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Abstract

Accurate simulations of many chemical processes require the inclusion of both nu-

clear quantum effects and a solvent environment. The nuclear-electronic orbital (NEO)

approach, which treats electrons and select nuclei quantum mechanically on the same

level, combined with a polarizable continuum model (PCM) for the solvent environ-

ment, addresses this challenge in a computationally practical manner. In this work,

the NEO-PCM approach is extended beyond the IEF-PCM (integral equation formal-

ism PCM) and C-PCM (conductor PCM) approaches to the SS(V)PE (surface and
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simulation of volume polarization for electrostatics) and ddCOSMO (domain decom-

posed conductor-like screening model) approaches. IEF-PCM, SS(V)PE, C-PCM, and

ddCOSMO all exhibit similar solvation energetics as well as comparable nuclear po-

larization within the NEO framework. The calculations show that the nuclear density

does not leak out of the molecular cavity because it is much more localized than the

electronic density. Finally, the polarization of quantized protons is analyzed in both

continuum solvent and explicit solvent environments described by the polarizable MB-

pol model, illustrating the impact of specific hydrogen-bonding interactions captured

only by explicit solvation. These calculations highlight the relationship between solva-

tion formalism, nuclear polarization, and energetics.

1 Introduction

Continuum solvation models that represent the solvent using a uniform dielectric can be used

to describe solvation in systems where an explicit description of the solvent is unaffordable

or impractical. These schemes have seen wide success for conventional electronic structure

calculations, where their simple parameterization and ease of use allow for a simple yet ef-

fective technique to capture solvation effects on a solute molecule.1,2 In continuum solvation

models, the solute molecule is embedded in a cavity, and the solvent is described using a

uniform continuum whose polarization response is governed by a dielectric constant.1,2 The

solvent polarization is represented by an effective charge density on the cavity surface, which

is calculated using Gauss’s law under the effect of the solute electrostatic potential. Among

these models, the dielectric and conductor based schemes have emerged as the two major

paradigms in the field. The former are derived based on the normal boundary conditions

between two media of different dielectric, while the latter use the vanishing surface potential

on a conductor surface. Conductor-based models are in principle valid for highly polarizable

solvents with large dielectric constants, but they have been shown to provide an accurate

description in the lower dielectric regime as well. For example, the conductor-like screen-
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ing model (COSMO)3 and conductor-like polarizable continuum model (C-PCM)4,5 have

been shown to work well for neutral and ionic species, respectively, with small dielectric con-

stants.6 Each of these models calculates the solvation free energy in terms of the electrostatic

interaction between the surface charge density representing the solvent polarization and the

electronic and nuclear components of the solute. Such models differ from hybrid quantum

mechanical/molecular mechanical (QM/MM) schemes, which offer an explicitly atomistic

description of the solvent, usually represented by a force field model.7

In a separate vein, the nuclear–electron orbital (NEO) method can be used to incorporate

nuclear quantum effects in a molecular system.8 Unlike other schemes such as path integral

techniques,9,10 the NEO method represents the electronic and quantum nuclear components

on the same quantum mechanical footing, naturally avoiding the Born-Oppenheimer separa-

tion between electrons and quantum nuclei. This is useful for processes in the non-adiabatic

regime, such as proton-coupled electron transfer or hydrogen tunneling, which need a rigorous

description of nuclear quantum effects to account for zero point energies, proton delocaliza-

tion, and other purely quantum mechanical effects on the nuclei. For these processes, the

NEO approach has been adapted to real-time (RT) propagation of the electronic and quan-

tum nuclear subsystems in RT-NEO,11 and within a semiclassical propagation regime using

