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A MICRO-MACRO DECOMPOSED REDUCED BASIS METHOD FOR THE
TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

ZHICHAO PENG*, YANLAI CHEN', YINGDA CHENG , AND FENGYAN LI$

Abstract. Kinetic transport equations are notoriously difficult to simulate because of their complex multiscale behaviors and
the need to numerically resolve a high dimensional probability density function. Past literature has focused on building reduced
order models (ROM) by analytical methods. In recent years, there is a surge of interest in developing ROM using data-driven or
computational tools that offer more applicability and flexibility. This paper is a work towards that direction.

Motivated by our previous work of designing ROM for the stationary radiative transfer equation in [34] by leveraging the
low-rank structure of the solution manifold induced by the angular variable, we here further advance the methodology to the
time-dependent model. Particularly, we take the celebrated reduced basis method (RBM) approach and propose a novel micro-
macro decomposed reduced basis method (MMD-RBM). The MMD-RBM is constructed by exploiting, in a greedy fashion, the
low-rank structures of both the micro- and macro-solution manifolds with respect to the angular and temporal variables. Our
reduced order surrogate consists of: reduced bases for reduced order subspaces and a reduced quadrature rule in the angular space.
The proposed MMD-RBM features several structure-preserving components: 1) an equilibrium-respecting strategy to construct
reduced order subspaces which better utilize the structure of the decomposed system, and 2) a recipe for preserving positivity
of the quadrature weights thus to maintain the stability of the underlying reduced solver. The resulting ROM can be used to
achieve a fast online solve for the angular flux in angular directions outside the training set and for arbitrary order moment of
the angular flux.

We perform benchmark test problems in 2D2V, and the numerical tests show that the MMD-RBM can capture the low rank
structure effectively when it exists. A careful study in the computational cost shows that the offline stage of the MMD-RBM is
more efficient than the proper orthogonal decomposition (POD) method, and in the low rank case, it even outperforms a standard
full order solve. Therefore, the proposed MMD-RBM can be seen both as a surrogate builder and a low-rank solver at the same
time. Furthermore, it can be readily incorporated into multi-query scenarios to accelerate problems arising from uncertainty
quantification, control, inverse problems and optimization.

1. Introduction. In this paper, we design a reduced order model (ROM) for a class of kinetic transport equation: the
time-dependent radiative transfer equation (RTE), which provides prototype models for optical tomography [2], radiative transfer
[40], remote sensing [43] and neutron transport [26] etc. The isotropic time-dependent RTE under the diffusive scaling is written
as:

(11) cOuf +v-Vsf = Z((f) = )~ oaf +C.

It features three independent variables, t € Rt,x € Qx,v € Q,, denoting the time, spatial location, and angular direction. For
the full model considered in this paper, , = S? is the unit sphere. The equation models the transport and the interaction of
the particles (e.g. photons) with the background media (e.g. through the scattering and absorption). The unknown f(x,v,t)
is the angular flux (also called the distribution of particles). Leconisionf = os({f) — f) is the scattering operator, where (f) =
ﬁ va f(x,v,t)dw is the scalar flux (also the density) which is the average of f in the angular space. G(x) is an isotropic source

term. In (1.1), os(x) > 0 and o4(x) > 0 are, respectively, the scattering and absorption cross sections. The Knudsen number ¢ is
the non-dimensional mean free path of the particles. The main challenges for numerically solving this equation come from its high
dimensional and multiscale nature. First, the angular flux f depends on the phase variable (x,v) and the time. Therefore, any
standard grid-based method will suffer from the curse of dimensionality. Second, the solution crosses different regimes thanks to
its dependence on the non-dimensionalized mean free path . When ¢ is O(1), the problem is transport dominant. When € — 0
and o5 > 0, equation (1.1) converges to its diffusion limit:

(1.2) Btp — Vx - (051 DVxp) = —oap + G,

where p(x,t) = (f) and D = diag((v2), (vZ),(vZ)). This trans-regime behavior presents itself as both a challenge and an
opportunity.

To leverage the opportunity presented by the inherent structure of the equation in the diffusive regime and address the
challenge especially of high dimensionality, projection based ROMs and tensor decomposition based low rank algorithms have
been designed for the stationary and time-dependent RTE. Projection based ROMs typically have two stages: an Offline stage,
where a problem-specific low rank approximation is built, and an Online stage, where important physical quantities can be

*Department of Mathematics, Michigan State University, East Lansing, MI 48824 U.S.A. Email: pengzhic@msu.edu.

TDepartment of Mathematics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747,
USA. Email: yanlai.chen@umassd.edu. Research is partially supported by National Science Foundation grant DMS-2208277, and
by the UMass Dartmouth Marine and UnderSea Technology (MUST) Research Program made possible via an Office of Naval
Research grant N00014-20-1-2849.

fDepartment of Mathematics, Department of Computational Mathematics, Science and Engineering, Michigan State University,
East Lansing, MI 48824 U.S.A. Email: ycheng@msu.edu. Research is supported by NSF grants DMS-2011838 and AST-2008004.

§Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. Email: 1if@rpi.edu. Re-
search is supported by NSF grant DMS-1913072.

This manuscrint is for review purvoses onluy.



Ol Ot Ot Ot Ot Ot Ut Ot Ot Ot
O 0T R WN =O

(
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84

86

predicted or reconstructed more efficiently. Tensor decomposition based low rank algorithms are offline-free but use less problem
specific low rank approximations. The computational cost of the online stage of ROMs are usually determined by the low rank,
while the computational cost of tensor decomposition based algorithms usually depend on the tensor format and the number of
degrees of freedom in certain directions. One potential research direction lacking investigation is to combine the power of the two
methods by utilizing tensor based low rank algorithms as the full order solver in the offline stage of ROMs. Along the line of low
rank algorithms based on tensor decomposition, dynamical low rank algorithm (DLRA) [39, 14, 38] and the proper generalized
decomposition (PGD) [1, 41, 13] have been designed. Projection based ROMs have also been actively developed in the recent
few years, for example the proper orthogonal decomposition (POD) and its variations [5, 11, 12, 44, 3, 10, 20], the dynamical
mode decomposition (DMD) [29, 30]. Among those work, the POD methods in [5, 45, 20] and our previous work in reduced basis
method (RBM) for the steady state problem [34] make explicit use of the low rank structure of the solution manifold induced by
the angular variable, namely, the ROM built is based on treating the angular variable as the “parameter” of the model. Once
such ROM surrogate is constructed, it can be used to achieve a fast online calculation of the angular flux in an angular direction
outside the training set. We will also show in this paper that a fast calculation of high order moments of the angular flux can
be obtained by using the ROM surrogate. Moreover, the ROM can be further incorporated to multi-query scenarios to accelerate
calculations in inverse problems and uncertainty quantification.

In this paper, we continue our effort in [34] and take the RBM approach [33, 42, 18], which is a projection-based model
order reduction strategy for parametric problems and consists of Offline and Online stages. In the Offline stage, it constructs
a low-dimensional reduced order subspace to approximate the underlying solution manifold of the parametric problem. In the
Online stage, the reduced order solution for unseen parameter values is sought through a (Petrov-)Galerkin projection into the
low-dimensional surrogate subspace constructed offline. RBM utilizes a greedy algorithm for constructing the surrogate subspace
offline. It iteratively augments the reduced order subspace by greedily identifying the snapshot, via an error estimator or an error
/ importance indicator, corresponding to the most under-resolved parameter (were the current reduced space to be adopted) in
the training set until the stopping criteria is satisfied.

While the angular variable is treated as the parameter of the model in our previous work in [34] for the stationary RTE,
here for the time-dependent RTE, we regard both the angular v and temporal ¢ variables as parameters and build a RBM by
leveraging the low-rank structure of the (v, t)-induced solution manifold. As observed in [34] for the stationary case, the solution
of the time-dependent RTE corresponding to different angular directions v are not decoupled, due to the integral operator for
the scattering. This makes our problem very different from the standard parametric problems the vanilla RBM is applied to.
Compared to [34], the present work presents several significant algorithmic advances. Our full order and reduced order models are
based on the micro-macro decomposition of the RTE [27] instead of the original form in (1.1) for directly solving f. To improve
the performance in the diffusive and intermediate regime, we design an equilibrium-respecting strategy to construct reduced order
subspaces which better utilize the structure of the decomposed system. We call the proposed method micro-macro decomposed
reduced basis method (MMD-RBM). Furthermore, sampled angular variables are typically unstructured, and a direct robust
and accurate quadrature rule to compute angular integrals is lacking. This is in particular crucial for time-dependent problems
because it relates to the stability of the ROM. A recipe for constructing such quadrature rules preserving positivity of the weights
is provided.

