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Reliability Analysis of Psychological Measures Related to STEM 
Persistence in Undergraduate Students at a Hispanic Serving 
Institution
Rena Kirkland, Aaron Montoya, Brenna Oakey, and Marlene Garcia Araiza

Psychology, Adams State University

ABSTRACT
Research suggests that psychological factors are related to persistence in 
science, especially for underrepresented students; however, most psycholo
gical instruments have been validated through studies conducted at pre
dominately White institutions. In the current study, we report reliability 
estimates for measures of science identity, science motivation, and science 
self-efficacy with a sample of undergraduate college students from 
a Hispanic Serving Institution (N = 309). Internal consistency and test-retest 
reliability were estimated with Cronbach’s alpha and intra-class correlation 
coefficients, respectively. We report Cronbach's alpha values separately for 
male (N = 152), female (N = 152), Hispanic (N = 111), and White (N = 115) 
students. We also examined whether there were statistically significant 
differences in the Cronbach’s alpha values between these groups. The results 
demonstrated good to excellent reliability estimates for internal consistency 
(α ranged from .89 to .96) and test-retest reliability (ICC ranged from .76 to 
.80) for all groups. There were no significant differences in Cronbach’s alpha 
values between students identifying as male versus female or between 
Hispanic and White identifying students. We conclude by urging science 
education researchers to examine, report, and interpret reliability estimates 
for their measures for each dataset.
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Postsecondary institutions have been increasingly attentive to increase underrepresented students in 
Science, Technology, Engineering, and Mathematics (STEM). One approach to improving racial 
minority, low-income, and first-generation students’ persistence in STEM has been to explore 
strategies to enhance psychological factors related to student retention in STEM (e.g., Estrada et al.,  
2016; Jackson et al., 2016; Jordt et al., 2017). Despite the rising interest in measuring psychological 
factors related to STEM persistence, some fundamental questions remain regarding the psychometric 
structure of commonly used instruments. Since there are efforts to increase underrepresented stu
dents’ success in STEM, it is critical that researchers use measures that have been validated with similar 
demographic characteristics.

The most common approach to measuring psychological variables is the use of multi-item 
measurement scales, which involves participants responding to several items that are intended to 
measure an unobservable construct (i.e., latent trait; Hayes & Coutts, 2020). The response choices 
typically follow a Likert (strongly agree to strongly disagree) or Likert-like format (e.g., never to 
always), and responses are averaged (or summed) to provide a numerical score for each participant. 
When developing measurement scales, best practice requires that researchers conduct a psychometric 
examination of the instrument to provide evidence that the numerical score represents a real indivi
dual difference in the underlying construct (Boateng et al., 2018). This process requires examining 
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reliability and validity of the measurement scale; however, reliability and validity are not properties of 
a measurement scale that holds across populations (i.e., psychometric properties are sample depen
dent). Therefore, it is erroneous for researchers to claim that a scale is reliable and valid. Instead, 
examining the psychometric properties of an instrument should be an ongoing process (Lindell & 
Ding, 2013). Reliability estimates should be examined and reported for each dataset since low 
reliability may contribute to misleading results (i.e., increases risk of false positive and false negative 
findings or underestimates the true effect). Further, it is important to examine reliability estimates for 
specific samples since an instrument may demonstrate adequate reliability for some groups but not 
others. Since most instruments are developed with student samples that are 60% to 80% White or 
Caucasian (e.g., Glynn et al., 2009), the current study is motivated by a need to examine reliability 
estimates of the psychological measures that are predictive of success in science in a Hispanic sample 
of undergraduate students. We examined reliability estimates for three psychological measures by 
gender (male and female) and for Hispanic and White students separately. Before describing our 
approach to examining reliability, we provide a brief review of the literature examining the impact of 
psychological factors on students' success in STEM.

