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In this work, a field representation of the conservation
law of linear momentum is derived from the atomistic,
using the theory of distributions as the mathematical
tool, and expressed in terms of temperature field by
defining temperature as a derived quantity as that in
molecular kinetic theory and atomistic simulations.
The formulation leads to a unified atomistic and
continuum description of temperature and a new
linear momentum equation that, supplemented by
an interatomic potential, completely governs thermal
and mechanical processes across scales from the
atomic to the continuum. The conservation equation
can be used to solve atomistic trajectories for systems
at finite temperatures, as well as the evolution of
field quantities in space and time, with atomic or
multiscale resolution. Four sets of numerical examples
are presented to demonstrate the efficacy of the
formulation in capturing the effect of temperature
and thermal fluctuations, including phonon density
of states, thermally activated dislocation motion,
dislocation formation during epitaxial processes, and
attenuation of longitudinal acoustic waves as a result
of their interaction with thermal phonons.

l. Introduction

Temperature is a basic concept in the broad field
of physical science. It is a fundamental physical
quantity in thermodynamics, statistical mechanics and
continuum mechanics. Specifically, the principal variable
in thermodynamics is the absolute temperature, which
is introduced as a basic quantity in the zeroth law. In
statistical mechanics of canonical ensemble, temperature
serves as a basic parameter characterizing the heat
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reservoir with which the system contacts. In classical continuum mechanics, the axiom of
causality states that ‘the motion, temperature, and charges of the material points of a body are
the cause of all physical phenomena’ [1,2], thereby prescribing temperature as one of the basic
quantities upon which all other quantities are derived.

Different from the macroscopic or continuum field theories that treat temperature as a basic
quantity, kinetic molecular theory expresses temperature as a derived quantity based on classical
mechanics of particles. Built on the work of Bernoulli [3], Clausius derived a relationship between
temperature and the average kinetic energy of gaseous systems [4]. This kinetic energy-based
temperature, generally referred to as kinetic temperature, has been the abiding temperature
definition in all classical atomistic and molecular simulations.

While temperature is a ubiquitous quantity in theoretical formulations of physical theories
[5,6], it is also a quantity that is frequently measured in experiments. The engineering concept of
temperature can be traced back to 1593 when Galileo Galilei invented a thermoscope to measure
hotness or coldness based on the thermal expansion of air [7]. One hundred years later, Medici
invented a thermometer, which was later improved by Amontons, by defining temperature in
terms of the pressure of a gas. Building on the works on the thermal expansion of liquids by
Romer in 1708 and Fahrenheit in 1724 [8,9], Celsius introduced a scale of 100° for the temperature
interval between the ice point and the boiling points of water [10]. There are other thermometers,
most of which were developed based on a material property that depends on temperature. Thus,
temperature in most experimental measurements is a derived quantity.

Despite its ubiquity and fundamental importance, there is no unified definition of temperature
among well-established theories, making it difficult for multiscale simulations that involve
different theoretical descriptions. This is especially true for concurrent atomistic-continuum
simulations, as temperature is a derived quantity in mechanics of particles but a basic quantity
in mechanics of continua; the former is completely governed by Newton’s second law, whereas
for the latter, one must solve both the conservation equation of linear momentum and the
conservation equation of energy assuming a heat flux—temperature relation. This fundamental
inconsistency limits the applicability of concurrent multiscale methods for simulation of non-
equilibrium materials processes, constituting one most formidable challenge for the development
of multiscale methods.

This work aims to derive a unified description of temperature in atomistic and continuum
representation of conservation laws, thereby addressing the fundamental challenge. Following
the introduction, microscopic descriptions of temperature are reviewed in §2, including the kinetic
theory description of temperature and pressure, and the phonon description of temperature.
The CAC formulation of the field representation of conservation laws is then reviewed in §3.
In §4, we derive the conservation law of linear momentum and express the equation in terms of
temperature field. In §5, we present a finite-element implementation of the formulation. Section
6 presents four numerical examples to demonstrate the efficacy of the formulation. This paper
concludes with a summary and discussions in §6.

2. Areview of microscopic descriptions of temperature

(@) Temperature in molecular kinetic theory

Attempts to derive a mathematical description for pressure and temperature from microscopically
moving particles can be traced back to 1729 when Euler formulated a rudimentary kinetic theory
[11] based on Boyle’s gas data published in 1662 [12]. Using the assumption that all the gas
particles move at the same speed, Euler obtained an equation of state connecting P (pressure),
p (density) and v (molecular speed) for dry air, i.e. P pv?/3. In 1733, Bernoulli published
his book on hydrodynamics [13], in which he derived an equation for the pressure of a gas
considering point-like particles of mass colliding with the walls of the container and showed that
the pressure is two thirds of the average kinetic energy of the gas in a unit volume. Built on the
atomic theory that a gas consists of moving particles, Clausius derived the relationship between
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Figure 1. A particle striking a wall and bouncing back.

temperature and averaged kinetic energy of gas particles in thermal equilibrium in his paper ‘On
the Nature of the Motion which We Call Heat” in 1857 [4] as

<%mv%> = %kBT, 2.1)
where vy is the velocity vector of a particle k, () denotes time average, and kg was later called
Boltzmann constant [14]. Equation (2.1) has been widely used as a measure of temperature for
equilibrium systems. In molecular dynamics (MD) simulations, it is widely assumed that equation
(2.1) remains valid in the absence of thermal equilibrium and the definition then coincides with
that indicated by a sufficiently small and fast thermometer.

Clausius’s kinetic theory was further developed by Maxwell based on a statistical viewpoint.
Considering that the collisions among molecules would produce a statistical distribution of
molecular velocities, Maxwell developed a distribution law for the velocities [15], known as
Maxwell’s Distribution, providing the first mathematical tool to find the statistical velocity
distribution of molecules of an ideal gas in a box at a definite temperature T. Building on the
works of Clausius and Maxwell, Boltzmann formulated a statistical theory that is not restricted
to ideal gases and showed that the distribution function in any system at thermal equilibrium at
temperature T has the canonical form:

f(E) oexp (— kBiT) , 2.2)

where E is the energy of the system. Applying this distribution to the velocities of the molecules
in an ideal gas, one obtains the Maxwell’s velocity distribution, as well as the temperature in
equation (2.1) but as an ensemble average. Temperature is thus defined as a statistical quantity
that measures the average kinetic energy of the molecules in a system.

