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Abstract. Kinetic transport equations are notoriously difficult to simulate because of their complex multiscale behaviors and4
the need to numerically resolve a high dimensional probability density function. Past literature has focused on building reduced5
order models (ROM) by analytical methods. In recent years, there is a surge of interest in developing ROM using data-driven or6
computational tools that offer more applicability and flexibility. This paper is a work towards that direction.7

Motivated by our previous work of designing ROM for the stationary radiative transfer equation in [34] by leveraging the8
low-rank structure of the solution manifold induced by the angular variable, we here further advance the methodology to the9
time-dependent model. Particularly, we take the celebrated reduced basis method (RBM) approach and propose a novel micro-10
macro decomposed reduced basis method (MMD-RBM). The MMD-RBM is constructed by exploiting, in a greedy fashion, the11
low-rank structures of both the micro- and macro-solution manifolds with respect to the angular and temporal variables. Our12
reduced order surrogate consists of: reduced bases for reduced order subspaces and a reduced quadrature rule in the angular space.13
The proposed MMD-RBM features several structure-preserving components: 1) an equilibrium-respecting strategy to construct14
reduced order subspaces which better utilize the structure of the decomposed system, and 2) a recipe for preserving positivity15
of the quadrature weights thus to maintain the stability of the underlying reduced solver. The resulting ROM can be used to16
achieve a fast online solve for the angular flux in angular directions outside the training set and for arbitrary order moment of17
the angular flux.18

We perform benchmark test problems in 2D2V, and the numerical tests show that the MMD-RBM can capture the low rank19
structure effectively when it exists. A careful study in the computational cost shows that the offline stage of the MMD-RBM is20
more efficient than the proper orthogonal decomposition (POD) method, and in the low rank case, it even outperforms a standard21
full order solve. Therefore, the proposed MMD-RBM can be seen both as a surrogate builder and a low-rank solver at the same22
time. Furthermore, it can be readily incorporated into multi-query scenarios to accelerate problems arising from uncertainty23
quantification, control, inverse problems and optimization.24

1. Introduction. In this paper, we design a reduced order model (ROM) for a class of kinetic transport equation: the25
time-dependent radiative transfer equation (RTE), which provides prototype models for optical tomography [2], radiative transfer26
[40], remote sensing [43] and neutron transport [26] etc. The isotropic time-dependent RTE under the diffusive scaling is written27
as:28

ε∂tf + v · ∇xf =
σs

ε
(⟨f⟩ − f)− εσaf + εG.(1.1)29

30

It features three independent variables, t ∈ R+,x ∈ Ωx,v ∈ Ωv , denoting the time, spatial location, and angular direction. For31
the full model considered in this paper, Ωv = S2 is the unit sphere. The equation models the transport and the interaction of32
the particles (e.g. photons) with the background media (e.g. through the scattering and absorption). The unknown f(x,v, t)33
is the angular flux (also called the distribution of particles). Lcollisionf = σs(⟨f⟩ − f) is the scattering operator, where ⟨f⟩ =34

1
|Ωv|

∫
Ωv

f(x,v, t)dv is the scalar flux (also the density) which is the average of f in the angular space. G(x) is an isotropic source35

term. In (1.1), σs(x) ≥ 0 and σa(x) ≥ 0 are, respectively, the scattering and absorption cross sections. The Knudsen number ε is36
the non-dimensional mean free path of the particles. The main challenges for numerically solving this equation come from its high37
dimensional and multiscale nature. First, the angular flux f depends on the phase variable (x,v) and the time. Therefore, any38
standard grid-based method will suffer from the curse of dimensionality. Second, the solution crosses different regimes thanks to39
its dependence on the non-dimensionalized mean free path ε. When ε is O(1), the problem is transport dominant. When ε → 040
and σs > 0, equation (1.1) converges to its diffusion limit:41

∂tρ−∇x · (σ−1
s D∇xρ) = −σaρ+G,(1.2)4243

where ρ(x, t) = ⟨f⟩ and D = diag(⟨v2x⟩, ⟨v2y⟩, ⟨v2z⟩). This trans-regime behavior presents itself as both a challenge and an44
opportunity.45

To leverage the opportunity presented by the inherent structure of the equation in the diffusive regime and address the46
challenge especially of high dimensionality, projection based ROMs and tensor decomposition based low rank algorithms have47
been designed for the stationary and time-dependent RTE. Projection based ROMs typically have two stages: an Offline stage,48
where a problem-specific low rank approximation is built, and an Online stage, where important physical quantities can be49
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predicted or reconstructed more efficiently. Tensor decomposition based low rank algorithms are offline-free but use less problem50
specific low rank approximations. The computational cost of the online stage of ROMs are usually determined by the low rank,51
while the computational cost of tensor decomposition based algorithms usually depend on the tensor format and the number of52
degrees of freedom in certain directions. One potential research direction lacking investigation is to combine the power of the two53
methods by utilizing tensor based low rank algorithms as the full order solver in the offline stage of ROMs. Along the line of low54
rank algorithms based on tensor decomposition, dynamical low rank algorithm (DLRA) [39, 14, 38] and the proper generalized55
decomposition (PGD) [1, 41, 13] have been designed. Projection based ROMs have also been actively developed in the recent56
few years, for example the proper orthogonal decomposition (POD) and its variations [5, 11, 12, 44, 3, 10, 20], the dynamical57
mode decomposition (DMD) [29, 30]. Among those work, the POD methods in [5, 45, 20] and our previous work in reduced basis58
method (RBM) for the steady state problem [34] make explicit use of the low rank structure of the solution manifold induced by59
the angular variable, namely, the ROM built is based on treating the angular variable as the “parameter” of the model. Once60
such ROM surrogate is constructed, it can be used to achieve a fast online calculation of the angular flux in an angular direction61
outside the training set. We will also show in this paper that a fast calculation of high order moments of the angular flux can62
be obtained by using the ROM surrogate. Moreover, the ROM can be further incorporated to multi-query scenarios to accelerate63
calculations in inverse problems and uncertainty quantification.64

In this paper, we continue our effort in [34] and take the RBM approach [33, 42, 18], which is a projection-based model65
order reduction strategy for parametric problems and consists of Offline and Online stages. In the Offline stage, it constructs66
a low-dimensional reduced order subspace to approximate the underlying solution manifold of the parametric problem. In the67
Online stage, the reduced order solution for unseen parameter values is sought through a (Petrov-)Galerkin projection into the68
low-dimensional surrogate subspace constructed offline. RBM utilizes a greedy algorithm for constructing the surrogate subspace69
offline. It iteratively augments the reduced order subspace by greedily identifying the snapshot, via an error estimator or an error70
/ importance indicator, corresponding to the most under-resolved parameter (were the current reduced space to be adopted) in71
the training set until the stopping criteria is satisfied.72

While the angular variable is treated as the parameter of the model in our previous work in [34] for the stationary RTE,73
here for the time-dependent RTE, we regard both the angular v and temporal t variables as parameters and build a RBM by74
leveraging the low-rank structure of the (v, t)-induced solution manifold. As observed in [34] for the stationary case, the solution75
of the time-dependent RTE corresponding to different angular directions v are not decoupled, due to the integral operator for76
the scattering. This makes our problem very different from the standard parametric problems the vanilla RBM is applied to.77
Compared to [34], the present work presents several significant algorithmic advances. Our full order and reduced order models are78
based on the micro-macro decomposition of the RTE [27] instead of the original form in (1.1) for directly solving f . To improve79
the performance in the diffusive and intermediate regime, we design an equilibrium-respecting strategy to construct reduced order80
subspaces which better utilize the structure of the decomposed system. We call the proposed method micro-macro decomposed81
reduced basis method (MMD-RBM). Furthermore, sampled angular variables are typically unstructured, and a direct robust82
and accurate quadrature rule to compute angular integrals is lacking. This is in particular crucial for time-dependent problems83
because it relates to the stability of the ROM. A recipe for constructing such quadrature rules preserving positivity of the weights84
is provided.85

The rest of the paper is organized as follows. In Section 2, we present the micro-macro decomposition and the associated86
full order solver. In Section 3, we present Offline and Online stages of the MMD-RBM and estimate the computational cost. In87
Section 4, the performance of the proposed methods is demonstrated through a series of numerical examples. At last, we draw88
conclusions in Section 5.89

2. Micro-macro decomposed RTE and its discretization. The radiative transfer equation (RTE) in (1.1)90
is multiscale in nature. When ε = O(1), it is transport dominant. On the other hand when ε → 0, the model converges to its91
diffusion limit, and this can be illustrated through the micro-macro decomposition [27]. Define Π as the orthogonal projection onto92
the null space of the collision operator Null(Lcollision) in L2(Ωv). With the isotropic scattering being considered here, Πf = ⟨f⟩.93
We decompose f as f = Πf + (I − Π)f = ρ(x, t) + εg(x,v, t), with ρ(x, t) = ⟨f⟩ as the scalar flux (or called density). Equation94
(1.1) can then be rewritten as the micro-macro decomposed system:95

∂tρ+∇x · ⟨vg⟩ = −σaρ+G,(2.1a)96

ε2∂tg + ε(I −Π)(v · ∇xg) + v · ∇xρ = −σsg − ε2σag.(2.1b)9798

As ε→ 0 and with σs(x) > 0, (2.1b) becomes the local equilibrium99

g = −
1

σs
v · ∇xρ.(2.2)100

101

Substitute (2.2) to (2.1a), we obtain the diffusion limit:102

∂tρ−∇x · (σ−1
s D∇xρ) = −σaρ+G,103

where D = diag(⟨v2x⟩, ⟨v2y⟩, ⟨v2z⟩).104

2.1. Fully discretized micro-macro decomposed system. When standard numerical methods are applied105
to solve (1.1), the computational cost can be prohibitive when ε≪ 1, as the mesh sizes smaller than ε are often needed for both106
accuracy and stability [6, 31]. A numerical method for (1.1) is said to be asymptotic preserving (AP) [22] if it preserves the107
asymptotic limit as ε → 0 at the discrete level, namely, as ε → 0 the method becomes a consistent and stable discretization for108
the limiting model. AP methods can work uniformly well for the model with a broad range of ε, particularly with ε ≪ 1 on109
under-resolved meshes. This type of methods will be our choice as full order methods. In particular, in this work we adapt the110
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IMEX-DG-S method [37] to multiple dimensions. The method is AP, with desirable time step conditions for stability, specifically,111
it is unconditionally stable in the diffusive regime (ε≪ 1) and conditionally stable with a hyperbolic-type CFL condition in the112
transport regime (ε = O(1)). Alternatively, one can use other AP schemes based on the micro-macro decomposition as the full113
order model, such as [25, 21, 35], which can have different stability property in the diffusive regime (ε≪ 1).114

