection and continuous record throughout the cycle.

To prevent our features from biasing towards the outliers, we calculate the 90% quantile, median,
and standard deviation of the signal magnitudes in each domain to represent the piglet activity
patterns over the lactation period and over each day. To visualize the discrepancy between the
clusters, we conduct PCA to compress the feature dimensions into two principal components.

Daily Pattern Prediction. In Figure 29(a), we observe the clusters by plotting principal com-
ponents to track activity changes during different time slots. To demonstrate that data points with
similar features belong to the same cluster, we evaluate the clustering accuracy using K-nearest
neighbors (KNN), which gives us 79.1% accuracy for different times of the day. There is a gradual
change from active hours (i.e., morning and afternoon) when sow feeding occurs to inactive hours
(noon and night) where piglets and the sow are either sleeping or with minor movements. We ob-
serve a clear boundary between night and noon, but there are multiple points from morning and
afternoon that are mixed into the other two clusters. This is because piglets are not always active
during feeding hours. They tend to alternate between walking/running and resting.

Growth Stage Prediction. In Figure 29(b), there are three distinguishable clusters between
different growth periods as the piglets go through the three-week lactation period. The KNN model
gives 81.8% accuracy in growth stage prediction. From the first week to the third week, the cluster
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Fig. 30. A representative illustration of the normalized signal energy of a single sensor and piglet weight
gain for three pens. The lower correlation for Pen No.1 is due to a connectivity issue with the sensor on day
16, which caused the energy to drop.

moves from right to left, which indicates the gradual growth pattern due to their weight increase
and changes in behavior patterns. The results from the clustering provide references for the active
time and growth stage of the healthy piglets, which allow us to detect abnormal behaviors that
result in feature points that deviate from these clusters.

6.6.2 Weight Gain. For the piglet weight gain analysis, we first obtain the ground truth—overall,
the piglets gained an average of 66 kg per pen over the lactation period, which is 5.5 kg per piglet.

We compare the weight gain with the normalized signal energy of a single sensor per pen, as
shown in Figure 30. The piglets are weighed at the beginning and the end of the lactation cycle
(dashed line). Normalized energy of the vibration signals (solid line) is obtained after each day. The
correlation coefficients are 0.62, 0.86, 0.94, respectively. The lower correlation for Pen 1 is due to a
connectivity issue with the sensor on day 16, which caused the energy to drop to almost zero. This
reinforces our need to accommodate sensor failure. For Pens 2 and 3, there are minor fluctuations
in signal energy due to differences in activity intensity across different days.

To prove the correlation relationships statistically, we conduct hypothesis testing mentioned
in Section 4.2.1. The p-values are 2.6e73,2.6e77,1.2¢7°, respectively, which are all below the sig-
nificance level of 0.05. Therefore, we can reject the null hypothesis and conclude that there is a
correlation between signal energy and piglet weight gain.

There are variations in the signal energy despite its strong correlation with weight gain. For
example, the signal energy varies significantly in Pen No. 1 (the top figure in Figure 30), especially
around day 2, day 10, and day 16. This is because the connection of the sensor is not stable on the
farm, leading to missing data problems over more than 20 hours on those days. In contrast, the
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Fig. 31. Results of vision-based vs. structural vibration-based pig activity detection with data from the Thai-
land deployment. Our structural vibration-based method matches or slightly outperforms the vision-based
method in similar conditions.

increasing trend of the signal energy is more obvious in Pen No. 2, resulting from a more stable
sensor connection over time. The minor variations in the signal energy can be explained as the
day-to-day variations of pig activity levels (see Pen No. 3 in Figure 30). Since the signal energy
captures the piglet weight gain indirectly through their activity intensity, the variations in their
activity levels due to random events and environmental factors (e.g., human disturbances, changes
in weather) lead to variations in the signal energy.

6.7 Comparison with Vision-based Deep Learning Approaches

We compare our structural vibration-based sow lying detection and piglet nursing detection by
using an image-based classifier on the data from our first deployment in Lopburi, Thailand. For
the image-based classification, we use ResNet18, a deep convolutional neural network pre-trained
on the ImageNet dataset [18, 39]. We appended a single fully connected layer to the pre-trained
model, which we optimized to our data using cross-entropy loss and stochastic gradient descent,
implemented in PyTorch. This is a widely tested industry standard. We trained for 10 epochs with
about 5,000 frames of data from a single day. The cross-entropy loss converges to a low value after
6-7 epochs. We debounced the frame-level results with the same sequential smoothing algorithm
we used for our vibration analysis and evaluated with data in the same pen.