The rest of the paper is organized as follows. In Section 2, we present the micro-macro decomposition and the associated
full order solver. In Section 3, we present Offline and Online stages of the MMD-RBM and estimate the computational cost. In
Section 4, the performance of the proposed methods is demonstrated through a series of numerical examples. At last, we draw
conclusions in Section 5.

2. Micro-macro decomposed RTE and its discretization. The radiative transfer equation (RTE) in (1.1)
is multiscale in nature. When € = O(1), it is transport dominant. On the other hand when ¢ — 0, the model converges to its
diffusion limit, and this can be illustrated through the micro-macro decomposition [27]. Define II as the orthogonal projection onto
the null space of the collision operator Null(Leonision) in L?(Qy). With the isotropic scattering being considered here, ITf = (f).
We decompose f as f =1IIf + (I —II) f = p(x,t) + eg(x,v,t), with p(x,t) = (f) as the scalar flux (or called density). Equation
(1.1) can then be rewritten as the micro-macro decomposed system:

(2.1a) Otp+ Vx - (vg) = —oap+ G,
(2.1b) 20 g+e(I —)(v-Vxg) + v Vxp = —0sg — £2049.
As ¢ — 0 and with os(x) > 0, (2.1b) becomes the local equilibrium
1
(2.2) g=——v-Vxp.
Os

Substitute (2.2) to (2.1a), we obtain the diffusion limit:
Ap—Vx - (051DVxp) = —oap + G,

where D = diag((v3), (v5), (v2)).

2.1. Fully discretized micro-macro decomposed system. When standard numerical methods are applied
to solve (1.1), the computational cost can be prohibitive when € < 1, as the mesh sizes smaller than ¢ are often needed for both
accuracy and stability [6, 31]. A numerical method for (1.1) is said to be asymptotic preserving (AP) [22] if it preserves the
asymptotic limit as € — 0 at the discrete level, namely, as ¢ — 0 the method becomes a consistent and stable discretization for
the limiting model. AP methods can work uniformly well for the model with a broad range of e, particularly with € < 1 on
under-resolved meshes. This type of methods will be our choice as full order methods. In particular, in this work we adapt the
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IMEX-DG-S method [37] to multiple dimensions. The method is AP, with desirable time step conditions for stability, specifically,
it is unconditionally stable in the diffusive regime (¢ < 1) and conditionally stable with a hyperbolic-type CFL condition in the
transport regime (¢ = O(1)). Alternatively, one can use other AP schemes based on the micro-macro decomposition as the full
order model, such as [25, 21, 35], which can have different stability property in the diffusive regime (¢ < 1).

In this work, we assume all unknowns are independent of the z variable, namely, 9,p = 9. f = 9,9 = 0. With this, we consider
Qx = [z1,TR] X [yL,yr] in two space dimensions (with d = 2) and Q, = S? as the angular space. The methodology developed
here can be extended to Q2x in three dimensions straightforwardly. Next, we will present our full order method, starting from the
time discretization.

Time discretization: To achieve unconditional stability in the diffusion dominant regime as well as the AP property, the time
discretization is defined as follows. Given the solutions p™ and g” at t™ = nAt, we seek p”T1 and g”*! such that

— n+1y _ n+1 n+1
9 pn+1 pn n i
(2.3a) T+Vx'<’l’9 ) = —0ap +G",
2 gt —g" n ntl _ n+1 2 n+1
(2.3b) eft—— 4 e(I—I)(v-Vxg")+v-Vxp = —0sg —e%oqg" .

At

As € — 0 and with o5 > 0, (2.3b) becomes

1
(2.4) gt = — - Vi pntl.
Ts

Substituting (2.4) into (2.3a), we obtain the limit of scheme (2.3) as € — 0,

pn+1 _ pn

N _ Vx ) (as—lexp'rH-l) — 7o,apn+1 + Gn+1.

This is nothing but the backward Euler method for the diffusion limit in (1.2). Hence, this time discretization is AP.

Angular discretization: In the angular space, we apply the discrete ordinates (Sx) method [40]. Let {,Uj};_\f:vl be a set of
quadrature points in €2, and {(A)j};-vzvl be the corresponding quadrature weights, satisfying Zj\;“l wj = 1. The semi-discrete

No  with

system (2.3) is further discretized in the angular variable, following a collocation approach, by being evaluated at {v; }j:v

the integral operator (-) approximated by its discrete analogue:

Ny

(2.5) (fy = (f)n =D wif(v5,°).
j=1

We require the quadrature rule to satisfy

1, &=n
0, {#n

)

1
(26) <U§v7]>h = <v§v7]> = 5657]7 5»7] S {x»yzz}: 6&7} = {

so the coefficient matrix D = diag((v2), (v2), (v2)) will be exact, and the correct diffusion limit will be obtained for the full order

model without cross-derivative terms (see Section 2.2). Particularly, with Q, = S2, we use the Lebedev quadrature rule [24] in
our fully-discrete method unless otherwise specified.

Spatial discretization: In the physical space, we apply a discontinuous Galerkin (DG) discretization. Letting
Z:{I - , , ,1<k<N,1<l<N}
h kl [$k7% xk+%} X [y17% yl+%} SRS Ng SIS Ny
be a partition of the physical domain 2x, we define the discrete space as
Ui () = {u(x) : w(x)|z, € Q% (Twi), 1 <k < Noy 1 SIS Ny},

whe:rte QK (Zyy) is the bi-variate polynoinial space with the degree in each direction at most K on the element Zy;. We also write
¢(wg,y) =lim,_ & ¢(z,y) and ¢(z,55) =lim_, + ¢(2,y).
Let the numerical solution at t™ be p(-) = p(-,t™) and ggj(~) ~g(,v;,t"),¥j=1,...,Ny,. With a DG discretization applied

in space, we reach our fully-discrete scheme: given pf € UK, {g;f’j}N“ C UK, we seek pZ+1 c UK, {gztl};vz“l C UK, satisfying

Jj=1
3
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the following equations Vk =1,...,Ng,l=1,..., Ny,

n+1 Ny

Pn ~Ph / n+l, n+l ntl. ntl
rdx + E w. (v, H +’D Vs, ; ) ndx
/Ikl N @ Y T v.29h,~ 3 Ph ) ( ¥ ¥9h,~ 5 Ph ))®

(2.7a) = | (—oupp T + G ) pdx, Vi € UL,
Ly
n+1

9h 5 —9n; _ _
52/ M¢hdx+/ (vj,2Dy +vjyDy ) pp T Ypdx
Ty At Ty

Ny

+ e (85 — wy)
; 3y W/

[ (PP 08,) + Dy (001, ) e
kl

(2.7b) = —/ (05 +e%0a)gp t ndx, Vo €U, Vi=1,...Ny.
Lyt

Here §;- is the Kronecker delta, D (-), Dy (-), DE(;;+), DY (), Da (-, ), DyP (-, ) € UK are all discrete (partial) derivatives, and
they can be expressed in terms of D¥ (), D_ff( -) € UK that are defined as follows

+
DEnindx == [ ondatndx + /y Fonlat, e,y )

Tki 1
2
Y1
(2.89) - [ o wnte_y wdy, ven € UE,
vi_1 2 2
+ zk+% + —
Dy ¢npndx = — PnOyrdx + Pn(@,y; 1 )¥n(@, Yy, 1 )de
Tt Lt T 1 2 2
2
Tl
(2.8b) = [ et untey de Ven € UK.
z, 1 2 3
k=5

With v - Vxg™ in (2.3b) discretized following an upwind mechanism, we set

. —, vz >0
DEP(vg, = v, D} , th x = ’ -7
2t (Vs dn) = v Dy (dn) w1 {_"_7 ve <0,
. -, Uy 2 0
DyP (vy, ¢n) = vy Dy (dn), with x = {"r, oy < Oj
Moreover, we take
(2.9) DY (v+,69h,v: 1) = Vs, gDE Ghy + OthJu Ppp, with € =a,y.
Here, DJ;‘“‘P(.) € UK, given locally on the element Ty; by
DiP (o i = [ 2 (pnlar yv) — pnle,, ) ) enlep, , )d
,, x Ph)¥h = _— Ph k+%,y Ph k+%7y h k+;,y Y
2
yH_% _ K
ph(xk 17y) Ph(l' 1 7y) 7/) ( Ek—1> )dy7 th € Uh )
Y1 2
and equivalently, )
DI (py) = Dy (o) — DF (pn)-
Similarly
(2.10) D™ (pp,) = Dy, (pr) — Dyf (pn)-

The jump operators are added in (2.9) to maintain accuracy in the case of the Dirichlet boundary conditions [7]. As shown in [7],
the constants az, ay in (2.9) need to be O(1) and positive. In this paper, we consider the vacuum boundary condition. In all the
discrete derivatives, when the data from the outside of the domain is needed for the solution, we directly set it as 0.