NEO-Ehrenfest dynamics.12–15 The NEO approach has been derived for Hartree-Fock and

density functional theories,8,16–18 as well as for more advanced wavefunction approaches in-

cluding second-order Møller-Plesset perturbation theory (MP2) and coupled cluster theory

with single and double excitations (CCSD).19–21

Although continuum models have been well-characterized for conventional electronic

structure methods and force fields, their properties for systems beyond the Born-Oppenheimer

regime remain largely unexplored. One such property is the relationship between quantum

nuclei and cavity shape. The cavity is generally constructed from a union of atomic spheres

centered on each classical nucleus.22 The cavity size can then be empirically tuned by scaling

the radius about each nuclear position, which is usually chosen from a set of atomic or van
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der Waals (vdW) radii.23 In systems with quantum mechanical nuclei, it is not yet clear how

classically generated cavities affect the solvation properties of the system. Ambiguities also

arise in the generation of molecular cavities for systems where quantum protons move, such

as in geometry optimizations and dynamics simulations, relating to proton delocalization

about the nuclear basis function centers. It is also well-known that in standard electronic

structure calculations, these schemes can be affected by the outlying charge problem, where

a portion of the electronic density extends beyond the cavity surface and into the continuum,

resulting in energetic artifacts.24–26

Another point of interest is how different solvent models affect the solvation proper-

ties of quantum nuclei. Within the dielectric and conductor paradigms, there exist several

variations of these formalisms. Dielectric models include dielectric PCM (D-PCM),27 vari-

ational PCM (V-PCM),28 surface and simulation of volume polarization for electrostatics

(SS(V)PE),29,30 and integral equation formalism PCM (IEF-PCM).31–33 Conductor models

include the conductor-like screening model (COSMO),3 conductor PCM (C-PCM),4,5and

generalized G-COSMO.34–38 Each of these models uses a different response matrix, which

was formulated to satisfy various criteria. D-PCM, for example, is formulated directly from

the dielectric boundary conditions and uses the electric field normal to the cavity surface

to derive a corresponding set of apparent surface charges. The more modern IEF-PCM and

SS(V)PE models are based on an alternate derivation using the electrostatic potential on

the cavity due to the solute, and they use an asymmetric response matrix to generate the

surface charges.29–33 Conductor models such as COSMO, G-COSMO, and C-PCM use a

simpler, symmetric response matrix formulated from the vanishing potential property on a

conductive surface.3,5,35 How each of these models affects the solvation properties of quantum

nuclei is an open question.

Efforts to incorporate solvation effects into the NEO approach15,39,40 and other related

multicomponent methods41,42 have coupled the quantum mechanical system to IEF-PCM.31–33

A previous study demonstrated that the nuclear density can be directly polarized by a sol-
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vent environment, and quantum protons will differentially polarize depending on their local

environment.39 Herein, we provide an extensive analysis of solvated NEO systems in contin-

uum models, including the IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO approaches. We

characterize the energetic properties of NEO molecular systems combined with continuum

solvation models and compare the proton polarization between these methods. Furthermore,

the outlying charge problem is investigated within the NEO framework, examining the in-

terplay between cavity shape and size, solvation free energy, and outlying charge. Finally,

we build off of previous work developing a NEO-QM/MM approach40 and characterize the

properties of NEO molecular systems in an explicit solvent described by the MB-pol43–45

model compared to a polarizable continuum representation.

2 Theory and Computational Details

2.1 Nuclear-Electron Orbital Method

The NEO method partitions a system into electrons, classical nuclei, and quantum nuclei,

assumed here to be protons for convenience. For single-determinant methods such as HF

or DFT, the wavefunction ansatz is expressed as a product of the electronic and quantum

nuclear components:

ΨNEO(xe,xp; rc) = Φe(x
e; rc)Φp(x

p; rc) (1)

where Φe is the electronic determinant and Φp is the determinant for the quantum protons.

Here rc, xe, and xp correspond to the classical nuclear positions and collective spatial-spin

coordinates of the electrons and quantum protons, respectively. The energy in the NEO-

DFT16,18,46 approach can be expressed as:

E = Eext + Eref + Eexc + Epxc + Eepc (2)
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where Eext captures the interaction of the electronic and protonic densities with the external

potential of the classical nuclei, and Eref includes the non-interacting kinetic energies, as

well as the Coulomb interactions among the electrons and quantum protons. Eexc, Epxc, and

Eepc correspond to the electron-electron exchange-correlation, the proton-proton exchange-

correlation, and the electron-proton correlation energies. Epxc is negligible because of the

spatial localization of the protons and is thus equated to the diagonal terms of exact exchange

in order to formally remove Coulombic self-interaction, although in practice all proton-proton

exchange terms may be included. Since electrons and protons are non-identical particles,

there is no exchange between them.