In this work, we assume all unknowns are independent of the z variable, namely, ∂zρ = ∂zf = ∂zg = 0. With this, we consider115
Ωx = [xL,xR] × [yL, yR] in two space dimensions (with d = 2) and Ωv = S2 as the angular space. The methodology developed116
here can be extended to Ωx in three dimensions straightforwardly. Next, we will present our full order method, starting from the117
time discretization.118

Time discretization: To achieve unconditional stability in the diffusion dominant regime as well as the AP property, the time119
discretization is defined as follows. Given the solutions ρn and gn at tn = n∆t, we seek ρn+1 and gn+1 such that120

ρn+1 − ρn

∆t
+∇x · ⟨vgn+1⟩ = −σaρn+1 +Gn+1,(2.3a)121

ε2
gn+1 − gn

∆t
+ ε(I −Π)(v · ∇xg

n) + v · ∇xρ
n+1 = −σsgn+1 − ε2σagn+1.(2.3b)122

123

As ε→ 0 and with σs > 0, (2.3b) becomes124

gn+1 = −
1

σs
v · ∇xρ

n+1.(2.4)125
126

Substituting (2.4) into (2.3a), we obtain the limit of scheme (2.3) as ε→ 0,127

ρn+1 − ρn

∆t
−∇x · (σ−1

s D∇xρ
n+1) = −σaρn+1 +Gn+1.128

This is nothing but the backward Euler method for the diffusion limit in (1.2). Hence, this time discretization is AP.129

Angular discretization: In the angular space, we apply the discrete ordinates (SN ) method [40]. Let {vj}Nv
j=1 be a set of130

quadrature points in Ωv and {ωj}Nv
j=1 be the corresponding quadrature weights, satisfying

∑Nv
j=1 ωj = 1. The semi-discrete131

system (2.3) is further discretized in the angular variable, following a collocation approach, by being evaluated at {vj}Nv
j=1, with132

the integral operator ⟨·⟩ approximated by its discrete analogue:133

(2.5) ⟨f⟩ ≈ ⟨f⟩h =

Nv∑
j=1

ωjf(·,vj , ·).134

We require the quadrature rule to satisfy135

(2.6) ⟨vξvη⟩h = ⟨vξvη⟩ =
1

3
δξη , ξ, η ∈ {x, y, z}, δξη =

{
1, ξ = η

0, ξ ̸= η
,136

so the coefficient matrix D = diag(⟨v2x⟩, ⟨v2y⟩, ⟨v2z⟩) will be exact, and the correct diffusion limit will be obtained for the full order137

model without cross-derivative terms (see Section 2.2). Particularly, with Ωv = S2, we use the Lebedev quadrature rule [24] in138
our fully-discrete method unless otherwise specified.139

Spatial discretization: In the physical space, we apply a discontinuous Galerkin (DG) discretization. Letting140

Ih =
{
Ikl = [xk− 1

2
,xk+ 1

2
]× [yl− 1

2
, yl+ 1

2
], 1 ≤ k ≤ Nx, 1 ≤ l ≤ Ny

}
141

be a partition of the physical domain Ωx, we define the discrete space as142

UK
h (Ωx) := {u(x) : u(x)|Ikl

∈ QK(Ikl), 1 ≤ k ≤ Nx, 1 ≤ l ≤ Ny},143

where QK(Ikl) is the bi-variate polynomial space with the degree in each direction at most K on the element Ikl. We also write144
ϕ(x±0 , y) = lim

x→x±
0
ϕ(x, y) and ϕ(x, y±0 ) = lim

y→y±
0
ϕ(x, y).145

Let the numerical solution at tn be ρnh(·) ≈ ρ(·, t
n) and gnh,j(·) ≈ g(·,vj , t

n), ∀j = 1, . . . ,Nv . With a DG discretization applied146

in space, we reach our fully-discrete scheme: given ρnh ∈ U
K
h , {gnh,j}

Nv
j=1 ⊂ U

K
h , we seek ρn+1

h ∈ UK
h , {gn+1

h,j }
Nv
j=1 ⊂ U

K
h , satisfying147
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the following equations ∀k = 1, . . . ,Nx, l = 1, . . . ,Ny ,148 ∫
Ikl

ρn+1
h − ρnh

∆t
ϕhdx+

Nv∑
γ=1

ωγ

∫
Ikl

(
Dg

x(vγ,xg
n+1
h,γ ; ρn+1

h ) +Dg
y(vγ,yg

n+1
h,γ ; ρn+1

h )
)
ϕhdx149

=

∫
Ikl

(−σaρn+1
h +Gn+1)ϕhdx, ∀ϕh ∈ UK

h ,(2.7a)150

ε2
∫
Ikl

gn+1
h,j − g

n
h,j

∆t
ψhdx+

∫
Ikl

(
vj,xD−

x + vj,yD−
y

)
ρn+1
h ψhdx151

+ ε

Nv∑
γ=1

(δjγ − ωγ)

∫
Ikl

(
Dup

x (vγ,x, g
n
h,γ) +D

up
y (vγ,y , g

n
h,γ)

)
ψhdx152

= −
∫
Ikl

(σs + ε2σa)g
n+1
h,j ψhdx, ∀ψh ∈ UK

h , ∀j = 1, . . . Nv .(2.7b)153
154

Here δjγ is the Kronecker delta, D−
x (·),D−

y (·),Dg
x(·; ·),Dg

y(·; ·),Dup
x (·, ·),Dup

y (·, ·) ∈ UK
h are all discrete (partial) derivatives, and155

they can be expressed in terms of D±
x (·),D±

y (·) ∈ UK
h that are defined as follows156 ∫

Ikl

D±
x ϕhψhdx =−

∫
Ikl

ϕh∂xψhdx+

∫ y
l+1

2

y
l− 1

2

ϕh(x
±
k+ 1

2

, y)ψh(x
−
k+ 1

2

, y)dy157

−
∫ y

l+1
2

y
l− 1

2

ϕh(x
±
k− 1

2

, y)ψh(x
+

k− 1
2

, y)dy, ∀ψh ∈ UK
h ,(2.8a)158

∫
Ikl

D±
y ϕhψhdx =−

∫
Ikl

ϕh∂yψhdx+

∫ x
k+1

2

x
k− 1

2

ϕh(x, y
±
l+ 1

2

)ψh(x, y
−
l+ 1

2

)dx159

−
∫ x

k+1
2

x
k− 1

2

ϕh(x, y
±
l− 1

2

)ψh(x, y
+

l− 1
2

)dx, ∀ψh ∈ UK
h .(2.8b)160

161

With v · ∇xgn in (2.3b) discretized following an upwind mechanism, we set162

Dup
x (vx,ϕh) = vxD⋆

x(ϕh), with ⋆ =

{
−, vx ≥ 0,

+, vx < 0,
163

Dup
y (vy ,ϕh) = vyD⋆

y(ϕh), with ⋆ =

{
−, vy ≥ 0,

+, vy < 0.
164
165

Moreover, we take166

(2.9) Dg
ξ (vγ,ξgh,γ ; ρh) = vγ,ξD+

ξ gh,γ + αξDjump
ξ ρh, with ξ = x, y.167

Here, Djump
x (·) ∈ UK

h , given locally on the element Ikl by168 ∫
Ikl

Djump
x (ρh)ψhdx =

∫ y
l+1

2

y
l− 1

2

(
ρh(x

−
k+ 1

2

, y)− ρh(x+k+ 1
2

, y)

)
ψh(x

−
k+ 1

2

, y)dy169

−
∫ y

l+1
2

y
l− 1

2

(
ρh(x

−
k− 1

2

, y)− ρh(x+k− 1
2

, y)

)
ψh(x

+

k− 1
2

, y)dy, ∀ψh ∈ UK
h ,170

171

and equivalently,172
Djump

x (ρh) = D−
x (ρh)−D+

x (ρh).173

Similarly174

(2.10) Djump
y (ρh) = D−

y (ρh)−D+
y (ρh).175

The jump operators are added in (2.9) to maintain accuracy in the case of the Dirichlet boundary conditions [7]. As shown in [7],176
the constants αx, αy in (2.9) need to be O(1) and positive. In this paper, we consider the vacuum boundary condition. In all the177
discrete derivatives, when the data from the outside of the domain is needed for the solution, we directly set it as 0.178

From here on, we refer to the fully-discrete method (2.7) along with (2.8)-(2.10) as the full order model denoted as FOM.179
Given that our plan is to treat the angular variable v as a parameter to formulate reduced order models, when we want to180
emphasize the set of the angular values V (and its “associated” quadrature weights in (2.5)) used to define (2.7), we also write it181

as FOM(V). As an example, we have V = {vj}Nv
j=1 for (2.7).182
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2.2. Matrix-vector form and Schur complement. Though ⟨vg⟩ is treated implicitly in (2.7a), we only need183
to invert a discrete heat operator for ρ with the help of the Schur complement, and this will be demonstrated next via the184
matrix-vector form of the scheme. Let {el(x)}Nx

l=1 be a basis of the DG space UK
h , then ρnh and gnh,j can be expanded as185

ρnh(x) =
∑Nx

l=1 ρ
n
l el(x) and g

n
h,j(x) =

∑Nx
l=1 g

n
l,jel(x). Defining ρn = (ρn1 , . . . , ρ

n
Nx

)T and gn
j = (gn1,j , . . . , g

n
Nx,j)

T , we are ready to186

rewrite (2.7) into its matrix-vector formulation:187

A
(
ρn+1, gn+1

1 , gn+1
2 , . . . gn+1

Nv

)T
=

(
bn
ρ ,b

n
g1

,bn
g2

, . . . ,bn
gNv

)T
,(2.11a)188

A =


M +∆tΣa +∆tDjump ∆tω1(v1,xD

+
x + v1,yD

+
y ) . . . ∆tωNv (vNv ,xD

+
x + vNy ,yD

+
y )

∆t(v1,xD
−
x + v1,yD

−
y ) Θ . . . 0

...
...