(b) Pressure in the molecular kinetic theory

The molecular kinetic theory assumes that pressure of a gaseous system in a container is caused by
the force associated with individual atoms striking the walls of the container. Consider a particle
ka (a-th particle in the kth unit cell) travelling with velocity vy, and striking a wall of the container,
i.e. a face of the cube, as illustrated in figure 1. The force exerted at the wall due to the collision is
equal to the change of the linear momentum of the particle during the collision. For example, the
z-component of collision force can be expressed based on Newton's second law as
o M mf, =) 2w,
At At At
In thermal equilibrium, time-averaged pressure of the system is uniform, and the formula can
then be expressed in the form of a volumetric density. Denote V to be the volume of a cube with
edge length L. The average time for a molecule to hit the wall is 2L/v{,. The contribution from
particle ka to the pressure can then be expressed as

(2.3)

2
. _F 2mup, m(vg,)* _ Imls,)? + (oh,)” + (WE,)*]
ke =72 T A2 3 % ’

(2.4)
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which, according to equation (2.1) is kgT/V. For a system with N particles, this then yields the
ideal gas law,

PV = NkgT. (2.5)

Thus, pressure is closely related to temperature, and in §4 we will show that the local pressure
in equation (2.4) is identical to the kinetic or thermal stress.

(c) Phonon description of temperature

Different from the classical concept of temperature, the quantum description of temperature is
in terms of phonons. A phonon is a quantum mechanical description of atomic vibrations, in
which a lattice of atoms collectively oscillates at a single frequency. There are more phonons at
higher temperature and fewer phonons at lower temperature. The average number of phonons
with wavevector k and polarization v at temperature T is given by

ath )= (o, 1) =1/ [exp(* 52 -1 6)

where 71 is the Planck constant and kg the Boltzmann constant. This relationship is called the
Planck distribution or the Bose-Einstein distribution. The total kinetic energy of the system, which
is equal to the potential energy at thermal equilibrium, can then be expressed in terms of all the
available phonons modes in the systems as

ZZhw(k V) [ +n(k, v)] (2.7)

At high temperature all phonon modes have the same energy; half of this energy is kinetic
which is equal to kgT /2. The phonon description of temperature then becomes analogous to the
classical particle description of temperature where each degree of freedom has an average kinetic
energy of kpT /2. Since the number of the phonon modes is equal to the number of degrees of
freedom, for systems at temperature higher than the Debye temperature, the total kinetic energy
of the system in equation (2.7) then becomes

NI 3Na 1 NI Na
Z > he(k, v) [ +n(k, v ] 5 DO (o) = leNukBT (2.8)
k 1v=1 k=1&=1

The difference between quantum and classical temperatures can be quantified through
comparing the total kinetic energy of phonons to that of atoms. Thus, for a given quantum
temperature, the corresponding classical temperature can be calculated [16]. Figure 2 presents
such calculations for single crystal Fe, Si and SrTiO3z, which show that the two temperatures are
different at low temperature, but the difference becomes negligible as temperature increases.

3. Areview of the CAC formulation of conservation laws

The first derivation of the field equations of conservation laws from a molecular model was
published in 1950 by Irving & Kirkwood [17], who used the Dirac delta to define the local density
of a dynamic function A(ry, vg) in phase space as an ensemble-averaged point function a(x, f) in
the physical space, as illustrated in figure 3, as

N
alx, ) = <Z A, vi)d(x — rk)>, (31)

k=1

where the bracket () denotes ensemble average (meaning repeating an experiment many times),
¢ and vy, are the position and velocity of kth molecule, and the d-function is defined by its sifting
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Figure 2. Quantum (green dashed line) versus classical temperature (blue solid curves) for (a) Fe, (b) Siand (c) StTi0s, showing
that the two temperatures converge at high temperature. Note that at 0 K quantum temperature, Fe, Si and StTiO; have a zero-
point energy equivalent to 142.7 K, 273.7 K, 279.7 K, respectively.
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Figure 3. Mapping a phase function A (#y, vy) of a particle k to the local density of A at point x in the physical space.

property [18], i.e.
JH f(x)8(a — x) d>x =f(a). (3.2)
2

Irving and Kirkwood (IK) then derived the time evolution equations for the densities of mass,
momentum, and energy, and related the rate of change of the ensembled averaged local density
of a conserved quantity, a(x, t), to its ensemble-averaged flux, J(x, 1), in the following form:

9 _
578000 = V- Jx, ). (3.3)

Equation (3.3) is identical in form to the equations of hydrodynamics for homogenized
continua. It was noted by IK that all the quantities in their formulation were defined as point
functions and ‘to obtain the hydrodynamical equations themselves it is necessary to perform
appropriate space and time averages’ [17], and that their formulation ‘was only valid for
single-phase single-component systems’. In the first one of a series of 14 papers on statistical
mechanical theory of transport processes, Kirkwood envisioned the extension of the formulation
to ‘molecular systems with internal degrees of freedom’ [19].

The CAC formulation [20-22] is such an extension to crystalline materials. CAC views a crystal
as a continuous collection of lattice cells, while embedded within each lattice cell there is a group
of discrete atoms. A similar two-level structural description was proposed and developed in the
Micromorphic theory [23-26]. By including the internal atomic degrees of freedom within each
lattice cell, CAC extends the IK formulation to a concurrent atomistic-continuum description of
general crystals. Recently, the CAC conservation equations have been reformulated [20] using the
Theory of Distributions [27], which enables CAC conservation equations and flux formulae to be
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Figure 4. (a) Position vector, x, of a unit cell, and the internal position of atom « relative to the unit cell, y, in physical space.
(b) The corresponding positions in the phase space.

valid instantaneously. In distinction from the IK formulation that defines all field quantities as
ensemble-averaged point functions, CAC defines the local densities of mass, linear momentum
and energy as time-interval-averaged volume densities, while fluxes, such as stress and heat flux,
are obtained as a time-interval-averaged surface density [20,28-31]. As a result of the continuous
distribution of unit cells in crystals, the volume densities of mass, linear momentum and energy
are continuous in space unless a structural discontinuity, such as a crack, a dislocation or a grain
boundary, is present [32-35], while the fluxes are valid at the atomic or larger scales without the
need of being continuous.