In NEO-DFT calculations, the electronic and nuclear Kohn-Sham equations are iter-

atively solved until self-consistency is achieved. This produces a ground state nuclear-

electronic wavefunction from which the total energy, as well as the electronic and protonic

densities, is calculated.

2.2 Continuum Solvation models

The continuum solvation model formalism describes an equilibrium solvent environment us-

ing a single parameter, the static dielectric constant εs, which describes the ability of the

solvent to screen charge relative to the vacuum permittivity ε0.1,2 Non-equilibrium contin-

uum solvation uses an additional optical dielectric constant εopt, which governs the fast

polarization response. The advantage of continuum solvation comes from the highly coarse-

grained representation of the environment. This eliminates the need to sample over the

many solvent degrees of freedom since all the homogeneous solvent information is implic-

itly encoded in the dielectric constant. As such, continuum solvation models are attractive

for electronic structure calculations that steeply scale with system size. It should be noted

that this scheme cannot capture explicit solvent effects such as hydrogen bonding and other

atomically-resolved interactions.

Dielectric continuum theory is a purely electrostatic theory and does not inherently cap-
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ture the finite size of a molecule. Because of this, it is necessary to generate a molecular

cavity in order to define an interface between the solute and the continuum solvent. These

cavities are generally defined in terms of atomic vdW radii and, in some cases, can be con-

structed from the molecular isodensity surface if the system is represented with an electronic

structure approach.2 Once a cavity has been defined, the continuum solvation model equa-

tions are derived from the dielectric or conductor boundary conditions at the cavity surface.

In the reaction field formalism, the electrostatic solvation free energy is expressed as the

interaction of the surface charge density σ with the solute’s electrostatic potential vsolute

Gs =
1

2
fε

∫
∂Ω

vsolute(s)σ(s)ds (3)

where ∂Ω denotes the cavity surface.

In practice, the surface charge density is discretized to a set of apparent surface charges,

q, and the problem is recast as a set of linear equations. The surface charges are calculated

from the solute electrostatic potential on the cavity surface, v, using the following equations:

Kq = Rv (4)

Here, K and R govern the electrostatic interactions between surface charges, as well as any

necessary boundary conditions. Table 1 summarizes the models examined in this paper. S

Table 1. Summary of the PCM Methods

Method K R scalar fε References

IEF-PCM S− fε
2π

DAS −fε(I − 1
2π

DA) (ε− 1)/(ε+ 1) 31–33

SS(V)PE S− fε
4π

(DAS + SAD†) −fε(I − 1
2π

DA) (ε− 1)/(ε+ 1) 29,30
C-PCM S −fεI (ε− 1)/(ε) 4,5
COSMO S −fεI (ε− 1)/(ε+ 1/2) 3

describes the Coulomb interaction between surface charges, D generates the potential of a

dipolar surface charge distribution, and A is the surface area of each cavity tessera. The D

matrix arises from the dielectric boundary conditions used in the IEF-PCM and SS(V)PE

7



models. fe is the permitivitty dependent scaling factor, which is an empirically modified

form of the D-PCM prefactor.27 The functional forms of the K and R matrices depend on

the specific model, and detailed derivations of these are given in the references provided in

Table 1. The IEF-PCM and SS(V)PE methods belong to the dielectric type scheme and

differ only in their representation of the K matrix. The C-PCM and COSMO methods are

conductor-like models that differ only in the representation of the scalar fε for the dielectric

screening. Historically COSMO may refer to the original dual cavity implementation of the

model, which accounts for the outlying charge,3 although in this work all models use the

same single cavity. It has been shown that the C-PCM and COSMO formulations already

include an implicit outlying charge correction even without the dual cavity.2,25

We also examine these models within the Schwarz domain decomposition, which allows

the K matrix to be block-sparse but does not change the fundamental screening electrostatics.