Science identity

Researchers have found that when students identify as scientists, they are more likely to choose 
optional science experiences in middle and high school (Vincent-Ruz & Schunn, 2018), persist in 
STEM fields in college (Estrada et al., 2018), and enter a science occupation (Stets et al., 2017). In 
a large study of 1420 minority STEM students at the undergraduate and graduate levels, science 
identity predicted science persistence for up to 4 years post-graduation (Estrada et al., 2018). In a more 
recent study, Chen et al. (2021) found that science identity predicted sense of belonging and grades in 
a sample of diverse college students. Further, results indicated that grade differences between students 
with low compared to high science identity were larger for racial-minority students compared to 
nonminority students. The authors concluded that having strong science identity is particularly 
important for racial-minority students because it helps them feel a sense of belonging in science 
classes. It should be noted, however, that although Chen et al. (2021) found that science identity 
predicted higher grades and sense of belonging for minority students, only a small percent of the 
samples were Hispanic students; the first study consisted of 66.85% White and 3.58% Hispanic or 
Latino students, and the second study consisted of 75.52% White and 2.62% Hispanic or Latino 
students. Underrepresented minority students may be at larger risk of not identifying as scientists; 
therefore, interventions have aimed at increasing underrepresented students’ science identity to 
strengthen their STEM commitment (e.g., Chemers et al., 2011).

Despite the recommendations to support science identity in underrepresented minority students, 
measures of science identity were often developed with primarily White students. For example, the 
Persistence in the Sciences (PITS) survey includes a subscale that measures science identity (Hanauer 
et al., 2016). The PITS survey was developed with a sample of 323 undergraduate students of which 
only 1% identified as Hispanic or Latino. McDonald et al. (2019) developed a 1-item science identity 
measure using a student sample, 52% of which were from underrepresented groups; however, 48% of 
the sample were African American, and no information was provided regarding Hispanic students. 
Pugh et al. (2009) developed a measure of science identity with a sample that was 80% Caucasian and 
none of the sample was reported to be Hispanic (the rest of the sample was 7% African American and 
13% Asian, Pacific Islander, mixed, or chose not to report).

Science motivation

Motivation is a drive to initiate and persist in behavior and has been examined extensively in 
educational contexts (Howard et al., 2021). While there are dozens of motivation theories in education 
(see Turabik & Baskan, 2015; Urhahne & Wijnia, 2023 for reviews), one of the most ubiquitous 
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distinctions is between intrinsic and extrinsic motivation. Intrinsic motivation is defined by doing 
something because it is inherently interesting or satisfying (without regard to external rewards), and 
research shows it is related to high levels of persistence, positive self-perceptions, and greater engage
ment (Ryan & Deci, 2000). Extrinsic motivation is demonstrated when individuals engage in an 
activity to pursue an external reward or outcome (Ryan & Deci, 2000). A meta-analysis examining 
motivation in educational contexts found a positive relationship between intrinsic motivation and 
educational outcomes (Howard et al., 2020).

Intrinsic motivation may also have positive correlates in science education. Students who engaged 
in more intrinsically rewarding science class activities reported higher enjoyment in their educational 
experience (Druger, 2006). A 2011 study, however, reported a negative relationship between intrinsic 
motivation and science achievement (Painter, 2011), which opposes prior research. Therefore, more 
research is needed to examine how motivation affects achievement in STEM education.

Regarding student groups for which measures of motivation have been developed, the Science 
Motivation Questionnaire II (Glynn et al., 2009) was developed with a sample of undergraduate 
students, comprised of 82.7% White and 2% Hispanic or Latino students. A follow-up study examin
ing the validity of the measure with science and non-science majors used a sample that included 89.1% 
White and 3.1% Hispanic or Latino students (Glynn et al., 2011). Since the measure was validated with 
a sample of primarily White students, examining the reliability of the measure with a sample of 
Hispanic students would be useful for HSI institutions interested in measuring this variable.

Science-efficacy

Self-efficacy is an individual’s belief in their ability to succeed in a specific area (Bandura, 1997) and 
has been found to be predictive of motivation, behavior, and achievement across many contexts 
(Schunk & DiBenedetto, 2021). A substantial amount of research shows that self-efficacy is related to 
academic achievement (e.g., Multon et al., 1991). Bandura and Locke’s (2003) meta-analysis showed 
that students with high self-efficacy persist longer and put forth more effort in their studies. Another 
meta-analysis examined correlates of college students’ academic success including demographic 
variables, cognitive ability, and psychosocial factors (Richardson et al., 2012). A moderately positive 
correlation was found between academic self-efficacy and GPA, and a strong positive correlation was 
found between performance self-efficacy and grades (from 50 correlation coefficients).

