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Abstract—In many applications, we are constrained to learn classifiers from very limited data (few-shot classification).

The task becomes even more challenging if it is also required to identify samples from unknown categories (open-set classification).
Learning a good abstraction for a class with very few samples is extremely difficult, especially under open-set settings. As a result, open-set
recognition has received limited attention in the few-shot setting. However, it is a critical task in many applications like environmental
monitoring, where the number of labeled examples for each class is limited. Existing few-shot open-set recognition (FSOSR) methods rely
on thresholding schemes, with some considering uniform probability for open-class samples. However, this approach is often inaccurate,
especially for fine-grained categorization, and makes them highly sensitive to the choice of a threshold. To address these concerns,

we propose Reconstructing Exemplar-based Few-shot Open-set ClaSsifier (ReFOCS). By using a novel exemplar reconstruction-based
meta-learning strategy ReFOCS streamlines FSOSR eliminating the need for a carefully tuned threshold by learning to be self-aware

of the openness of a sample. The exemplars, act as class representatives and can be either provided in the training dataset or estimated
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in the feature domain. By testing on a wide variety of datasets, we show ReFOCS to outperform multiple state-of-the-art methods.

Index Terms—Few-Shot Learning, Open-Set Recognition, Out-of-distribution detection, Meta-learning

1 INTRODUCTION

Deep neural networks have achieved excellent performance
on a wide variety of visual tasks [1], [2], [3]. However, the
majority of this success has been realized under the closed-
set scenario, where it is assumed that all classes that appear
during inference are present in the training set. In real-world
applications, it is often difficult to obtain samples that exhaus-
tively cover all possible semantic categories [4]. This inherent
open-ended nature of the visual world restricts the wide-
scale applicability of deep models and machine learning
models in general. Thus, it is more realistic to consider an
open-set scenario [5], where the predictive model is expected
to not only recognize samples from the seen classes, but also
to recognize when it encounters an out-of-distribution sample
and reject it, rather than making a prediction for it.

Notable approaches for open-set recognition involve
adversarial training [6] to reject adversarial samples which
are too hard to classify, inducing self-awareness in CNNs
[7] to reject out-of-distribution samples, and using extreme
value statistics to re-calibrate classification scores of samples
from novel classes [8]. All of these approaches require large
amounts of labeled data per category for the seen classes.
On the contrary, humans can easily grasp new concepts with
very limited supervision and simultaneously perceive the oc-
currence of unforeseen abnormalities. Aiming to emulate this,
we seek to perform open-set recognition in the few-shot learn-
ing scenario, which has been largely ignored in the literature.
A visual description of the problem setting is shown in Fig. 1.

The challenge in few-shot open-set recognition (FSOSR)
stems from the limited availability of samples for in-
distribution classes. This complicates learning a good
abstraction of the provided categories to comprehensively
distinguish between low-likelihood in-distribution samples
and actual out-of-distribution samples. Following the success
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Fig. 1: Problem setup. We formulate few-shot open-set
recognition as a meta-learning problem where training
proceeds in an episodic manner. In contrast to the usual
setup, where the support and query sets share the same
categories, we consider the more challenging open-set
scenario where the query set can contain samples from
classes not seen in the support (highlighted in red).

of meta-learning approaches [9], [10], [11] in closed-set
few-shot recognition, recent works [12], [13] attempt FSOSR
by building on top of the popular Prototypical Network
framework [11]. In [12], the authors employ entropy
maximization to enforce uniform predictive distribution of
out-of-distribution samples to maximize model confusion for
unseen categories. Out-of-distribution samples are identified
by thresholding the maximum probability of the classification
logits. In contrast, [13] leverages a transformer [14] and
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Fig. 2: Assuming uniform predictive distribution for
outliers. Out-of-distribution samples can be correlated to
in-distribution classes by varying amounts. In this figure, we
train a classifier for three in-distribution classes: dog, bird and
truck (corresponding samples highlighted in green). The out-
of-distribution sample - a cat - shares highly similar visual
characteristics to a dog, as evidenced by the prediction. This
suggests that desiring outliers to have a uniform predictive
distribution, as suggested in [12], is often inaccurate.

carefully crafted normalization techniques [13] to enforce
improved representation consistency of in-distribution
samples, enabling the rejection of out-of-distribution samples
via simple distance thresholding in the feature space. Despite
their effectiveness, these approaches rely heavily on carefully
tuned threshold values. Furthermore, assuming near uniform
predictive distribution for out-of-distribution samples does
not generally hold in practice due to the sensitivity of
deep CNNs to minor perturbations in the input [15] along
with the tendency of the softmax operator to produce high
confidence false predictions for out-of-distribution samples
[7]. This is further explained in Fig. 2.

In order to overcome these drawbacks, we propose a
different approach to detecting out-of-distribution samples
in the few-shot setting, which utilizes reconstruction as an
auxiliary task to induce self-awareness in a few-shot classifier.
This self-awareness would allow the classifier to better detect
when it is presented with an out-of-distribution sample, as
it would be able to recognize when it is unable to accurately
reconstruct the input. However, naively applying reconstruc-
tion fails in the few-shot setting due to overfitting. Inspired
by [16], we propose using reconstruction of class-specific exem-
plars, instead of self-reconstruction, to flag out-of-distribution
samples. Such exemplars act as ideograms to effectively
encode the semantic information of the class it belongs to.
Consequently, they serve to anchor the representations of in-
distribution classes when access to a large number of samples
is restricted. Many real-world graphical symbols, such as
traffic signs and brand logos, have well-defined exemplars
that lie on a simpler or canonical domain. Some examples are
shown in Fig. 3. However, exemplars may not be available for
all datasets, and for such cases, we provide a simple scheme
to estimate them from the few-shot data in the embedding
space, without any changes to the algorithmic formulation.

Building on this idea of reconstruction, we propose a new
meta-learning strategy to tackle the few-shot open-set recog-
nition task. In the meta-training phase, we use episodes sam-
pled from a base set, with each episode simulating a token
few-shot open-set task. Specifically, each episode is created by
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Fig. 3: Canonical Exemplars of real images. Examples of
real-world images of symbolic data such as traffic signs and
brand logos (left column) along with their corresponding
class-specific exemplar images (right column). These
exemplars are readily available for such symbols and lie on a
canonical domain devoid of perturbations of the real images.

randomly selecting a set of classes and populating a support
set with limited samples belonging to those classes. A query
set is created in a similar fashion but contains samples from
classes both seen in the support set and beyond (see Fig. 1).
These episodes are subsequently used to train our framework:
Reconstructing Exemplar-based Few-shot Open-set ClaSsifer
(ReFOCS). Given an episode, ReFOCS projects these samples
to a low-dimensional embedding space to perform a metric-
based classification over the support classes. Simultaneously,
a variational model is used to reconstruct the class exemplars
to compute the reconstruction error. The class scores, in addi-
tion to the reconstruction error, are then utilized to recognize
the probability of the sample being out-of-distribution.