Domain decomposition allows for up to linear scaling algorithms to be used to invert the

response matrix. ddCOSMO is the domain decomposed version of C-PCM47–49 because the

reference implementation of ddCOSMO used the C-PCM scalar fε = (ε− 1)/(ε) rather than

the COSMO scalar fε = (ε − 1)/(ε + 1/2).49 ddPCM is the domain decomposed version of

IEF-PCM.50,51

The extension of the continuum solvation models to NEO calculations is straightforward,

mainly involving the calculation of the quantum proton potential on the cavity surface and

the inclusion of the solvation polarization term in the protonic Kohn-Sham equations. 15,39,40

The ddCOSMO derivation is slightly more involved, so a more detailed extension to NEO

calculations is described in the SI. The cavity for NEO calculations is constructed in the

same manner as for the conventional electronic structure counterpart, with the quantum

proton position represented by its basis function center position. As the geometry of the

molecule changes, or the proton basis function center moves beyond the cavity due to a

process such as proton transfer, the cavity must be constructed again, analogous to the

conventional electronic continuum solvation methods.
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2.3 Polarizable QM/MM with MB-pol

In this study, we also couple NEO to the MB-pol polarizable force field in a polarizable

embedding QM/MM scheme, denoted by NEO-QM/MB-pol. MB-pol contains inducible

point dipoles on each atomic site, thereby allowing the solvent to polarize in response to

changes in the solute’s electronic and nuclear densities. Furthermore, MB-pol is advantageous

because it is trained on the CCSD(T) potential energy surface and provides the most accurate

representation of water across all phases.43–45,52 A more general discussion of inducible dipole

force fields can be found in the relevant literature.53 Because MB-pol is variational with

respect to the dipole polarization, the fundamental QM/MM interaction can be written as

a variational functional of the density matrix P, which includes both the electronic and

quantum nuclear contributions, and the inducible point dipoles µ:54

E(P,µ) = EQM(P) + EMM(µ) + E Int(P,µ) (5)

where E Int describes the interaction between the QM and MM regions, written as E Int =

EPol + EPerm + ENon-elec. These terms govern the polarization, permanent electrostatic, and

non-electrostatic interactions, respectively. Within E Int, the polarization plays a particularly

important role, as it allows dynamic communication between the two regions. Formally, the

polarization is expressed as the interaction of the MM dipoles with the QM electric field:

EPol(P,µ) =
1

2
µ†Tµ− µ†(EMM + EQM(P)), (6)

Here, EQM is the electric field due to the electronic, classical nuclear, and quantum nuclear

components of the QM subsystem, EMM is the electric field arising from the permanent

partial charges in the MM region, and T describes the Thole-damped dipole interaction

tensor.

In this scheme, the induced dipoles are obtained by solving the dipole equation at each
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SCF step:

µ = A−1(EMM + EQM(P)) (7)

where A is the matrix that governs the molecular response to an external field:

A =



−â−1
1 T12 . . . T1Nµ

T21 −â−1
2 . . . T2Nµ

...
...

. . .
...

TNµ1 TNµ2 . . . −â−1
Nµ


(8)

Here, â is the atomic polarizability tensor for each respective atom, and Nµ is the total

number of atoms.

2.4 Computational Details

All calculations in this study were performed using a development version of Chronus Quan-

tum55 using the PBE056 and epc17-218 functionals for the electronic exchange-correlation

and electron-proton correlation, respectively. Calculations were performed on the geometry

of the water dimer optimized in vacuum using CCSD(T)/CBS from the A24 dataset.57 IEF-

PCM, C-PCM, and SS(V)PE were correspondingly validated against the implementation in

Q-Chem.58 ddCOSMO (non-NEO) was validated against the corresponding implementation

in PySCF.59,60 Calculations with ddCOSMO used lmax = 10 for the truncation of the spheri-

cal harmonic basis and used a regularization parameter η = 0.0 (no switching) to ensure the

ddCOSMO cavity was consistent with the IEF-PCM, SS(V)PE, and C-PCM cavities.49,50

The cc-pVTZ61 basis set was used for the electronic subsystem, and the PB4-D62 protonic

basis set was used for the quantum protons. A (99,590) grid was used for the DFT nu-

merical integration. The molecular cavities were constructed using the corresponding UFF

radii scaled by 1.1 and using 590 surface grid points per atom, corresponding to a 41st order

Lebedev grid. The MBX library63 was coupled with ChronusQ to use the MB-pol model in
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a polarizable embedding QM/MM scheme.

