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Abstract

Nuclear quantum effects play an important role in the structure and thermodynam-

ics of aqueous systems. By performing a many-body expansion with nuclear-electronic

orbital (NEO) theory, we show that proton quantization can give rise to significant en-

ergetic contributions for many-body interactions spanning several molecules in single-

point energy calculations of water clusters. Although zero-point motion produces a

large increase in energy at the one-body level, nuclear quantum effects serve to sta-

bilize molecular interactions at higher orders. These results are significant because

they demonstrate that nuclear quantum effects play a nontrivial role in many-body

interactions of aqueous systems. Our approach also provides a pathway to incorporate

nuclear quantum effects into water potential energy surfaces. The NEO approach is

advantageous for many-body expansion analyses because it includes nuclear quantum

effects directly into the energies.
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Nuclear quantum effects play a crucial role in intermolecular interactions for many chem-

ical and biological systems, particularly those with hydrogen bonding.1–9 Including such

effects is therefore necessary for a fundamentally correct description of the interactions in a

molecular simulation. Moreover, nuclear quantum effects have been shown to be necessary

to capture important structural and dynamical effects in the thermodynamic regime. 10–13

For example, nuclear quantization weakens hydrogen bonds in liquid water,14 resulting in a

less dense condensed phase,12 as well as a red shift of peak positions in the infrared and sum

frequency generation spectra.15,16

Incorporating nuclear quantum effects into chemical calculations is a longstanding chal-

lenge in the field. Path integral methods have been used to tackle this problem in equi-

librium molecular dynamics simulations17 and to study the energy landscape of water clus-

ters.18 However, this formalism does not provide an explicit nuclear wavefunction19 and

poses certain challenges in describing excited electronic states and non-Born-Oppenheimer

processes.20 Other approaches, including exact factorization21 and the multiconfigurational

time-dependent Hartree method,22 have also been used to describe nuclear quantum effects

but have not seen widespread adoption due to their cost and complexity.

The nuclear–electronic orbital (NEO) method can be used to directly incorporate cer-

tain nuclear quantum effects into calculations of chemical and biological systems based on

density functional theory (DFT) or wavefunction theories. The NEO approach is attractive

because the electronic and quantum nuclear components are treated on the same quantum

mechanical footing, thereby avoiding the Born-Oppenheimer separation between electrons

and quantum nuclei. Typically, the quantum nuclei are protons, and the NEO approach

inherently accounts for delocalization and the zero-point energy associated with these nu-

clei. The NEO approach is particularly useful for processes in the nonadiabatic regime, such

as proton-coupled electron transfer or hydrogen tunneling. The NEO approach has been

derived for Hartree-Fock and density functional theories,23–26 as well as for more advanced

wavefunction approaches, including second-order Møller-Plesset perturbation theory (MP2)
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and coupled cluster theory with single and double excitations (CCSD).27–30 For the investi-

gation of dynamical processes, the NEO approach has been adapted for the real-time (RT)

propagation of the electronic and quantum nuclear subsystems in the RT-NEO method,31

often in conjunction with NEO-Ehrenfest dynamics.32–34

In this work, the interaction energies of water clusters are examined through the lens of

a many-body decomposition, with nuclear quantum effects included explicitly through the

NEO formalism. The many-body expansion (MBE) rigorously decomposes the interaction

energy into the individual contributions stemming from monomers, pairwise interactions,

and all other higher-order interactions among molecules.35 This expansion accounts for the

gradual emergence of condensed phase behavior through the systematic inclusion of higher-

order interactions in molecular clusters. The NEO approach has been used previously to

demonstrate that the single-point energetic ordering of protonated water cluster isomers

qualitatively changes with proton quantization.36,37 Because the NEO method rigorously

includes nuclear quantization in single-point energy calculations, it naturally allows for en-

ergetic decomposition and corresponding analysis.