From here on, we refer to the fully-discrete method (2.7) along with (2.8)-(2.10) as the full order model denoted as FOM.
Given that our plan is to treat the angular variable v as a parameter to formulate reduced order models, when we want to
emphasize the set of the angular values V (and its “associated” quadrature weights in (2.5)) used to define (2.7), we also write it

as FOM(V). As an example, we have V = {v; }N” for (2.7).
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2.2. Matrix-vector form and Schur complement. Though (vg) is treated implicitly in (2.7a), we only need
to invert a discrete heat operator for p with the help of the Schur complement, and this will be demonstrated next via the
matrix-vector form of the scheme. Let {¢ (x)}l]\i"1 be a basis of the DG space U, then p! and gj, ; can be expanded as

Ny _ Nx : _ —
pr(x) =222 prer(x) and 9h i (x)=>,2% 95 i€ (x). Defining p™ = (p}, ..., p}“”\,x)T and g} = (97, ,g}{,x’j)T, we are ready to
rewrite (2.7) into its matrix-vector formulation:

T T
(2.11a) A (p"“,g;l“,gg“, . .ggjl) - (bg,bgl,bg2, . .,ngv) ,
M + At + AtDIVP Atw; (01, DF +v1,4Dy) ... Atwy, (N, D5 +on, 4 Dy)
At(szD; + ’ULyD;) O .. 0
(2.11b) A= ) . . . ;
At(vn, « Dz +vn, .y Dy) 0 S
(2.11¢) bl = Mp™ + AtG™H,
Ny
(2.114d) by =e*Mgj — Aty (555 —wy) (D5, +Dy% gy, j=1,...,N
y=1

Here M is the mass matrix, X5 (resp. X4) is the scattering (resp. absorption) matrix, DI"™P is the jump matrix, Dg:, Dg‘:} ¢
U,

(§=u=z,y,7v=1,...,Ny) are discrete derivatives matrices, all being of the size Nx X Nx (Nx is the number of degrees of freedom
resulting from the spatial discretization), with their (kl)-th entry given as:

Mklz/ eerdx, (Es)kl:/ osejerdx, (Ea)kl:/ oaelerdx,

x x x

(Dt = /Q Df ejepdx, (Deh, k= /Q D (vy,¢, e)endx, (with € = z,y),

DI = o, (D — DY) + oy (Dy — D).

In addition, G™t1 is the source vector, with its k-th entry an: Gtlepdx, and © = e2(M + AtE,) + AtE;. Using the standard
choices of the basis of U}If (e.g. with the support of each basis function being one mesh element), the matrices M, ¥, ¥, and
© are block-diagonal. When the boundary conditions are periodic or vacuum in space, one can easily show Dg = —(Dg)T with
& = z,y (see [37] for details).

To avoid inverting the big matrix A directly, we apply the Schur complement. Noticing that

(2.12) gitt=e"! (bgj — At(vj Dy + vj,yD;)p"H) . VYj=1,...,Nu,
we eliminate g;Jrl terms in the equation determined by the first line of .4 and obtain
+1 _ 1
(2.13) Hp" T = Dby,
where

H =M+ AtSq + AtDM™P — A2 " w;(vj.o DF +v;,4 Dy )0 (v, Dy + vy D)
j
=M + At + AtDI"™P — At ((v2), DF O Dy + (v2)n D © 7' D).

The second line above is a direct result of (vgvy ), = (vzvy) = 0in (2.6). With (2.13), we only need to invert a linear system (2.13)
of a much smaller size for p. Moreover, H is a discrete heat operator, and it is symmetric positive definite due to D; = f(DE)T

with £ = z,y, and hence can be efficiently inverted, e.g. by the conjugate gradient (CG) method with algebraic multigrid (AMG)
preconditioners. Once p™*t! is available, g;.H'l can be obtained from (2.12), and this can be carried out in a parallel fashion, given

that © is block-diagonal and the equations (2.12) in j are decoupled.
2.3. Stability. When U,i{ with K = 0 is used (as numerically tested in Section 4), our FOM method is first order

accurate, and its stability can be established by following similar techniques in [37], and this result will play an important role in
the design of the ROM. The key to prove the stability in [37] is to introduce the following discrete energy:

Ny Ny
(2.14) By = |lopll? +€2 3 willgn ;112 + At Y S w; / as(gr ;)% dx,
j=1 Jj=1 s
where || - || is the standard L? norm in L?(Q;). With o5 > 0, the term E}' is non-negative and gives a well-defined energy. Using

similar techniques in [36, 37], we can extend the Theorem 5.4 in [37] from 1D to 2D. We next state this result, presented in the
context of the current work.
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224 Theorem 2.1. (Stability condition)! Suppose wj > 0,V1 < j < Ny, and 05 > om > 0. Let h = min(mini<;<n, (=

i+l T
225 :ci_%), minj<;<n, (yH_% — yi_%)), we have that
226 (1) when =5 < gt B3 < ER VAL > 0;
m <GSNy 1Pjloo
(2) when ﬁ > Tmaxi<)<n, ;1o E;LH-I < E}' under the time step condition
eh
At < .
4 Inaxlgjg]\]v |’Uj ‘oo - O'mh/E
227 The theorem implies that the scheme is unconditionally stable in the diffusive regime (i.e. when ¢/(omh) is small enough),

228  and the stability condition in the transport regime (i.e. ¢ = O(1)) is on the same level as the standard CFL condition At = O(eh).

229 3. The micro-macro decomposed reduced basis method. Our proposed MMD-RBM algorithm consists
230  of an Offline stage, which constructs the low dimensional subspaces and a reduced quadrature rule, and an Online stage which
231 features a surrogate solver capable of efficiently computing moments of f and predicting the angular flux f corresponding to
232 angular directions unseen during the Offline stage. In this section, we outline the entire algorithm in Section 3.1. In particular,
233  we provide a high-level sketch in Figure 1 to assist reading. We then discuss each step of the Online and Offline stages in Sections
234 3.2 and 3.3, respectively. A computational complexity analysis is provided in Section 3.4 relating the cost of MMD-RBM with
235  those of vanilla POD and brute force FOM.

236 3.1. Outline of the MMD-RBM algorithm. The flowchart of the entire algorithm is summarized in Figure 1.
237  Other than the clear distinction of Offline and Online stages, another feature of this algorithm is that

238 ROM(; -, ),

239  representing our reduced order (thus online) solver, appears offline too, albeit with a pair of dynamically expanding surrogate
240  spaces as the second and third input. Being a critical step in the greedy algorithm, this solver helps to recursively build the
241  reduced parameter sets and augment the surrogate spaces in a greedy fashion. For this reason, before we dive into the detailed
242 description of the Offline stage in Section 3.3, we first introduce in Section 3.2 this reduced formulation which corresponds to the
243 full-order scheme (2.7).

244 Specifically, in Section 3.2, we introduce our projection-based reduced formulation ROM(V; Uﬁ!T,Ug’T). Here Uﬁ,r is the
245 reduced order space for p, Ugm is the reduced order space for g, and V is the angular set used in the angular discretization. We
246  assume that there are quadrature weights {wy }+cy associated with V, and the discrete analogue (-)j,y for the integral operator (-).
247  In the online surrogate solver, we solve ROM(V,q; U,’z,r, Uﬁyr) with the terminal Uﬁ’T and Ug,ﬁ and in the greedy sampling offline,
248 we solve ROM (Viyain; Uﬁ,w Ug’r) with the current (and to-be-updated) Uﬁ’r and Ufz‘r, Here, Viq is the (usually unstructured)
249  set of angular values identified by the Offline algorithm while Viyain denotes the (usually structured) training set of the angular
250  directions specified at the beginning of the Offline algorithm.

251 In the Online stage (the pink block of the flowchart, to be described in Section 3.2), our ROM can be utilized to predict f
252  at angular directions outside the training set as well as some moments of f with significantly fewer degrees of freedom. In the
253  Offline stage (the blue block of the flowchart, to be described in Section 3.3), after initializing the quadrature nodes of the reduced
254 quadrature rule Viq and the set of sampled parameters Tr’f) and TVfb, we use a greedy algorithm to iteratively construct the
255  subspace U}’Z’T and U}g,'r‘ The main steps are

256 e described in Section 3.3.1, solving ROM(Virain; U;:,r’ US!T) to identify the most under-resolved angular and temporal

257 samples, {5 for p and (t;‘ew, v;ew) pair for g, based on an importance indicator. Updating the set of sampled parameters

258 Th with t5°% and TVY,, in a symmetry-enhancing fashion, with (£5°%, £vpeV).

259 e described in Section 3.3.2, updating the corresponding reduced quadrature rule <~>h7\;rq preserving weight positivity via

260 a novel least squares strategy.

261 e described in Section 3.3.3, updating the RB spaces (U,‘;T7 U;I”T).