Since self-efficacy is domain specific, dozens of efficacy measures have been developed (e.g., sport- 
efficacy, academic-efficacy, and coaching-efficacy). Based on the predictive value of self-efficacy 
theory, science efficacy has been a topic of interest in science education studies (e.g., Ackert et al.,  
2021), and research shows that science self-efficacy is related to achievement outcomes. For instance, 
in a diverse sample of undergraduate and graduate students, researchers found that science self- 
efficacy was a predictor of science career commitment (Chemers et al., 2011). In a different study with 
a sample of primarily Hispanic undergraduate students, self-efficacy predicted success in a physics 
class (Sawtelle et al., 2012). Chemers et al. (2011) and Sawtelle et al. (2012) samples included 40% and 
49% Hispanic or Latino students, respectively, however, it is unclear what the ethnic composition of 
the students was in the studies that developed the science self-efficacy measures. Stets et al. (2017) 
developed and validated a 14-item measure of science self-efficacy, but no ethnic information was 
provided about the sample.

To summarize, strong evidence suggests that psychological processes including science identity, 
motivation, and self-efficacy are predictive of STEM persistence, especially for underrepresented 
students; however, more research is needed to understand how to best support students through 
scalable interventions. While educators further develop interventions that enhance psychological 
processes in STEM, it is critical that researchers use psychometrically sound instruments. Of note, 
an instrument that shows strong evidence of reliability with one group of students may not generalize 
to a different group of students.
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Reliability within classical test theory

There are two measurement models that underlie psychometrics: classical test theory and item 
response theory. Most researchers report reliability coefficients that are based on classical test theory 
(CTT; Doval et al., 2023). The basic assumption of CTT is that the variance in any observed score (X) is 
based on the true differences of the trait being measured (i.e., true score, T) and measurement error 
(E). Thus, an observed score is represented by the following model, X = T + E (Raykov & Marcoulides,  
2016). As can be discerned by the theoretical formula, to assess the precision of observed scores, it is 
essential to examine the amount of error present in a measurement.

Based on CTT, reliability is the inverse of the proportion of measurement error and is related to the 
proportion of true score. Therefore, reliability provides an estimate of the proportion of total variance 
that is due to true variance versus measurement error variance. It is important for researchers to report 
reliability estimates each time they use a measurement scale because reliability quantifies the amount 
of measurement error for a specific sample (Streiner, 2003), and the lower the reliability, the more 
error which attenuates effect sizes (Fan, 2003; Matheson, 2019). That is, low reliability underestimates 
true relationships between variables. Cole and Preacher (2014) described serious problems to path 
analysis due to low reliability and uncorrected measurement error. In some cases, especially for small 
sample sizes, measurement error can lead to greater variation in estimated effect sizes, and thus, low 
reliability can overestimate a true effect by chance (Loken & Gelman, 2017). In any case, when authors 
do not report reliability, it is impossible to estimate how much measurement error is present, and any 
further analysis may be biased. Further, adequate reliability is necessary, although not sufficient, to 
provide evidence of validity. Since some STEM education researchers do not report the reliability of 
their data (e.g., Aagaard & Hauer, 2003; Bogner, 2023; Ma & Xiao, 2021; McCartney et al., 2022; 
Salinitri, 2005), it is impossible to discern whether their results are valid.

There are many different reliability estimates, each of which examines a different aspect of 
measurement error (Cook & Beckman, 2006). The most reported for a single administration of 
a measurement scale is Cronbach’s alpha (Cronbach, 1951), which is a measure of internal consistency 
and measures the relationship between multiple items on a measure at one measurement time (see 
Taber, 2018 for extensive review of alpha in science education). Cronbach’s alpha is an appropriate 
estimate of internal consistency when there is evidence of unidimensionality (Doval et al., 2023; 
Raykov & Marcoulides, 2019). Based on CTT, unidimensionality indicates that all items in a measure 
are indicative of the same underlying variable and can be examined through factor analysis procedures 
(DeVellis, 2006).

