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Abstract—Radiomap captures geometrical distribution of radio
frequency signal power. As an important tool to qualitatively
and quantitatively describe radio propagation behavior and
spectrum occupancy, radiomap has found broad applications in
deployment and configuration of modern wireless and Internet-
of-Things networks. Practically, a high-resolution radiomap can
be reconstructed from partial or sparse observations collected by
mobile devices or sensors. To leverage the power of radiomap, ef-
ficient radiomap reconstruction from sparse samples has emerged
as an urgent challenge. To capture both the underlying data
statistics and estimate the physical radio frequency models, this
work introduces three types of physics-inspired machine learning
approaches to radiomap reconstruction. The experimental results
demonstrate the potentials of integrating data-driven artificial
intelligence with model-based radio propagation behavior for
radiomap reconstruction.

Index Terms—Radiomap estimation, machine learning, radio
propagation models

I. INTRODUCTION

Tremendous progresses in information technologies have
stimulated numerous novel concepts and advanced wireless
technologies, such as Internet-of-Things (IoT), 3GPP’s 5G
terrestrial and non-terrestrial network (NTN) services, and
modern emergency communication systems. For these wireless
applications, efficient network coverage analysis is critical
to spectrum efficiency and quality-of-service (QoS). A vi-
tal tool to capture spectrum coverage is the radio strength
distribution in spatial domain for various spectrum bands of
concern, known as radiomap (or radio environmental map)
[1]. As shown in Fig. 1, radiomap generally refers to an
image that represents the geometrical signal power spectrum
density (PSD) [2], resulting from concurrent wireless signal
transmissions. In a radiomap, the PSD can be a function
of position, frequency and time [3]. Enriching information
on radio propagation and spectrum occupancy, radiomap has
assisted and inspired a rich plethora of applications, such
as outage detection, unmanned aerial vehicle (UAV) path
planning, and landscape information reconstruction [4].

S. Zhang is with Department of Electrical and Computer Engineer-
ing, University of Louisiana at Lafayette, Lafayette, LA, 70504. (E-mail:
songyang.zhang @louisiana.edu).

Z. Ding is with Department of Electrical and Computer Engineer-
ing, University of California at Davis, Davis, CA, 95616. (E-mail: zd-
ing@ucdavis.edu).

B. Choi and F, Ouyang are with Johns Hopkins University Applied
Physics Laboratory, Laurel, Maryland, USA, 20723. (E-mail: {Brian.Choi,
Feng.Ouyang} @jhuapl.edu).

In practical scenarios, dense radiomap is usually estimated
from sparse observations collected by sensors, driving tests,
or user devices [5]. An example of spectrum management for
a hybrid satellite-terrestrial network assisted by radiomap is
shown as Fig. 1, where different tasks, such as beam planning
and system fault diagnosis, can leverage the estimated dense
radiomap from sparse measurements. Thus, to utilize the
power of radiomap in network optimization and spectrum re-
source allocation, fine-resolution radiomap estimation (RME)
from sparse or partial observations is a critical problem in
modern wireless networking.

Most existing methods of radiomap estimation can be
categorized into either model-based or learning-based meth-
ods. Model-based methods usually assume specific functions
of radio propagation, such as log-distance path loss model
(LDPL) [6] and inverse distance weighted (IDW) [7]. How-
ever, inappropriate utilization of the radio propagation models
may limit the accuracy of model-based RME. For example, in
complex environments, the radio power distribution is more
sensitive to surrounding landscape information, with which
the propagation models cannot efficiently capture. Efficient
models for interference and shadowing effects are always
challenging in realistic scenarios. Alternatively, learning-based
approaches do not assume a specific model but leverage
more surrounding information. Typical examples include the
RadioUnet [8], auto-encoder [9] and conditional generative
adversarial nets [10], where deep learning approaches are
applied to characterize the underlying data statistics of ob-
served PSD samples for radiomap estimation. Despite some
successes, deep learning-based methods rely heavily on the
quality and quantity of observations and training data. In many
realistic scenarios, training data are often inadequate in size
and sometimes non-uniformly distributed geometrically. Fur-
thermore, samples in different training sets do not necessarily
fit the same radio propagation models and parameters. The
robustness and generalization of data-driven approaches for
radiomap estimation remain elusive.