262 3.2. Reduced MMD formulation and online functionalities. Reduced MMD formulation ROM(V; Uy ., U} ).|j

263 We present the reduced MMD formulation in its matrix-vector form. Toward this end, we assume that B, € RNxX"» and

264 Bg € RNxX7g contain the orthonormal basis of U;Z , and Ug -» respectively, as their columns, and look for the reduced solution

265  pr = Bpcy, for p, and gv,r = Bgcg, for g at v € V. More specifically: given cy € R™ and cg, € R"9 Vv € V, we seek CZ+1 € R"

L This theorem can be established by following the proofs of Theorem 5.3 and Theorem 5.4 in [37] for the one spatial dimension
case. The only difference is that, due to the extra dimension in space, there will be two extra terms similar to equations (5.7)
and (5.8) of [37] in an equality similar to equation (5.5) of [36].

6
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[Input: temporal mesh Tt ain and angular training set Virain ]

l Offline stage

[ Output: Vi, ()r,viq
[ and Uy, Ug,

Greedy procedure

Online|stage

Solve ROM(V,q; Uf ., U )
to compute moments

Fig. 1: The flowchart of the proposed MMD-RBM algorithm.

and c"'*'1 € R"9 Vv € V, satisfying

'n.+1

c’ﬂ
BTMB,,T” + > weB(vaDF +vyDJ) Byt
v=(vg,vy)EV
(3.1a) + BID"™PB,cnt! = —BI'%,B,cpt! + BTG,
n+1 n
B BTMBQ% +e > (Sou—wp)By (D, + Dyh, )Bgey,
p=(pa pmy)EV
(3.1b) + BJ (vzDy +vyDy )Byeptt = =BT (S5 + e?X4) Byt

Similar to the FOM, the Schur complement can again be applied when solving the linear system (3.1), and the resulting r, x r,
problem is in the form: Hfc "+1 = RHS? ,. Here

HE =BT (M + AtSa + AtD"™P)B,,
(3‘2) - At2(< >h VDr P9, x(e'ﬁg)_lD;pg,x + (U§>h,VD7tpg,y(®ng)_1DT_,pg,y)7

where D:—,pg,g = B;;FDS'BQ and Dr_,pg,g = BgDEBP with £ = 2,y and ©, 4 = BE(EQM + At¥s + EQAtEa)Bg7 therefore HY is
symmetric positive definite, just like its FOM counterpart.

Online functionalities. This reduced MMD formulation is iteratively called in the Offline training stage, as to be seen in Section

3.3. At each iteration, the spaces U, ,’: and Uh - are augmented and the reduced quadrature rule () Vrq 18 updated. At the end

of this process with the terminal surrogate spaces U - and Ug »» ROM(Viqg; Uﬁ o h T) can be utilized as a surrogate solver for
two purposes. First, we can reconstruct the scalar ﬂux p and hlgh order moments of f; and second, we can predict solutions f
for v unseen in the oﬂhne process. We next detail these two functionalities.

To reconstruct p and compute the high order moments, we solve ROM(V;q; U{Z’r, Ufl”r) to compute ¢j and cy. The scalar

7
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flux, the first and the second order moments are approximated as:

(3.3a) p" = Bpcy,

(3.3b) (fTve) = ((p™ +eg™ve) = e{g™ve) = eBg(vecy, Jn vy § =724, 2,
(fMvgvn) = ((p"™ + eg™)vevn) = (vevy)p™ + (g vevn)

(3.3¢c) = (vgvy) Bpcy, + By <v§vncgv)hﬁvrq, &En=ux,y, 2.

Moreover, higher order moments can be computed similarly by integrating, using the reduced quadrature rule <~>h7\;m, the
corresponding quantities involving the reduced order solutions. We note that the advantages to reconstruct p and high order
moments with ROM(V,q; U}‘Z U g ) include computation efficiency, resulting from the adoption of the reduced quadrature rule,
and memory saving?.

When predicting f for an unseen angular direction v"", we solve

,r?

n+1
Cgun — Cg.

Gpun T | .
At +e (Bg (D;i;n + DSZED)BQCZ;}“ _ C'?vugv:;; )
Y + By (0D + vyt Dy )Boeptt = —BJ(Ss +&8a) Byey

gpun?
. n,upwind __ T up up n
with Clovgg) — (Bg (Dl + Dy,uy)Bgcgﬂherq'

e?BI MB,

n,upwind

(0 Vg €A1 be obtained through pre- or on-the-fly computations by solving ROM(V,q; U{;

is approximated by fjun & Bpcpy +¢eBgey ., -

In equation (3.4), cp™ and ¢ U ).
un

The angular flux f for v

Algorithm 3.1 Offline algorithm

1: Input: the training parameter sets Tirain and Virain

2: Step 1 (initialization): Initialize sampled parameter sets 77 = 0 and TVY, = 0, the reduced quadrature
nodes set Viq, and the reduced spaces U} and U .

3: Step 2 (greedy iteration):

4: for i = 1 : max number of iterations do

5. if the stopping criteria are satisfied then

6: Stop.

7. else

8: (i) solve the reduced order problem ROM (Vi ain; U[;T, Uir);
(ii) compute the values of the L! importance indicators for p and g, and greedily pick the
most under-resolved time " for p and the most under-resolved (t‘g‘ew, vgew) pair for g;
(iii) update the parameter sets 7} and TVY with symmetry-enhancing strategy;
(iv) update the reduced quadrature set V.4 and the corresponding quadrature rule () v, ;
(v) perform the full order solve with the reduced quadrature rule FOM(V,,) and update the
reduced spaces Uy . and U}/ ., and the corresponding basis matrices.

9: end if

10: end for

11: Output: a reduced order solver, determined by V.4, <->h’yrq, and U/, U .

3.3. Offline algorithm. Summarized in Algorithm 3.1, the Offline algorithm starts with the training sets for ¢ and v,
given as

ﬂrain:{tnyognSNtL Vtrain:{vj 1§J§Nv}7

with some prescribed cardinalities Nt and N,. In preparing for the greedy iteration, we initialize the sampled parameter sets,
'7;’; C Tirain and TVfb C Ttrain ® Virain, as empty. We use a low order Lebdev quadrature rule (i.e. nodes and weights) to

2For the FOM, the memory to save the time history of p and the high order moments is of O(NxN:). In the reduced order
reconstruction, O(Nxr,) and O(Nxrg) are needed to save B, and By, while O(Nyr,) and O(Nyry) are assigned for the time
history of ¢ and moments of cg, (e.g. (vIch>h,qu). The total memory needed by the reduced order model to reconstruct
the time history of p is of O(r,(Nx + Nt)), and that for the k*" order moments following (3.3) is of O(ry(Nx + N¢)) (k odd)
and O((rp + 7¢)(Nx + N¢)) (k even) respectively. These are all significantly smaller than their FOM counterparts assuming
rp,7g K Nx or Nt.
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initialize the set of reduced quadrature nodes V:q and the associated quadrature rule <'>h,vrq~ Given Vrq, we call the full order
solver FOM(Vyq) with the integral replaced by (-)5,1,,, and obtain the numerical solution {p", g3, : 1 <n < N¢, Vv € Vrq} which
allows us to initiate the reduced spaces and the corresponding snapshot matrices

U{;’T = span{p™t}, Ug,r = span{gl’t, v € Viq},

Sp = [pNt] € RVxx1, Sy = [gi\/t}vevrq e RVxX[Vral

The initial basis matrix B, is obtained by orthonormalizing the columns of S, for n = p,g. We are now ready for details of the
greedy iteration, with its main components presented below according to the order summarized at the end of Section 3.1.

3.3.1. L1 importance indicator and symmetry-enhancing parameter selection. At every greedy
step, the most under-resolved parameter values for p and g (were the current reduced spaces to be adopted) will be determined by
the L! importance indicator [9, 8]. Indeed, given the reduced order space U ;Z , (n = p, g), its snapshot and orthonormal matrices
Sy and By, together with the sampled parameter set 77 C Tirain and TVY C Tirain ® Virain, we invoke ROM(Virain; US, ., U3 )
to obtain the reduced order solution {(py, gy ) : Vn=1,... Nt,Vv € Virain}. They are expanded under the two basis systems as

(3.5) {(p? = Boc) = Spéy, gy = Bgcy, = Sgéy ) :Vn=1,... N, Vo € Virain} -
The L' importance indicator is defined as:
Ay =gl Ag, = lleg, Il
Here || - ||1 represents the £!-norm. As shown in [8], cpy (resp. ¢, ) represents a Lagrange interpolation basis in the parameter

induced solution space {p; : 1 < n < N¢} (resp. {gy, : 1 < n < Nt,v € Virain}), implying that the indicator A} (resp.
Agv) represents the corresponding Lebesgue constant. The following strategy to select the parameter sample then amounts to
controlling the growth of the Lebesgue constants and hence is key toward accurate interpolation.

new __ n
L = argmaXin ey, . \7# A7,

new new — n
(tg°", vg™) = argmaxin )€ 7;, 00 @Virain \ VY, Do

Once these greedy picks are determined, the parameter sample sets will be updated
T A UTh TV e {0 o), @ —op) U TV,

Similar to the steady state problem [34], a symmetry enhancing strategy is applied when updating TVfb by adding both vg®¥
and its opposite angular direction —v%°V. This strategy improves the robustness and accuracy of the reduced quadrature rule,
especially in the early stage of the greedy algorithm.