Main Contributions
Our primary contributions are summarized below:

e We develop a new reconstruction based meta-learning
framework which utilizes class-specific exemplars
to jointly perform few-shot classification and out-of-
distribution detection.

o By utilizing reconstruction as an auxiliary task in
our meta-learning setup we induce self-awareness
in our learning framework, enabling it to self-reject
out-of-distribution samples without relying on carefully
tuned thresholds.

e We introduce a novel embedding modulation scheme
to make the learned representations more robust and
discriminative in the presence of scarce samples. A
weighted strategy for prototype computation is also
introduced for reducing intra-class bias.

e Our framework outperforms or achieves comparable
performance to the current state-of-the-art on a wide
array of FSOSR experiments, thereby establishing it as
a new baseline for FSOSR.

2 RELATED WORKS

Few-shot learning. Few-shot learning [17], [18], [19] aims
to learn representations that generalize well to novel classes
with few examples. Meta-learning [20] is the one of the most



common approaches for addressing this problem and it
is generally grouped into one of the following categories:
gradient-based methods [9], [21] and metric learning methods
[10], [11]. Typical gradient based methods, such as MAML
[9] and Reptile [21], aim to learn a good representation
that enables fast adaptation to a new task. On the other
hand, metric-based techniques like Matching Networks [10],
and Prototypical Networks [11] learn a task-specific kernel
function to perform classification via a weighted nearest
neighbor scheme. Our framework belongs to the latter class
of methods, with the ability to work in the open-set scenario.

Out-of-distribution detection. Also known as novelty or
anomaly detection, the out-of-distribution task is commonly
formulated as the detection of test samples that fall outside
of the data distribution used in training. Hendrycks et. al.
[7] showed that softmax alone is not a good indicator of out-
of-distribution probability but statistics drawn from softmax
can be utilized to make assumptions of the “normalcy”
of a test sample. Liang et. al. [22] re-calibrated output
probabilities by applying temperature scaling and used
virtual adversarial perturbations to the input to enhance the
out-of-distribution capability of the model. Note that most
out-of-distribution detection focuses on either detecting
perturbed samples or out-of-dataset samples. In addition,
these methodologies are not extendable to few shot settings.

Open-set classification. Open-set classification is slightly
different from out-of-distribution detection in that it focuses
on not only rejecting samples from unseen classes but also
achieving proper classification of the seen categories. This
is a much harder problem as opposed to just detecting per-
turbed/corrupted samples [12]. Bendale et al. [8] introduced
OpenMax which uses extreme value statistics to re-calibrate
the softmax scores of samples from unseen classes and reject
out-of-distribution samples by thresholding their correspond-
ing confidence score. G-OpenMax [23] combines OpenMax
with a generative model to synthesize the distribution of all
unseen classes. Recently, counterfactual image generation
[24] has been proposed to generate hard samples in an effort
to build a more robust model. Kong et al. [25] extends this
idea by designing a generative adversarial network for the
generation of out-of-distribution samples. Wang et al. [26]
followed a similar strategy to OpenMax [8] and introduced
an energy-based classification loss for re-calibration of the
softmax classification scores. Note that all these methods are
in a fully supervised learning setting and are not directly ap-
plicable to few-shot learning. Liu et. al. [12] first address open-
set recognition under the few-shot setting. The proposed
framework, titled PEELER, builds on top of prototypical net-
works [11] and uses episodic learning guided entropy max-
imization for regularizing the softmax classification scores.
Unseen categories are detected by thresholding the maxi-
mum value of the softmax score of each out-of-distribution
sample. A more recent work SNATCHER [13] builds on top
of PEELER [12] and utilizes transformers [14] along with
carefully crafted normalization schemes to improve feature
level consistency of in-distribution samples. This enables
SNATCHER to detect samples from open-set categories by
simple distance thresholding in the embedding space. These
methods are, however heavily dependent on the choice of
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the threshold. To eliminate this dependency, we propose to
address few-shot open-set recognition by utilizing exemplar
reconstruction as an auxiliary task in the meta-learning setup,
such that model is imbibed with self-awareness regarding the
openness of an input sample. Exemplars have been used in
many computer vision tasks ranging from image recognition
[16] to panoptic segmentation [27]. Our work is the first to
study there effectiveness on the FSOSR problem.

3 METHODOLOGY

In this section, we present our framework for open-set
few-shot classification. We first provide a definition of the
problem, followed by a brief overall methodology, and then
present a detailed description of our framework.

Problem setting

Consider the standard few-shot learning setting, where
we have access to a support set of labeled examples
S = {Si1,...,Sx}. Each S, = {x;}X, denotes a set of K
examples belonging to the class y., for N-way K-shot
recognition. We make two changes to this setup. First, we
assume the existence of class-specific exemplar images t.
for each S.; in case exemplars are not present, we estimate
a class-specific exemplar for all the categories. Second,
the query set Q is comprised of both in-distribution and
out-of-distribution samples w.rt S, e, Q = Qi U Qpuus-
In-distribution samples belong to classes seen in the support
set while out-of-distribution samples belong to unseen
classes. The goal is to detect the samples in Q,,: as out-of-
distribution, while correctly classifying the samples in Q;y,.

In order to develop a strong prior for few-shot
learning, we utilize a base training set of labeled samples
B={(X.,Y.)}M, to meta-train our framework, where M
is the set of all classes in B, X. = {X1,...,X||} is the set
of images in class ¢ and ). denotes the c** class label. If
class-specific exemplars t. are provided, we add them to B
to obtain B = {(X,,V.,t.)}},, otherwise we first estimate
t. from B as shown in section 3.5 and then add them to B to
get B in a similar fashion. Like prior work [10], [11] a set of
training tasks or episodes {7;,73,...} are sampled from B to
conduct meta-training of the model. For an N way K shot
problem, each episode 7 is constructed by first randomly
sampling IV classes from B and then constructing a support
set S comprised of K randomly chosen samples from each
of the N classes. Along with S, a query set Q is constructed
in a similar fashion. In order to simulate the presence of
out-of-distribution samples, we follow the strategy outlined
in [12] and augment the query set with samples from classes
absent in the support.

Overall framework

A pictorial description of our framework is shown in Fig.
4. Given a sample x, we first use variational inference
to reconstruct the possible exemplar t associated with
the ground-truth class of x and simultaneously obtain a
latent representation of the same sample. This embedding
is used to obtain a classification score, similar to [10],
[28], while the reconstructed exemplar is used as a proxy
for the out-of-distribution detection task. Specifically, if
x € Qout, we hypothesize that the reconstruction will fail
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Fig. 4: Overview of framework. Given a query sample x, a latent representation z is derived by sampling from the
variational posterior, the parameters of which are i and 0. This embedding is further enhanced via a modulation process
to get 2. The latent embedding is used for classifying the sample into one of the few-shot classes. The decoder reconstructs
the exemplar, t associated with the sample’s class. The exemplar reconstruction error, the modulated embedding, and the
classification scores themselves are fed to an MLP-based out-of-distribution detector to predict the probability p, of whether
x is in/out-of-distribution with respect to the few-shot classes.

for all the exemplars of the support classes. Based on this
hypothesis, the latent representation, classification scores,
and reconstruction errors (with respect to support exemplars)
are subsequently fed into a binary classifier to predict the
probability of the sample x being out-of-distribution.