Although significant effort has been directed toward examining the impact of nuclear

effects on the structural and thermodynamic properties of water across different phases

using molecular mechanical potentials,5,38–41 the energetic impact of nuclear quantum effects

within the MBE has not yet been systematically characterized. By analyzing the many-

body contributions to the energy, we uncover the long-range contributions stemming from

proton quantization in water clusters. These analyses have the potential to provide a deeper

understanding of the complex and long-range effects of nuclear quantization. Finally, the

formalism introduced in this study provides a computationally efficient, alternative path to

including nuclear quantum effects in molecular mechanical schemes by directly including the

corresponding energetic contributions within the molecular mechanical representation.
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Figure 1. Structures of the eight water hexamers used in this MBE analysis.
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Figure 2. Difference between the conventional DFT, MP2, and CCSD n-body
energies εnB (see Eq. (2)) and the corresponding NEO-DFT, NEO-MP2, and
NEO-CCSD n-body energies. The six lowest energy MP2 optimized water hex-
amers used in this analysis (see Figure 1) are labeled in each panel.
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The MBE is written as

EN(r1, .., rN) =
N∑
i=1

ε1B(ri) +
N∑
i<j

ε2B(ri, rj) +
N∑

i<j<k

ε3B(ri, rj, rk) + ...+ εNB(r1, .., rN) (1)

where ri represents the coordinates of the monomer i within the cluster, and ε1B(ri) represents

the energy of the monomer at the geometry ri. The n-body energies εnB with n > 1 are

recursively defined as:

εnB(ri, rj, ...) = En(ri, rj, ...)−
n∑

i=1

ε1B(ri)−
n∑

i<j

ε2B(ri, rj)−...−
n∑

i<j<k<...

ε(n−1)B(ri, rj, ...). (2)

Here En(ri, rj, ...) is the energy of the n-body cluster with specified coordinates for the n

monomers, and εnB(ri, rj, ...) is the difference between this n-body cluster energy and the sum

of the associated fragments up to (n−1)-body terms. The MBE converges rapidly for typical

molecular clusters composed of molecules with large band gaps, such as water and other non-

conductive species. In principle, this allows the potential energy surface associated with the

system to be efficiently represented as an explicit sum of the low-order terms of the expansion

with the higher-order terms being implicitly captured by simple classical polarization. The

MBE has been a critical tool in developing a generation of many-body polarizable models,42

particularly for aqueous systems, such as the AMOEBA,43,44 iAMOEBA,45 TTMn-F,46–50

HBB-pol,51,52 WHBB,53,54 CC-pol,55 MB-nrg,56–60 and MB-pol61 models, among others.

In our MBE analysis within the NEO framework, we consider the low-energy isomers

of the water hexamer, (H2O)6, to provide fundamental insight into the many-body physics

in aqueous systems. The eight lowest-energy structures optimized at the conventional MP2

level of theory are used.12,62,63 A schematic of these structures is given in Figure 1. We per-

formed calculations of the MBE components using NEO-DFT, NEO-MP2, and NEO-CCSD,

as well as the respective conventional (single-component electronic) equivalent methods. The

NEO-DFT calculations were conducted using a development version of ChronusQ,64 whereas

the NEO-MP2 and NEO-CCSD calculations were conducted using a development version of
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Q-Chem.65 The implementations of NEO-DFT in ChronusQ and Q-Chem have been cross-

validated against each other. The cc-pVTZ electronic basis set66 and the PB4-D protonic

basis set67 were used for all NEO calculations. The PBE0 electronic exchange-correlation

functional68 and the epc17-2 electron-proton correlation functional26 were used in the NEO-

DFT calculations with a (99,590) integration grid. The NEO-CCSD and NEO-MP2 calcula-

tions were performed with density fitting using the RI-cc-pVTZ electronic auxiliary basis. 69

For the protonic auxiliary basis, a 12s8p8d even-tempered basis was used with exponents

from
√

2 to 64 for the s functions and 2
√

2 to 32 for the p and d functions. For the NEO

calculations, the basis functions associated with the quantum protons were centered at the

positions of the classical nuclei in the geometries optimized at the MP2 level. Geometry opti-

mizations of the individual fragments were not performed in an effort to maintain consistency

throughout the many-body analysis. Conventional DFT, MP2, and CCSD calculations were

performed using the same software packages, electronic basis sets, and functionals as previ-

ously described for their NEO counterparts.