Remark 3.1. The main advantage of the L' importance indicator is that it is residual free and can be computed fast (also see
(3.11)). One can alternatively use the residual as an error estimator. However, the RTE is a multiscale transport system and
the residual of its numerical method is not a sharp error estimator. Sharper error estimators can be constructed for transport
problems by solving the adjoint problems [19], and this requires extra cost and will not be pursued in this paper.

3.3.2. Reduced quadrature rule construction. When v2°V ¢ Viq, we update the set of the reduced quadrature
nodes as

Vig = {029, —02"} U Vig.

Though with some symmetry built-in at each step, the angular samples in V;q that are greedily picked offline are in general un-
structured. A stable and accurate numerical quadrature rule associated with these samples, although important to the robustness
and accuracy of the proposed reduced order solver, may not naturally exist. To fill this void, we design a least squares strategy
to construct a reduced quadrature rule, similar to that for mesh-free numerical methods [16] and further propose an algorithm
capable of preserving weight positivity.

Theorem 3.2. Given an integrable function f(v) : S2 — R and a positive integer M, let Y1 be the real-valued spherical
harmonic function of degree m and order | with 0 < m < M and —m < 1 < m. On a (possibly unstructured) grid Vrq with

cardinality N, and nodes having spherical coordinates {(0, ¢>k)}f€v:5ql, the following reduced quadrature rule
N
v ) 1 i
(3.7) (Fryy = k;lwkf(v(ekaﬁﬁk))v with wi, = EHM

has a degree of exactness M. Here 1 is a matriz of size Ny x (M + 1)2 with Lij = Yiu(0i,0:) and j = m2+1l4+m+1. It is
assumed (M +1)2 < N9,

Proof: We note that S = {v = v(0,¢) = (sin(8) cos(¢), sin(8) sin(¢4), cos(#)),0 € [0,7],¢ € [0,27]} and the real-valued
spherical harmonics form an orthogonal basis of L?(S?). We define the following ansatz of order M,

m

M
(38) fﬁ(v(97¢)) = Z Z ﬁm,lYm,l(07¢)z

m=01l=—m

9
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and seek a particular such function with coefficient being the solution to the least squares problem:
Ny?

Bus = argmin 3 | 5(v(61, ¢1)) = (001, 60))[* = argmin [18 - 1]
i=1

where I € RNyIX(M+1)? 4 F € RV satisfy Lij = You(0s,¢:), with j = m2 +1+m+1, and fi = f(v(6;,¢;)). One can
easily see that Br.g = I f, where I is the pseudo inverse of I. The integral (f) is now approximated by the reduced quadrature
rule <f>h,vrq which is nothing but the exact integration of the least squares approximation

s 27 T 2w
P =32 | [ Sous@o.0)sin@)aods = 2 ([* [ 815 00¥0.0(0. 0)sin(o)doe
Py / / B8 m1Yin 1 (0, ¢)sin(0)d0do)
m=1ll=—m
qu
- v(0 .
F/J’Lsoo Z (v(Ok, b))

From the construction above, one can see that the reduced quadrature rule is exact for polynomials (in v) up to degree M, hence
of accuracy order M. O

We emphasize that, just like any numerical integration of interpolatory type, the weights are independent of the integrand
f. In this work, we always assume M > 3. As a result, <’U§> with & = z,y, z are computed exactly and they will appear in the
diffusion limit. Additionally (vzvy) = (vev.) = (vyv:) = 0 is also exactly computed, and this will ensure the absence of the
cross-derivatives of second order in the reduced order problems (3.2), as illustrated in (2.13). We also note that the proposed
algorithm can be easily generalized to the 1D slab geometry Q, = [—1, 1] and the unit circle Q, = S! by replacing the spherical
harmonic expansion in (3.8) with expansions of Legendre polynomials and trigonometric functions, respectively.

While the construction of the reduced quadrature has spectral accuracy, it does not guarantee the associated quadrature
weights to be non-negative. It is observed numerically that the reduced and full order solvers could blow up when some of
quadrature weights are negative. The root of this instability is that the discrete energy &7 defined in (2.14) can be negative in
the presence of negative quadrature weights. To preserve stability, we propose a strategy, described in Algorithm 3.2, to generate
the reduced quadrature rule with non-negative weights. The basic idea is to decrease the order M, when negative weights are
present, until either all the weights are non-negative for the first time or M reaches a prescribed minimal value My, > 3. If
taking M = My,in still results in negative weights, we simply use the same quadrature rule as the previous greedy iteration and
set the weights associated with the newly added angular samples to be 0. Recall that the initial quadrature rule is chosen as a low
order Lebedev quadrature rule with positive quadrature weights. Therefore, the proposed strategy always results in non-negative
reduced quadrature weights during the greedy iterations.

Algorithm 3.2 Iterative procedure to construct reduced quadrature rule with non-negative weights.

1: Input: Current sampled angular points Viq = {wg;, };V:: and the sampled angular points for the previous
rq,old

iteration Vfolld. Let the reduced quadrature rule for Vroolld be {v,‘id, wgld};v:”? with wz?ld >0, Vj, the order
Mrnin and Mrﬂax- .

2: Initialize the bool variable Failure = true.
3: for M = Myax : —1: My, do
4: Use equation (3.7) to construct an order M reduced quadrature rule ()5,
5. if All the quadrature weights are non-negative, then
6: set Failure = false, and break.
7. end if
8: end for
9: if Failure then
10:  set the quadrature weight W} for vy; € Viq as
new 0, if g, &V,
Yit T wold v e pold
J o kj rq
11: end if

12: Output: the quadrature rule {vkj,w;‘ew};y:’r’i for V. with non-negative weights.

10
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3.3.3. Update of the reduced order spaces. Given the sampled parameter set {74, 7V }, reduced quadrature
nodes V;q containing the v—components of TVfb, and the associated quadrature rule <‘>h7vrq7 we augment the reduced order
space U}?,r (n = p, g) and its corresponding matrices Sy, and B;,. Indeed, we perform FOM(V;q) which is affordable thanks to the
small size of Vrq to obtain the solution snapshots p”,gy,Vn =1,..., N¢,Vv € Viq. We are then ready for the updates.

Update U/ and B,. This will be done in a straightforward manner, namely Uf = span{p™ : t™ € T} }. Correspondingly,
the snapshot matrix S, is assembled. We then orthonormalize S, through the (reduced) singular value decomposition (SVD):

(3.9) Sp — BPAPVpT c RNXXTP7

where B, € RNx*"r, V, € R"»X"r, satisfying BT B, = VPTVP =I;,, and A, € R"»*"» is a diagonal matrix. The columns of B,
form an orthonormal basis of Uﬁ - As one will see, the singular values in A, can be further utilized in the stopping criteria.

Update Uﬁ , and By via an equilibrium respecting strategy. The update of the reduced order space for g is more subtle.
Particularly, we set

Ug,r = span {{At®@~' D7 p™ AtO~' D p™ : t™ € TEYU gy : (t™,v) € TV }}.

That is, the reduced order space for g includes not only the sampled g-snapshots but also the scaled discrete derivatives of the
sampled p-snapshots. Correspondingly, the snapshot matrix S, is assembled which is further orthonormalized through its own
SVD

(3.10) Sy = BgAngT € RNVxx7g
where By € RNxX"g V, € R"9X79  satisfying BgTBg = VgTVg = Ir,. The columns of By form an orthogonal basis of Ug -
Fast computation of L! error indicator. Using the SVD in (3.9) and (3.10), one can show that ¢p and ¢y in (3.5) satisfy

~n _ -1 .n ~n  __ —-1.n
Cp =Vohp cp, €, =Vohg cq,,

and as a result Ag and Aj can be computed efficiently as
(3.11) Ap = ||VpA;107pl||1 and Ay = \|VgA;102u||1-

Remark 3.3. The equilibrium respecting strategy is designed to improve the performance of our method especially in the diffusive
regime. To see the motivation, note that as € — 0 and with os > 0, we have

gy = =37 (vaDy +vy Dy )p™.