3.1

Since the class-specific exemplars t form a compact repre-
sentation of the real world images belonging to that class,
we hypothesize that the ability to reconstruct any exemplar
belonging to in-distribution classes correlates positively with
the sample being an in-distribution one. Inspired by [16], we
use a Variational Auto-Encoder (VAE) [29] for the purpose
of such reconstruction. The choice of VAE is motivated by
its robustness to outliers and better generalization to unseen
data, as shown in [30]. This is ideal for the image-to-exemplar
translation task where the exemplars lie on a canonical
domain devoid of the perturbations in real images.

Given an input sample x, its exemplar reconstruction of
t is carried out by maximizing the variational lower bound
of the likelihood p(t) [16] as follows,

Exemplar reconstruction from real images

logp(t) > Eq, (z)x) [logpe (t]2)] = DxcL]gs (z[%)[[p(2)] (1)

where D[] is the Kullback-Leibler (KL) divergence and
g4(2z|x) denotes the variational distribution introduced to ap-
proximate the intractable posterior. Note that this is different
from a vanilla VAE [29], which is derived by maximizing the
log-likelihood of the input data x. A differentiable version of
the lower bound is derived by assuming the latent variable
z to be Gaussian in nature, sampled from the prior ¢,(z|x).
The empirical loss to be minimized is given as follows,

K.
Lvap=Y —log poltilz)+ Dicelas (2l lp(z)] @)
¢i=1

where K, is the number of samples in one episode, i.e.,
K, =[SUQj,|. Since z ~ g4(z|x) is non-differentiable, the
re-parameterization trick is applied via the decoder network
[29] such that z = p+ 0 ®¢, where e ~ N(0,I) and © is the
Hadamard product.

The first term in Eq. 2 is the reconstruction loss which
affects the mapping of the real images to their class-specific
exemplars, while the second term acts as a distribution
regularization, enforcing the latent variable z to follow the
chosen prior. Although binary cross entropy (BCE) is the
common choice for the reconstruction loss in VAE, other
losses such as ¢; or {5 norm can also be used.

3.2 Few-shot classification

The latent representation of a query sample z,, obtained
from the encoder in the previous section, is used for
computing the classification scores. We use the cosine metric
to compute a relation score between the query sample and
the support set S. Specifically, the relation score is obtained
by computing the cosine similarity between z, and the set
of prototypes or centroids, {2}, for each class c€S ( Fig.
4). The classification score for x, is obtained by performing
a softmax operation on these relation scores. In contrast
to prior works [11], [12], the class specific prototype €2, is
obtained by a weighted mean of the support samples instead
of a simple mean. Note that these prototypes are different
from the class specific exemplars t.

Prototype computation

Given the support set, the prototypes for each class c are
calculated as follows,

K
Q.= Zwk -Zf, 3)
k=1

z§, denotes the latent representation of x* €8, while wy, is
the weight assigned to z§ based on how close it is from the
embedding of the exemplar belonging to the et class, z¢,
ecos(zi \Zy)
x )
ecos(zf,,2§)

k=1

WE =

We use these weights in an effort to control the phenomena
of intra-class bias [31], i.e., the difference between the
true expected prototype and the Monte-Carlo estimated



value. As explained earlier, each of the exemplars are an
effective ideogram which provide a good abstraction of their
respective classes. Thus the image-to-exemplar translation
learned by the VAE leads to a feature space where the
embedding of the real images cluster around that of their
corresponding exemplars. This makes the exemplars good
approximation of the true prototype and we leverage this
via the weights wy, to alleviate the intra-class bias.

Classification

After computing the prototypes, we predict the classification
scores for the query sample z, as follows,

e'r~cos(zq,ﬂc)

oot ©)

Po(y=clxq) =

’
c

where T is a learnable temperature parameter to scale the
logits computed by cosine similarity [28], [32]. Learning
proceeds by minimizing a cross-entropy loss over the
in-distribution classes as follows:

|Qin| N
1
ﬁCEZ—@ ZZl{yi:c}log ps(y=clxqi)  (6)
=1 =1

where y; represents the true class of the query sample.

3.3 Out of distribution detection

Unlike prior work, we do not rely solely on the classification
score to detect out-of-distribution query samples. Instead,
ReFOCS flags query samples by leveraging the output of a
multi-layer perceptron (MLP) classifier. This binary classifier
takes into account three sources of information for scoring
the openness of a query sample. These sources are (i) the class
probability py as predicted in Eq. 5, (ii) a modulated version
of the latent representation z (described below), and (iii)
the set of reconstruction errors with respect to the support

set exemplars, D = [Hf:—t1||%,...,||f—tN||%}, where D

indicates how far the reconstructed exemplar t deviates from
the actual exemplar t €S. Intuitively, for out-of-distribution
queries, all the entries of D will be very high, while for in-
distribution samples, at least one of them will be very small.

Embedding Modulation

At a fine-grained level, samples from many of the out-of-
distribution classes can have very similar visual features to
some of the in-distribution classes (Fig 2. This issue becomes
more relevant for the few-shot setting since the model does
not have access to large amounts of samples from the in-
distribution classes for generalization. Therefore, given only
a handful of samples from the in-distribution classes, it is of
paramount importance to obtain an embedding that is dis-
criminative enough to provide good segregation between in-
distribution and out-of-distribution classes. This, in turn, will
help the MLP in better detecting the out-of-distribution sam-
ples. While the latent embedding obtained from the VAE does
have good discriminative properties, we introduce an addi-
tional modulation step that can enhance it even further. The
enhanced embedding, Zq, is obtained by scaling the embed-
ding of a query sample z, with a scalar x>0 as shown below,

@)

zqzz—lj, where /ﬁzgneiréqu—QcHl

5

where c€ {1,...N} represents the classes in the support and
Q. is the prototype corresponding to the c'* class. & is a
modulation factor measuring how close a query sample is
to any of the in-distribution classes in the embedding space
[33]. out-of-distribution samples will tend to have higher
values for k compared to in-distribution samples. Therefore
this form of modulation will amplify the embeddings
of in-distribution samples while scaling them down for
out-of-distribution queries.

Therefore, the final input to the out-of-distribution
detecting MLP is the concatenated vector [p,2,,D]. This
MLP classifier outputs a sigmoidal probability value p,,
indicating the openness of a query sample. Training proceeds
by minimizing binary cross-entropy loss as follows,

Q]

_@Zyn,ik)g p’r;,'i"‘(l_yn,i)log(l_pn,i) (8)
i=1

where y, is equal to 0 or 1 depending on whether z, € Q;,
or x4 € Qoyt respectively.

Lpce=

3.4 Training

The parameters of the Encoder (¢), Decoder (f) and the
out-of-distribution detector (n) are jointly meta-trained by
optimizing over the aggregate loss L,

L=MLyvag+ L+ 3LBcE )

where A1, A2 and A3 are hyper-parameters choices of which
is discussed in Section 4.