In contrast to Cronbach’s alpha, which measures internal consistency, test-retest reliability exam
ines the consistency of responses overtime (Polit, 2014). That is, test-retest reliability examines the 
stability of participant responses across two administrations of the same measure. Test-retest relia
bility is reported much less frequently than Cronbach’s alpha due to the challenge of administering the 
measure two times with the same participants. Retest reliability was not reported in the articles that 
described the development of the measures, and our literature review did not reveal any authors 
reporting retest reliability on the science identity or science self-efficacy scale. Wardhany et al. (2018) 
reported retest reliability for an Indonesian version of the Science Motivation Questionnaire-II (with 
intraclass correlation coefficients of .82 and .88 for intrinsic and career motivation respectively), and 
Dong et al. (2020) reported retest reliability for a Chinese version of the questionnaire (with intraclass 
correlation coefficients of .54 and .52 for intrinsic and career motivation respectively). We did not find 
any reports of retest reliability with the English version of the scale. Retest reliability is critical to 
examine when researchers are interested in testing interventions because if a measure has low retest 
reliability, then the true effects of the interventions are masked (Aldridge et al., 2017). Further, retest 
reliability is critical to examine for replication research (Leppink & Pérez-Fuster, 2017).

Most researchers use retest intervals of two to four weeks; however, Watson (2004) emphasized that 
the retest interval should be theoretically meaningful. When examining semester-long interventions 
for college students, the meaningful retest interval is about 16 weeks. Due to the practical challenges of 
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setting up the same testing protocol when examining retest reliability over long periods of time, few 
researchers report test-retest coefficients that correspond to meaningful time intervals. Besides being 
the first study to report retest reliability for measures of science identity, intrinsic and career 
motivation for science, and science self-efficacy, one of the contributions of our study is that we 
examined retest reliability over a 16-week interval, which aligns with the time interval for semester- 
long interventions.

The purpose of our study was to examine the internal consistency and test-retest reliability of three 
psychological measures related to STEM retention and success. We expected that the measures would 
show adequate internal consistency as measured by Cronbach’s alpha for the full sample as well as for 
males, females, Hispanics, and White subsamples. Further, we expected that the measures would show 
adequate stability over time as measured by the intraclass correlation coefficient (ICC). If reliability is 
not adequate, then researchers might need to develop and test measures specifically for the demo
graphics of the students.

Method

Participants

The participants were college students from a small university in the Southwest region of the United 
States taking STEM courses and part of a larger study examining the efficacy of Course-based 
Undergraduate Research Experiences (CUREs). The university has on average 242 STEM students 
per year, of which 44% are female, 56% male, 47% Pell eligible, 30% low-income, 33% first-generation, 
48% White, and 38% Hispanic. Participants completed the survey twice, once at the beginning and 
once at the end of the semester. We collected data across four years in several STEM classes, and since 
many students take the survey more than once, we excluded duplicate responses in all analyses. After 
removing duplicate responses, the baseline sample included 309 participants (mean age = 19.87, SD =  
3.6). At follow up, the sample included 247 participants (mean age = 20.15, SD = 3.4). To compare 
reliability estimates for Hispanic and White participants separately, we removed participants who 
selected multiple racial identities. See Table 1 for demographic data including gender and Hispanic 
identity, year in college, and STEM versus non-STEM majors in the sample.

Table 1. Sociodemographic characteristics of participants.