3 Results and Discussion

3.1 Comparison of Solvent Models for Solvation Free Energy Cal-

culations

Figure 1. Geometry of the water dimer with a) the external proton treated
quantum mechanically and b) the internal proton treated quantum mechanically.

Here, we examine the differences in solvation free energy as a function of dielectric con-

stant for a water dimer (Figure 1) using the IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO

(the domain decomposition variant of C-PCM) methods. Figure 2 plots the solvation free

energy obtained with conventional electronic and NEO calculations for these solvation mod-

els. Only the external proton (Figure 1a) was treated quantum mechanically for these NEO

calculations in order to isolate the effect of one quantum proton. An analysis of cases with

multiple quantum protons is provided in the following subsection. In the conventional case

(i.e., classical proton), IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO converge to a solvation

free energy of ∼-7.8 – -8.0 kcal/mol as ε → 100. For the NEO calculations, the solvation

free energy converges to a value of ∼-8.0 – -8.2 kcal/mol as ε → 100 for all four solvation

models, suggesting an increase of ∼0.3 kcal/mol in solvation free energy induced by the

quantum nature of the proton. These results suggest that for polar solvents with dielectric

constants greater than ∼20, the electrostatic solvation free energy is qualitatively similar for

the IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO models.

Next we seek to understand how increasing the number of quantum protons in a system

will modulate the solvation free energy. Figure 3 plots the distribution of solvation free
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Figure 2. Electrostatic solvation free energy as a function of dielectric constant
for a water dimer examined with the a) IEF-PCM, b) SS(V)PE, c) C-PCM, and
d) ddCOSMO approaches. The NEO and conventional cases are shown in red
and blue, respectively.
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Figure 3. Electrostatic solvation free energy as a function of number of quantum
protons for a water dimer examined using the IEF-PCM, SS(V)PE, C-PCM, and
ddCOSMO methods with ε = 78.3553. The left, middle, and right panels describe
a water dimer with 1, 2, and 3 quantum protons, respectively. The schematic
at the top of the figure shows all possible ways to treat a water dimer with
1 quantum proton colored in blue. The conventional electronic and full NEO
results, corresponding to 0 and 4 quantum protons, respectively, are shown with
horizontal dashed lines.

13



energies for a water dimer with one, two, and three quantum protons in a solvent with

ε = 78.3553. The cases with zero and four quantum protons represent the conventional

electronic and full NEO calculations, respectively, and are depicted as horizontal dashed

lines. There are four, six, and four possible ways to choose one, two, and three quantum

protons, respectively, in the water dimer system. This results in a distribution of free energies

for the cases with one, two, and three quantum protons, as demonstrated in Figure 3.

Starting from the conventional electronic case and successively adding one proton to the

quantum nuclear subsystem, it is observed that for IEF-PCM, SS(V)PE, C-PCM, and dd-

COSMO, the solvation free energy decreases by about 0.3 kcal/mol per additional quantum

proton. Despite the narrow free energy distribution seen for each step, dimer configurations

containing an internal quantum proton exhibit a slightly greater solvation free energy than

the configurations with an external quantum proton. Table S1 in the Supporting Information

shows the raw free energy values for each possible way to form a NEO water dimer with a

corresponding schematic. The general decrease in solvation free energy observed at each step

is consistent with the results in Figure 2, where the solvation free energy for the NEO dimer

with the external proton quantized was ∼0.3 kcal/mol more negative than the conventional

case for ε >∼20. This lowering of solvation free energy is a result of the quantum nucleus

being able to self-consistently interact with the apparent surface charges on the cavity. Be-

cause the proton is treated quantum mechanically, the density can polarize and respond to

changes in the solvent, leading to a stronger interaction. However, there is also an interplay

between the proton and electron densities, and the changes in solvation free energy are likely

the result of concerted protonic and electronic polarization.