. . .
...

∆t(vNv ,xD
−
x + vNv ,yD

−
y ) 0 . . . Θ

 ,(2.11b)189

bn
ρ =Mρn +∆tGn+1,(2.11c)190

bn
gj

= ε2Mgn
j − ε∆t

Nv∑
γ=1

(δjγ − ωγ)(D
up
x,vγ,x

+Dup
y,vγ,y

)gn
γ , j = 1, . . . ,Nv(2.11d)191

192

Here M is the mass matrix, Σs (resp. Σa) is the scattering (resp. absorption) matrix, Djump is the jump matrix, D±
ξ , Dup

ξ,vγ,ξ
193

(ξ = x, y, γ = 1, . . . ,Nv) are discrete derivatives matrices, all being of the size Nx ×Nx (Nx is the number of degrees of freedom194
resulting from the spatial discretization), with their (kl)-th entry given as:195

Mkl =

∫
Ωx

elekdx, (Σs)kl =

∫
Ωx

σselekdx, (Σa)kl =

∫
Ωx

σaelekdx,196

(D±
ξ )kl =

∫
Ωx

D±
ξ elekdx, (Dup

ξ,vγ,ξ
)kl =

∫
Ωx

Dup
ξ (vγ,ξ, el)ekdx, (with ξ = x, y),197

Djump = αx(D
−
x −D+

x ) + αy(D
−
y −D+

y ).198199

In addition, Gn+1 is the source vector, with its k-th entry
∫
Ωx

Gn+1ekdx, and Θ = ε2(M +∆tΣa) + ∆tΣs. Using the standard200

choices of the basis of UK
h (e.g. with the support of each basis function being one mesh element), the matrices M , Σs, Σa and201

Θ are block-diagonal. When the boundary conditions are periodic or vacuum in space, one can easily show D+
ξ = −(D−

ξ )T with202

ξ = x, y (see [37] for details).203
To avoid inverting the big matrix A directly, we apply the Schur complement. Noticing that204

(2.12) gn+1
j = Θ−1

(
bn
gj
−∆t(vj,xD

−
x + vj,yD

−
y )ρn+1

)
, ∀j = 1, . . . ,Nv ,205

we eliminate gn+1
j terms in the equation determined by the first line of A and obtain206

(2.13) Hρn+1 = b̃n
ρ ,207

where208

H =M +∆tΣa +∆tDjump −∆t2
∑
j

ωj(vj,xD
+
x + vj,yD

+
y )Θ−1(vj,xD

−
x + vj,yD

−
y )209

=M +∆tΣa +∆tDjump −∆t2(⟨v2x⟩hD+
x Θ−1D−

x + ⟨v2y⟩hD+
y Θ−1D−

y ).210211

The second line above is a direct result of ⟨vxvy⟩h = ⟨vxvy⟩ = 0 in (2.6). With (2.13), we only need to invert a linear system (2.13)212

of a much smaller size for ρ. Moreover, H is a discrete heat operator, and it is symmetric positive definite due to D+
ξ = −(D−

ξ )T213

with ξ = x, y, and hence can be efficiently inverted, e.g. by the conjugate gradient (CG) method with algebraic multigrid (AMG)214
preconditioners. Once ρn+1 is available, gn+1

j can be obtained from (2.12), and this can be carried out in a parallel fashion, given215

that Θ is block-diagonal and the equations (2.12) in j are decoupled.216

2.3. Stability. When UK
h with K = 0 is used (as numerically tested in Section 4), our FOM method is first order217

accurate, and its stability can be established by following similar techniques in [37], and this result will play an important role in218
the design of the ROM. The key to prove the stability in [37] is to introduce the following discrete energy:219

(2.14) En
h = ||ρnh ||

2 + ε2
Nv∑
j=1

ωj ||gnh,j ||
2 +∆t

Nv∑
j=1

ωj

∫
Ωx

σs(g
n
h,j)

2dx,220

where || · || is the standard L2 norm in L2(Ωx). With σs ≥ 0, the term En
h is non-negative and gives a well-defined energy. Using221

similar techniques in [36, 37], we can extend the Theorem 5.4 in [37] from 1D to 2D. We next state this result, presented in the222
context of the current work.223
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Theorem 2.1. (Stability condition)1 Suppose ωj ≥ 0, ∀1 ≤ j ≤ Nv, and σs ≥ σm > 0. Let h = min(min1≤i≤Nx (xi+ 1
2
−224

xi− 1
2
),min1≤i≤Ny (yi+ 1

2
− yi− 1

2
)), we have that225

(1) when ε
σmh

≤ 1
4max1≤j≤Nv

|vj |∞
, En+1

h ≤ En
h ∀∆t > 0;226

(2) when ε
σmh

> 1
4max1≤j<Nv

|vj |∞
, En+1

h ≤ En
h under the time step condition

∆t ≤
εh

4max1≤j≤Nv |vj |∞ − σmh/ε
.

The theorem implies that the scheme is unconditionally stable in the diffusive regime (i.e. when ε/(σmh) is small enough),227
and the stability condition in the transport regime (i.e. ε = O(1)) is on the same level as the standard CFL condition ∆t = O(εh).228

3. The micro-macro decomposed reduced basis method. Our proposed MMD-RBM algorithm consists229
of an Offline stage, which constructs the low dimensional subspaces and a reduced quadrature rule, and an Online stage which230
features a surrogate solver capable of efficiently computing moments of f and predicting the angular flux f corresponding to231
angular directions unseen during the Offline stage. In this section, we outline the entire algorithm in Section 3.1. In particular,232
we provide a high-level sketch in Figure 1 to assist reading. We then discuss each step of the Online and Offline stages in Sections233
3.2 and 3.3, respectively. A computational complexity analysis is provided in Section 3.4 relating the cost of MMD-RBM with234
those of vanilla POD and brute force FOM.235

3.1. Outline of the MMD-RBM algorithm. The flowchart of the entire algorithm is summarized in Figure 1.236
Other than the clear distinction of Offline and Online stages, another feature of this algorithm is that237

ROM(·; ·, ·),238

representing our reduced order (thus online) solver, appears offline too, albeit with a pair of dynamically expanding surrogate239
spaces as the second and third input. Being a critical step in the greedy algorithm, this solver helps to recursively build the240
reduced parameter sets and augment the surrogate spaces in a greedy fashion. For this reason, before we dive into the detailed241
description of the Offline stage in Section 3.3, we first introduce in Section 3.2 this reduced formulation which corresponds to the242
full-order scheme (2.7).243

Specifically, in Section 3.2, we introduce our projection-based reduced formulation ROM(V;Uρ
h,r,U

g
h,r). Here Uρ

h,r is the244

reduced order space for ρ, Ug
h,r is the reduced order space for g, and V is the angular set used in the angular discretization. We245

assume that there are quadrature weights {ωv}v∈V associated with V, and the discrete analogue ⟨·⟩h,V for the integral operator ⟨·⟩.246
In the online surrogate solver, we solve ROM(Vrq;Uρ

h,r,U
g
h,r) with the terminal Uρ

h,r and Ug
h,r; and in the greedy sampling offline,247

we solve ROM(Vtrain;Uρ
h,r,U

g
h,r) with the current (and to-be-updated) Uρ

h,r and Ug
h,r. Here, Vrq is the (usually unstructured)248

set of angular values identified by the Offline algorithm while Vtrain denotes the (usually structured) training set of the angular249
directions specified at the beginning of the Offline algorithm.250

In the Online stage (the pink block of the flowchart, to be described in Section 3.2), our ROM can be utilized to predict f251
at angular directions outside the training set as well as some moments of f with significantly fewer degrees of freedom. In the252
Offline stage (the blue block of the flowchart, to be described in Section 3.3), after initializing the quadrature nodes of the reduced253
quadrature rule Vrq and the set of sampled parameters T ρ

rb and T Vg
rb, we use a greedy algorithm to iteratively construct the254

subspace Uρ
h,r and Ug

h,r. The main steps are255

• described in Section 3.3.1, solving ROM(Vtrain;Uρ
h,r,U

g
h,r) to identify the most under-resolved angular and temporal256

samples, tnewρ for ρ and (tnewg ,vnew
g ) pair for g, based on an importance indicator. Updating the set of sampled parameters257

T ρ
rb with tnewρ and T Vg

rb, in a symmetry-enhancing fashion, with (tnewg ,±vnew
g ).258

• described in Section 3.3.2, updating the corresponding reduced quadrature rule ⟨·⟩h,Vrq preserving weight positivity via259
a novel least squares strategy.260

• described in Section 3.3.3, updating the RB spaces (Uρ
h,r,U

g
h,r).261

3.2. Reduced MMD formulation and online functionalities. Reduced MMD formulation ROM(V;Uρ
h,r,U

g
h,r).262

We present the reduced MMD formulation in its matrix-vector form. Toward this end, we assume that Bρ ∈ RNx×rρ and263
Bg ∈ RNx×rg contain the orthonormal basis of Uρ

h,r and Ug
h,r, respectively, as their columns, and look for the reduced solution264

ρr = Bρcρ for ρ, and gv,r = Bgcgv for g at v ∈ V. More specifically: given cnρ ∈ Rrρ and cngv ∈ Rrg ∀v ∈ V, we seek cn+1
ρ ∈ Rrρ265

1This theorem can be established by following the proofs of Theorem 5.3 and Theorem 5.4 in [37] for the one spatial dimension
case. The only difference is that, due to the extra dimension in space, there will be two extra terms similar to equations (5.7)
and (5.8) of [37] in an equality similar to equation (5.5) of [36].
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Stopping criteria
satisfied?