With the two-level structural description of a crystalline material, CAC expresses the position
of an atom as a sum of the position of the lattice cell, x, and the internal position of the atom
relative to the lattice, y, as shown in figure 4. Correspondingly, the local density of a phase
function A per unit-cell volume can be defined as

a

N; N, ~ N,
a2 D" Al via)By (@ — 1) 2 Y aa(x, b, (34)
a=1

k=1a=1

where Nj is the number of lattice cells in the system, N, is the number of atoms within a lattice
cell, and a,(x, t) is the contribution of the ath atom to a(x, t) and can be expressed as

Nl NI
A R R A
a0, ) =Y Alrke, va)Sv(x — 1) = Y Alfke, vka)Sv(x +y — 1) =d'(v,y, 1), (35)
k=1 k=1
or as
N, N
ag(x, )= > Alrge, vie)v (x — )dy, (y — Arge), (3.6)
£=1k=1

where the box functions

) 1 (HAt
Syl = L Sy(x — () de,

1|1 ifx—reV
where Sy (x — r¢) = v {0, fx—r gV (3.7)
and
B AL
oy = Ane) =57 | dvaly = A,
_J1 ify—AngeVy or &=a
where Sy, (y — Arge) = {0 ify— Are ¢ Vo or E4a (3.8)

and V and V,, are the volume of the unit cell and of atom o within the unit cell, respectively, as
shown in figure 5.
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Figure 5. Two-dimensional schematic of () a crystal lattice; (b) the flux across the bounding surface of a unit cell 3 V/ (the blue
rectangle), J;, and (c) the flux that does not cross dV but d Ve (the black triangles) within the unit cell, J,.

Following from equation (3.6), the distributional derivatives of the density of a conserved
quantity, i.e. the conservation equation, can be derived and expressed in terms of two fluxes J;
and ], as [20]

0 d 1
ﬁua(x, t)= au/(x,y, t)y= v (—@avh(x +x,1) - nd?x

1
- = @ JL(x,y+7v,t)-nd%y, (3.9)
V Tov,

where n is the outward unit normal to the differential surface element; J; is the homogeneous
flux that flows across the enclosing surface of a unit cell, 3V; J5 is the inhomogeneous flux that
flows back and forth within V and hence only cross the bounding surface of the atom «, 9V, as
illustrated in figure 5.

It is noted that a time-interval average is used in the definition of field quantities, by which the
fluxes are obtained as a local property averaged over a time interval and a surface element, i.e. as
an triple integral of the Dirac 8§ [29]. This is consistent with the definition of the Dirac § by Paul
Dirac through integration [18], as the Dirac § does not itself have a definite value and only triple
integrals of a three-dimensional Dirac § are well defined through the sifting property expressed
in equation (3.2). Using such a definition for local densities, fluxes across a surface element are
represented as a line-plane intersection process, with the potential part of a flux involving a
line of force intersecting a surface element, while for the kinetic part it is the path of a moving
particle intersecting a surface element during a time interval [29]. In the theory of distributions,
the restriction is lifted. However, to describe the process of the flow of momentum or energy
across a surface element, a time-interval average of the local property remains necessary.

It follows from equation (3.6) that the linear momentum density due to the «th type atom can
be expressed as

N N,
PaVa =Y Y mevksby(x — 1)dva(y — Arie), (3.10)
k=1¢=1

the distributional derivative of which can then be obtained in the form of equation (3.9) as [20]

9(pa V) _

1 1
3 v #av(ta — paVaV - 1) dS + v #&Va (Ta — PaVa Avy - 1) dS,, (3.11)

where t, and 7, are the homogeneous and inhomogeneous parts of stress, respectively, with
each further containing a kinetic and a potential part. The kinetic part of stress was found to
be the flow of momentum per unit area per unit time across a surface element due to thermal
motion of atoms; while the potential stress is the force transmitted per unit area across the surface
element and is identical to the Cauchy stress vector. See [20] for detailed derivations of the
conservation laws, including the energy equation, as well as discussions of above equations and
quantities.
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4. Temperature in the instantaneous linear momenum equation

(a) Temperature in averaged linear momentum equation

Alternatively, we can use the local density defined in equation (3.5) and derive a different but
mathematically equivalent form of the distributional derivative of the linear momentum density,
ie.

N
3(paVy) 0
gt < Z Mo Dkaby (r — 1ho) + | D 1o Vka SV(V — Tka)

k=1 k=1

Ni
. 1 _
-ro-3 4, (Z Mk B+ 7 = i) + pavava) wd @
k=1
or

Ni
. 1 _ X
PaVa :fmt(r/ t) - V @av Z Mg Vg, Ve 8(1 + Y — rka) -n dzr/ éfmt(r/ t) +fT(r/ t)/ (42)
k=1

where vy, is the difference between the particle velocity and the velocity field, and upon a time-
interval averaging, this velocity difference, as well as the tensor product of v, and v, vanishes.

We can then use the kinetic theory to link statistically averaged kinetic energy density to
temperature as

N; 1
<Z Ema(vka)st(r - rka)> pa(va < JH Z mot(vko:) (3\/(1‘ - rka)>

k=1
=ka1(r,t) + ka2 (r, 1) = EkBT(f/ t), (4.3)

and hence

<fT(r )= <ﬂ) Zmavkavka(S(r+r — 1) - nd?r />
=- ﬁ <Z Pa(Bra)?8(r + 1 — rka)> nd?r’
A%

k=1
=-2 ﬁ) (kao(r +7',t) nd?’ = —BVT(r, 1), (4.4)
av

where k;1 and k;» are the kinetic energy density due to the velocity field v, and the velocity
difference vy, respectively; 8 is a constant to be determined by the resolution of the measurement,
such as the size of a finite element, and will be discussed in detail in §5; and f (r, t) is a measure
of the flow of momentum due to velocity fluctuations, and is related to the kinetic part of stress
or temperature.