In order to extend our analysis to a broader set of molecular species, we performed addi-

tional calculations for all species in the A24 dataset, which is composed of small molecular

dimers.57 Figure 4 plots the difference in electrostatic solvation free energy per quantum
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proton between a NEO and conventional calculation, defined as:

δG = (GNEO
s −GConv

s )/Nprot. (9)

This quantity is correlated against the magnitude of the molecular dipole moment in vacuum

and the total number of protons, Nprot, for these species. In this analysis, all protons are

treated quantum mechanically for the NEO calculations, and the data is plotted for the

IEF-PCM method. Additional data for the C-PCM, SS(V)PE, and ddCOSMO methods are

included in the SI. Figure 4 shows that the increase in solvation free energy per quantum

proton varies over ∼0.5 kcal/mol, indicating that the ∼0.3 kcal/mol increase per quantum

proton observed for the water dimer is not a general phenomenon. Moreover, dimers with a

larger number of protons typically have smaller changes in solvation free energy.

To gain a deeper physical understanding of these results, the solvation free energy data

is correlated against the magnitude of the vaccuum molecular dipole moment in Figure 4a.

This data shows that the more polar species, indicated by greater dipole magnitude, typically

exhibit a larger increase in solvation free energy per proton with NEO. A greater cavity polar-

ization induced by a larger dipole will correspondingly lead to a stronger proton polarization

response. This suggests that polar species are often more sensitive to nuclear quantization

in solvation schemes than are non-polar species. This analysis suggests an interplay among

molecular polarity, proton and electron polarization, and the solvent response.

3.2 Dependence of Proton Polarization on Implicit Solvation Model

Following the previous analysis, this subsection examines the differences in proton polar-

ization among the various popular polarizable continuum models. The proton polarization

for the internal and external protons in the water dimer are plotted in Figure 5, calculated

using IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO with ε = 78.35. The proton polariza-

tion is defined in this work as the density difference between the solvated and vacuum phase
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Figure 4. Difference in electrostatic solvation free energy per proton between
NEO and conventional calculations for species in the A24 dataset as a function
of a) magnitude of the vaccuum dipole moment and b) total number of protons
in the system using the IEF-PCM method with ε = 78.35. Data corresponding
to the C-PCM, SS(V)PE, and ddCOSMO methods is provided in the SI.

quantum proton densities:

∆ρproton(r) = ρsolv(r)− ρvac(r). (10)

The proton polarization can be quantitatively described by the difference of the O-H

bond length in solution and in vacuum. The O-H bond length for a quantum proton is

calculated as

rOH = |rO − 〈ψp|r|ψp〉| (11)

where ψp is the variationally optimized15,64 orbital for the quantum mechanical proton, and

rO is the classical oxygen position. Although the basis function centers for the quantum

protons are fixed to the original classical positions, the PB4-D protonic basis set is sufficiently

large to capture proton polarization.

The effects of solvation on the O-H bond length are given in Figure 5. In Figure 5(a-d),

the polarization response of the external proton is similar for the IEF-PCM, SS(V)PE, C-

PCM, and ddCOSMO models. For the hydrogen-bonded internal proton in Figure 5(e-h), a

similar trend is observed, where all models display quantitatively similar proton polarization

response. More quantitatively, solvation is observed to increase the external O-H bond length

by 0.0045 Bohr for the IEF-PCM, SS(V)PE, C-PCM and ddCOSMO models. The internal
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Figure 5. Polarization of the proton density in a water dimer upon solvation.
The proton densities were computed with NEO-PCM for a quantum mechanical
treatment of a-d) the external hydrogen and e-h) the internal hydrogen for each
continuum solvent model with ε = 78.3553. Changes in O-H bond lengths are
shown in Bohr. The density differences are oriented according to the schematic
of the dimer on top.
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O-H bond length is observed to increase by 0.007 Bohr for all four models. These results are

consistent with previous work on the IEF-PCM model.39

3.3 Effects of Cavity Size and Shape in NEO systems
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Figure 6. Percentage escaped charge for the electrons and quantum protons as
a function of vdW radius scaling factor for a water dimer examined using the a)
IEF-PCM, b) SS(V)PE, c) C-PCM, and d) ddCOSMO methods with ε = 78.3553
and the UFF radii.