Initialization:(1) sampled parameter sets, (2) reduced quadrature nodes
Vrq, (3) reduced spaces Uρ

h,r and Ug
h,r via FOM(Vrq)

Input: temporal mesh Ttrain and angular training set Vtrain

Compute error indicatorsSolve ROM(Vtrain;U
ρ
h,r ,U

g
h,r )

Greedy selection of an-
gular and time sample

⋆ Symmetry-enhancing update
⋆ Update reduced quadrature rule
⟨·⟩h,Vrq

Solve FOM(Vrq) and up-
date spaces Uρ

h,r ,U
g
h,r

Greedy procedure

Offline stage

Output: Vrq, ⟨·⟩r ,Vrq

and Uρ
h,r , U

g
h,r

No

Yes

Solve ROM(Vrq;U
ρ
h,r ,U

g
h,r )

to compute moments

Predict f for unseen v

Online stage

Fig. 1: The flowchart of the proposed MMD-RBM algorithm.

and cn+1
gv ∈ Rrg ∀v ∈ V, satisfying266

BT
ρ MBρ

cn+1
ρ − cnρ

∆t
+

∑
v=(vx,vy)∈V

ωvB
T
ρ (vxD

+
x + vyD

+
y )Bgc

n+1
gγ267

+BT
ρ D

jumpBρc
n+1
ρ = −BT

ρ ΣaBρc
n+1
ρ +BT

ρ Gn+1,(3.1a)268

ε2BT
g MBg

cn+1
gv − cngv

∆t
+ ε

∑
µ=(µx,µy)∈V

(δvµ − ωµ)B
T
g (Dup

x,µx
+Dup

y,µy
)Bgc

n
gγ269

+BT
g (vxD

−
x + vyD

−
y )Bρc

n+1
ρ = −BT

g (Σs + ε2Σa)Bgc
n+1
gv .(3.1b)270271

Similar to the FOM, the Schur complement can again be applied when solving the linear system (3.1), and the resulting rρ × rρ272

problem is in the form: Hρ
rc

n+1
ρ = RHSnr,ρ. Here273

Hρ
r =BT

ρ (M +∆tΣa +∆tDjump)Bρ274

−∆t2(⟨v2x⟩h,VD+
r,ρg,x(Θr,g)

−1D−
r,ρg,x + ⟨v2y⟩h,VD+

r,ρg,y(Θr,g)
−1D−

r,ρg,y),(3.2)275276

where D+
r,ρg,ξ = BT

ρ D
+
ξ Bg and D−

r,ρg,ξ = BT
g D

−
ξ Bρ with ξ = x, y and Θr,g = BT

g (ε2M + ∆tΣs + ε2∆tΣa)Bg , therefore Hρ
r is277

symmetric positive definite, just like its FOM counterpart.278

Online functionalities. This reduced MMD formulation is iteratively called in the Offline training stage, as to be seen in Section279
3.3. At each iteration, the spaces Uρ

h,r and Ug
h,r are augmented and the reduced quadrature rule ⟨·⟩h,Vrq is updated. At the end280

of this process with the terminal surrogate spaces Uρ
h,r and Ug

h,r, ROM(Vrq;Uρ
h,r,U

g
h,r) can be utilized as a surrogate solver for281

two purposes. First, we can reconstruct the scalar flux ρ and high order moments of f ; and second, we can predict solutions f282
for v unseen in the offline process. We next detail these two functionalities.283

To reconstruct ρ and compute the high order moments, we solve ROM(Vrq;Uρ
h,r,U

g
h,r) to compute cnρ and cng . The scalar284
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flux, the first and the second order moments are approximated as:285

ρn ≈ Bρc
n
ρ ,(3.3a)286

⟨fnvξ⟩ = ⟨(ρn + εgn)vξ⟩ = ε⟨gnvξ⟩ ≈ εBg⟨vξcngv ⟩h,Vrq , ξ = x, y, z,(3.3b)287

⟨fnvξvη⟩ = ⟨(ρn + εgn)vξvη⟩ = ⟨vξvη⟩ρn + ε⟨gnvξvη⟩288

≈ ⟨vξvη⟩Bρc
n
ρ + εBg⟨vξvηcngv ⟩h,Vrq , ξ, η = x, y, z.(3.3c)289290

Moreover, higher order moments can be computed similarly by integrating, using the reduced quadrature rule ⟨·⟩h,Vrq , the291
corresponding quantities involving the reduced order solutions. We note that the advantages to reconstruct ρ and high order292
moments with ROM(Vrq;Uρ

h,r,U
g
h,r) include computation efficiency, resulting from the adoption of the reduced quadrature rule,293

and memory saving2.294
When predicting f for an unseen angular direction vun, we solve295

ε2BT
g MBg

cn+1
gvun − cngvun

∆t
+ ε

(
BT

g (Dup
x,vun

x
+Dup

y,vun
y

)Bgc
n
gunv
− cn,upwind

⟨v·∇xg⟩

)
296

+BT
g (vunx D−

x + vuny D−
y )Bρc

n+1
ρ = −BT

g (Σs + ε2Σa)Bgc
n+1
gvun ,(3.4)297

with cn,upwind
⟨v·∇xg⟩ = ⟨BT

g (Dup
x,µx

+Dup
y,µy

)Bgc
n
gv ⟩h,Vrq .298

299

In equation (3.4), cn+1
ρ and cn,upwind

⟨v·∇xg⟩ can be obtained through pre- or on-the-fly computations by solving ROM(Vrq;Uρ
h,r,U

g
h,r).300

The angular flux f for vun is approximated by fn
vun ≈ Bρcnρ + εBgcngvun .301

Algorithm 3.1 Offline algorithm

1: Input: the training parameter sets Ttrain and Vtrain

2: Step 1 (initialization): Initialize sampled parameter sets T ρ
rb = ∅ and T Vg

rb = ∅, the reduced quadrature
nodes set Vrq, and the reduced spaces Uρ

h,r and Ug
h,r.

3: Step 2 (greedy iteration):
4: for i = 1 : max number of iterations do
5: if the stopping criteria are satisfied then
6: Stop.
7: else
8: (i) solve the reduced order problem ROM(Vtrain;U

ρ
h,r,U

g
h,r);

(ii) compute the values of the L1 importance indicators for ρ and g, and greedily pick the
most under-resolved time tnewρ for ρ and the most under-resolved (tnewg ,vnew

g ) pair for g;
(iii) update the parameter sets T ρ

rb and T Vg
rb with symmetry-enhancing strategy;

(iv) update the reduced quadrature set Vrq and the corresponding quadrature rule ⟨·⟩h,Vrq
;

(v) perform the full order solve with the reduced quadrature rule FOM(Vrq) and update the
reduced spaces Uρ

h,r and Ug
h,r, and the corresponding basis matrices.

9: end if
10: end for
11: Output: a reduced order solver, determined by Vrq, ⟨·⟩h,Vrq

, and Uρ
h,r, U

g
h,r.

3.3. Offline algorithm. Summarized in Algorithm 3.1, the Offline algorithm starts with the training sets for t and v,302
given as303

Ttrain = {tn, 0 ≤ n ≤ Nt}, Vtrain = {vj : 1 ≤ j ≤ Nv},304

with some prescribed cardinalities Nt and Nv . In preparing for the greedy iteration, we initialize the sampled parameter sets,305
T ρ
rb ⊂ Ttrain and T Vg

rb ⊂ Ttrain ⊗ Vtrain, as empty. We use a low order Lebdev quadrature rule (i.e. nodes and weights) to306

2For the FOM, the memory to save the time history of ρ and the high order moments is of O(NxNt). In the reduced order
reconstruction, O(Nxrρ) and O(Nxrg) are needed to save Bρ and Bg , while O(Ntrρ) and O(Ntrg) are assigned for the time
history of cnρ and moments of cngv (e.g. ⟨vxcngv ⟩h,Vrq ). The total memory needed by the reduced order model to reconstruct

the time history of ρ is of O(rρ(Nx + Nt)), and that for the kth order moments following (3.3) is of O(rg(Nx + Nt)) (k odd)
and O((rρ + rg)(Nx + Nt)) (k even) respectively. These are all significantly smaller than their FOM counterparts assuming
rρ, rg ≪ Nx or Nt.
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initialize the set of reduced quadrature nodes Vrq and the associated quadrature rule ⟨·⟩h,Vrq . Given Vrq, we call the full order307
solver FOM(Vrq) with the integral replaced by ⟨·⟩h,Vrq , and obtain the numerical solution {ρn, gn

v : 1 ≤ n ≤ Nt, ∀v ∈ Vrq} which308
allows us to initiate the reduced spaces and the corresponding snapshot matrices309

Uρ
h,r = span{ρNt}, Ug

h,r = span{gNt
v , v ∈ Vrq},310

311

Sρ = [ρNt ] ∈ RNx×1, Sg = [gNt
v ]v∈Vrq ∈ RNx×|Vrq|.312

The initial basis matrix Bη is obtained by orthonormalizing the columns of Sη for η = ρ, g. We are now ready for details of the313
greedy iteration, with its main components presented below according to the order summarized at the end of Section 3.1.314

3.3.1. L1 importance indicator and symmetry-enhancing parameter selection. At every greedy315
step, the most under-resolved parameter values for ρ and g (were the current reduced spaces to be adopted) will be determined by316
the L1 importance indicator [9, 8]. Indeed, given the reduced order space Uη

h,r (η = ρ, g), its snapshot and orthonormal matrices317

Sη and Bη , together with the sampled parameter set T ρ
rb ⊂ Ttrain and T Vg

rb ⊂ Ttrain ⊗Vtrain, we invoke ROM(Vtrain;Uρ
h,r,U

g
h,r)318

to obtain the reduced order solution {(ρn
r , g

n
v,r) : ∀n = 1, . . . Nt, ∀v ∈ Vtrain}. They are expanded under the two basis systems as319