It is noticed that the dyadic product of vy, in equation (4.4) is a tensor. The deviatoric part
of the tensor vanishes upon ensemble averaging if the probability distribution is isotropic, i.e. if
thermal fluctuations are statistically the same in different directions. Thus, equation (4.4) holds
for any atomistic or molecular systems whose particle velocities follow the Maxwell-Boltzmann
distribution. If, on the other hand, the velocity distribution is not isotropic, we would then
have a temperature tensor, as discussed by Hoover & Hoover [36]. Equation (4.4) then becomes

(fT(r, 1)) =BV - T(r,t).

(b) Fluctuating force in coarse-grained models

As indicated by equation (4.4), the instantaneous f7 (, ) is a fluctuating function with its average
being proportional to temperature gradient or the divergence of a temperature tensor field. Since
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the fluctuating force is an irregular function in time, one may attempt to express it as a random
function. It turns out that this fluctuating force cannot be simply expressed as a random force,
but a combination of a random force and a frictional force. The underlying principle was first
demonstrated by Einstein who applied statistical methods to the random motions of Newtonian
atoms and formulated a ‘general molecular theory of heat’ [37] to explain the random movement
of pollen particles immersed in a liquid observed by botanist Robert Brown, leading to the
development of the theory of Brownian motion. Over the past decades, the theory has been
further developed and extended to systems beyond Brownian particles, such as serving as a
coarse-grained model that accounts for omitted molecular degrees of freedom.

The fundamental equation in the theory of Brownian motion is the Langevin equation that
contains both a frictional force and a fluctuation force in the equation of motion. To demonstrate
the need of a friction force, let us consider a simplified equation of motion with constant mass
density p under a fluctuating force with density (t), i.e.

pv =1(t)or pv; = n;(t), (4.5)

where v; and 7); are the ith (i=1, 2, 3) component of the velocity field and the fluctuation force,
respectively. The fluctuation force is generally assumed to be not correlated with the velocity v;(0).
If we assume the fluctuation force is delta-function correlated, i.e.

(n(t)) =0, {mi(t)n;(t") = 288;(t — 1),

1 ifi=jandt=*

0 otherwise (46)

where §;(t —t') = {

Equation (4.5) can be solved to show that the mean velocity vanishes but the kinetic energy
increases with time [38], as

t .
(v;) = Jo <n;§t) > dt=0 and

L1 t<L(f)M> 8
<2pvl>—2pjodtjo P dt—pt. 4.7)

Adding a viscous damping force, yv, to equation (4.5), the equation of motion becomes pv; +
yv; = n;(f), and the solution for the velocity can then be found as

t
vi(t) = v;(0)e /P +J 1) =0/ g (4.8)
0o P

As t increases, the mean velocity goes to zero, but the average kinetic energy remains finite, as

1 1 ¢ L pi(0)e Y E=D)/e (e v E=T)/p
<*,011i2> _ 710J dTJ ni(t)e ni(t)e de’ = i (4.9)
2 27 Jo Jo P P 2y

This means that the modified equation of motion is able to reproduce the thermal equilibrium
state of the systems after a sufficiently long time. Expressing the averaged kinetic energy per
degree of freedom as kgT /2, or the kinetic energy density as kgT/2V, where V = m/p is the volume
of the unit cell or the particle at point x, we obtain from equation (4.9) the following relationship:

kT
=’”?B or gV =ykgT. (4.10)

Equation (4.10) shows that the frictional force and the random force are related and must
be present simulataneously [39], which is an important result of the well-known fluctuating—
dissipation theorem [39], and the theorem has been shown to remain valid when a potential field
is added to the equation of motion [39]. For systems in non-equilibrium steady state, it has been
argued that the results obtained for thermal equilibrium systems can still be valid if the velocity
is replaced with the relative velocity with respect to the local mean velocity [40].
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The classical Langevin equation has been generalized to non-Markovian processes, for which
the fluctuating force does not have to be delta-function correlated but retains long or finite-time
memory. Consequently, the friction force becomes a memory kernel. Equation (4.5) then becomes:

t
pis+ | ¥ = @) de ="e, )+ i) (11)

Here, y (t — 7) is called dissipative memory kernel, and 7;(t) is generally taken to be Gaussian,
ie.

_ )2
() =0, (niyy(v) =8;Ct 1), and C(t—7)= 23; = oxp [— (tZU? } , (4.12)

where o is the standard deviation, and 2 g is the strength of (t). To ensure that the system achieves
an equilibrium or steady state at long times, the dissipative kernel y(t — ) and the correlation
C(t — ) must be related as [41]

C(t —t)=kpTy(t — 7). (4.13)

This relation has been assumed and tested to be independent of the internal force field [39,42].

(c) Temperature in the instantaneous linear momentum equation

The instantaneous linear momentum equation, equation (4.2), can thus be rewritten in terms of
temperature field as

pava =™, 1) + (1, 1) =™ (r, 1) = BVT + 1(t) — yva(r, 1), (4.14)

if n(t) is a delta-correlated white noise shown in equation (4.6), or as

t
Pada =f(r, ) + fL(r, ) = (r, t) — BYT + (t) — L y(t — 1)v(v)de, (4.15)

if n(t) is a time-correlated Gaussian process shown in equation (4.12). For either case, the random
force n(t) approximately represents the deviation of instantaneous kinetic energy ko from the
mean kinetic energy (ky2) due to velocity fluctuations and can be expressed, according to equation
(4.4), as

n(t)=—2@ (ka2 — (kiz))nd®’ and  (n(9)) =O. (4.16)
A%

The frictional force thus accounts for the difference between fT(r, t) and —BVT + 5(t), which
enables the system to reach thermal equilibrium at sufficiently long time and reproduce the kinetic
energy—temperature relation.