3.5 Estimation of exemplars

While it is easy to obtain well-defined exemplar images for
images of graphical symbols, such class-specific exemplars
may not always be provided for all kinds of natural images.
We perform a simple exemplar estimation for categories
that have missing exemplar images. First, we perform non-
episodic training of the VAE encoder, f, on the entire base
set B. Second, the category-wise samples in B are passed
through the pre-trained encoder to obtain corresponding
feature representations, f4(x.) from the penultimate layer
of the encoder. Finally, the exemplar image is defined via
a nearest neighbor scheme in the feature space as follows,

- ' —W,||y. 1
te arggelg(ncllfMX) cll2 (10)

Here, ¥, = ﬁ > fs(x) is the centroid of the c* training
¢ xeX

class in the feature space.

For test episodes, we calculate the exemplar in a similar
fashion by selecting the support sample closest to its centroid
representation in the feature space.

4 EXPERIMENTS

In this section, we provide comprehensive experiments over
several data sets to prove the efficacy of our framework,
ReFOCS, for few-shot open-set classification. We compare
the performance of ReFOCS with existing state-of-the-art
methods that rely on thresholding approaches and softmax
re-calibration for the detection of out-of-distribution samples.
The overall results show that our method outperforms
or achieves comparable performance to existing methods,
without relying on the need for carefully tuned thresholds.



TABLE 1: Episodic sampling strategy for each of the few-shot experiments. For each episode 7, K,

6

denotes the number

of in-distribution querles sampled from each support class ¢ € {1,..,N} and the total number of in-distribution query

samples is Kg,, Z K§,
of samples in each eplsode is K+Kg,, +Kg,,, where, K=

of episodes and meta-tested on E.; number of episodes.

. The total number of OOD samples for each episode is denoted as Kg,,,. Hence, the total number

|S|. The model is meta-trained with a total of Ei;.q;, number

DATASETS GTSRB—GTSRB GTSRB—TT100K Belga—Flickr32  Belga—Toplogos  minilmageNet—minilmageNet
EXPERIMENT  5-way 5-shot  5-way l-shot  5-way 5-shot  5-way 1-shot 5-way 1-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot
K3, 10 10 10 10 1 1 15 15
Qo 50 50 50 50 5 5 75 75
Etrain 20000 20000 20000 20000 50000 50000 50000 50000
Eiest 800 800 800 800 1700 400 600 600
Datasets A3, are set to 1074,10 and 10 respectively. For the natural

We use six datasets to set up three different types of few-shot
open-set recognition experiments: (i) traffic sign recognition,
for which we use the GTSRB [34] and TT100K [35] datasets,
(ii) brand logo recognition, for which we use BelgalLogos
[36], [37], FlickrLogos-32 [38] and TopLogo-10 [39], and (iii)
natural image classification on the benchmark minilmageNet
dataset [10]. Different base training and meta-testing sets
are configured from these datasets to obtain five few-shot
scenarios as shown in Tables 2, 3 and 4. Some of these
scenarios involve cross-dataset experimentation, which
is more challenging compared to using splits from the
same dataset and better mimics real-world scenarios where
training and test data can have significant domain shifts [40].
It must be noted that all the traffic sign and logo datasets are
provided with well-defined canonical exemplars for each of
the classes. For these datasets the canonical exemplars can be
directly used for the reconstruction task. To show the efficacy
of our framework, we show results with both estimated and
canonical exemplars for the traffic sign and logo datasets.
The estimated exemplars are obtained following the strategy
in section 3.5. Since minilmageNet is not provided with any
well-defined exemplars, all of its class-specific exemplars are
estimated. For the traffic sign and natural image datasets,
we evaluate our model on both the 5-way 5-shot and the
5-way 1-shot tasks, while for the logo classification task, we
show results only on the 5-way 1-shot scenario. This is due
to BelgaLogos and Toplogos having multiple classes with
less than 5 samples. More details on these datasets and splits
can be found in the supplementary material.

Implementation

The episodic sampling strategies for all the few-shot experi-
ments are shown in Table 1. For the traffic sign and logo clas-
sification experiments, the VAE architecture is adapted from
[16]. For the natural image classification task, we experiment
with different resnet architectures [41] for the VAE encoder.
In each case, the decoder is designed as an inverted version
of the encoder architecture, for e.g., if Resnet18 [41] is used as
the encoder, the decoder is designed as an inverted Resnet18.
For all experiments, the MLP-based out-of-distribution de-
tector is designed with two hidden layers, each containing
200 and 100 nodes, respectively. For a fair comparison, the
encoder network is kept the same for all competing methods.
The Adam optimizer [42] is used for all the experiments. For
all the traffic sign and brand logo recognition experiments,
the values of the loss function hyperparameters, A;,A> and

image classification task on minilmageNet Ai, A2 and A3,
are set to 1074,1 and 10 respectively. The initial learning
rate is set to 10~ for both the traffic sign and brand logo
experiments and to 1073 for the natural image classification
task. When using canonical exemplars for the traffic sign and
brand logo experiments the standard BCE criterion is used
as the VAE reconstruction loss. On the other hand, for all
experiments involving the estimated exemplars, we observed
using the /> norm as the reconstruction loss results in more
improved performance. Additional implementation details
are provided in the supplementary.

Baselines

We compare ReFOCS against existing FSOSR methods such
as PEELER [12] and SNATCHER [13]. Both these methods
are built on top of the Prototypical Networks (ProtoNet)
[11] and rely on thresholding to reject out-of-distribution
samples. Therefore, we also compare the performance of
ReFOCS to that of ProtoNet, which although not designed
for open-set recognition, provides an approximate lower
bound on FSOSR performance. We also compare against
OpenMax [8], which was originally proposed for open-set
recognition in the fully supervised setting. OpenMax fits a
Weibull distribution on the classification logits and utilizes its
parameters to recalibrate the final softmax classification score.
In order to adapt it for the few-shot setting, we implement
OpenMax over the standard ProtoNet. We henceforth
denote this baseline as Proto+OM. For both ProtoNet and
Proto+OM, the out-of-distribution samples are rejected by
using a the same thresholding principle as PEELER.

Evaluation Metrics

To quantify the closed-set classification performance, we
compute the accuracy over in-distribution queries and utilize
the Area Under the Receiver Operating Characteristic curve
(AUROC) to quantify the model’s performance in detecting
the out-of-distribution samples. For all our evaluations,
we split the query set equally among in-distribution and
out-of-distribution samples.

4.1 Traffic Sign Recognition

The performance of ReFOCS on the two traffic sign
recognition tasks, GTSRB—GTSRB and GTSRB—TT100K,
is shown in Table 2. GTSRB and TT100K have a total of 43
and 36 classes, respectively. For GTSRB—GTSRB, 22 classes
are used for meta training, and the remaining 21 are used
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TABLE 2: 5-way 5-shot and 5-way 1-shot results of traffic sign recognition. For both traffic sign datasets GTSRB—GTSRB
and GTSRB—TT100K, 800 test episodes were evaluated and the average performance is reported along with their 95%

confidence levels.