To fully utilize the statistical data distributions and physi-
cal radio propagation model, this article introduces physics-
inspired machine learning for radiomap estimation in modern
wireless communications systems, taking advantages from
both model-based and learning-based approaches. Specifically,
we first introduce various categories of radiomap estimation
and give an overview of existing RME frameworks. We next
introduce three different types of physics-inspired machine
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Fig. 1.

Example of Radiomap-Assisted Network Optimization in Satellite-Terrestrial Communications: Collecting samples of spectrum measurement from

deployed sensors, a sparse radiomap (in blue block) is obtained, based on which a dense radiomap (in red block) is estimated for spectrum management tasks,

such as beam planning, outage detection and system diagnosis.
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Fig. 2. Different Types of Radiomap Estimation: The first type of RME aims
to estimate the dense radiomap from sparsely sampled observations, landscape
information and position of transmitters; The second type shall inpaint the
missing areas (in red) in a radiomap, given the surrounding environment and
spectrum information; The multi-based RME reconstructs the radiomap given
the PSD in multiple frequency bands.

learning infrastructures for efficient radiomap estimation. Fi-
nally, we summarize our findings, highlight current challenges,
and identify research opportunities in radiomap estimation and
RME-assisted spectrum management.

II. RADIOMAP ESTIMATION: FORMULATION AND
CHALLENGES

A. Problem Description

Describing the spatial distribution of signal power in various
spectral bands, a radiomap is usually characterized by the PSD,
which is a function of location z, frequency f, and sometimes
with time ¢, denoted by r(z, f,t). Since a radiomap can be

dynamically reconstructed from real-time measurements for
different time periods, we mainly focus on RME in a specific
time window, which can be generalized into different time
slots. Here, the location z can be either a two-dimensional (2D)
or three-dimensional (3D) vector depending on applications.
Since the temporal properties of a radiomap depend on the
system dynamics and can be resolved by the analysis at a
certain time interval, most existing radiomap estimates average
over time ¢ and focus on r(z, f). This article shall focus on
the RME of a region Z with frequency bands F, i.e., R(Z, F)
consisting of all the PSD values r(z;, f), where z; € Z and
fer.

In practical scenarios, a dense (full) radiomap R(Z, f)
shall be estimated from sparse observations {r(zo;, fo;) 121,
collected from wuser devices or sensors. Sparsity may
manifest in frequency and space. Let the locations and

frequencies of observations be denoted by Z, con-
sisting of {z,1,%09, "+ ;Zoas and JF, consisting of
{fo1, foas "+ s forr}> respectively. The general formulation of

RME is to find a function g¢(-), i.e

E)(Zv}_):g(XvR(Zm}_o))v (D

where X’ is the environment information, such as urban map
or building distribution. In practice, one may also focus on the
RME at a single frequency f, which aims to find R(Z).

B. Categories of Radiomap Estimation

For an overview of RME, we first introduce the different
categories of RME frameworks based on observation types,
availability of data samples, and design of mapping function.

1) RME Categories According to Observation Types: De-
pending on observation types, some common RME cases shall
fall into the following categories as shown in Fig. 2:

e RME from sparse observations in single-frequency: This
is the basic RME formulation, where the dense radiomap
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is estimated by sparse observations from sensors. As
illustrated in Type-A of Fig. 2, RME from observations
in the same spectral band aims to uncover the spatial
correlations to capture the radio propagation behavior
and shadowing effects to reconstruct the radiomap at a
specific frequency.

e RME for blank areas: In some scenarios, the restricted
regions, such as mountain ranges or private properties,
are inaccessible to radiomap measurements because of
physical constraints or security consideration, leaving a
blank areas in the radiomap shown as Type-B in Fig.
2. Unlike sparse observations, radio coverage in these
areas is usually more sensitive to landscapes instead of
following a classic radio propagation model. Consider-
ing the complicated surrounding environment, model-
based methods are less effective in this scenario. On
the other hand, irregular measurement and blank areas
on a radiomap can lead to less dependable RF power
estimates in the objective regions, which further limits the
efficacy of data-driven approaches [3]. Choice of efficient
methodology for RME in missing areas remains an open
research question.

o Multiband RME: Shown as Type-C in Fig. 2, Multi-band
RME (MB-RME) is generalization of single-band RME
characterized by Eq. (1). Beyond intra-spectrum spatial
correlations, MB-RME can also describe inter-spectrum
interference to provide a more accurate estimation.