As previously mentioned, since continuum solvation theory does not inherently describe

non-electrostatic interactions, the cavity in which the solute is embedded can be generated

following various prescriptions. In practice, the cavity for a NEO molecular system is gen-

erated from the classical nuclear positions in conjunction with the basis function centers of
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Figure 7. Electrostatic solvation free energy as a function of vdW radius scaling
factor for a water dimer examined using the a) IEF-PCM, b) SS(V)PE, c) C-
PCM, d) and d) ddCOSMO methods with ε = 78.3553 and the UFF radii. A
dashed line is drawn at -8 kcal/mol as a guide to the eye.
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the quantum protons. This subsection investigates the relationship between solvation free

energies, outlying charge, and cavity shape for NEO calculations. Figure 6 shows the per-

centage of escaped charge from the cavity for the electronic and quantum proton densities

for each solvation method for vdW radii scaling factors of 0.75 to 1.50. The percentage of

escaped charge is calculated by integrating over the volume of the cavity, V , and counting

the number of particles contained therein:

%Qescaped =
Qtotal ± e

∫
V
ρ(r)dr

Qtotal

× 100 (12)

where the sign is dependent on the type of particle. The corresponding solvation free energy is

also shown in Figure 7. The UFF radii give rvdW
H = 1.443 Å and rvdW

O = 1.75 Å. At r = rvdW,

∼0.7% of the total electronic charge is escaped from the cavity for all models examined. This

decreases to ∼0.3% at r = 1.1× rvdW, which is the default atomic sphere radius used in all

previous calculations. The corresponding solvation free energies are ∼ −12.0 kcal/mol at

r = rvdW, and ∼ −8.9 kcal/mol at r = 1.1× rvdW. In contrast to the electronic charge, the

proton charge is functionally completely contained within the cavity for all examined radii

scaling factors and models. This is a result of the relatively localized proton density, as the

proton has a significantly greater mass compared to the electron.

These data are consistent with early studies that documented how sensitive the solvation

free energy is to molecular cavity size and shape.31 For the water dimer examined in this

study, even a few percent change in the cavity size can result in multi-kcal/mol differences

in the solvation free energy. It should be noted that while solvation free energies are rather

sensitive to this effect, relative free energies, redox potentials, and pK a values can be quite

accurately recovered. Most importantly, this analysis shows that the outlying charge problem

is a purely electronic problem for reasonable cavities, as the proton density is highly localized

and does not escape the bounds of the cavity for static systems.
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3.4 Proton Polarization in Implicit vs Explicit Solvation

Figure 8. Polarization of the proton density in a water molecule upon solvation
by a) 10 explicit MB-pol water molecules, b) 160 explicit MB-pol water molecules,
and c) IEF-PCM with ε = 78.3553. An isosurface value of ±0.1 a.u. was used
with blue representing positive values and yellow representing negative values.

Next we examine the differences in proton polarization between a polarizable continuum

scheme and an explicit polarizable solvent environment in a prototypical test case of a single

water molecule. Figure 8 plots the proton polarization of a water molecule treated with

NEO-DFT embedded in a single solvation layer of 10 water molecules, a bulk environment
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Table 2. Normalized Molecular Dipole Moment of a NEO Water Molecule in
Vacuum and in a Solvent Environment Described Using the MB-pol Model or
IEF-PCM with ε = 78.35.

µx/|µ| µy/|µ| µz/|µ|
Vacuum −0.561 0.355 −0.748
10 MB-pol H2O −0.555 0.386 −0.694
160 MB-pol H2O −0.573 0.398 −0.716
IEF-PCM −0.561 0.355 −0.748

Figure 9. Polarization of the proton density for the proton of a water dimer
a) in IEF-PCM with ε = 78.3553, b) interacting with an MB-pol water aligned
along the O-H axis, and c) interacting with an MB-pol water aligned off of the
O-H axis. A schematic is provided on the right hand side of the figure.
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of 160 water molecules, and an IEF-PCM environment. All explicit waters were described

using the MB-pol model, and a dielectric constant of ε = 78.35 was used for the IEF-

PCM calculation. Because the previous analyses showed that all the examined continuum

solvation models displayed quantitatively similar solvation properties, only the IEF-PCM

model is considered in this case for brevity. The configurations for Figure 8a and Figure 8b

were extracted from a randomly selected frame from an MB-pol centroid molecular dynamics

trajectory,65 including the nearest 10 and nearest 160 water molecules, respectively, to the

central water.