(3.5)
{(

ρn
r = Bρc

n
ρ = Sρc̃

n
ρ , gn

v,r = Bgc
n
gv = Sg c̃

n
gv

)
: ∀n = 1, . . . Nt, ∀v ∈ Vtrain

}
.320

The L1 importance indicator is defined as:321
∆n

ρ = ||c̃nρ ||1, ∆n
gv = ||c̃ngv ||1.322

Here || · ||1 represents the ℓ1-norm. As shown in [8], c̃nρ (resp. c̃ngv ) represents a Lagrange interpolation basis in the parameter323
induced solution space {ρn

r : 1 ≤ n ≤ Nt} (resp. {gn
v,r : 1 ≤ n ≤ Nt,v ∈ Vtrain}), implying that the indicator ∆n

ρ (resp.324
∆n

gv ) represents the corresponding Lebesgue constant. The following strategy to select the parameter sample then amounts to325
controlling the growth of the Lebesgue constants and hence is key toward accurate interpolation.326

tnewρ = argmaxtn∈Ttrain\T
ρ
rb
∆n

ρ ,327

(tnewg ,vnew
g ) = argmax(tn,v)∈Ttrain⊗Vtrain\T Vg

rb
∆n

gv .328
329

Once these greedy picks are determined, the parameter sample sets will be updated330

T ρ
rb ← {t

new
ρ }

⋃
T ρ
rb, T Vg

rb ←
{
(tnewg ,vnew

g ), (tnewg ,−vnew
g )

}⋃
T Vg

rb.331

Similar to the steady state problem [34], a symmetry enhancing strategy is applied when updating T Vg
rb by adding both vnew

g332
and its opposite angular direction −vnew

g . This strategy improves the robustness and accuracy of the reduced quadrature rule,333
especially in the early stage of the greedy algorithm.334
Remark 3.1. The main advantage of the L1 importance indicator is that it is residual free and can be computed fast (also see335
(3.11)). One can alternatively use the residual as an error estimator. However, the RTE is a multiscale transport system and336
the residual of its numerical method is not a sharp error estimator. Sharper error estimators can be constructed for transport337
problems by solving the adjoint problems [19], and this requires extra cost and will not be pursued in this paper.338

3.3.2. Reduced quadrature rule construction. When vnew
g /∈ Vrq, we update the set of the reduced quadrature339

nodes as340

Vrq ← {vnew
g ,−vnew

g } ∪ Vrq.341

Though with some symmetry built-in at each step, the angular samples in Vrq that are greedily picked offline are in general un-342
structured. A stable and accurate numerical quadrature rule associated with these samples, although important to the robustness343
and accuracy of the proposed reduced order solver, may not naturally exist. To fill this void, we design a least squares strategy344
to construct a reduced quadrature rule, similar to that for mesh-free numerical methods [16] and further propose an algorithm345
capable of preserving weight positivity.346
Theorem 3.2. Given an integrable function f(v) : S2 → R and a positive integer M , let Ym,l be the real-valued spherical347
harmonic function of degree m and order l with 0 ≤ m ≤ M and −m ≤ l ≤ m. On a (possibly unstructured) grid Vrq with348

cardinality Nrq
v and nodes having spherical coordinates {(θk,ϕk)}

Nrq
v

k=1, the following reduced quadrature rule349

(3.7) ⟨f⟩h,Vrq =

Nrq
v∑

k=1

ωkf(v(θk,ϕk)), with ωk =
1
√
4π

I†1,k350

has a degree of exactness M . Here I is a matrix of size Nrq
v × (M + 1)2 with Iij = Yml(θi,ϕi) and j = m2 + l +m + 1. It is351

assumed (M + 1)2 ≤ Nrq
v .352

Proof: We note that S2 = {v = v(θ,ϕ) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)), θ ∈ [0,π],ϕ ∈ [0, 2π]} and the real-valued353
spherical harmonics form an orthogonal basis of L2(S2). We define the following ansatz of order M ,354

(3.8) fβ(v(θ,ϕ)) =

M∑
m=0

m∑
l=−m

βm,lYm,l(θ,ϕ),355
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and seek a particular such function with coefficient being the solution to the least squares problem:356

βLS = argmin
β

Nrq
v∑

i=1

∣∣fβ(v(θi,ϕi))− f(v(θi,ϕi))∣∣2 = argmin
β
||Iβ − f ||,357

where I ∈ RNrq
v ×(M+1)2 and f ∈ RNrq

v satisfy Iij = Yml(θi,ϕi), with j = m2 + l +m + 1, and fi = f(v(θi,ϕi)). One can358
easily see that βLS = I†f , where I† is the pseudo inverse of I. The integral ⟨f⟩ is now approximated by the reduced quadrature359
rule ⟨f⟩h,Vrq which is nothing but the exact integration of the least squares approximation360

⟨f⟩h,Vrq =
1

4π

∫ π

0

∫ 2π

0
fβLS

(v(θ,ϕ))sin(θ)dθdϕ =
1

4π

(∫ π

0

∫ 2π

0
βLS,00Y0,0(θ,ϕ)sin(θ)dθdϕ361

+

M∑
m=1

m∑
l=−m

∫ π

0

∫ 2π

0
βLS,mlYm,l(θ,ϕ)sin(θ)dθdϕ

)
362

=
1
√
4π
βLS,00 =

Nrq
v∑

k=1

1
√
4π

I†1kf(v(θk,ϕk)).363

364

From the construction above, one can see that the reduced quadrature rule is exact for polynomials (in v) up to degree M , hence365
of accuracy order M . □366

We emphasize that, just like any numerical integration of interpolatory type, the weights are independent of the integrand367
f . In this work, we always assume M ≥ 3. As a result, ⟨v2ξ ⟩ with ξ = x, y, z are computed exactly and they will appear in the368

diffusion limit. Additionally ⟨vxvy⟩ = ⟨vxvz⟩ = ⟨vyvz⟩ = 0 is also exactly computed, and this will ensure the absence of the369
cross-derivatives of second order in the reduced order problems (3.2), as illustrated in (2.13). We also note that the proposed370
algorithm can be easily generalized to the 1D slab geometry Ωv = [−1, 1] and the unit circle Ωv = S1 by replacing the spherical371
harmonic expansion in (3.8) with expansions of Legendre polynomials and trigonometric functions, respectively.372

While the construction of the reduced quadrature has spectral accuracy, it does not guarantee the associated quadrature373
weights to be non-negative. It is observed numerically that the reduced and full order solvers could blow up when some of374
quadrature weights are negative. The root of this instability is that the discrete energy Enh defined in (2.14) can be negative in375
the presence of negative quadrature weights. To preserve stability, we propose a strategy, described in Algorithm 3.2, to generate376
the reduced quadrature rule with non-negative weights. The basic idea is to decrease the order M , when negative weights are377
present, until either all the weights are non-negative for the first time or M reaches a prescribed minimal value Mmin ≥ 3. If378
taking M = Mmin still results in negative weights, we simply use the same quadrature rule as the previous greedy iteration and379
set the weights associated with the newly added angular samples to be 0. Recall that the initial quadrature rule is chosen as a low380
order Lebedev quadrature rule with positive quadrature weights. Therefore, the proposed strategy always results in non-negative381
reduced quadrature weights during the greedy iterations.382

Algorithm 3.2 Iterative procedure to construct reduced quadrature rule with non-negative weights.

1: Input: Current sampled angular points Vrq = {vkj
}N

rq
v

j=1 and the sampled angular points for the previous

iteration Vold
rq . Let the reduced quadrature rule for Vold

rq be {vold
kj

,ωold
j }N

rq,old
v

j=1 with ωold
j ≥ 0, ∀j, the order

Mmin and Mmax.
2: Initialize the bool variable Failure = true.
3: for M = Mmax : −1 : Mmin do
4: Use equation (3.7) to construct an order M reduced quadrature rule ⟨·⟩h,Vrq

.
5: if All the quadrature weights are non-negative, then
6: set Failure = false, and break.
7: end if
8: end for
9: if Failure then

10: set the quadrature weight ωnew
j for vkj

∈ Vrq as

ωnew
j =

{
0, if vkj ̸∈ Vold

rq ,

ωold
j , if vkj ∈ Vold

rq .

11: end if
12: Output: the quadrature rule {vkj

,ωnew
j }N

rq
v

j=1 for Vrq with non-negative weights.
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3.3.3. Update of the reduced order spaces. Given the sampled parameter set {T ρ
rb, T V

g
rb}, reduced quadrature383

nodes Vrq containing the v−components of T Vg
rb, and the associated quadrature rule ⟨·⟩h,Vrq , we augment the reduced order384

space Uη
h,r (η = ρ, g) and its corresponding matrices Sη and Bη . Indeed, we perform FOM(Vrq) which is affordable thanks to the385

small size of Vrq to obtain the solution snapshots ρn, gn
v , ∀n = 1, . . . ,Nt, ∀v ∈ Vrq. We are then ready for the updates.386

Update Uρ
h,r and Bρ. This will be done in a straightforward manner, namely Uρ

h,r = span{ρm : tm ∈ T ρ
rb}. Correspondingly,387

the snapshot matrix Sρ is assembled. We then orthonormalize Sρ through the (reduced) singular value decomposition (SVD):388

(3.9) Sρ = BρΛρV
T
ρ ∈ RNx×rρ ,389

where Bρ ∈ RNx×rρ , Vρ ∈ Rrρ×rρ , satisfying BT
ρ Bρ = V T

ρ Vρ = Irρ , and Λρ ∈ Rrρ×rρ is a diagonal matrix. The columns of Bρ390

form an orthonormal basis of Uρ
h,r. As one will see, the singular values in Λρ can be further utilized in the stopping criteria.391

Update Ug
h,r and Bg via an equilibrium respecting strategy. The update of the reduced order space for g is more subtle.392