A few important results and implications of the derivations of this section may be summarized
as follows.

1. The same as that in the IK formulation [17], both the energy and momentum conservation
equations in the CAC formulation can be directly derived from Newton’s second law [20].
This means that the energy equation is redundant in solving the motion of the systems.
Supplemented by a force field f™(x), the linear momentum equations can be used to solve
atomic trajectories or to predict the evolution of local densities and fluxes in space and
time. The derivation of energy equation is thus not presented in this work. Nevertheless,
the energy equation can be used to find the formula of heat flux. See references [20,28-
30,43] for detailed derivations, discussions, and numerical examples.

2. Equation (3.11) is an exact representation of conservation law of linear momentum for
atomistic systems. It can be used to find formulae to calculate fluxes (stress and heat
flux) in atomistic simulations. It also demonstrates that, different from that in monatomic
crystals, fluxes in polyatomic systems consist of two parts: a homogeneous part that flows
across unit cells and an inhomogeneous part that flows back and forth within each unit
cell. Each of these fluxes further contains a potential part and a kinetic part. In particular,
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the kinetic stress, when averaging over certain time-interval, is equal to the negative
pressure in molecular kinetic theory presented in equation (2.4) [28].

3. Equation (4.2) is also an exact representation of linear momentum conservation law for
atomistic systems. It can be solved with atomic-scale accuracy either with the finest finite-
element mesh or for systems at very low temperature when phonon-phonon scattering
can be ignored. Since the equation is expressed in terms of the internal force and the
thermal stress, it facilitates finite-element implementation, as in nonlinear dynamic finite-
element methods, the governing equation needs to be expressed in terms of an internal
force vector and an external force vector.

4. Equation (4.14) or (4.15) is the linear momentum equation expressed in terms of
temperature field. It is an instantaneous equation and can be used to solve systems and
processes at finite temperatures with atomic resolution. Owing to the statistical nature of
temperature, the equation represents the underlying atomistic systems in the statistical
sense.

5. Finite-element implementation

(a) Kinetic energy and velocity field

While kinetic energy can be uniquely defined, its measurement depends on computational or
experimental resolution. For example, in an FE representation, the motion of traditional finite
elements only represents a part of the total kinetic energy. To elucidate this point, we use the
decomposition of the kinetic energy in equation (4.3) again:

N, N,

1 - _
5 DO me(vre) S (x — 1)dvaly — Arg)
k=1£&=1
1 1o N ] _
= 5Paa) + 5D me(Bie)*Sv (¥ — 1i)dvaly — Arig)
k=1&=1
= al(xl t) + kaZ(x/ t)' (51)

Here, ky1 is the kinetic energy density of a-th atom due to the motion of finite elements, i.e.
the FE nodal velocities, k> is the kinetic energy due to the velocity difference between particle
velocity and the velocity field and is the kinetic energy that would be omitted in a usual FE
representation.

From the phonon viewpoint, the motion of finite elements only represents a subset of the
phonons of a system [44,45], as k,1 and k,; are the kinetic energy density from phonons whose
wavelengths are longer and shorter than the finite-element size, respectively. Nevertheless, the
omitted kinetic energy, i.e. ky2, can be calculated based on its relation to k,1. Specifically, the
equipartition theorem in kinetic theory states that every degree of freedom of an equilibrium
system has the same kinetic energy kgT/2; the ratio of the omitted degrees of freedom to the
degrees of freedom of the finite element thus determines the ratio of k.1 to k. Alternatively, the
Bose-Einstein phonon distribution also provides a relationship between k.1 and kq».

Away from thermal equilibrium, the particle velocity in equation (2.1) is usually replaced
by ¥g,, i.e. the difference between particle velocity and the velocity field. Such a temperature
definition is consistent with the physical picture of an ideal gas thermometer in which the velocity
is measured relative to the co-moving frame of the kinetic thermometer [46]. However, this non-
equilibrium temperature definition has unambiguous meaning only for steady-state systems. This
is because, although the definition of total kinetic energy is unambiguous, the velocity field or
local mean velocity can only be uniquely defined when it is zero (as in thermal equilibrium) or
a constant (as in steady state), as it depends on length and time scales, i.e. the averaging, of the
linear momentum. Thus, regardless of whether it is in an atomistic or a multiscale simulation, or
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whether using the FE method or other methods, temperature in coarse-grained models can only
be well defined when the velocity field can be ambiguously defined.

(b) Kinetic energy in finite-element representation

As shown in equation (5.1), the decomposition of the total kinetic energy into k,1 and ky> depend
on the length scale of the velocity field. In particular, in a FE model, k1 is represented by the
FE nodal velocities, in which the displacement field in an 8-node-element is interpolated with FE
shape functions @¢(x), i.e.

8
fia(r,8) = Y P () Usa () 2 P (¥)Uealt), (5.2)
£=1

where Ugq(t) is the displacement vector of ath atom embedded within the &th node of the
element; the contribution of the ath atom to the kinetic energy of an element of volume V, can
thus be expressed as

2
8
1 1 .
ke dV:JH = aaade=m ~ P & () Use | AV. 5.3
JHVC 1 ngp( ) VFZp (;:1 £(x) s) (5.3)

The kinetic energy of an element can also be expressed in terms of phonons using the phonon
dispersion relations of the FE model [44]. If the usual tri-linear shape functions are used, the FE
model then cuts off phonons whose wavelengths are smaller than the element size. This means
that the FE mesh, i.e. the FE displacement approximation, determines the decomposition of total
kinetic energy into k,1 and k2. There are two methods to determine the decomposition of total
kinetic energy into k1 and kg».