GTSRB—GTSRB GTSRB—TT100K
MODEL METRIC EXEMPLAR
Acc. (%) AUROC(%) AcCC. (%) AUROC (%)
5-way 5-shot
PROTONET [11] Euclidean - 91.79 + 0.44 70.74 + 0.79 80.51 £ 0.78 62.10 £+ 0.76
PROTO+OM [8] Euclidean - 91.92 + 0.43 86.67 £ 0.48 64.40 £+ 0.78 68.80 £ 0.66
PEELER [12] Mahalanobis - 93.87 4 0.37 90.99 + 0.44 79.04 £ 0.79 73.25 + 0.81
REFOCS Cosine Estimated 93.89 4 0.48 94.67 £+ 0.25 80.09 £ 0.79 79.48 + 0.62
REFOCS Cosine Canonical 94.17 4 0.38 94.83 + 0.35 83.36 + 0.76 85.25 £ 0.56
5-way 1-shot
PROTONET [11] Euclidean - 82.31 £+ 0.75 61.52 £ 0.90 69.82 4 0.87 56.02 4 0.83
PROTO+OM [8] Euclidean - 82.46 + 0.70 81.43 £ 0.65 55.10 £ 0.80 67.79 £ 0.66
PEELER [12] Mahalanobis - 82.86 £+ 0.77 79.56 £ 0.85 73.47 £ 0.88 69.68 £ 0.88
REFOCS Cosine Estimated 84.09 £+ 0.71 94.09 £ 0.21 70.13 £ 0.89 75.01 £+ 0.76
REFOCS Cosine Canonical 86.21 + 0.78 93.02 £ 0.45 71.45 £ 0.87 81.98 + 0.59

TABLE 3: 5-way 1-shot results of brand logo recognition. For Belga—Flickr32, 1700 test episodes were evaluated and
for Belga—Toplogos, 400 test episodes were evaluated and their average closed-set Accuracy and open-set AUROC are

reported with 95% confidence intervals.

MODEL METRIC EXEMPLAR BELGA—FLICKR32 BELGA—TOPLOGOS
AcC.(%) AUROC(%)  AccC.(%)  AUROC (%)
PROTONET [11]  Euclidean - 5950 £ 0.99 58.60 +£094 3808 +£210 53.18 + 1.97
PROTO+OM [8]  Euclidean - 59.60 £ 1.01 61.00 £1.02 3820+ 1.95 56.40 + 1.92
PEELER [12]  Mahalanobis - 6293 +1.03 6640+ 086 39.55+£205 5625+ 1.94
REFOCS Cosine Estimated  65.15+ 1.02 69.08 £ 0.84 41354207 5736+ 1.94
REFOCS Cosine Canonical ~ 66.29 £ 1.02 72.98 £ 0.83 4230 +2.15 5839 + 1.97

for meta testing. For GTSRB—TT100K, all classes of GTSRB
are used for training, and testing is done on all the classes of
TT100K. In both experiments, all images are resized to 64 x 64.
As shown in Table 2, ReFOCS outperforms all baselines using
both estimated and canonical exemplars. Specifically for the
task of detecting out-of-distribution samples, on average,
ReFOCS achieves 7.4 percentage points higher AUROC
compared to PEELER while using the estimated exemplars.
On the other hand, using the well-defined canonical
exemplars yields even greater performance gains up to nearly
10.4 percentage points compared to PEELER. The problem
of just thresholding softmax classification scores to indicate
the openness of samples can be clearly seen in the lower
AUROC values of ProtoNet, Proto+OM, and PEELER. The
issue is more pronounced for ProtoNet, since, unlike PEELER
and Proto+OM, ProtoNet does not explicitly regularize the
probability scores of out-of-distribution samples resulting
in even more high-confidence false predictions. Utilizing
our proposed prototype computation (Eq. 4) also results in
higher classification accuracy on most of the FSOSR tasks.
Since the canonical exemplars lie in a simpler domain they
are devoid of many background and lighting perturbations
seen in the estimated exemplars. As a result, the image-
to-exemplar translation is much simpler for canonical
exemplars compared to the estimated ones, which results

in higher reconstruction errors for the latter, in turn affecting
the out-of-distribution detection. This factor is even more
amplified if there is a domain shift between the base training
and meta-testing sets as in the case of GTSRB—TT100K,
which is why is comparison to GTSRB—GTSRB, using the
estimated exemplars over the canonical ones leads to a
larger drop in AUROC for GTSRB—TT100K. Nevertheless,
the VAE-based reconstruction and our entire learning setup
enable ReFOCs to better compensate for such domain
shifts in comparison to existing FSOSR methods leading
to significant increases in AUROC even while using the
estimated exemplars. Some sample exemplar reconstructions
for the canonical exemplar case are provided in Fig 5.

4.2 Brand Logo Recognition

The brand logo datasets consist of everyday images of com-
mercial brand logos. In both few-shot tasks, Belga—Flickr32
and Belga—Toplogos, the Belga dataset consisting of 37
classes, is used for meta-training. Flickr32 and Toplogos each
have 32 and 11 classes, respectively. Since some of the classes
have as low as 2 samples, we restrict our experiments to the
5-way 1-shot scenario. In both cases, all images are resized
to 64 x 64. Similar to the traffic sign recognition experiments,
ReFOCS outperforms the existing baselines as evident
from the results shown in Table 3. Specifically, while using
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TABLE 4: 5-way 5-shot and 5-way 1-shot results of natural image classification. The best results for each backbone are
shown in bold. The performance of all methods is averaged over 600 test episodes and reported with 95% confidence levels.
When using the Resnet12 backbone, it is pre-trained for all competing methods using the same regimen as [13]. T denotes

our implementation using official code repository '.

minilMAGENET—minilMAGENET

MODEL BACKBONE  METRIC 5-way 5-shot 5-way 1-shot
Acc.(%) AUROC(%) Acc.(%) AUROC(%)
PROTONET [11] Resnet18 Euclidean 78114+122 5867 045 5518 £136  56.51 4+ 0.47
PROTO+OM [8] Resnet18 Euclidean 79.01 £1.21 54164047 5573+136  45.09 4+ 0.39
PEELER [12] Resnet18 Mahalanobis  75.08 £ 0.72  69.85 £ 0.70 58.31 £ 0.58  61.66 & 0.62
PEELER' [12] Resnet18 Mahalanobis ~ 63.60 = 0.67  64.17 = 0.64 4849 £0.81  59.39 + 0.77
REFOCS Resnet18 Cosine 79.06 £ 117 69.91 + 0.51 5833 + 0.84  69.24 £ 0.59
PROTONET [11] Resnet12 Euclidean 80.89 £1.18 59.144+049 65.02+133 5247+ 051
PROTO+OM [8] Resnet12 Euclidean 80.33 £1.22 53954051 6514+139  44.07+0.36
PEELERT [12] Resnet12 Mahalanobis  79.94 +0.63 73.58 £ 0.67 62.71 £0.79  64.87 &+ 0.80
SNATCHER-F [13]  Resnet12 Euclidean 82.02 77.42 67.02+£0.85 6827 £ 0.96
SNATCHER-T [13]  Resnet12 Euclidean 81.77 76.66 66.60=+ 0.80 70.17 £+ 0.88
SNATCHER-L [13] Resnetl2 Euclidean 82.36 76.15 67.60 1 0.83 69.40 + 0.92
REFOCS Resnet12 Cosine 8261+ 114 7731055 6629+091 7123 £ 0.62

TABLE 5: Ablation studies. Recons. w/ AE refers to swapping the VAE with an Autoencoder (AE); Non-weighted prototype
refers to the computation of the prototype as a simple centroid similar to ProtoNet [11]; No Modulation denotes turning off
embedding modulation; No embedding/clf denote the removal of embedding/softmax scores from the input of the novelty
module; ProtoC+ND refers to when we donot use exemplars for anything and consequently remove the reconstruction

errors from the input of the novelty module.