The results from the vision analysis are compared to our vibration-based method for the same
day and pen, as shown in Figure 31. We found that with lying, the algorithms performed equally
well, but that our vibration-based method was slightly more adept at classifying nursing. This
makes sense, given the difficulty we had manually labeling lying with the cameras: Piglets sleep-
ing next to the sow often look very similar to piglets nursing, and if humans have a hard time
distinguishing the difference, then a neural network might have even more trouble.

We also compared the data storage and training times for the two algorithms, which were both
implemented in Python on the same computer, with an NVIDIA GeForce RTX 2070 GPU [63].
Table 1 shows the vibration-based analysis requires 12X less storage and 4X training time than the
vision-based approach.

It is possible that a future version of either method would work with a lower sample rate (and
less data) and could be written to be slightly faster. Even knowing that this is an imprecise met-
ric, it is clear that the vibration sensors take up far less storage and would therefore also require
much less bandwidth to send data. A large pig farm may have hundreds of farrowing crates [76].
Constantly monitoring all of these with cameras could become infeasible due to all this data.
Using vibrations as opposed to images becomes critical in the remote farm environment where
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Table 1. Comparison of Processing Time and Storage Needs
for Vision and Vibration-based Methods
for One Day in a Single Pen

’ H Storage (one minute) \ Training Time ‘
Vision 12 mb 504 seconds
Vibration 1 mb 125 seconds

The vision method uses a single camera, while the vibration-based
method combines four geophones. The vibration sensor data takes up
much less storage, which would add up quickly on a big farm with

many pens.

unreliable data connections do not provide sufficient bandwidth to upload video for off-site pro-
cessing [6]. Additionally, when implementing this comparison, we chose a pen in an area that
happened to be well-lit even at night. Not all of the pens have good lighting, and choosing to leave
the lights on all night could cause the pigs to stress as well as add high electricity costs on a big
farm [34].

The vision-based method has the advantage that cameras are less susceptible to the sensing
unreliability and varying data distributions we experienced with geophones. While PigSense has
achieved good fault tolerance to sensing unreliability, we have yet to train and test in differ-
ent pens. We are optimistic that this issue can be effectively addressed in future work by using
transfer learning to adapt the data distributions, as we demonstrated with footsteps in a previous
work [57].

7 RELATED WORK

Our related work spans several areas, detailed below. We are the first to do automated monitoring
of animals with structural vibration sensors. Therefore, our work is informed both by systems
of animal monitoring with other types of sensors and structural vibration-based monitoring of
human activities.

7.1 Animal Monitoring with Cyber-physical Systems

Much work has been done on automated animal monitoring with cyber-physical systems, with
applications including migratory behavior tracking, behavior analysis and activity recognition of
farm animals, animal posture monitoring, and animal estrus detection.

The most common modalities are cameras and wearable sensor systems. Cameras are almost
exclusively used to detect activities in indoor domestic livestock environments such as pigs and
chickens [47-49, 55, 74, 93]. These computer vision methods often have intense processing and
storage requirements, making them difficult to deploy in real-time environments. They function
best in well-lit areas, which could disrupt animals’ circadian rhythms [34]. They also have line-of-
sight restrictions that can hamper their effectiveness when there are a lot of animals or equipment.
Wearable sensors have become the research standard in livestock monitoring for tracking cows,
pigs, sheep, and wild animals [1, 17, 24, 35, 42, 51, 77, 86, 90, 91, 95].

Wearable sensors are susceptible to being chewed on by animals or damaged by social behav-
iors. Oliviero et al. use photocell movement sensors and force sensors installed in pen to measure
movement and are able to predict farrowing onset [64]. So far, no systems have done automatic
detection of nursing.

Previous long-term monitoring tracks environmental conditions, activity level, and reproductive
status of the livestock, which provide insights for increasing productivity and reducing loss due
to disease and mortality [32, 56].
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7.2 Structural Vibration-based Activity Monitoring

Structural vibration-based sensing systems have been used for various indoor activity inferences.
The intuition is that the vibration signal that contains the information of the physical interactions
at the structural surface (e.g., human or animal movements on the floor) propagates far through a
solid medium, which enables non-intrusive sparse sensing [71]. As a result, various applications,
including identification [21, 70, 72], localization [59, 60], activity recognition [12, 20, 58, 67-69, 82],
and physical conditions [5, 11, 22, 27] have been explored in this direction. However, these prior
works mainly focus on indoor human information acquisition, which is often in environments
with less noise and hazards than the pig farm, as demonstrated in this work.

7.3 Deployable and Failure-tolerant Sensor Networks

Previous work on failure tolerance for sensor networks focuses on self-organizing and -recovering
networks [38]. These efforts are important for deployment at scale, though PigSense does not
yet need such efforts. Additionally, since our sensor nodes are wired for power and organized
by farrowing pen, it is unlikely that automatic network reorganization will benefit this specific
application.