The first method is based on the classical molecular kinetic theory. For an equilibrium system
at temperature higher than the Debye temperature, each phonon or particle d.f. has the same
kinetic energy kpT/2. The time-interval-averaged kinetic energy of an 8-node hexahedral element
containing 1) unit cells is thus related to temperature as

<m ko1 dV + ﬂ] ka2 dV> =n; x %kBT. (5.4)
e Ve

Since the ratio of the d.f.s of the finite elements and that of a corresponding atomically resolved
model is 8/, the equipartition theorem gives:

1 8 ’ 3
<JHVE ket (x, ) dV> - <ﬂ]v Sh (Z (& (x)usa)) dV> =8(ksT) (5.5)

§=1

and
1o 3
(], ketenav)= <mv 3 LSyt dV> —n-9CkT).  (56)

The parameter g in equations (4.4) and (4.14) is thus equal to 3(1; — 8)kg/V. for a system that
is discretized via 8-node hexahedral elements. Equations (5.4)—(5.6) can be used to prescribe FE
nodal velocities for a given initial equilibrium temperature T or to find k2 from ky1. For elements
with the finest mesh, i.e. when there are only 8 unit cells in each element, the total kinetic energy
is identical to the kinetic energy of the corresponding atomically resolved model.

The second method estimates the kinetic energy of the omitted phonons using the phonon
description of temperature. The cut-off wavevector k.by the finite-element shape functions can
be identified by comparing the phonon dispersion relations of the finite-element model with the
corresponding atomically resolved model. The corresponding frequency, w;, for each phonon
branch, v, can be found from the phonon dispersion relations. The phonon number for each
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omitted phonon mode, n(k;, v;) can be calculated using equation (2.6). The kinetic energy of the
omitted phonons and that of the element can then be expressed, respectively, as [47,48]

_ 1 N
ﬂ]ve ka2 (x, 1) AV = < jﬂ L3 > e (Bra) Sy (x — 1) dV>

¢ k=1
3N,

N E Tk, v,-)] (57)

ki>ke. Vi

and

|| Fawnav=(]] L3 (@l AV
V. V. 2

£=1

1o 1
= X Yooy ). 8)

ki<k. Vi

(c) Balance equation of linear momentum in finite-element representation

Equation (3.11) or equation (4.2), is an exact atomistic field representation of the conservation
law of linear momentum that is valid instantaneously at the atomic scale. Equation (4.14) is also
an atomistic field representation of the conservation law of linear momentum but is expressed
in terms of temperature field; it thus only holds statistically. There are two different methods to
modify a traditional FE method to solve the linear momentum equation at different temperatures.

(i) Systems at low temperature

At low temperature when phonon—phonon scattering is negligible, equation (4.2) can be solved
using a modified finite-element method. The velocity field can be modelled with the atomic-
scale resolution, and consequently f1(r, ) =0 at every point in space and time, by replacing the
usual FE tri-linear shape functions with those that combine tri-linear shape functions and Bloch
wave functions, the latter of which can be constructed in terms of the omitted phonons. The
displacement field within each finite element can then be approximated as

8
fio (6, 1) =Y D (1)U (t) — 1 (xe, )] + 1l (x, 1), (5.9)
£=1

Here, @:(x) (§=1, 2,...,8 for 8node three-dimensional elements) is the conventional FE
trilinear shape functions, Ug(t) is the displacement vector for ath atom at the £th FE node, x¢
is the position vector of the &th FE node, u(x¢, t) is the contributions of all the omitted short
wavelength phonons to the displacements of the a-th atom at the £th node, and

1
~/Nymy

utsyh (xt)=

> QUk, v)ea(k, v) explitk - x — w(k, v)b)], (5.10)

kv(k>k.)

where e, (k, v) is the eigenvector or the polarization vector that determines the direction in which
each atom moves, w(k, v) is the frequency, and Q(k, v) is the amplitude of the phonon mode (k, v)
and is given by

h 1
(lQ(k, v)|2> = ok v) [n(w, T)+ E] . (5.11)

For CAC simulations, the mode-specific amplitude can also be obtained from analysis of the
atomic displacements in the atomically resolved region within a CAC model, for which one must
take the three-dimensional Fourier Transform of the system one atom in the unit cell at a time (see
[49] for details of the procedure).
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The method (a) is applicable for low-temperature simulations of the propagation of ultrashort
phonon pulses or scattering on interfaces or dislocations, in which the critically regions can be
discretized with atomic resolution, while the perfect single crystalline region can be modelled
with finite elements [50]. The transport of short-wavelength phonons within each finite element
is thus ballistic. By including short-wavelength phonons in the shape functions, this method has
been found to enable waves from an atomic region to pass through a finite-element region, with
the coherence of the waves being preserved in space and time [49].

(ii) Systems at finite temperatures

At higher temperature when short-wavelength phonons are dominated by thermally resistive
processes [51], the fluctuations due to the omitted short-wavelength phonons can be modelled
as a body force with a constant mean but randomly fluctuating in time with the frequencies of
the omitted phonons. The atomic motion is thus random, and the transport of short-wavelength
phonons is diffusive within each element. The governing equation for such system is equation
(4.14) or equation (4.15), both can be numerically solved using the finite-element method, and
equation (4.14) may be considered a special case of equation (4.15).

Approximating the displacement field of a-th atom in element V, as uy(x) = @, (x)U,q, the
weak form of equation (4.15) can be written as

t
[Hpa(bg &, dV | Uye + (.MV PaPe D)) J y(t — t)Uye(r)de dV)
; t—t,

=JH Defintqv — JH &:(BVT + y(t)) dV. (5.12)
V. V.,

The integrals in equation (5.12) can be evaluated using Gaussian quadrature. For elements
employing tri-linear shape functions, the temperature gradient in the last term is either zero for
thermal equilibrium or a constant for non-equilibrium, implying that the system is modelled
as steady state within each finite element. Thus, no numerical integration is needed for the
last integral, as VT + 5(t) does not vary within a finite element. It is noticed that the memory
integral in (4.15) for the friction force is replaced by an integral over a finite time interval. This is
because that the friction kernel is an autocorrelation function of 5(f) and that the correlation time
determines the decay time of the friction kernel. The memory integral can thus be replaced by an
integral over a finite time interval [52].

A Gaussian process, as shown in equation (4.12), can be completed characterized by the width
of distribution o and the strength 2g. For the finite-element implementation, o can be chosen
based on the omitted frequencies and the discrete time points [52], and 2 g can be determined
based on equation (4.16) and the well-established relation of fluctuation of kinetic energy, AK,
and the temperature in classical systems [52,53], i.e.