GTSRB—TT100K BELGA—FLICKR32
EXPERIMENT 5-way 5-shot 5-way 1-shot
AccC.(%) AUROC(%) Acc.(%) AUROC(%)

Recons. w/ AE 81.33+0.80 77.08+0.79 63.13+1.05 71.86 % 0.86
Non-weighted Prototype  81.79 £0.77 8493 £0.59 64.07 £1.02 7211 +£0.86
No modulation 8094+ 0.79 7855+0.65 63261103  56.69 £ 0.97
ProtoC+ND 7692 +£0.83 7250+ 0.61 61.64+1.03  50.01 £0.99
No embedding 83.03+0.75 7433+0.66 6549+1.00 67.79 £091
No clf 8271+074 8285+056 6451+1.01  71.58 £ 0.87
Full Model 83.36 = 0.76  85.25 = 0.56  66.29 + 1.02 72.98 £+ 0.83

estimated exemplars, on average, ReFOCS achieves nearly
1.89 percentage points higher AUROC compared to PEELER
and with the canonical exemplars, the average AUROC
gains are 4.28 percentage points. The overall accuracy is also
significantly higher compared to the baselines. Specifically,
when using the canonical exemplars we observe an average
increase of 3.05 percentage points in accuracy over PEELER.
These results establish the superiority of ReFOCS for FSOSR.
Similar to the GTSRB—TT100K, the domain shift between
BelgalLogos and the other two brand logo datasets increases
the difficulty of the task, especially when using the estimated
exemplars. However, the overall results clearly show the
superiority of ReFOCS over existing FSOSR methods in
compensating for such domain shifts.

4.3 Natural Image Classification

The minilmageNet dataset, introduced in [10], is a benchmark
dataset used for evaluating the performance of models for
few-shot natural image classification. This dataset has a total
of 100 classes, and as per the splits introduced in [10], 64
classes are used for training, 16 for validation, and the re-
maining 20 for testing. The images are resized to the standard

resolution of 84 x 84 [10]. As mentioned previously, this
dataset does not have any categorical exemplars, and there-
fore, for all its experiments, we use the estimated exemplars.
As shown in Table 4, for this dataset, we show results with
different encoder or backbone architectures. Specifically for
the Resnet12 encoder, it is first pre-trained for all competing
methods using the same setup as [13]. Following this, meta-
training starts using the pre-trained weights of the encoder.
From the overall results, we can observe that ReFOCS
outperforms or achieves comparable performance to existing
thresholding-based FSOSR methods. Since the images in
minilmageNet have much more variations, methods like
Proto+OM fail to achieve a decent AUROC score. This is
because the Weibull distribution used by OpenMax [8] under-
fits to the handful of support samples for each of the novel
test categories occurring in the meta-testing phase, which
in turn renders it ineffective in recalibrating the softmax
classification scores of the underlying Proto-Net. Since
ReFOCS does not rely solely on the softmax scores for out-of-
distribution detection it is able to achieve significantly higher
AUROC scores. Using the pre-trained Resnet12 encoder for
the meta-training phase boosts ReFOCS'’s performance even



Fig. 5: reconstructions  for

Sample
GTSRB—GTSRB. Exemplar reconstructions of a few
query samples from 1 test episode. (a) Class-wise exemplars
provided in the support set. (b) In-distribution query

exemplar

samples. (c) Out-of-distribution query samples. (d)
Reconstructed exemplars from the in-distribution queries.
(e) Reconstructed Exemplars from the out-of-distribution
queries, as hypothesized when out-of-distribution samples
are fed into ReFOCS it fails to reconstruct the in-distribution
class-wise exemplars provided in the support.

further. Pre-training also helps improve the performance
of PEELER, although with the Resnet18 backbone, it fails
to achieve its reported performance when the results are
generated by using its official implementation .

In comparison to the variants of SNATCHER [13], our
framework is able to achieve comparable performance,

1. https:/ /github.com/BoLiu-SVCL/meta-open/
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even outperforming them in some cases. Since the authors
of SNATCHER did not release their code we are able to
compare with it for minilmageNet benchmark only, and
its results shown in Table 4 are taken directly from their
paper [13]. Although SNATCHER is able to effectively use
complex architectures like transformers [14] and carefully
crafted normalization schemes to improve performance over
PEELER, being a thresholding type FSOSR method, it is
highly sensitive to the choice of an appropriate threshold.
In contrast, ReFOCS eliminates the need for a hand-tuned
threshold by utilizing the exemplar reconstruction setup to
induce self-awareness in the model, making it more versatile
than existing FSOSR baselines.

4.4 Ablation Studies

In this section, we use two cross-dataset scenarios to perform
ablation studies of different components of our framework to
understand their contribution toward the final performance.

Impact of using variational encoding.

The reconstruction module of ReFOCS is designed using
a VAE [16] due to its better generalization ability [30]. We
highlight this by replacing the VAE and experimenting
with a standard auto-encoder (AE). As shown in Table 5,
both the classification and out-of-distribution detection
performance drops significantly. This shows that the
improved generalization capability of a VAE is necessary
for handling FSOSR scenarios with domain shifts between
the training and testing sets.

Impact of weighted prototype computation.

By comparing the second and last row of Table 5 we can
see that when our weighted prototype is replaced with
a simple one as [11], there is a considerable drop in the
classification performance. This shows that utilizing the
exemplar information in computing the weighted prototype
results in more unbiased prototypical representations of each
class, in turn facilitating improved metric-based classification
of the in-distribution query samples.

Impact of embedding modulation.

The importance of the embedding modulation can be clearly
seen in Table 5. The modulated embedding results in more
distinct feature representations with adequate segregation
between the seen and unseen classes, thereby making it
easier for the novelty module to flag unseen categories.
Removing it results in a significant drop in AUROC, and on
the other hand, its presence also amplifies the classification
performance. This suggests that the improvement of the
open class detection is complemented by improvement in
seen class categorization.

Input to the Out-of-distribution detector.