Particularly, we set393

Ug
h,r = span

{
{∆tΘ−1D−

x ρm,∆tΘ−1D−
y ρm : tm ∈ T ρ

rb} ∪ {g
m
v : (tm,v) ∈ T Vg

rb}
}
.394

That is, the reduced order space for g includes not only the sampled g-snapshots but also the scaled discrete derivatives of the395
sampled ρ-snapshots. Correspondingly, the snapshot matrix Sρ is assembled which is further orthonormalized through its own396
SVD397

Sg = BgΛgV
T
g ∈ RNx×rg ,(3.10)398399

where Bg ∈ RNx×rg , Vg ∈ Rrg×rg , satisfying BT
g Bg = V T

g Vg = Irg . The columns of Bg form an orthogonal basis of Ug
h,r.400

Fast computation of L1 error indicator. Using the SVD in (3.9) and (3.10), one can show that c̃nρ and c̃ngv in (3.5) satisfy401

c̃nρ = VρΛ
−1
ρ cnρ , c̃ngv = VgΛ

−1
g cngv ,402

and as a result ∆n
ρ and ∆n

gv can be computed efficiently as403

(3.11) ∆n
ρ = ||VρΛ−1

ρ cnρ ||1 and ∆n
gv = ||VgΛ−1

g cngv ||1.404

Remark 3.3. The equilibrium respecting strategy is designed to improve the performance of our method especially in the diffusive405
regime. To see the motivation, note that as ε→ 0 and with σs > 0, we have406

gm
v → −Σ−1

s (vxD
−
x + vyD

−
y )ρm.407408

That is, in the diffusion limit, gm is a linear combination of the scaled derivatives of ρn. In general, ε is small in the diffusive409
regime yet nonzero, and one would want to consider the relation in (2.12) instead. Hence ∆tΘ−1D−

x ρm and ∆tΘ−1D−
y ρm are410

included to enrich the reduced order space for g. Another benefit of such enrichment over including Σ−1
s D−

x ρm and Σ−1
s D−

y ρm411
is to be able to handle the case when σs is zero in some subregion(s) and the associated Σs is singular. It is easy to see that412
limε→0 Θ = ∆tΣs.413
Remark 3.4. In this paper we always add scaled ρ derivative terms to the subspace for g. To improve the efficiency one can414
add scaled derivative terms only at (x, t) where the solution is close to the local equilibrium. One potential strategy is to utilize415
indicators measuring the distance between the solution and the local equilibrium. Such indicators have been designed in hybrid416
solvers adapting between kinetic and fluid/diffusion solvers [15, 23]. We first identify (x, t) corresponding to solutions which417
are close enough to the local equilibrium and only add scaled derivative terms at those points. Another approach is to apply the418
reduced basis element method [28] which divides the computational domain to small subdomains and build basis functions for419
each subdomain. We only add derivative terms for subdomains where scattering effect is strong. These approaches to adaptively420
adding ρ derivatives are left for future investigation.421
Remark 3.5. We orthornormalize Sρ and Sg with SVD, and one can alternatively orthornormalize them with the QR decompo-422
sition. The SVD decomposition provides singular values which can be utilized in the stopping criteria and furnishes a mechanism423
for efficiently computing the error indicators.424
Remark 3.6. We note that the dimension of Ug

h,r resulting from the first greedy iteration will be smaller than its initial425

dimension. After the first greedy iteration, Ug
h,r is determined by the sampled parameter set T ρ

rb and T Vg
rb, while the initial Ug

h,r426

is not and its initial dimension is |Vrq|. In the first greedy iteration, max{|T ρ
rb|, |T V

g
rb|} < |Vrq|, and this leads to the reduction427

of dimension of Ug
h,r compared with its initialization.428

3.3.4. Stopping criteria. The L1 importance indicator identifies the most under-resolved parameter sample(s), but429
it does not inform us the magnitude of the error. To effectively stop the Offline greedy algorithm, we design the following two-fold430
stopping criteria. The first criterion, based on the spectral ratio, measures how much new information is added in each greedy431
iteration. The second criterion, an approximate relative error at the final time, can be computed efficiently. The Offline greedy432
algorithm stops when both criteria are satisfied.433
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1. Spectral ratio stopping criterion: Similar to [34], we use the spectral ratio as one stopping criterion measuring how434
much new information is gained by expanding the reduced subspaces. Suppose we are in the m-th greedy iteration, with435
all notation now having a superscript m. Let Λm

ρ and Λm
g be the diagonal matrix from the SVD in (3.9) and (3.10),436

with the last diagonal entry as σρ,m
rmρ

and σg,m
rmg

, respectively. We define two spectral ratios:437

ratiomρ =
σρ,m
rmρ

Tr(Λm
ρ )

, ratiomg =
σg,m
rmg

Tr(Λm
g )

,438

and check whether max{ratiomρ , ratiomg } < tolratio is satisfied.439
The spectral ratio criterion itself does not directly estimate the error in the reduced order approximations. For that, we440
propose the second criterion.441

2. Approximate relative error at the final time with a coarse mesh in Ωv: Recall that in each greedy iteration,442
we have two sets of approximations for ρ and g(·,v, ·) ∀v ∈ Vrq. One set, denoted as ρnh,r, g

n
h,v,r ∀v ∈ Vtrain, is443

obtained by calling the reduced order solve ROM(Vtrain;Uρ
h,r,U

g
h,r) in the greedy sampling. The other set, denoted as444

ρn,FOM
h,Vrq

, gn,FOM
h,v,Vrq

∀v ∈ Vrq, is obtained when updating the reduced order spaces by calling the full order solve FOM(Vrq),445

with a reduced quadrature rule associated with Vrq. Based on these approximations, we define the following to measure446
the relative errors at the final time tNt :447

Estimatorρ =
||ρNt

h,r − ρ
Nt,FOM
h,Vrq

||

||ρNt,FOM
h,Vrq

||
,(3.12a)448

Estimatorf = max
v∈Vrq∩Vtrain

||ρNt
h,r + εgNt

h,v,r − ρ
Nt,FOM
h,Vrq

− εgNt,FOM
h,v,Vrq

||

||ρNt,FOM
h,Vrq

+ εgNt,FOM
h,v,Vrq

||
,(3.12b)449

450

and check whether Estimatorρ < tolerror,ρ and Estimatorf < tolerror,f are satisfied.451
The reason why we still need the spectral ratio criterion is that Vrq is a coarse mesh in Ωv , and in the early stage of the greedy452

algorithm, the full order solution associated with this mesh may not be accurate enough to approximate the full order solution453
corresponding to the training set which has high resolution in Ωv . We also want to point out that this error approximation454
strategy can not be used in the greedy sampling step, as we need an error indicator for all the v ∈ Vtrain while the full order455
solution is only available for v ∈ Vrq which have already been sampled.456

3.4. Computational cost. Now, we summarize the computational cost of the Online and Offline stages. We will457
start with the computational cost of the reduced order problem ROM(V;Uρ

h,r,U
g
h,r), which will be used both online and offline.458

This cost consists of two parts. Firstly, before time marching begins, one needs to assemble the reduced order discrete operators459
such as BT

ρ MBρ, D
±
r,ρg,x etc, and the leading order of the cost is O(max{rρ, rg}2Nx). Additionally, one needs to invert Θr,g and460

Hρ
r . With Cholesky factorization, the associated cost will be O(r3g) and O(r3ρ), respectively. Secondly, in each time step, with the461

precomputed Cholesky factor, the cost to solve (3.1) for cn+1
ρ is O(r2ρ), and the cost to update cn+1

gv for all v ∈ V based on the462

known cn+1
ρ is O(max(rρ, rg)rg |V|). Hence the total cost over Nt time steps is O

(
(r2ρ + max(rρ, rg)rg |V|)Nt

)
once the reduced463

order operators are computed prior to the time marching.464

Online Cost. The computational cost of the Online stage comes from solving the ROM(Vrq;Uρ
h,r,U

g
h,r) in (3.1) from t = 0 to465

Nt∆t, and it is O((r2ρ + max(rρ, rg)rgN
rq
v )Nt) with Nrq

v = |Vrq|. The computational cost to predict f for an unseen angular466
direction from n = 0 to Nt by solving (3.4) is O(max(rρ, rg)rgNt). Here we assume that the reduced order operators are available.467

Offline Cost. We denote the reduced orders for ρ and g in the m-th greedy iteration as rmρ and rmg , and the number of reduced468

quadrature nodes by Nrq
v,m. We let rm = max(rmρ , rmg ) and Ntrain

v = |Vtrain|. The cost of the m-th iteration of the offline greedy469
procedure in Algorithm 3.1 is summarized in Table 1, in particular the total computational cost of the Offline stage of the m-th470
iteration is471

Niter∑
m=1

(
O(r2m(Nx +Ntrain

v Nt)) +O(Nrq
v,mNxNt)

)
.472

473
To estimate the overall offline cost, we assume that the final reduced orders are rρ and rg , and let r = max(rρ, rg). Given that474

the total number of greedy iterations Niter scales linearly with r, that rm scales linearly with m, and that in the worst scenario475
Nrq

v,m(≤ Ntrain
v ) scales linearly with m, we conclude that476

(3.13) Offline time of MMD-RBM = O(r3(Nx +Ntrain
v Nt)) +O(r2NxNt)).477

To put this estimate into context, we compare it with the costs of the POD and the full order model. The offline cost of the478
vanilla POD is dominated by computing the SVD of the snapshot matrix which is of size Nx×(NtNtrain

v ). That cost (of obtaining479
U and Σ in UΣV T ) is O(max(Nx,Ntrain

v Nt)× (min(Nx,Ntrain
v Nt))2) [17]. Therefore, the relative offline computational time of480

the MMD-RBM and the vanilla POD is481

Offline time of MMD-RBM

Offline time of vanilla POD
= O

(
r2

Ntrain
v N⋆

+
r3

N2
⋆

)
,482
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Leading order of the cost
Greedy sampling:
Assemble reduced order operators O(r2mNx)
Compute Cholesky factorization of Hρ

r and Θr,g O(r3m)
Compute ROM(Vtrain;U

ρ
h,r,U

g
h,r) and error indicators O(r2mN train

v Nt)

Update Vrq and ⟨·⟩h,Vrq if necessary O(N rq
v,m)

Update reduced order spaces and basis:
Solve FOM(Vrq) with AMG- preconditioned CG O(N rq

v,mNxNt)
Update basis with SVD O(r2mNx)
Check stopping criteria O(rm +Nx)
Total cost for the m-th iteration O(r2m(Nx +N train

v Nt)) +O(N rq
v,mNxNt)

Table 1: The computational cost of the m-th greedy iteration of the Offline algorithm.