1
AK =2 \/ksT2C,. (5.13)

The widely studied trigonometric representation for Gaussian processes [52] can be used to
generate the random force 7(t) due to the short-wavelength phonons that are omitted by FE
tri-linear shape functions, i.e.

N1
ni®) =Y [Ancos(wnt) + By cos(@nt)], (5.14)
n=0
where A, and B, are mutually independent Gaussian random variables having zero mean and
variance C(0) such that (A;B;) =0 and (A, A;) = (ByB) = C(0)8,m; Nc is the total number of
omitted phonons in each element, w, are the frequencies of the omitted phonons, and A, and B,
are mutually independent Gaussian random variables [42].
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Figure 6. MD and CAC results of normalized PDOS of a Si crystal model (a) and an Fe crystal (b) with 512 unit cells in each FE.
They are computed from the Fourier transform of the velocity autocorrelation functions at 300 K.

6. Numerical examples

To extend the CAC method for finite temperature processes, equation (5.12) has been tested
though implementation in the CAC codes using a modified finite-element method with tri-linear
shape functions [54-56]. To test the formulation and numerical implementations, we build four
sets of computer models that are discretized with 8-node rhombohedral elements, with each
element containing 8 x 8 x 8 primitive unit cells and the surfaces of the elements corresponding
to the slip and/or the cleavage planes of the crystals.

(a) Phonon density of state

Phonon density of states (or vibrational density of states) is defined as the number of phonon
modes per unit frequency per unit volume. It is a fundamental characteristic of a solid, from which
many dynamic materials properties can be determined, and can be computed through calculation
of the power spectrum of the mass weighted velocity correlation function [47]. To test the
accuracy and efficiency of the formulation and numerical implementation, single crystal models
that contain 1024000 Si and Fe atoms, respectively, are simulated under constant temperature
300K using both CAC and MD. The CAC models are discretized with uniformly meshed finite
elements, each of which contains 512 unit cells. The number of degrees of freedom of the CAC
models is thus 1.56% of that of the corresponding MD models. Phonon density of state (PDOS)
is then computed from Fourier transform of the velocity autocorrelation functions and averaged
over 10 simulations with different initial conditions.

In figure 6, we compare CAC and MD results of PDOS for Si and Fe single crystals, respectively.
As can be seen from figure 10, the PDOS of the finite-sized Si and Fe can be reproduced by CAC, in
good agreement with MD. This means that all the phonon frequencies that are captured in the MD
simulations are present in the CAC simulations. For more verification examples and discussions,
see [56].

(b) Thermally activated dislocation motion in BCCiron

Plastic deformation in crystalline materials occurs principally by the motion of dislocations,
which is influenced by temperature in two distinct ways: through thermal fluctuations to activate
or aide slow dislocation motion, and through phonon scattering to slow down fast dislocation
motion. While MD can in principle simulate both processes, temperature-dependent dislocation
motion in high-Peierls-stress materials, such as BCC metals, involves much larger length and time
scales than that can be reached by a MD simulation [57]. It is well known that the Peierls stress
for screw dislocations in BCC iron is high, the motion of dislocations occurs with the aid of the
thermally activated kink nucleation and migration to overcome the high-Peierls barriers, and that
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the mobility of a dislocation depends on the applied stress and temperature, as well as the line
length of the dislocations.

To test and demonstrate the formulation on capturing the effect of temperature on the motion
of high high-Peierls-stress dislocations, a CAC model of BCC iron that contains a % (111) screw
dislocation is built. The dislocation is introduced into the model through initially displacing the
finite-element nodes according to the displacement field of a dislocation derived from the theory
of elasticity. The computer model has dimensions x =65nm, y=2968nm and z=16nm and is
discretized into 450000 finite elements, with the six surfaces of each element being the (110)
slip planes of the dislocations. The dislocation has a line length of approximately 3 ym oriented
along y-direction and the slip plane is perpendicular to z-direction. Periodic boundary condition is
applied along y-axis. The model is under a constant shear stress of 1.51 GPa and at an equilibrium
temperature of 300 K. An MD model with the same dimensions would contain approximately 230
million atoms and hence MD simulation is not conducted, as it is challenging to simulate with
our available computational resources. The goal of the simulations is therefore to demonstrate
the effect of the thermal fluctuations on dislocation motion.

Figure 7a,b presents snapshots of the dislocation line morphology during the process of
dislocation motion and local stress distribution in the vicinity of the dislocation line. The atomic
displacements are mapped from the FE nodal displacements. It is seen from figure 7a that the
simulation has captured the two types of dislocation line roughening mechanisms: (i) self-pinning
and (ii) debris loop formation. For comparison, we present in figure 7b the results of a simulation
that ignored the short-wavelength phonons. As can be seen from figure 7b, neither mechanism
has been captured by the simulation without consideration of the short-wavelength phonons.

Both simulations reveal that the dislocation lines propagate through the formation of kink
pair. However only the simulation that includes thermal fluctuations due to short-wavelength
phonons has captured the cross slip. It is noticed that both self-pinning and the debris loop
formation are triggered by cross slips of the dislocation line, as shown in figure 8. Note that
cross-kinking and debris formation are largely suppressed in (b) as a result of coarse graining
that ignores the short-wavelength vibrations. For more simulation results and discussions, see
[55,56].

(c) Heteroepitaxial growth of PbTe on PbSe (111)

To test the accuracy of CAC for finite-temperature simulation of epitaxial growth, we compare the
CAC simulation results of the growth processes of PbSe on PbTe (111) and PbTe on PbSe(001) with
MD simulations of the same models. A small substrate with dimensions of 50 x 50 x 10 nm is used
for both systems in order for MD to simulate the kinetic processes. In figure 92 and figure 10a, we
compare the CAC and MD simulation results of the dislocation densities per interface area (em™1)
at different stages of growth for the PbSe/PbTe(111) and PbTe/PbSe(001) systems, respectively.
In figures 9b and 10b, we present the misfit dislocation networks at different epilayer coverages at
the PbSe/PbTe(111) and PbTe/PbSe(001) interfaces, respectively. The dislocations are visualized
using OVITO DXA (Dislocation Extraction Algorithm) [58].