We feed a concatenation of the modulated embedding,
classification score, and /o reconstruction errors to the
out-of-distribution detector. Empirically, the combination
of all three gives the best results for out-of-distribution
detection. We study the impact of removing the classification
score or the embedding from the input. As seen from the
results in Table 5, in both cases, there is a drop in both the
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Fig. 6: t-SNE visualization. We project the latent space learned via (a) ProtoNet (b) PEELER (c) ReFOCS, on 5 classes of
GTSRB—TT100K, on a 2D space using t-SNE. Out-of-distribution queries are in yellow

classification accuracy and the AUROC score. Additionally,
we also examine the scenario when we do not use any
exemplar for reconstruction and, consequently, feed in just
the classification score and the raw embedding as input
to the novelty module. We call this variant of ReFOCS,
ProtoC+ND, and as seen from Table 5 the removal of the
exemplar reconstruction errors results in the biggest drop
in performance - with AUROC dropping to 50% in one case
(random prediction) - which again consolidates the impact
of the exemplars in out-of-distribution detection.

Choice of distance metric.

Computing the logits for classification requires a distance
metric to measure the similarity between the prototypes and
the sample in the latent space. We experiment with both the
cosine and euclidean metrics and choose the cosine distance
as it leads to more discriminative embeddings [31], [32]
which is particularly important for segregating the open
class samples from the support class ones. This is validated
by the results shown in Table 6, where we can see that
choosing the euclidean distance metric leads to a significant
drop in AUROC.

TABLE 6: Choice of metric. Effect on performance as the
similarity metric is varied. For minilmagenet the Resnet18
[41] backbone is used.

DATASET SETTING  METRIC Acc. AUROC
Cosi 83.361+0.76  85.25+0.56
GTSRB—TTI00K  5-shot osine
Euclidean 78.77+0.74  81.4240.51
i .2+1.02 72. R
BELGA—FLICKR32  1-shot Cosine 66.2+1.0 9+083
Euclidean  48.73+0.99  50.61+0.95
i 79.06+1.17 69.91+0.51
minilIMAGENET 5-shot Cosine
Euclidean  79.09+1.15 52.83+0.48

Out-of-distribution performance with varying Openness

Openness as defined in [43] is shown below,

openness =1 | — 2 train__
Ntest + Ntarget

(11

TABLE 7: Comparison of open recognition performance
under different openness. Results are in terms of F1 score.

0% 8.7% 18.4% 23.3% 29.3%
GTSRB—TT100K

PEELER 59.11 51.06 48.91 43.66 40.28

ReFOCS 68.07 62.74 57.93 56.29 52.31
BELGA— FLICKR32

PEELER 48.91 46.73 41.22 39.95 37.14

ReFOCS 53.65 50.52 46.19 43.78 41.26

where Ny,.qip is the number of known classes seen during
training, Nye4 is the number of classes that will be observed
during testing, and Nig,g4e: is the number of open classes
to be recognized during testing [43]. For an N-way K-shot
problem, the support and the training set are the same, and
therefore, N¢rqin = Niest = N. Nigrger refers to the number of
open classes we sample Qq¢. We vary Nigrger from 5 to 15
and observe the open-set recognition performance in terms
of averaged F1 score [43] for both ReFOCS and PEELER. As
validated by Table 7 ReFOCS consistently outperforms the
thresholding-based PEELER on all the levels of openness.

Embedding Visualization.

In Fig. 6, we compare the t-SNE [44] visualization of the
embedding spaces induced by all the competing methods.
We can see from Fig. 6 that, in general, ReFOCS achieves
more distinct class clusters in comparison to both PEELER
[12] and ProtoNet [11], with adequate segregation between
seen and unseen classes.

5 CONCLUSION

In this work, we present a novel strategy for addressing
few-shot open-set recognition. We frame the few-shot
open-set classification task as a meta-learning problem
similar to [12], but unlike their strategy, we do not solely
rely on thresholding softmax scores to indicate the openness
of a sample. We argue that existing thresholding type FSOSR
methods [12], [13] rely heavily on the choice of a carefully



tuned threshold to achieve good performance. Additionally,
the proclivity of softmax to overfit to unseen classes makes
it an unreliable choice as an open-set indicator, especially
when there is a dearth of samples. Instead, we propose to use
a reconstruction of exemplar images as a key signal to detect
out-of-distribution samples. The learned embedding which
is used to classify the sample is further modulated to ensure
a proficient gap between the seen and unseen class clusters
in the feature space. Finally, the modulated embedding, the
softmax score, and the quality reconstructed exemplar are
jointly utilized to cognize if the sample is in-distribution
or out-of-distribution. The enhanced performance of our
framework is verified empirically over a wide variety of
few-shot tasks and the results establish it as the new state-of-
the-art. In the future, we would like to extend this approach
to more cross-domain few-shot tasks, including videos.
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Reconstruction guided Meta-learning for Few
Shot Open Set Recognition (Supplementary
material)

1 DATASETS

In this section we go over the details of each dataset used in our experiments. A summary of the statistics of each dataset is shown in
Table 1.

1.1 Traffic Sign Datasets.

GTSRB. This dataset [?] is one of the largest traffic-sign dataset. It is comprised of 43 classes broadly categorized under prohibitory,
danger and mandatory categories. For GTSRB—GTSRB, the training set contains a total of 39,209 images and the test set has a total of
12,630 images. These images have variations in illumination, shading as well as, resolution [?].

TT100K. The Tsinghua-Tencent 100K (TT100K) [?] is a Chinese traffic sign detection dataset. This dataset has more than 200 categories,
out of which we used the ones with valid annotation and a corresponding exemplar. Similar to [?] this amounts to a total of 36 valid
classes to work with.

1.2 Brand Logo Datasets

Belgal.ogos. BelgalL.ogos [?], [?] is comprised of 10,000 images of everyday brand logos commonly found in almost every aspect of
daily life. The images have significant perturbations such as blurring, lighting and contrast variations as well as, occlusions. The dataset
is also riddled with significant class imbalance as it contains classes with as little as 2 samples making it suitable for only 1-shot learning
problems. Similar to [?] we collect 9,475 images from Belgal.ogos categorised among 37 logo classes to construct our logo recognition
dataset. The images of this dataset have a lot more variations compared to the traffic sign datasets, especially blurring and occlusion,
which in-turn makes learning harder.

FlickrLogos-32. This dataset [?] is comprised of a collection of images corresponding to the 32 brand logos of Flickr. We use the splits
introduced in [?], which is comprised of a total of 3, 372 cropped logo images.

TopLogo-10. This dataset [?] contains logo images from 10 brands related to popular cloth, shoes, and accessory brands. The logo
images are obtained from their respective products, and similar to [?] the collected images were cropped from bounding box annotations
and divided among 11 classes where the ‘Adidas’ class is divided into ‘Adidas-logo’ and the ‘Adidas-text’.

1.3 Natural Image Dataset

minilmageNet. Originally proposed by Vinyals et. al. [?], minilmageNet has become a benchmark dataset for few-shot classification [?],
[?]. It is derived from the larger ILSVRC-12 dataset [?] and is comprised of 100 classes each having 600 colored images, which are
popularly resized to 84 x 84 [?], [?]. We use the same splits as [?], which comprises a training set with 64 classes, a validation set with
16 classes, and a test set with 20 classes.

TABLE 1: Number of samples and classes in each Dataset.