Leading order of the cost
Solving ROM(Vrq;U

ρ
h,r,U

g
h,r) O(r2N rq

v Nt)

Table 2: The computational cost of the Online algorithm.

where N⋆ = min(Nx,Ntrain
v Nt). Moreover, we have483

Offline time of MMD-RBM

Time of solving FOM(Vtrain)
= O

(
r2

Ntrain
v

+
r3

Nx
+

r3

Ntrain
v Nt

)
.484

Remark 3.7. SVD can be computed incrementally [4], and hence the POD can be more efficient. If the low rank of the snapshot485
matrix, which is determined by the tolerance in the incremental SVD, is r, the associated cost will be O(NxNtrain

v Ntr). With486
the same r, the relative offline computation between our method and the POD with the incremental SVD is487

Offline time of MMD-RBM

Offline time of POD with incremental SVD
= O

(
r

Ntrain
v

+
r2

Ntrain
v Nt

+
r2

Nx

)
.488

One can see that as long as r ≪ min(
√
Nx,Ntrain

v ,
√
Ntrain

v Nt), the Offline stage of our method is faster than the POD method489
with the incremental SVD.490
Remark 3.8. In this work, we build the reduced basis spaces for both ρ and g. Given the computational cost of the full order491
solve for ρ is much smaller than that for the microscopic part, in practice one can choose to build the reduced basis space only492
for g, especially when the cost of the full order solve for ρ is deemed affordable.493

4. Numerical examples. We demonstrate the performance of the proposed MMD-RBM through a series of numerical494
examples. Throughout this section, the angular training set Vtrain is the set of Nv = 590 Lebedev quadrature points. We use495
piece-wise constant polynomials, i.e. K = 0 in space. When σs is constant, we use the following time step to guarantee stability,496

∆t =

{
h, if ε < 0.25σsh

0.25min( h√
2
, εh√

2σs
), otherwise,

497

where h = min(min1≤i≤Nx (xi+ 1
2
− xi− 1

2
),min1≤i≤Ny (yi+ 1

2
− yi− 1

2
)). When σs is spatially dependent, we use the smallest time498

step size allowed by all σs values. Throughout this section, vacuum boundary conditions are considered. The constants in the499
numerical flux (2.9) are taken to be αx = 1/⟨v2x⟩h and αy = 1/⟨v2y⟩h. We measure the absolute errors and the relative errors of500
the scalar flux ρ and first order moment ⟨vf⟩ as follows, by evaluating the difference between the reduced order solution and a501
reference solution which is computed by the full order solver with Ntest

v = 2072 Lebedev points denoted collectively as Vtest,502

Eρ =

√√√√∆t

Nt∑
n=1

||ρnh,ROM − ρ
n
h,FOM||2, Rρ =

Eρ√
∆t

∑Nt
n=1 ||ρnh,FOM||2

,(4.1a)503

E⟨vf⟩ =

√√√√∆t

Nt∑
n=1

||⟨vf⟩nh,ROM − ⟨vf⟩
n
h,FOM||2, R⟨vf⟩ =

E⟨vf⟩√
∆t

∑Nt
n=1 ||⟨vf⟩nh,FOM||2

.(4.1b)504

505
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Here ∥·∥ denotes the L2 norm which is computed as ∥ρ∥ =
√∫

Ωx
ρ2dx for the scalar function ρ and ∥⟨vf⟩∥ =

√∫
Ωx
⟨vxf⟩2 + ⟨vyf⟩2dx506

for the vector function ⟨vf⟩ = (⟨vxf⟩, ⟨vxf⟩)T . Moreover, we have |Vtest\Vtrain| = 2058. To demonstrate the ability of our method507
to predict the angular fluxes at angular directions outside the training set, we solve for {f(v) : v ∈ Vtest} with our ROM and508
evaluate the worst case absolute and relative errors,509

Ef = max
v

√√√√∆t

Nt∑
n=1

||fnh,v,ROM − f
n
h,v,FOM||2, Rf =

Ef
maxv

√
∆t

∑Nt
n=1 ||fnh,v,FOM||2

.510

We recall that rρ and rg are the dimensions of the reduced order subspace for ρ and g. Nrq
v is the number of nodes in the reduced511

quadrature rule. Finally, we keep track of the data compression efficiency of our ROM via recording the compression ratio (C-R)512

C-R =
DOFs of ROM(Vrq;Uρ

h,r,U
g
h,r)

DOFs of FOM(Vtrain)
=

rρ +Nrq
v rg

(Ntrain
v + 1)Nx

.513

All these quantities will appear in the tables of this section documenting the performance of the proposed MMD-RBM on514
various examples. We implement our solvers in the Julia programming language. When comparing offline computational cost515
with the vanilla POD in Section 4.1, the code was run on Michigan State University’s HPCC cluster. All the other tests were516
performed on a Macbook Air laptop with a M1 chip.517

4.1. Homogeneous media. In the first example, we consider a homogeneous media with σs = 1 and σa = 0 on the518
computational domain [0, 2]2, uniformly partitioned into 80×80 rectangular elements. We adopt an initial condition f(x,v, 0) = 0519
and a Gaussian source G(x) = exp

(
−100((x− 1)2 + (y − 1)2)

)
. Different values of the Knudsen number ε = 1.0 (transport520

regime), ε = 0.1 (intermediate regime) and ε = 0.005 (diffusive regime) are considered to benchmark the performance of the521
proposed algorithm. The final time is T = 0.25 for ε = 1.0 and 0.1, and it is T = 1.5 for ε = 0.005. The reduced quadrature rule522
and reduced spaces are initialized with 26 Lebedev points. For the stopping criteria, we set tolratio as 1e− 4, tolerror,ρ = 1.0%,523
and tolerror,f = 2.0%.524

Performance of the MMD-RBM: The results of the MMD-RBM are presented in Table 3 and Figure 2. In the top row525
of Figure 2, we observe that the reduced order solutions match the full order solutions well. As shown in Table 3, the MMD-526
RBM achieves small relative errors in the scalar flux, the first order moment, and f (w.r.t v ∈ Vtest). The C-R in the ROM527
is consistently below 0.08%. The reduced dimensions rρ and rg decrease as ε decreases showcasing our method’s capability of528
numerically capturing the fact that the problem approaches its diffusive limit.

rρ rg N rq
v C-R Eρ Rρ E⟨vf⟩ R⟨vf⟩ Ef Rf

ε = 1 13 52 48 0.07% 1.29e-5 0.22% 1.99e-5 1.29% 1.21e-4 1.74%
ε = 0.1 8 32 40 0.03% 1.44e-5 0.48% 6.48e-6 1.34% 1.05e-4 3.16%
ε = 0.005 3 12 32 0.01% 7.86e-5 0.48% 1.29e-6 1.43% 7.90e-5 0.48%

Table 3: Dimensions of the reduced order subspaces, rρ, rg, the number of reduced quadrature nodes N rq
v , the

testing error and the compression ratio for the homogeneous media example with the MMD-RBM.

529
In the middle row of Figure 2, we present the training history of convergence. The relative training errors at the final time530

are defined as531

(4.2) RNt
ρ = ||ρNt

h,ROM − ρ
Nt
h,FOM||/||ρ

Nt
h,FOM||, ENt

f = max
v∈Vtrain

||fNt
h,v,ROM − f

Nt
h,v,FOM||/||f

Nt
h,v,FOM||.532

The training errors at the final time and the error estimators in (3.12) are plotted with respect to the number of greedy iterations.533
We can see that as the number of greedy iterations grows, our estimators approximate the relative training errors at the final534
time well. Overall, the relative training errors for ρ and f decrease. In the bottom row of Figure 2, we plot the error history, as535
time evolves, of ρ, ⟨vf⟩ and f (w.r.t v ∈ Vtest). It is clear that, across different regimes, the errors either grow and then plateaus536
at the level of the prescribed error threshold, or decrease from that level.537

In Figure 3, we present the sampled angular points when the stopping criteria are satisfied. The number of quadrature points538
in the reduced quadrature rule generated by MMD-RBM are 48 for ε = 1, 40 for ε = 0.1 and 32 for ε = 0.005. We can see that539
the sample points are fairly uniform on the sphere for this homogeneous case.540

Benefit of the equilibrium-respecting strategy: We demonstrate the benefit of the equilibrium respecting strategy, that541
is the inclusion of {∆tΘ−1D−

x ρm,∆tΘ−1D−
y ρm, tm ∈ T ρ

rb} when updating the reduced order space Ug
h,r. Without these extra542

functions, we report in Table 4 the dimensions of the reduced order subspaces and the errors when the stopping criteria are the543
same. Comparing with Table 3, we see that when ε = 0.1 and ε = 0.005 including derivatives of ρ in Ug

h,r leads to smaller values544

of rρ, N
rq
v and comparable errors. Having smaller rρ values is particularly beneficial since the cost of solving the reduced order545

problem for one time step scales roughly as O(r3Nrq
v ) and the size of the reduced order operator in (3.2) is rρ×rρ. This advantage546

is particularly pronounced in the more diffusive regime with ε = 0.005.547
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Fig. 2: Results for the homogeneous media example. Shown on the top are the reduced order solutions (left)
and the full order solutions (right). In the middle row are the relative training errors of ρ and f at the final
time and values of our error estimators. Shown on the bottom are the error histories with respect to time, when
we compute the scalar flux ρ, first order moment ⟨vf⟩ and predict f at unseen angular directions v ∈ Vtest.