To analyze the energetic effects of proton quantization in these water hexamers, we

examine the differences in the n-body energies between NEO and conventional electronic

structure calculations. The difference is computed as

∆E = EConv.
nB − ENEO

nB (3)

where EnB is defined as the sum over εnB for all n-mers within the cluster (i.e., the first, sec-

ond, and third terms on the right side of Eq. (1) for n = 1, 2, and 3, respectively). Thus, ∆E

describes how the conventional n-body interaction energy deviates from the corresponding

NEO reference value, quantifying the impact of nuclear quantum effects in each many-body

term.

The results of ∆E computed with NEO-DFT, NEO-MP2, NEO-CCSD, and their respec-

tive conventional electronic structure counterparts are shown in Figure 2. The 1B contribu-
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tions, which are not shown in Figure 2, produce a negative ∆E on the order of 100 kcal/mol

for all levels of theory, corresponding to a higher NEO energy due to the total zero-point

energy of the O-H vibrations in the individual water molecules. The 2B interaction energies

produce a significant positive ∆E for all isomers and at all levels of theory. The impact of

nuclear quantum effects on the 2B interactions corresponds to the influence of proton quan-

tization on pairwise hydrogen bonding between adjacent water molecules. The 2B ∆E lies

between ∼3 and 6 kcal/mol over the eight hexamers and three levels of theory, with NEO-

DFT producing the largest differences, followed by NEO-MP2, and finally NEO-CCSD with

the smallest differences. The positive sign indicates a net stabilizing effect due to nuclear

quantum effects at the 2B level.

Although ∆E becomes smaller for higher-order n-body interactions, the 3B and 4B terms

still exhibit nuclear quantum effects of ∼ 1 kcal/mol. We note that while the absolute value

of ∆E is smaller for the 3B and 4B terms, it actually accounts for a larger percentage of the

energy for each term. We include an analysis of ∆E as a percentage of each EnB in Table

S1 of the SI. Similarly to the 2B interaction energy, the 3B and 4B terms also exhibit a

stabilizing effect due to nuclear quantization across all isomers and all levels of theory. This

stabilizing effect arises mainly from the influence of one hydrogen-bonding interaction on

another hydrogen-bonding interaction within the water cluster. It has been shown that 4B

terms still play important roles in the energetics of water clusters at the CCSD(T) level, with

explicit 4B representations incorporated in recent water models.70,71 Thus, the observation

of nuclear quantum effects at the 4B level may be significant in the context of these water

models.

In these results, similar trends are broadly observed at the DFT, MP2, and CCSD levels

of theory. This finding suggests that the nuclear quantum effects observed in this study

are not artifacts of one specific method. For the 2B and 3B terms, DFT shows the largest

effects, whereas CCSD shows the smallest effects. For the 4B terms, CCSD displays the

largest effects, breaking the trend of monotonically decreasing nuclear quantum contribu-
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tions for higher-order terms. The energy difference ∆E for the CCSD 4B terms is particularly

large, exceeding 1 kcal/mol for all but the prism isomer. The cause of the non-monotonic

trend in the NEO-CCSD ∆E is unclear. Analysis of the individual 3B interactions at the

NEO-CCSD level shows that although the sum of the 3B terms has a net positive ∆E, indi-

cating stabilization by nuclear quantum effects, only trimer fragments that are continuously

hydrogen bonded contribute positive values, with all other trimers giving slightly negative

contributions. In contrast, NEO-MP2 and NEO-DFT produce a positive ∆E for all trimer

fragments, regardless of the bonding arrangement. For the individual 4B terms, NEO-CCSD

contributes a large positive ∆E, exceeding the contributions of NEO-MP2 and NEO-DFT,

for all individual 4B terms. Note that all clusters are at a fixed geometry optimized at the

conventional MP2 level. Optimizing the geometries at a different level of theory, such as

conventional CCSD, or with a NEO method, could change the detailed results, although

the qualitative observations are expected to be robust. An MBE analysis for geometries

optimized at the NEO-DFT level of theory is provided in Figure S2 of the SI.