GTSRB  TTI100K  BelgalLogos  Flickr-32  TopLogos  minilmageNet

Number of Samples 51, 839 11,988 9,585 3,404 848 60, 000
Total Classes 43 36 37 32 11 100

2 ADDITIONAL IMPLEMENTATION DETAILS
2.1 Setup details

For the traffic sign and brand logo recognition, the learning rate remains constant throughout the meta-training stage. For experiments on
minilmageNet we drop the learning rate by a factor of 10 after every 20000 episodes.



2.2 Training details

For the traffic sign and brand logo classification, all modules of ReFOCS are meta-trained end-to-end. However, for minilmageNet
training the entire framework end-to-end results in over-powering of the reconstruction module resulting in decreased classification
accuracy. We suspect this problem is due to the difficult image-to-exemplar translation task for minilmageNet which is brought about by
the fact that the estimated exemplars of minilmageNet tend to have much more variability compared to those of the traffic sign and brand
logo datasets. In order to rectify this, we first meta-train the VAE encoder with just the cross-entropy classification loss (Eq. 6), following
which the weights of the trained encoder are fixed and utilized to jointly train the decoder and the novelty detection module using a
combination of the reconstruction loss (Eq. 2) and the novelty detection loss (Eq. 8).

For minilmageNet we also explore starting the meta-training phase by using the pre-trained encoder (also called backbone) when
using Resnet-12. For both backbones the pre-trained encoder is directly used for the exemplar estimation process explained in section 3.5.
For the Resnet12 case, the pre-training is done following [?] and during meta-training, the encoder’s weights are initialized with those of
the pre-trained encoder.

3 MORE ABLATIONS

TABLE 2: Comparison of self-reconstruction and exemplar reconstruction guided meta-training for FSOSR.

GTSRB—TT100K BELGA—FLICKR32
EXPERIMENT 5-way 5-shot 5-way 1-shot
AccC.(%) AUROC(%) AccC.(%) AUROC(%)
Self-Reconstruction 4173 £ 086 4992 +0.67 3396 +1.13  48.55 £+ 091
Estimated Exemplar Reconstruction ~ 80.09 +£0.79 7948 +0.62 65.15 £ 1.02  69.08 £ 0.84
Canonical Exemplar Reconstruction ~ 83.36 & 0.76  85.25 £ 0.56 66.29 + 1.02  72.98 + 0.83

TABLE 3: Comparison of different distance metrics for exemplar reconstruction and modulation factor. For the current setup, the distance
metrics proposed in Eq 10 and Eq 7 are used.

GTSRB—TT100K BELGA—FLICKR32
EXPERIMENT 5-way 5-shot 5-way 1-shot
Acc.(%) AUROC(%) Acc.(%) AUROC(%)
Case 1 79.84 £ 0.77 79.38 + 0.63  65.08 £ 1.06 69.21 £+ 0.84
Case 2 7995 + 0.80 7589 £0.62 65.02 + 1.01 66.95 + 0.88
Case 3 7943 £0.79 7534 +£0.68 6491 £ 1.04 66.87 £+ 0.85

Current Setup

80.09 £+ 0.79

79.48 £ 0.62

65.15 + 1.02

69.08 + 0.84

3.1 Why exemplar reconstruction is important for FSOSR?

As we have mentioned before, in few-shot learning, naively applying self-reconstruction (reconstructing the input query sample itself)
will not enable the learning of an effective task-irrelevant representation. Therefore, it is necessary to anchor the samples of each class to
a high-quality abstraction of that class, which we achieve using class-specific exemplars. To verify this, we compare self-reconstruction
with exemplar reconstruction for the FSOSR tasks of GTSRB—TT100K and Belga—Flickr32. As observed from Table 2, it can be seen
that naively applying self-reconstruction leads to a catastrophic failure to generalize to FSOSR tasks as evident from the lower than
random AUROC values as well as the significantly lower classification accuracies.

3.2 Choice of metric for exemplar estimation and modulation factor x

For the nearest neighbor based exemplar estimation (Eq 10) and the modulation factor x (Eq 7) we choose the {5 norm (euclidean
distance) and the #; norm (manhattan distance), respectively. One might ask why a cosine similarity-based distance such as the following,

xTy
[Ixll2(ly ]2
was not used for these two. This is because, for the exemplar estimation (Eq 10), we observe that the simple euclidean distance suffices
to get the best exemplar. However, for the embedding modulation factor &, it is necessary to use the £; norm. This is because if a
cosine similarity-based distance is used for k, it is constrained between 0 and 1, whereas utilizing the £1; norm allows k to have > 1
values enabling greater scaling down of the embedding of out-of-distribution samples. To study this, we experiment by considering the
following three cases,

(1

DiStafncecosine(X7 Y) =1
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Fig. 1: Hyperparameter Analysis. (a) Ay & A3 are fixed at 5 and 10, changing only the reconstruction loss term. (b) A; and )y are
fixed at 10~ and 10 and A3 is varied.

o Case 1: In Eq 10 we use Distancecosine() as shown above and keep « the same as Eq 7.
o Case 2: For k we use Distanceosine() and keep the exemplar estimation same as Eq 10.
« Case 3: For both x and exemplar estimation we use Distancecosine()-

We compare the results obtained from these three cases with the current setup of Eq 7 and Eq 10. From the observations tabulated in
Table 3, we can see that estimating the exemplars using the cosine distance, as opposed to the euclidean distance, does not significantly
impact the Accuracy or AUROC. Therefore, choosing the euclidean distance suffices. On the other hand, if Distance osine() is used to
compute x (Case 2 and Case 3), we observe a significant drop in AUROC since the scaling of the query embedding becomes limited.

3.3 Hyperparameter variation

Fig. 1 shows how the open-set AUROC is affected by the hyperparameters \; or A3 for the GTSRB—TT100K task. In both cases, the
classification term Ao is fixed at 10. In Fig. 1a, when A; is very low, the open-set detection is hampered due to poor quality of the
reconstruction and when it is increased beyond 10~ reconstruction becomes the sole objective of the model, thus the open-set detection
again degrades. From Fig. 1b we can see that for both the 5-shot and 1-shot cases increasing A3 causes the AUROC to improve the knee
point of A3 = 10, after which it starts to degrade.

4 MORE QUALITATIVE VISUALIZATIONS

Some exemplar reconstructions for the minilmageNet — minilmageNet experiment are shown in Fig 2. Since the exemplars are also
natural images, the high variation in lighting and backgrounds makes the reconstruction much harder. However, ReFOCS performs the
way it’s intended to, and as such out-of-distribution samples fail to reconstruct the in-distribution exemplars.
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Fig. 2: Sample exemplar reconstructions for minilmageNet— miniImageNet. Exemplar reconstructions of a few query samples from
one test episode. (a) Class-wise exemplars are provided in the support set. (b) In-distribution query samples. (c) Out-of-distribution query
samples. (d) Reconstructed exemplars from the in-distribution queries. (¢) Reconstructed Exemplars from the out-of-distribution queries,

as hypothesized when out-of-distribution samples are fed into ReFOCS it fails to reconstruct the in-distribution class-wise exemplars
provided in the support.