The cost of the Offline stage: In Figure 4, the offline computational time of our MMD-RBM is reported along with the548
computational time of FOM(Vtrain) and a vanilla POD strategy that computes the SVD of all the snapshots from FOM(Vtrain).549
All reported times are normalized by that of the full order solve in each case. Here, for comparison purpose, we implement the550
offline algorithm with 50 or 100 greedy iterations even though the stopping criteria are satisfied much sooner. For the first 50551
iterations, we see that the offline computational time of the MMD-RBM scales roughly as r2 (with r = rρ + rg) which is faster552
than the O(r3) cost suggested by (3.13). As shown in the bottom right picture of Figure 4, the offline cost transitions from553
O(r2) to O(r3) as greedy procedure continues to 100 iterations, and it eventually scales slightly close to O(r3). We also label the554
location, via a vertical line, when the stopping criteria are satisfied. For all ε’s, the offline cost of our method is smaller than the555
cost of vanilla POD. Moreover, for ε = 0.005, it is even smaller than the time of FOM(Vtrain). This shows the effectiveness of the556
greedy RB procedure in producing a low rank numerical solver.557

4.2. Anisotropic initial condition. To demonstrate the ability of our method in adaptively sampling physically558
important angular directions, we consider the initial condition with anisotropy in the angular variable for g, namely, g(x, y,v, 0) =559
u(v(θ,ϕ))ρ(x, y, 0) with560

ρ(x, y, 0) =

{
exp(−1.0/(0.5− x2 − y2)), if x2 + y2 < 0.5,

0.0, else
and561
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Fig. 3: The reduced quadrature nodes on the unit sphere (Black for points in the initial reduced quadrature
nodes, and Red for those sampled by the greedy algorithm) and these nodes with a view from the north pole.
ε = 1.0, 0.1, 0.005 from left to right.

rρ rg N rq
v C-R Eρ Rρ E⟨vf⟩ R⟨vf⟩ Ef Rf

ε = 1 14 28 52 0.04% 1.01e-5 0.18% 2.05e-5 1.33% 1.40e-4 2.01%
ε = 0.1 16 32 50 0.04% 2.15e-5 0.72% 8.19e-6 1.70% 3.96e-5 1.20%
ε = 0.005 9 18 38 0.02% 2.18e-5 0.13% 4.77e-7 0.53% 2.18e-5 0.13%

Table 4: Dimensions of the reduced order subspaces, rρ, rg, the number of reduced quadrature nodes N rq
v , the

testing error and the compression ratio for the homogeneous media example with the ROM constructing the
reduced space for g only with snapshots of g.

562

u(v(θ,ϕ)) =


exp

(
−1

π2

16
−(ϕ−π

4
)2

)
, if vx > 0, vy > 0,

− exp

(
−1

9π2

16
−(ϕ+ 3π

4
)2

)
, if vx < 0, vy < 0,

0.0, else.

563

The computational domain is [−1, 1]2. The Knudsen number is ε = 1.0 and the final time is T = 0.5. As shown in the top left564
picture of Figure 5, u(v) in the initial condition g(x,v, 0) has more features when vx and vy are both positive or negative. We set565
tolratio = 1e− 4, tolerror,ρ = 1.25% and tolerror,f = 1.25%. The initial reduced quadrature rule is a Lebedev quadrature with 26566
points. We consider different scattering cross sections σs = 5, 1, 0.01 with zero absorption σa = 0. Our MMD-RBM produces less567
than 1.44% relative error when reconstructing ρ online and less than 2.27% relative error when predicting f for unseen angular568
directions. In Figure 5, we also present

∫
Ωx

g(x,v, 0.5)dx and the sampled angular directions. When σs = 5,
∫
Ωx

g(x,v, 0.5)dx is569

almost isotropic w.r.t v due to the strong scattering. Indeed, the sampled angular directions are more uniformly distributed. As570
σs becomes smaller, the problem becomes more transport dominant and we observe that more angular directions are sampled in571
the first and third quadrants, where g has more features.572
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Fig. 4: Relative offline computational time with respect to the reduced order rρ + rg for the homogeneous
media example. Note the computational time is normalized by the full order solve in each case. Bottom right:
100 greedy iterations; Others: 50 greedy iterations.

4.3. A multiscale problem with a spatially dependent scattering. Now, we consider a spatially-573
dependent scattering cross section [14]574

σs(x, y) =

{
0.999r4(r +

√
2)2(r −

√
2)2 + 0.001, with r =

√
x2 + y2 < 1,

1, otherwise,
575

576

on the computational domain [−1, 1]2 with ε = 0.01. The effective Knudsen number for this problem ε/σs smoothly varies from577
10 to 0.01 indicating a smooth transition from a transport dominant region in the center to a scattering dominant region in the578
outer part of the computational domain. The initial value for this problem is f(x,v, 0) = 5

π
exp(−25(x2 + y2)). We use a uniform579

mesh of 80×80 uniform rectangular elements to partition the computational domain. The final time is T = 0.05. The parameters580
in the stopping criteria are tolratio = 1e− 4, tolerror,ρ = 1.5% and tolerror,f = 2.5%. The greedy iteration is initialized with the581
11-th order 50 points Lebedev quadrature rule. The configuration of σs(x, y), the FOM and the ROM solutions are presented582
on the top row of Figure 6. ROM solution matches the FOM solution well. In the bottom left of Figure 6, the 94 sampled583
angular points are presented. In the bottom right, we present the relative training error at the final time and the values of error584
estimators as a function of the number of greedy iterations. Overall, the error estimator provides a reasonable approximation585
to the relative training error at the final time. The errors are shown in Table 5. It is clear that this example requires a higher586
rank representation for the reduced solution than the previous examples due to the large effective Knudsen number in the center587
region. The MMD-RBM produces numerical solutions with relative error below 0.8% for the scalar flux with only 0.27% degrees588
of freedom in comparison to the full model.589

4.4. A lattice problem. The last example is a two-material lattice problem with ε = 1. The geometry set-up is shown
in the middle of the top row of Figure 7. The black region is pure absorption with σs = 0 and σa = 100, while the rest is pure
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Fig. 5: Shown on top are the configuration u(v) in the initial condition of g(x,v, 0) = u(v)ρ(x, 0) and∫
Ωx

g(x,v, 0.5)dx for σs = 5.0, 0.01 (view from the north pole). On the bottom are the sampled angular

directions (view from the north pole) for the example in Section 4.2 with various σs values.

rρ rg N rq
v C-R Eρ Rρ E⟨vf⟩ R⟨vf⟩ Ef Rf

27 108 94 0.27% 3.00e-4 0.75% 8.32e-5 1.33% 1.18e-3 1.69%

Table 5: Dimensions of the reduced order subspaces, rρ, rg, the number of reduced quadrature nodes N rq
v , the

testing error and the compression ratio for the multiscale example with the MMD-RBM.

scattering with σs = 1 and σa = 0. In the orange region, a constant source is imposed:

G(x, y) =

{
1.0, if |x− 2.5| < 0.5 and |y − 2.5| < 0.5,

0, otherwise.

A uniform mesh of 100× 100 rectangular elements is used to partition the computational domain. The final time is T = 1.7. The590
tolerances in the stopping criteria are tolratio =1e-3, tolerror,ρ = 1.5% and tolerror,f = 3.0%. When initializing the RBM offline,591
we use the 11-th order 50 point Lebedev quadrature rule.592

rρ rg N rq
v C-R Eρ Rρ E⟨vf⟩ R⟨vf⟩ Ef Rf

31 124 102 0.21% 1.85e-3 0.27% 4.45e-3 2.41% 2.38e-2 2.71%

Table 6: Dimensions of the reduced order subspaces, rρ, rg, the number of reduced quadrature nodes N rq
v , the

testing error and the compression ratio for the lattice example with the MMD-RBM.

We present the ROM and FOM solutions on the top row of Figure 7. Shown on the bottom are the 102 nodes of the reduced593
quadrature rule and the history of the relative training error at the final time and the values of error estimators. Our error594
estimators approximate the relative errors at the final time well and the MMD-RBM solution matches the FOM well. The errors595
are displayed in Table 6. We see that the ROM achieves 0.27% relative error for ρ with 0.21% DOFs w.r.t FOM(Vtrain), while596
the relative errors ⟨vf⟩ and f on the test set stayabout 2% to 3%.597
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Fig. 6: Results for the multiscale example. Shown on top from left to right are the FOM solution in log scale,
the function σs, and comparison between the ROM (right) and FOM (left) solutions. Shown on the bottom
are reduced quadrature nodes on the unit sphere (Black for points in the initial reduced quadrature nodes, and
Red for those sampled by the greedy algorithm), these nodes with a view from the north pole, and the history
of the relative training error at the final time and the values of error estimators as a function of number of
iterations.

5. Conclusion. In this paper, utilizing low rank structures with respect to the angular direction v and the temporal598
variable t, we developed a novel RBM to construct ROM for the time-dependent RTE based on the micro-macro decomposition.599
The proposed MMD-RBM is featured by an equilibrium-respecting strategy to construct reduced order subspaces and a reduced600
quadrature rule with non-negative weights preserving the stability of the underlying numerical solver. As demonstrated by our601
numerical tests, the Offline stage of the proposed method is more efficient than the vanilla POD method and sometimes even602
the standard full order solve, and the Online stage is able to efficiently predict angular fluxes for unseen angular directions and603
reconstruct the moments of the angular flux. The natural next step along this work is to use the proposed method as a building604
block to design ROMs for multi-query scenarios (e.g. inverse problems and uncertainty quantification) with essential physical605
parameters.606

Our current ROM is a linear ROM utilizing the local equilibrium structure in the angular space. However when the scattering607
effect is not strong enough the system may be transport dominant and far from the local equilibrium. For a pure transport608
problem our method may need more careful choice of initial basis, initial quadrature rule and error indicator/estimator. Moreover609
it is also well known that linear ROM such as our method may be inefficient for transport problems [32]. One may design ROMs610
based on Lagrangian frameworks to conquer this issue and we leave it for the future investigation.611
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