That is, in the diffusion limit, g™ is a linear combination of the scaled derivatives of p™. In general, € is small in the diffusive
regime yet nonzero, and one would want to consider the relation in (2.12) instead. Hence AtO~ Dy p™ and At@_lD;pm are
included to enrich the reduced order space for g. Another benefit of such enrichment over including Es_lD; p" and Es_lDy_ p
is to be able to handle the case when os is zero in some subregion(s) and the associated X is singular. It is easy to see that
lime 0 © = AtXs.

Remark 3.4. In this paper we always add scaled p derivative terms to the subspace for g. To improve the efficiency one can
add scaled derivative terms only at (xz,t) where the solution is close to the local equilibrium. One potential strategy is to utilize
indicators measuring the distance between the solution and the local equilibrium. Such indicators have been designed in hybrid
solvers adapting between kinetic and fluid/diffusion solvers [15, 23]. We first identify (z,t) corresponding to solutions which
are close enough to the local equilibrium and only add scaled derivative terms at those points. Another approach is to apply the
reduced basis element method [28] which divides the computational domain to small subdomains and build basis functions for
each subdomain. We only add derivative terms for subdomains where scattering effect is strong. These approaches to adaptively
adding p derivatives are left for future investigation.

Remark 3.5. We orthornormalize S, and Sg with SVD, and one can alternatively orthornormalize them with the QR decompo-
sition. The SVD decomposition provides singular values which can be utilized in the stopping criteria and furnishes a mechanism
for efficiently computing the error indicators.

Remark 3.6. We note that the dimension of Uﬁm resulting from the first greedy iteration will be smaller than its initial
dimension. After the first greedy iteration, Uﬁ,r is determined by the sampled parameter set ’TT‘; and TVfb, while the initial Uﬁ,r

is mot and its initial dimension is |Vrg|. In the first greedy iteration, max{|T}|,|TVY |} < [Vrgl, and this leads to the reduction
of dimension of U, ;17 . compared with its initialization.

3.3.4. Stopping criteria. The L' importance indicator identifies the most under-resolved parameter sample(s), but
it does not inform us the magnitude of the error. To effectively stop the Offline greedy algorithm, we design the following two-fold
stopping criteria. The first criterion, based on the spectral ratio, measures how much new information is added in each greedy
iteration. The second criterion, an approximate relative error at the final time, can be computed efficiently. The Offline greedy
algorithm stops when both criteria are satisfied.

11
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1. Spectral ratio stopping criterion: Similar to [34], we use the spectral ratio as one stopping criterion measuring how
much new information is gained by expanding the reduced subspaces. Suppose we are in the m-th greedy iteration, with
all notation now having a superscript m. Let A]* and A7* be the diagonal matrix from the SVD in (3.9) and (3.10),

with the last diagonal entry as af;n and O'Tm , respectively. We define two spectral ratios:

af:n Uf;n
ratlo ratlo
Tr(Am) Tr(Am)’

and check whether max{ratio??, ratiogn} < tolyatio is satisfied.
The spectral ratio criterion itself does not directly estimate the error in the reduced order approximations. For that, we
propose the second criterion.

2. Approximate relative error at the final time with a coarse mesh in ,: Recall that in each greedy iteration,
we have two sets of approximations for p and g(-,v,:) Yv € Viq. One set, denoted as ph,T,ghm,T Yv € Virain, is
obtained by calling the reduced order solve ROM (Viyain; U ,‘L”T, U ﬁm) in the greedy sampling. The other set, denoted as

n,FOM n,FOM
PhVeq 790w, Vg
with a reduced quadrature rule associated with V;q. Based on these approximations, we define the following to measure

Vv € Viq, is obtained when updating the reduced order spaces by calling the full order solve FOM(Vyq),

the relative errors at the final time tVt:

ot — pp oMl
(3.12a) Estimator, = TOI\;[Q

th»qu I
N¢,FOM N¢,FOM
HP +59h pht\} _€ght’v I

(3.12b) Estimatory = max sz }:OM qut FOM e

VEVrqMVirain ] h,\}rq +e 9, Y Vi ]

and check whether Estimator, < tolerror,p, and Estimatory < tolerror,f are satisfied.

The reason why we still need the spectral ratio criterion is that Viq is a coarse mesh in €2, and in the early stage of the greedy
algorithm, the full order solution associated with this mesh may not be accurate enough to approximate the full order solution
corresponding to the training set which has high resolution in €,. We also want to point out that this error approximation
strategy can not be used in the greedy sampling step, as we need an error indicator for all the v € Viyain while the full order
solution is only available for v € Vrq which have already been sampled.

3.4. Computational cost. Now, we summarize the computational cost of the Online and Offline stages. We will
start with the computational cost of the reduced order problem ROM(V; Uﬁ,w Ug’r), which will be used both online and offline.
This cost consists of two parts. Firstly, before time marching begins, one needs to assemble the reduced order discrete operators
such as BZ“MB,,7 Driypgyz etc, and the leading order of the cost is O(max{r,,r4}?Nx). Additionally, one needs to invert 6, 4 and
‘H?. With Cholesky factorization, the associated cost will be O(rg) and O(r 3) respectively. Secondly, in each time step, with the

precomputed Cholesky factor, the cost to solve (3.1) for cg'H is O(r?,), and the cost to update c”'*'1 for all v € V based on the

known c;“Ll is O(max(rp,7g)rg|V|). Hence the total cost over Ny time steps is O((r2 T + max(rp, rg)7"9|V|)Nt) once the reduced

order operators are computed prior to the time marching.

Online Cost. The computational cost of the Online stage comes from solving the ROM(Viq; U{; > UZ ) in (3.1) from ¢t = 0 to
NiAt, and it is O((rZ + max(rp,7¢)rg Ng?)Ny) with Ny® = [Vig|. The computational cost to predict f for an unseen angular
direction from n = 0 to N; by solving (3.4) is O(max(r,, rg)rgN¢). Here we assume that the reduced order operators are available.

Offline Cost. We denote the reduced orders for p and g in the m-th greedy iteration as ' and rg*, and the number of reduced

quadrature nodes by qum We let 7y, = max(rp ,7";”) and NE2% = |V .| The cost of the m-th iteration of the offline greedy
procedure in Algorithm 3.1 is summarized in Table 1, in particular the total computational cost of the Offline stage of the m-th

iteration is
Niter

> (02 (Nx + NES"NY)) + O(N3%, NocNe) )

m=1

To estimate the overall offline cost, we assume that the final reduced orders are 7, and rg, and let r = max(r,,ry). Given that
the total number of greedy iterations Njte, scales linearly with r, that r,, scales linearly with m, and that in the worst scenario
Ny3, (< NErainy scales linearly with m, we conclude that

(3.13) Offline time of MMD-RBM = O(r®(Nx + NNy )) + O(r2 Ny Ng)).

To put this estimate into context, we compare it with the costs of the POD and the full order model. The offline cost of the
vanilla POD is dominated by computing the SVD of the snapshot matrix which is of size Nx x (N;Ni'#"). That cost (of obtaining
U and ¥ in UZVT) is O(max(Nx, NF22 N} ) x (min(Nx, NE22 N;))2) [17]. Therefore, the relative offline computational time of
the MMD-RBM and the vanilla POD is

Offline time of MMD-RBM r2 n r3
Offfine time of vanilla POD =~ \ Nirainy, = N2
12

This manuscrint 1s for review purnoses onlu.



484

485
486
487

488

489
490
491
492
193
494
195
496

497

498
499
500
501
502

Leading order of the cost
Greedy sampling:
Assemble reduced order operators O(r2,Ny)
Compute Cholesky factorization of H? and ©,. 4 o(r3)
Compute ROM(Vivain; Uy, ., Ujl ) and error indicators O(r2, Nirain N,
Update V,q and (-)p, y,, if necessary O(N;%,)
Update reduced order spaces and basis:
Solve FOM(Vyq) with AMG- preconditioned CG O(Ny4, NxNt)
Update basis with SVD O(r2,Nx)
Check stopping criteria O(ry + Nx)
Total cost for the m-th iteration O(r2,(Nx + NE*N,)) + O(NI4, N N;)

Table 1: The computational cost of the m-th greedy iteration of the Offline algorithm.

Leading order of the cost
Solving ROM(Veq:; UF,, UF,) O(r’N;Ny)

Table 2: The computational cost of the Online algorithm.

where N, = min(Nx, N!*#"Ny). Moreover, we have

Offline time of MMD-RBM 2 r3 r3
Time of solving FOM(Virain) Nprain © N, © Ngrainp, /-
Remark 3.7. SVD can be computed incrementally [4], and hence the POD can be more efficient. If the low rank of the snapshot

matriz, which is determined by the tolerance in the incremental SVD, is v, the associated cost will be O(Nx N2 Nyr). With
the same r, the relative offline computation between our method and the POD with the incremental SVD is

Offline time of MMD-RBM ( r r2 r2 )

Offfine time of POD with incremental SVD ~ ~ \ Nirain + Nrain N, + Nx

One can see that as long as r < min(y/Nx, N0 /Ntrain Ny ) - the Offline stage of our method is faster than the POD method
with the incremental SVD.