As can be seen from figures 9 and 10, the CAC simulation results of the dislocation density
and dislocation network agree well with those obtained by MD. This agreement demonstrates
that, with significantly reduced d.f.s, CAC can reproduce the kinetic processes of the formation
of dislocations in PbSe/PbTe(111) and PbTe/PbSe(001) heteroepitaxial systems obtained by MD.
See [59] for more simulation results of the PbTe/PbSe epitaxy.

(d) Attenuation of longitudinal acoustic phonons in silicon

Attenuation of hypersonic waves was experimentally observed more than six decades ago in
perfect quartz crystals [60,61], and was theoretically explained to be caused by the interaction
of the long wavelength phonons, i.e. sound waves, with short-wavelength thermal phonons
[62-64]. The phenomenon was reproduced for higher frequency acoustic waves using picosecond
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Figure 7. (a) and (c) snapshots of a 2968-nm-long dislocation line, visualized using common neighbour analysis, showing
the morphology of the dislocation line during the motion of the dislocation; (b) and (d) shear stress distribution in the region
that contains the dislocation line, where red and blue colours represent positive and negative shear stress, respectively. The
atomic positions are mapped from finite-element nodal displacements obtained in CAC simulation (a) and (b) using equation
(5.12), i.e. with the short wavelength phonons being including in the simulation; (c) and (d) without consideration of the short-
wavelength phonons that are cut off by the finite-element shape functions.

ultrasonic measurements. Attenuation of 50-100GHz (100 GHz corresponds to an acoustic
phonon with wavelength 90 nm) longitudinal acoustic phonons was observed in a thin Si wafer
in the temperature range 50-300 K [65]. Recently, using femtosecond laser pulses to generate and
detect acoustic phonons, the propagation and attenuation of 1-1.4 THz (1.2 THz corresponds to
phonon wavelength 6.7 nm) coherent longitudinal acoustic phonons were observed in GaN at
room temperature [66].

Attenuation of long-wavelength acoustic waves is a manifestation of anharmonic interactions
of the long wavelength phonons with short-wavelength thermal phonons [66]. To test the
formulation in reproducing the interaction between a long-wavelength acoustic phonon with
short-wavelength thermal phonons, the propagation of a phonon wave packet that centers at
wavelength of 40 nm in Si is simulated at room temperature. A comparison between CAC and MD
simulation results of the evolution of the kinetic energy of the wave packet in space and in time
is presented in figure 11a and b, respectively. It is evident that the effect of the short wavelength
phonons (thermal phonons) is captured in the CAC simulation and is in good agreement with
that captured by atomically resolved MD simulation.
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(b)

Figure 8. Time sequences of a segment of the dislocation line to illustrate the atomistic process of (a) self-pinning and (b)
debris loop formation that result from cross-kinks of a 2968-nm-long dislocation line.
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Figure 9. A comparison between CAC and MD simulation results of (a) dislocation density and (b) dislocation networks in an
PbSe/PhTe(111) epitaxial structure as a function of epilayer coverages.

7. Summary and discussions

Classical field theories of mechanics, as advocated by Truesdell, Eringen, etc., were formulated
top down based on the global form of conservation laws and an axiomatic constitutive theory,
with the molecular or crystal structures of the materials being ignored. This work introduces
a formalism that bottom up derives conservation equations from the classical atomistic model
using the mathematical theory of distributions, thus analytically linking atomistic and continuum
descriptions of conservation laws and fluxes. Fundamental differences between the bottom-up
formulation and the top-down formulated field theories of mechanics can be summarized as
follows.

1. In distinction from that in classical field theories, the conservation equations and field
quantities in this work are formulated based on a two-level structural description
of crystalline materials, with both the atomic force field and the atomic-scale crystal
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Figure 11. Comparison between CACand MD simulation results of the evolution of kinetic energy of an ultrashort phonon pulse
in space and time, showing the attention of the waves due to the scattering by short wavelength phonons.

structure being built in the formulation. Consequently, the formulation is applicable
to both atomic and higher scales, eliminates the need of axioms, empirical rules, and
assumptions for the constitutive theory in classical field theories, and enables a field
theory to exactly represent the classical atomistic model, thereby expanding the scope,
approach, and applicability of continuum mechanics and naturally leading to a CAC
methodology and corresponding simulation tools [32,34,35,67—69].

2. Different from that in classical continuum mechanics, thermodynamics, and many other
multiscale theories that define temperature as a basic quantity, temperature in this
formulation is defined as a derived quantity in terms of the kinetic energy, as that in
molecular kinetic theory and atomistic simulations, leading to a unified atomistic and
field description of temperature and conservation laws. Supplemented by an interatomic
force field, the reformulated linear momentum equation can be solved instantaneously
with atomic resolution to reproduce average atomic trajectories as well as their thermal
fluctuations; the former holds with atomic precision, while the latter holds statistically as
a result of the statistical nature of temperature field. Most importantly, the conservation
equation of linear momentum completely governs thermal and mechanical processes
from the atomistic to the continuum.
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This work has also suggested that the temperature field can be uniquely determined in a coarse-
grained model only when the velocity field can be uniquely defined, such as for systems at
thermal equilibrium or steady state. For such systems, temperature can be defined consistently
across scales from the atomic to the continuum. This work thus extends the CAC method to
multiscale simulations of finite temperature processes. We would like to note that the current
formulation may not be applicable to highly transient processes when the fluctuation—dissipation
theorem does not hold and/or the temperature field can no longer be represented as a scalar field.

Materials processes at finite temperatures are very complex. The formulation presented in this
work only represents a first step towards addressing the complex problem of finite-temperature
systems or processes. To fully address the length and time scale challenge in predictive simulation
of new materials and structures, we need to bottom-up build a conceptual and mathematical
framework for non-equilibrium mechanics of continua, which will be the goal of our future
research.
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