Characteristic

Baseline Follow-up

N % N %

Total 309 - 247 -
Gender

Male 152 52.1 107 43.3
Female 155 47.4 138 55.9
Other 2 00.4 2 00.8

Hispanic Identitya 

Hispanic 107 42.0 92 50.0
White 

Year in collegeb
148 58.0 92 50.0

First year 118 52.0 81 51.3
Sophomore 44 19.4 25 15.8
Junior 35 15.4 28 17.8
Senior 13 5.7 13 8.2
Other 17 7.5 11 7.0

Major 
STEM major 
NonSTEM

206 
103

66.7 
33.3

177 
70

71.7 
28.3

Note. aWe removed participants who selected more than one racial identity, which 
reduced the separate sample sizes of Hispanic and White students. 

bSome of the surveys did not ask participants to provide year in college, so there are 
some missing values in these data points.
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Materials

For an overview of the instruments and reliability estimates reported in the original published articles 
see Table 2.

Science identity
We used a five-item scale to measure the degree students identify as scientists (Hanauer et al., 2016). 
Students responded to items on a 5-point Likert scale (strongly disagree, disagree, neither agree nor 
disagree, agree, strongly agree).

Science motivation questionnaire
The full measure includes five subscales including intrinsic motivation, self-efficacy and assessment 
anxiety, self-determination, career motivation, and grade motivation (Glynn et al., 2011). We used the 
intrinsic and career motivation subscales, which include five items for each subscale with five response 
choices (never; rarely; sometimes; often; always).

Science self-efficacy
To measure self-efficacy in the science domain, we used Stets et al. (2017) Science Self-Efficacy Scale. 
Students respond to 14 items on a 5-point Likert-like scale (not at all confident, somewhat confident, 
confident, mostly confident, absolutely confident).

Procedures

After obtaining Institution Review Board approval, the surveys were administered during classes 
through Qualtrics (an online survey collection tool). The consent process included a verbal description 
of the purpose, length, and type of questions included in the survey. Participants also read a consent 
form and had to select “agree” to continue with the survey. For students who were not in class, 

Table 2. Description of instrument development of the measures.

Name of Scale 
Subscales used (if any) Authors and Year Description

Science Identity Hanauer et al. 
(2016)

● 5 items
● Validated with 323 undergraduate biology students in 9 different 

biology classes from a mid-sized university in western Pennsylvania
● 52% White; 1% Hispanic or Latino
● α = .87
● No test-retest reliability reported

Science Motivation  
Questionnaire  
2 subscales: intrinsic motivation 
and career motivation

Glynn et al. (2011) ● 10 items (5 items for each subscale)
● Likert scale 1–5 never – always
● Validated with 367 undergraduate science majors and 313 non

science majors from large-sized university in southern United States
● 89.1% White; 3.1% Hispanic or Latino
● Intrinsic motivation α = .89
● Career motivation α = .92
● No test-retest reliability reported

Science Self-Efficacy Stets et al. (2017) ● 14 items
● Likert scale 1–5 not at all confident–very confident
● Validated with 1429 undergraduate students from 25 different 

institutions (including private and public; small, medium, and 
large institutions)

● Breakdown of racial identities of sample was not reported
● ω = .97
● No test-retest reliability reported

α = Cronbach’s alpha (Cronbach, 1951); ω = Omega (Hayes & Coutts, 2020).
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the second author emailed the students and encouraged them to complete the survey. The response 
rate averaged 80% over the four years of data collection.

Statistical analysis

All analyses were conducted with SPSS version 27. As described above, participants completed the 
surveys at the beginning and end of the semester. To examine whether each instrument was uni
dimensional, we ran exploratory factor analysis (EFA) on the baseline data. We first examined Kaiser– 
Meyer–Olkin (KMO) and Bartlett's Test of Sphericity to check that factor analysis was appropriate for 
the data. KMO values over .8 indicate the data are adequate for factor analysis (Guttman, 1954). 
Bartlett’s test of Sphericity produces a Chi-square where significant Chi-square values suggest sam
pling is adequate (Tabachnick & Fidell, 2001). We used principal axis factoring for the extraction 
method. To determine the number of factors, we examined the scree plot and factor matrix (Costello & 
Osborne, 2005).