Although nuclear quantum effects are still found at the 5B and 6B level, the interaction

energies are generally well below 0.5 kcal/mol, so we can consider the MBE largely converged

by this point. The notable exception is the prism isomer, which displays anomalously high

5B and 6B nuclear quantum effects at the NEO-CCSD level, and is the only isomer with a

positive 5B ∆E at this level. This behavior likely arises because the prism isomer has nine

hydrogen bonds, more than any of the other hexamers studied. A more detailed analysis of

these higher-order contributions at the NEO-CCSD level provides further insights. The cage

isomer, which has eight hydrogen bonds, has the second largest 5B and 6B contributions,

followed by the book and bag isomers, which have seven hydrogen bonds. Finally, the set of

cyclic isomers, which have only six hydrogen bonds, have negligible 5B and 6B contributions.

While NEO-CCSD follows the physically intuitive trend of 5- and 6-body energies directly

correlating to number of hydrogen bonds, the more approximate NEO-DFT and NEO-MP2

do not, indicating that NEO-CCSD may more precisely capture long-range effects. Further-
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more, although nuclear quantum effects have been shown to alter the energetic ordering of

protonated water clusters,36,37 nuclear quantum effects do not affect the relative energetic

ordering of the eight neutral water isomers studied herein with respect to total energy or

interaction energy, as shown in Figure S3 of the SI.

In calculations of molecular interaction energies, electronic basis set superposition error

(BSSE) can affect the energetics. BSSE in water clusters can be mitigated by using a more

complete basis set or treated with methods such as the counterpoise correction.72,73 In NEO

calculations, protonic BSSE should not be important due to the high spatial localization of

the proton density. Although all calculations presented in this manuscript were performed

with the cc-pVTZ and PB4-D basis sets, we performed test calculations on smaller clusters

with the aug-cc-pVTZ and PB5-D basis sets and found that increasing the basis set size

produced almost no change in ∆E. Indeed, the apparent BSSE should be minimal because

we are analyzing the energy differences between NEO and conventional electronic structure

calculations. Both approaches used the same method and basis set to describe the electronic

wavefunction, and therefore any purely electronic BSSE contributions should mostly cancel

out in our results. To test our assumption, we performed MBE calculations up to the 4B

terms with larger basis sets, namely the cc-pVQZ electronic basis set and the PB5-D protonic

basis set. These results are provided in Figure S1 of the SI. We find that using a larger basis

set leads to the same qualitative conclusions. Note that electronic BSSE corrections would

need to be considered for calculations that use the raw NEO energies, for example to compute

a many-body potential energy surface.

This Letter highlights the importance of proton quantization for an accurate description

of the intermolecular interactions occurring within water clusters. Our calculations show

that conventional electronic structure methods lack some long-range many-body contribu-

tions inherent to calculations with quantized protons, such as the NEO-DFT, NEO-MP2,

and NEO-CCSD methods. The energetic contributions from proton quantization are signif-

icant in magnitude even for relatively high order many-body terms, exceeding 1 kcal/mol
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for the four-body terms. Because quantized protons are typically localized relative to the

electrons, these effects may arise from longer-range electronic interactions enabled by proton

quantization. This type of analysis can provide fundamental insight into the interplay be-

tween nuclear quantum effects and system size, allowing for a systematic analysis of nuclear

quantum effects in clusters of increasing size toward the condensed phase.

The results presented in this work illustrate the importance of nuclear quantum effects

for long-range many-body interactions within water clusters and demonstrate that the NEO

method can be used to analyze such nuclear quantum effects within a many-body perspective.

This study also provides a path forward on how to incorporate nuclear quantum effects

naturally in data driven many-body molecular mechanics approaches such as in the MB-

nrg or MB-DFT models. By training the many-body terms of these models on data sets

calculated with NEO-DFT, NEO-MP2, or NEO-CCSD, nuclear quantum effects can be

naturally incorporated in this class of models. In such cases, the nuclear dynamics should be

treated classically to avoid double counting of the nuclear quantum effects. Although such

an approach is approximate, it is significantly more computationally efficient than quantum

dynamical simulations and could be useful for studying large condensed phase systems.
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