Remark 3.8. In this work, we build the reduced basis spaces for both p and g. Given the computational cost of the full order
solve for p is much smaller than that for the microscopic part, in practice one can choose to build the reduced basis space only
for g, especially when the cost of the full order solve for p is deemed affordable.

4. Numerical examples. We demonstrate the performance of the proposed MMD-RBM through a series of numerical
examples. Throughout this section, the angular training set Virain is the set of N, = 590 Lebedev quadrature points. We use
piece-wise constant polynomials, i.e. K = 0 in space. When o is constant, we use the following time step to guarantee stability,

0.25 min( L, —£h— otherwise,

h, if &< 0.250h
At = { ?
V2’ V2057’

where h = min(minj<;<n, (:):Hl -z, 1), miny <;<n, (yi+l —¥y,_1)). When o5 is spatially dependent, we use the smallest time
- - 2 2 - - 2 2

step size allowed by all o values. Throughout this section, vacuum boundary conditions are considered. The constants in the

numerical flux (2.9) are taken to be agy = 1/(v2); and ay = 1/(v§>h. We measure the absolute errors and the relative errors of

the scalar flux p and first order moment (vf) as follows, by evaluating the difference between the reduced order solution and a

reference solution which is computed by the full order solver with NﬁCSt = 2072 Lebedev points denoted collectively as Viest,

Ny

&
(4.1a) Ep = 4| At Z HP;LL’RQM - p;LL?F()MHQ: Rp = N £ ’
n=1 \/At Znél ||pZ,FOMH2
4.1b £ _ At o n n 2 R _ g("f'f)
(4.1b) (vf) = Z H<'Uf>h,ROM - <”f>h,FoMH ) (vf)y = ~ .
= VAN @7 roul 12
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506  Here ||-|| denotes the L2 norm which is computed as ||p|| = 4 /fﬂm p2dx for the scalar function p and || (v f)|| = \/er (v )2 + (’vyf>2dxl

507  for the vector function (vf) = ((vz f), (v2f))T. Moreover, we have |Viest \Virain| = 2058. To demonstrate the ability of our method
508  to predict the angular fluxes at angular directions outside the training set, we solve for {f(v) : v € Viest} with our ROM and
509  evaluate the worst case absolute and relative errors,

N

£
510 €p = max AtZHf{vaOM*f;LLvFOMH2f Ry = ! :
v sV, sV, Ny n B
= maxy /AN 17 poull

51 We recall that 7, and rg are the dimensions of the reduced order subspace for p and g. Ny is the number of nodes in the reduced
512 quadrature rule. Finally, we keep track of the data compression efficiency of our ROM via recording the compression ratio (C-R)

o DOFs of ROM(Vrq; Uy ., U ) rp 4+ Nir,
513 -R = : — = - .

DOFs of FOM(Virain) (Ngrain 4 1) Ny

514 All these quantities will appear in the tables of this section documenting the performance of the proposed MMD-RBM on

515  various examples. We implement our solvers in the Julia programming language. When comparing offline computational cost
516  with the vanilla POD in Section 4.1, the code was run on Michigan State University’s HPCC cluster. All the other tests were
517  performed on a Macbook Air laptop with a M1 chip.

518 4.1. Homogeneous media. In the first example, we consider a homogeneous media with o5 = 1 and o4 = 0 on the
519 computational domain [0, 2]2, uniformly partitioned into 80 x 80 rectangular elements. We adopt an initial condition f(x,v,0) = 0
520 and a Gaussian source G(z) = exp (—100((z — 1)2 + (y — 1)2)). Different values of the Knudsen number & = 1.0 (transport

521 regime), ¢ = 0.1 (intermediate regime) and ¢ = 0.005 (diffusive regime) are considered to benchmark the performance of the
522 proposed algorithm. The final time is 7" = 0.25 for ¢ = 1.0 and 0.1, and it is 7' = 1.5 for € = 0.005. The reduced quadrature rule
523 and reduced spaces are initialized with 26 Lebedev points. For the stopping criteria, we set tol,atio as le — 4, tolerror,p = 1.0%,
524 and tolerror,f = 2.0%.
525 Performance of the MMD-RBM: The results of the MMD-RBM are presented in Table 3 and Figure 2. In the top row
526  of Figure 2, we observe that the reduced order solutions match the full order solutions well. As shown in Table 3, the MMD-
527  RBM achieves small relative errors in the scalar flux, the first order moment, and f (w.r.t v € Viest). The C-R in the ROM
528 is consistently below 0.08%. The reduced dimensions r, and ry decrease as € decreases showcasing our method’s capability of
numerically capturing the fact that the problem approaches its diffusive limit.
rq
Tp | Tg | Ny C-R & Ry Cwry | Rewp) Er Ry
e=1 13 | 52 | 48 | 0.07% | 1.29¢-5 | 0.22% | 1.99¢-5 | 1.29% | 1.21e-4 | 1.74%
e=0.1 8 [ 32| 40 | 0.03% | 1.44e-5 | 0.48% | 6.48¢-6 | 1.34% | 1.05¢-4 | 3.16%
e=0.005| 3 | 12| 32 | 0.01% | 7.86e-5 | 0.48% | 1.29¢-6 | 1.43% | 7.90e-5 | 0.48%
Table 3: Dimensions of the reduced order subspaces, r,, r4, the number of reduced quadrature nodes N9, the
testing error and the compression ratio for the homogeneous media example with the MMD-RBM.
529
530 In the middle row of Figure 2, we present the training history of convergence. The relative training errors at the final time
531  are defined as
o N¢ _ | N N, N, Ny _ N, N, N,
532 (4.2) Rp P = th,tROM - Ph’tFOMH/th’tFOMHa E,'f b= ’UGI%?:;n Hfh,fJ,ROM - fh,f,ypoMH/Hfhj,,FOMH-
533 The training errors at the final time and the error estimators in (3.12) are plotted with respect to the number of greedy iterations.
534  We can see that as the number of greedy iterations grows, our estimators approximate the relative training errors at the final
535  time well. Overall, the relative training errors for p and f decrease. In the bottom row of Figure 2, we plot the error history, as
536 time evolves, of p, (vf) and f (W.r.t v € Viest). It is clear that, across different regimes, the errors either grow and then plateaus
537 at the level of the prescribed error threshold, or decrease from that level.
538 In Figure 3, we present the sampled angular points when the stopping criteria are satisfied. The number of quadrature points
539  in the reduced quadrature rule generated by MMD-RBM are 48 for € = 1, 40 for € = 0.1 and 32 for £ = 0.005. We can see that
540  the sample points are fairly uniform on the sphere for this homogeneous case.

541 Benefit of the equilibrium-respecting strategy: We demonstrate the benefit of the equilibrium respecting strategy, that

542 is the inclusion of {At©@~1Dg p™, At@’lD; pmt™ € 7;‘{)} when updating the reduced order space U;f,r. Without these extra
543  functions, we report in Table 4 the dimensions of the reduced order subspaces and the errors when the stopping criteria are the
544  same. Comparing with Table 3, we see that when € = 0.1 and € = 0.005 including derivatives of p in Ug,'r leads to smaller values
545  of 7p, Ny and comparable errors. Having smaller 7, values is particularly beneficial since the cost of solving the reduced order
546  problem for one time step scales roughly as O(r3 N;) and the size of the reduced order operator in (3.2) is 7, X 7. This advantage
547  is particularly pronounced in the more diffusive regime with £ = 0.005.
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Fig. 2: Results for the homogeneous media example. Shown on the top are the reduced order solutions (left)
and the full order solutions (right). In the middle row are the relative training errors of p and f at the final
time and values of our error estimators. Shown on the bottom are the error histories with respect to time, when
we compute the scalar flux p, first order moment (v f) and predict f at unseen angular directions v € Viest.

The cost of the Offline stage: In Figure 4, the offline computational time of our MMD-RBM is reported along with the
computational time of FOM(Viyain) and a vanilla POD strategy that computes the SVD of all the snapshots from FOM(Virain)-
All reported times are normalized by that of the full order solve in each case. Here, for comparison purpose, we implement the
offline algorithm with 50 or 100 greedy iterations even though the stopping criteria are satisfied much sooner. For the first 50
iterations, we see that the offline computational time of the MMD-RBM scales roughly as r2? (with r = r, + r4) which is faster
than the O(r3) cost suggested by (3.13). As shown in the bottom right picture of Figure 4, the offline cost transitions from
O(r?) to O(r3) as greedy procedure continues to 100 iterations, and it eventually scales slightly close to O(r3). We also label the
location, via a vertical line, when the stopping criteria are satisfied. For all €’s, the offline cost of our method is smaller than the
cost of vanilla POD. Moreover, for e = 0.005, it is even smaller than the time of FOM (Vi ain ). This shows the effectiveness of the
greedy RB procedure in producing a low rank numerical solver.