For the reliability analyses, we used the baseline data to examine internal consistency. We ran 
Cronbach’s alpha (Cronbach, 1951) to estimate internal consistency for the full sample and by gender 
(males vs females) and Hispanic identity (Hispanic vs White). To test whether the alpha values were 
significantly different by groups we used cocron, which is a platform-independent R package 
(Diedenhofen & Musch, 2016). We applied Bonferroni correction to adjust for running eight compar
isons; thus, the critical p-value was .00625 (.05/8 = .00625, Bland & Altman, 1995). To estimate test- 
retest reliability, we used participants’ baseline and follow-up assessments, and we examined ICC 
using a two-way mixed model (participant effects are random and measure effects are fixed), and 
a consistency type where the between-measure variance is excluded from the denominator variance 
(Koo & Li, 2016).

Results

Preliminary analysis

For the EFA, KMO statistics ranged from .85 to .96, and Bartlett’s Test of Sphericity were all significant 
suggesting that factor analysis was appropriate for the data. The scree plots showed evidence of 1 factor 
for each scale or subscale (science identity, intrinsic motivation, career motivation, and science self- 
efficacy). For the science identity measure, the factor loadings ranged from .78 to .86 providing 
evidence of unidimensionality. For intrinsic and career motivation, the factor loadings ranged from 
.77 to .91, and .82 to .94, respectively. For science self-efficacy, the factor loadings ranged from .67 to 
.87. Scree plots showed clear evidence of one factor for each of the four measures.

Main analysis

For descriptive statistics see Table 3. Reliability coefficients, including test-retest reliability as mea
sured by ICC and internal consistency as measured by Cronbach’s alpha, can be found in Table 4. 
Results examining whether Cronbach’s alpha was significantly different between males and females 
and between Hispanic and White participants are in Table 5.

Discussion

Recent attention to inequities in STEM has generated innovative strategies to increase the success of 
students underrepresented in STEM fields. One approach has been to enhance student experiences in 
STEM by addressing psychological factors such as science identity, motivation, and self-efficacy, 
which have been shown to be related to persistence in STEM fields. More work has to be done to 
identify and implement interventions that enhance psychological factors for specific populations. This 
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requires that researchers select measurement scales that are appropriate for the populations served. It 
is critical to examine the psychometric properties of instruments for different groups since reliability 
and validity is not invariant across samples (Lindell & Ding, 2013). Thus, the purpose of the current 
study was to examine the reliability of three psychological measures related to success in STEM in 
Hispanic and White college students separately. Specifically, we examined the internal consistency 
(Cronbach’s alpha) and test-retest (ICC) of the Science Identity Scale (Hanauer et al., 2016), the 

Table 3. Descriptive statistics for full sample and by gender and Hispanic identity.

Name of Scale/Subscale

Baseline Follow-up

N M SD N M SD

Science Identitya 

Males 
Females 
Hispanic 
White

266 
132 
131 
92 

126

3.31 
3.29 
3.33 
3.36 
3.22

.96 

.99 

.93 

.90 
1.00

158 
68 
87 
60 
75

3.43 
3.38 
3.44 
3.31 
3.47

1.02 
.99 

1.05 
1.04 
.96

Intrinsic Motivation 
Males 
Females 
Hispanic 
White

303 
149 
151 
105 
148

3.98 
3.89 
4.07 
4.02 
3.87

.86 

.90 

.81 

.84 

.91

246 
107 
136 
92 
92

4.02 
4.04 
4.06 
4.04 
4.00

.83 

.78 

.87 

.82 

.89
Career Motivation 

Males 
Females 
Hispanic 
White

304 
149 
152 
107 
147

4.29 
4.14 
4.43 
4.31 
4.20

.86 

.94 

.76 

.88 

.92

243 
107 
134 
89 
91

4.24 
4.17 
4.27 
4.23 
4.19

.83 

.74 

.90 

.82 

.89
Science Self Efficacy 

Males 
Females 
Hispanic 
White

284 
137 
144 
100 
134

2.96 
3.09 
2.85 
2.80 
3.02

.91 

.87 

.92 

.82 

.98

163 
71 
90 
59 
75

3.35 
3.47 
3.25 
3.31 
3.41

.93 

.90 

.95 

.89 

.89
aScience identity has a smaller sample size since data was not collected one semester for this variable.