Redundancy is a well-known technique for improving sensor system reliability. Past work has
concretely defined this benefit in terms of optimality conditions [40, 80]. For future large-scale
deployments, we could apply these principles to find the minimum number of sensors to achieve a
particular reliability constraint if cost becomes a concern [80]. The simplicity of our sensor nodes
and the uniformity of their design already help to obviate this issue in our current design.

Deployability by nonengineers is a known but often overlooked challenge in sensor networks [3,
29]. The principles that contribute to deployability or installability are the same as those used in
designing personal computer products for non-technical consumers [15]. We apply these same
principles of reduced installation steps and uniform fixtures [15] combined with a tiered network
organization [29] to achieve our deployability goal.

8 FUTURE WORK

For future work, we plan to extend our study in a few directions, including (1) swine lameness
assessment, (2) swine vital monitoring, and (3) cross-modality sensor fusion for swine monitoring.

e Swine Lameness Assessment: The Common Swine Audit identified sow lameness as a sig-
nificant welfare issue in commercial swine production [66]. In existing studies, kinetics and
kinematics have been widely used in horses and cattle [37, 62]. Vibration sensors have been
shown to be effective in detecting gait abnormalities in patients with muscular dystrophy
and measuring human gait balances [23, 26]. Given the research gap, we plan to assess swine
lameness using vibration sensors to achieve early detection and discovery of the disease.

e Swine Vital Monitoring: Swine heart rate and respiration rate are important indicators of
stressful events the sow encounters, as well as the onset of farrowing [54, 81]. During our
deployment in this study, our sensors detect periodic impulses as the sow is lying on the floor,
which has similar rates corresponding to the heart rate and the respiratory rate. We plan to
verify this observation through ground truth measurements of the swine vitals and develop
a system that captures such information for accurate stress and farrowing events prediction.

e Cross-modality Sensor Fusion for Swine Monitoring: In addition to the floor vibration
sensing, other modalities such as computer vision and wearables are also demonstrated as
feasible in swine monitoring [45, 52, 96]. We plan to advance our monitoring system by
exploiting the advantages of different modalities and developing an integrated system that
captures swine behaviors from different perspectives.
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Moreover, we aspire to extend our study to different farm livestock, including cattle, sheep, horses,
and so on, to improve animal welfare and productivity in the intelligent animal farming industry.

9 CONCLUSION

In conclusion, we introduced PigSense, the first system to use structural vibration to monitor ani-
mal behavior and the first system for automated characterization of piglet group activities, includ-
ing nursing, sleeping, and active periods. PigSense is non-intrusive to the animals and requires
much less processing and storage power than non-vibration-based monitoring systems such as
audio- or video-based systems. Our approach relies on the idea that animal activity such as walk-
ing and nursing movements creates unique vibration patterns in the structure of holding pens. Our
challenges when developing PigSense included withstanding a difficult environment for electron-
ics, which often resulted in hardware malfunction and unpredictable noise. We addressed this in
Section 3 with multiple simple, durable sensors that can provide redundant information in case of
failure. We shared our experiences developing this system in a new farming environment where
visitation was severely restricted due to the global pandemic, necessitating a simple and easily
maintainable installation that can be deployed by locals on the ground and monitored from afar.
Another challenge of our system was in distinguishing behaviors that cause very similar vibrations
and may happen concurrently. We addressed this in Sections 4 and 5 by supplementing a general
feature extraction process that can detect a variety of different vibrations with the use of domain
knowledge to precisely detect certain activities.

We provided an extensive evaluation for activity recognition of a comprehensive list of sow
and piglet behaviors in two six-month field deployments at pig farms in Lopburi, Thailand, and
Nebraska, USA. PigSense recognized six categories of sow behavior, with an average classification
accuracy of 90%. For posture and movement classification between lying, sitting, standing, and
transitional periods, PigSense achieves an average classification accuracy of 96% and an average
of 96% and 71% for ingestion and excretion detection. These categories can help assess the risk
of crushing, farrowing sicknesses, and the impact on piglets of the sow’s maternal behaviors. In
addition, we show that our monitoring of signal energy changes in the structural vibration sig-
nal allows for the detection of farrowing onset a day in advance due to the changes in vibration
caused by the sow’s nesting behaviors, as well as timely status tracking during the farrowing pro-
cess. PigSense also recognizes several categories of piglet litter behavior, including three levels of
nursing, sleeping, and active periods, with an average classification accuracy of 87.7%, 89.4%, and
81.9%, respectively, which help farmers monitor piglet feeding, risk of starvation, and signs of pos-
sible illness. Furthermore, PigSense also predicts the daily pattern and weight gain in the lactation
cycle with 89% accuracy, a metric that can be used to monitor the piglets’ growth progress over
the lactation cycle.
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