The proton densities shown in Figure 8a and Figure 8b are computed relative to the

proton density in vacuum for a single NEO-DFT water molecule surrounded by 10 and

160 MB-pol water molecules, respectively, using a polarizable embedding QM/MM scheme.

When surrounded by 10 water molecules, the proton polarizes in the direction of the neigh-

boring water molecules that accept the hydrogen bond. The similarity between the proton

densities in these two figures indicates that the proton polarization does not qualitatively

change when introducing additional solvation layers to the system. Figure 8c shows the

proton polarization when the same NEO-DFT water molecule is embedded in an IEF-PCM

cavity. In this case, the two protons polarize in a uniform direction toward the cavity sur-

face, in contrast to the explicit solvent cases where the protons polarize non-uniformly in

the directions of the hydrogen-bonded explicit water molecules.

For a more quantitative analysis, the normalized molecular dipole moments of the water

molecule in vacuum, surrounded by 10 and 160 explicit waters, and in IEF-PCM are given

in Table 2. The homogeneous implicit solvation model does not significantly change the

molecular dipole moment orientation compared to the vacuum case, consistent with the

uniform proton polarization shown in Figure 8c. Furthermore, the 10 and 160 explicit water

cases in Table 2 produce a dipole moment direction that is not parallel to the vacuum

dipole moment, consistent with the non-uniform proton polarization shown in Figure 8a and

Figure 8b. These data suggest that the anisotropy of the local environment can influence

23



the polarization of the proton. Polarizable continuum models that represent the solvent by

a uniform dielectric may not be able to capture important proton polarization arising from

an atomistic description of the solvent.

To further characterize the magnitude of proton polarization induced by explicit and

implicit solvent representations, Figure 9 depicts the proton polarization for a NEO-DFT

water dimer in three different environments: IEF-PCM and coordinating with 1 MB-pol wa-

ter molecule in two different orientations. The proton polarization and bond length changes

are defined by Eq. (10) and Eq. (11), respectively, in Section 3.2. In this analysis, only the

external proton, as shown in the schematic on the right side of the figure, is treated quantum

mechanically to isolate the polarization effects to a single proton.

The IEF-PCM environment increases the O-H bond length by ∼0.0045 Bohr, whereas the

MB-pol environment increases the bond length by ∼0.02 and ∼0.1 Bohr in the two different

orientations, respectively. This data also demonstrates that the magnitude of the proton

polarization is dependent on the hydrogen bond angle. A more detailed analysis of the MB-

pol polarization split between the permanent charge and inducible dipole contributions is

provided in Figures S1 and S2. Briefly, the MB-pol model tends to more strongly polarize

the quantum proton relative to a PBE0 water molecule. It should be noted in this case that

density functional approximations tend to over-delocalize the electronic density, which can

lead to long-range energetic and polarization artifacts.

4 Conclusions

This study highlights the differences and similarities among the various continuum solva-

tion formalisms applied to NEO systems. Our calculations demonstrate that the IEF-PCM,

SS(V)PE, C-PCM, and ddCOSMO models produce quantitatively similar solvation free en-

ergies and bond length changes for NEO systems. Importantly, we show that nuclear quan-

tization can impact the solvation free energies, especially for polar species. This provides
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fundamental insight into the interplay among nuclear quantization, the solvent environment,

and molecular polarity. We also demonstrate that the outlying charge problem is unique to

the electron density, and that the quantum proton density is almost completely contained in

a conventional cavity for most systems. The sensitivity of the solvation free energy to cavity

size and shape demonstrated in previous studies31 is reinforced, showing that even a small

change in cavity size can result in multi-kcal/mol differences in the solvation free energy.

Finally, the proton polarization induced by an implicit solvent environment is compared

to that induced by an explicit solvent environment. Our calculations show that the MB-

pol model can accurately capture proton polarization induced by specific hydrogen-bonding

interactions in a NEO QM/MM scheme. These findings will be useful in guiding future

chemical applications of the NEO approach combined with continuum solvation models.

Supporting Information

The supporting information includes NEO-ddCOSMO derivation, solvation free energies for

the water dimer with all possible NEO partitions, and difference in electrostatic solvation free

energy per proton between NEO and conventional calculations using C-PCM and SS(V)PE.
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