Table 4. Reliability estimates for full sample and by gender and Hispanic identity.

Name of Scale 
Subscales (if used) Number of items Test-retest (N) Internal consistency (N)

95% CI

LL UL

Science Identity 
Males 
Females 
Hispanic 
White

5 .76 (128) .91 (283) 
.92 (132) 
.91 (131) 
.89 (92) 
.91 (98)

.89 

.89 

.88 

.85 

.88

.93 

.94 

.93 

.92 

.94
Science Motivation 

Intrinsic Motivation 
Males 
Females 
Hispanic 
White

5 .77 (143) .93 (303) 
.93 (149) 
.92 (151) 
.92 (105) 
.93 (115)

.91 

.91 

.89 

.89 

.91

.94 

.95 

.94 

.94 

.95
Career Motivation 

Males 
Females 
Hispanic 
White

5 .76 (140) .94 (304) 
.95 (149) 
.93 (152) 
.94 (107) 
.94 (114)

.93 

.93 

.91 

.92 

.92

.95 

.96 

.95 

.96 

.96
Science Self Efficacy 

Males 
Females 
Hispanic 
White

14 .80 (127) .96 (284) 
.95 (137) 
.96 (144) 
.94 (100) 
.96 (104)

.95 

.95 

.95 

.93 

.95

.97 

.96 

.97 

.96 

.97

CI = confidence interval; LL = lower limit; UL = upper limit. *Test-retest examined with intraclass correlation coefficient; internal 
consistency examined with Cronbach’s alpha. Internal consistency and corresponding CI values are reported for baseline 
assessment.
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intrinsic and career motivation subscales from the Science Motivation Questionnaire (Glynn et al.,  
2009, 2011), and the Science Self-Efficacy Scale (Stets et al., 2017). We also examined whether there 
were significant differences in alpha coefficients between males and females and between Hispanic and 
White participants.

Cronbach’s alpha values are typically interpreted as follows: values between .6 and .69 are 
interpreted as questionable; values between .7 and .79 are interpreted as adequate; values 
between .8 and .89 are considered good; and values higher than .9 are excellent (Cronbach,  
1951; Nunnally, 1978). For the full sample, alpha values ranged from .91 to .96 indicating 
excellent reliability. We also examined whether reliability estimates differed based on gender 
and Hispanic identities. Results demonstrated reliability estimates ranging from good to 
excellent for males, females, Hispanic and White subsamples. There were no significant 
differences between the alpha values for male versus female or for Hispanic versus White 
students.

ICC values are interpreted more leniently compared to Cronbach’s alpha since changes from pre- 
to post-test could be caused by true changes in the underlying construct (Cicchetti, 1994). In other 
words, changes from pre- to post-test may not only be due to measurement error but may be caused by 
actual changes in individual differences in the construct being measured. Participant scores may also 
change due to differences in the testing environment as it is difficult to set up identical testing 
procedures from the first to second assessment, and the longer the interval, the more difficult it is 
to exactly replicate procedures. Further, participant scores may change due to state differences (e.g., 
mood changes, fatigue) between pre- and post-test (Watson, 2004). Cicchetti (1994) suggested that 
ICC values from .4 to .59 are fair, values from .60 to .74 are good, and values above .75 are excellent. 
For our sample, ICC estimates ranged from .76 to .80 indicating that the measures demonstrated 
excellent test-retest reliability.

Recommendations and implications

Though it is important for science education researchers to scrutinize the quality of instrument 
development, it is erroneous to infer that a measure is reliable based solely on previously reported 
reliability estimates. Instead, researchers must examine, report, and interpret reliability for each 
dataset. This is essential because low reliability attenuates true effects; thus, researchers should 
examine reliability before proceeding with analyses.

Researchers should not mistake high reliability as an indication of unidimensionality. 
Rather, unidimensionality is a necessary assumption for Cronbach’s alpha, and therefore 
should be examined through factor analysis methods prior to running alpha (Doval et al.,  

Table 5. Results of cocron analyses examining cronbach alpha group differences.