4.2. Anisotropic initial condition. To demonstrate the ability of our method in adaptively sampling physically

important angular directions, we consider the initial condition with anisotropy in the angular variable for g, namely, g(z,y,v,0) =
u(v(0,¢))p(z, y,0) with

exp(—1.0/(0.5 — 22 —y?)), ifz? +y? < 0.5,

and
0.0, else

p(z,y,0) = {

15

This manuscrint is for review purvoses only.




Fig. 3: The reduced quadrature nodes on the unit sphere (Black for points in the initial reduced quadrature
nodes, and Red for those sampled by the greedy algorithm) and these nodes with a view from the north pole.
e =1.0,0.1,0.005 from left to right.

To | g | Ny3 | CGR &p Ry Ews) Ry & Ry

e=1 14 | 28 52 0.04% | 1.01e-5 | 0.18% | 2.05e-5 | 1.33% | 1.40e-4 | 2.01%
e=0.1 16 | 32 50 0.04% | 2.15e-5 | 0.72% | 8.19e-6 | 1.70% | 3.96e-5 | 1.20%
e=0.0051] 9 | 18| 38 | 0.02% | 2.18e-5 | 0.13% | 4.77e-7 | 0.53% | 2.18e-5 | 0.13%

Table 4: Dimensions of the reduced order subspaces, ,, 14, the number of reduced quadrature nodes N4, the
testing error and the compression ratio for the homogeneous media example with the ROM constructing the
reduced space for g only with snapshots of g.

1

exp (m) , ifve >0,vy >0,

u(v(8,9)) = { _ o —1 ) ’
) —exp | —————— ], ifvy <0,vy <O,
o (o4 )2 ’

0.0, else.

The computational domain is [—1,1]?. The Knudsen number is ¢ = 1.0 and the final time is T = 0.5. As shown in the top left
picture of Figure 5, u(v) in the initial condition g(x, v, 0) has more features when v, and v, are both positive or negative. We set
tolratio = le — 4, tolerror,p = 1.25% and tolerror,f = 1.25%. The initial reduced quadrature rule is a Lebedev quadrature with 26
points. We consider different scattering cross sections os = 5, 1, 0.01 with zero absorption g, = 0. Our MMD-RBM produces less
than 1.44% relative error when reconstructing p online and less than 2.27% relative error when predicting f for unseen angular
directions. In Figure 5, we also present sz g(x,v,0.5)dx and the sampled angular directions. When o5 = 5, le g(x,v,0.5)dx is
almost isotropic w.r.t v due to the strong scattering. Indeed, the sampled angular directions are more uniformly distributed. As
os becomes smaller, the problem becomes more transport dominant and we observe that more angular directions are sampled in
the first and third quadrants, where g has more features.
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Fig. 4: Relative offline computational time with respect to the reduced order r, 4+ r, for the homogeneous
media example. Note the computational time is normalized by the full order solve in each case. Bottom right:
100 greedy iterations; Others: 50 greedy iterations.

4.3. A multiscale problem with a spatially dependent scattering. Now, we consider a spatially-
dependent scattering cross section [14]

(@.y) = 0.9997% (1 + v/2)2(r — v/2)2 4 0.001, with 7 = /22 + 32 < 1,

Ta\P Y7 = 1, otherwise,

on the computational domain [—1,1]? with € = 0.01. The effective Knudsen number for this problem e/ smoothly varies from
10 to 0.01 indicating a smooth transition from a transport dominant region in the center to a scattering dominant region in the
outer part of the computational domain. The initial value for this problem is f(x,v,0) = % exp(—25(z2 +y2)). We use a uniform
mesh of 80 x 80 uniform rectangular elements to partition the computational domain. The final time is 7" = 0.05. The parameters
in the stopping criteria are tolyatic = le — 4, tolerror,p = 1.5% and tolerror, ¢ = 2.5%. The greedy iteration is initialized with the
11-th order 50 points Lebedev quadrature rule. The configuration of os(z,y), the FOM and the ROM solutions are presented
on the top row of Figure 6. ROM solution matches the FOM solution well. In the bottom left of Figure 6, the 94 sampled
angular points are presented. In the bottom right, we present the relative training error at the final time and the values of error
estimators as a function of the number of greedy iterations. Overall, the error estimator provides a reasonable approximation
to the relative training error at the final time. The errors are shown in Table 5. It is clear that this example requires a higher
rank representation for the reduced solution than the previous examples due to the large effective Knudsen number in the center
region. The MMD-RBM produces numerical solutions with relative error below 0.8% for the scalar flux with only 0.27% degrees

of freedom in comparison to the full model.

4.4. A lattice problem. The last example is a two-material lattice problem with € = 1. The geometry set-up is shown
in the middle of the top row of Figure 7. The black region is pure absorption with os = 0 and o, = 100, while the rest is pure
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Fig. 5: Shown on top are the configuration w(v) in the initial condition of g(x,v,0) = u(v)p(x,0) and

Jo 9(x,v,0.5)dx for oy = 5.0, 0.01 (view from the north pole). On the bottom are the sampled angular
directions (view from the north pole) for the example in Section 4.2 with various o values.

Tp | g | Nyt | CR p Ry Epy | Rewpy Er Ry
27 | 108 | 94 | 0.27% | 3.00e-4 | 0.75% | 8.32e-5 | 1.33% | 1.18e-3 | 1.69%

Table 5: Dimensions of the reduced order subspaces, ,, 1y, the number of reduced quadrature nodes N;9, the
testing error and the compression ratio for the multiscale example with the MMD-RBM.

scattering with 05 = 1 and o, = 0. In the orange region, a constant source is imposed:

Gl y) = 1.0, if |z—25]<05and |y—2.5]<0.5
Y= 0, otherwise.

A uniform mesh of 100 x 100 rectangular elements is used to partition the computational domain. The final time is T'= 1.7. The

tolerances in the stopping criteria are tolyatioc =1€-3, tolerror,p = 1.5% and tolerror,f = 3.0%. When initializing the RBM offline,
we use the 11-th order 50 point Lebedev quadrature rule.

rp | rg | Ny* | CR p Ry Cwiy | Ry Ey Ry
31 | 124 | 102 | 0.21% | 1.85e-3 | 0.27% | 4.45e-3 | 2.41% | 2.38e-2 | 2.71%

Table 6: Dimensions of the reduced order subspaces, 7, 1y, the number of reduced quadrature nodes N;9, the
testing error and the compression ratio for the lattice example with the MMD-RBM.

We present the ROM and FOM solutions on the top row of Figure 7. Shown on the bottom are the 102 nodes of the reduced
quadrature rule and the history of the relative training error at the final time and the values of error estimators. Our error
estimators approximate the relative errors at the final time well and the MMD-RBM solution matches the FOM well. The errors
are displayed in Table 6. We see that the ROM achieves 0.27% relative error for p with 0.21% DOFs w.r.t FOM(Viyain), while
the relative errors (vf) and f on the test set stayabout 2% to 3%.
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Fig. 6: Results for the multiscale example. Shown on top from left to right are the FOM solution in log scale,
the function o, and comparison between the ROM (right) and FOM (left) solutions. Shown on the bottom
are reduced quadrature nodes on the unit sphere (Black for points in the initial reduced quadrature nodes, and
Red for those sampled by the greedy algorithm), these nodes with a view from the north pole, and the history
of the relative training error at the final time and the values of error estimators as a function of number of
iterations.

5. Conclusion. In this paper, utilizing low rank structures with respect to the angular direction v and the temporal
variable t, we developed a novel RBM to construct ROM for the time-dependent RTE based on the micro-macro decomposition.
The proposed MMD-RBM is featured by an equilibrium-respecting strategy to construct reduced order subspaces and a reduced
quadrature rule with non-negative weights preserving the stability of the underlying numerical solver. As demonstrated by our
numerical tests, the Offline stage of the proposed method is more efficient than the vanilla POD method and sometimes even
the standard full order solve, and the Online stage is able to efficiently predict angular fluxes for unseen angular directions and
reconstruct the moments of the angular flux. The natural next step along this work is to use the proposed method as a building
block to design ROMs for multi-query scenarios (e.g. inverse problems and uncertainty quantification) with essential physical
parameters.

Our current ROM is a linear ROM utilizing the local equilibrium structure in the angular space. However when the scattering
effect is not strong enough the system may be transport dominant and far from the local equilibrium. For a pure transport
problem our method may need more careful choice of initial basis, initial quadrature rule and error indicator/estimator. Moreover
it is also well known that linear ROM such as our method may be inefficient for transport problems [32]. One may design ROMs
based on Lagrangian frameworks to conquer this issue and we leave it for the future investigation.
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