Name of Scale 
Subscales (if used) Number of items N/N X2(df) p-value

Science Identity 
Males vs females 
Hispanic vs White

5
132/131 

92/98
.34(1) 
.97(1)

.563 

.323
Science Motivation 

Intrinsic Motivation 
Males vs females 
Hispanic vs White

5
149/151 
105/115

.72(1) 

.72(1)
.397 
.397

Career Motivation 
Males vs females 
Hispanic vs White

5
149/152 
107/114

1.54(1) 
.02(1)

.215 

.883
Science Self Efficacy 

Males vs females 
Hispanic vs White

14
137/144 
100/104

1.81(1) 
4.79(1)

.178 
.028*

N/N= sample size for each group, respectively. X2 = Chi-square results of cocron analyses examining Cronbach 
alpha group differences; cocron is an independent R-package program (Diedenhofen & Musch, 2016).
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2023; Raykov & Marcoulides, 2019). Researchers should clearly explain which reliability 
estimate they examined and provide guidelines for interpreting values. In an extensive review 
of reliability estimates in four leading science education journals published across a year, 
Taber (2018) reported that Cronbach's alpha values were reported most frequently; however, 
some authors reported a reliability coefficient without explaining which estimate they exam
ined, and some authors did not describe how to interpret the values (or interpreted the values 
inappropriately). Science education researchers should clearly report which reliability estimate 
they examined, report the precise values for their data, and provide interpretations of the 
values in relation to the purpose of the measures.

It is important to note that the guidelines to interpret reliability estimates are rules of 
thumb. Researchers should consider the context and use of the measures when determining 
whether their data shows adequate reliability. For instance, when important decisions are 
being made, such as in educational and clinical contexts, it has been recommended that 
Cronbach's alpha values should be no lower than .9 (Matheson, 2019). Test-retest values are 
typically interpreted more leniently; however, guidelines vary greatly depending on the con
text. For instance, for retest reliability of test scores in educational contexts values > .8 are 
considered necessary (Norcini, 1999). In clinical contexts, authors describe that values between 
.5 and .74 are poor-to-moderate, values between .75 and .9 are good, and values > .95 are 
excellent (Portney & Watkins, 2015). Finally, the interval between testing is also critical to 
consider when interpreting retest reliability. The longer time-interval, the more likely the true 
score and other situational factors will change, which will lead to smaller coefficients (Duff,  
2012). Thus, the time-interval should be considered when interpreting the magnitude of test- 
retest reliability.

Although it is recommended to use theoretically meaningful test-retest intervals (Watson,  
2004), few researchers examine retest reliability with an interval the length of a semester. We 
recommend that more research be conducted examining retest reliability of psychological 
measures used in science education, and that researchers use time intervals that align with 
the timeframe that is typical between pre- and post-assessment. In the current study, we 
report retest reliability estimates for the measures across a 16-week interval, which corre
sponds to the length of semester-long interventions. The ICC coefficients ranged from .76 to 
.80; therefore, we found evidence that the measures show stability across the timeframe of 
a semester-long class.

In sum, it is paramount for researchers to examine the reliability of their data prior to running 
statistical analysis. In CTT, upon which the coefficient alpha rests, when reliability is low at 
a minimum the estimated effect is less precise, and low reliability increases the risk of making type 
I and type II errors (Matheson, 2019). Even when statistically significant results are found, high 
measurement error will lead to an underestimate of the effect size. It is important to note that, in 
addition to increased chance of false positive findings, low reliability also leads to more variable 
measurement, and thus can sometimes overestimate effects based on chance. Therefore, it is critical 
that researchers report reliability estimates of their data and provide readers with an explanation of 
how to interpret the estimated coefficient(s). Though reliability is sample specific and should be 
examined and reported with every new sample, our findings provide evidence that the Science Identity 
Scale (Hanauer et al., 2016), the intrinsic and career motivation subscales from the Science Motivation 
Questionnaire (Glynn et al., 2009, 2011), and Science Self-Efficacy (Stets et al., 2017) demonstrated 
good to excellent internal consistency and test-retest reliability for a sample of Hispanic and White 
undergraduate students from a HSI institution.
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