2) Categorized by Available Radio Data: RME can be
also categorized into interpolation-based RME and prediction-
based RME, according to the number of available radiomaps:

o Interpolation-based RME: Interpolation-based RME aims
to estimate the missing values in one radiomap at a
frequency f from the observed samples in the same
region. Interpolation-based RME focuses on character-
izing model parameters or data statistics for radiomap
estimation in a single region Z. Typical examples include
the LDPL-based interpolation [6] and inverse weight
(IDW) interpolation [7] .

e Prediction-based RME: Prediction-based RME usually
relies on a set of radiomaps as training data to learn the
mapping function g(-) from partial or sparse observations,
together with landscape information and transmitter posi-
tion, to the dense radiomap. Usually, sparse observations
are sampled from the known radiomaps, together with
the corresponding geometric features Xj, as the input
features. Given a set of training data samples of input
features and output groundtruth dense radiomap, the
mapping function g(-) can be learned for the estimation
of testing radiomaps.

3) Categorized by Mapping Function g(-):

e Model-based RME: Model-based methods usually assume
a radio propagation model for radio PSD loss, in terms
of receiver and transmitter locations, such as LDPL
or IDW [2], where the g(-) function follows a given
model with unknown parameters estimated by minimiz-
ing error between observations and predictions. Since
the performances of model-based methods rely on the
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Fig. 3. Different Types of Physics-Inspired Machine Learning: The mea-
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functional approximation properties of model to fit the
current radiomap and propagation behavior, it usually has
a superior performance in smooth, regular environment
while failing in complicated, irregular regions.

e Model-free RME: Model-free methods express the PSD at
a particular location directly as a function of observations
without a given radio propagation model. Here, the func-
tion g(-) can be designed as non-linear functions, such as
neural networks [1], or solved by optimization problems,
such as tensor completion [2]. Given complex formula-
tion of model-free function g(-), sufficient observations
are required to estimate the parameters of g(-) efficiently
to overcome problems that arise from low-fidelity training
data samples.

III. PHYSICS-INSPIRED MACHINE LEARNING FOR RME

Despite reported successes of purely model-based and
learning-based RME approaches, model-based RME fails to
capture surrounding landscape features and shadowing effects,
while the learning-based RME tends to suffer from low-quality
and insufficient training samples. It is critical to investigate
new ways of developing radio physics inspired learning frame-
works by utilizing radio propagation models and real-time
radio measurements, coupled with landscape maps and satellite
images, in order to generate radiomap of desired resolution.
The emerging fields of physics-embedded machine learning
hold the potential to address such challenges [11]. In this
article, we introduce three different types of physics-inspired
machine learning as shown in Fig. 3.

A. Learning with Physics-Extracted Features

The first type of physics-inspired machine learning is to
extract physical features, as shown in Fig. 3. Generally, this
type of RME consists of two steps: 1) process input data
via feature extraction approaches based on radio propagation
model; and 2) input the processed feature to the learning
machines to estimate the R(Z,F). The key for this kind of
physics-inspired RME is to select suitable radio model and
analytical tools for data pre-processing.
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Fig. 4. Exemplary Results of RME (dBm) with Physics-Extracted Features
(buildings are masked as blue): RME with Urban Map utilizes the environment
map directly as the input for neural networks (MSE: 25.17); RME with Radio
Depth Map uses the radio depth map as input (MSE: 8.74). IDW is used to
generate the radio depth map.

Conventional model-based preprocessing applies model-
based interpolation (MBI) to generate a rough estimation of
PSD distribution, such as LDPL models and IDW models
[2]. Then, the new input features of data samples for the
training of neural network ¢(-) consists of the original and
MBI-estimated features. However, similar to the model-based
RME, the final results are sensitive to the selection of models.
Moreover, traditional LDPL-based models are usually linear
and cannot efficiently capture landscape information, e.g.,
building features. This motivated us to develop novel model-
based features for RME.

To facilitate the radio propagation model with building
information, we define a novel radio depth map to capture
the surrounding information with physical models [3] as an
additional input channel for the neural networks. Let /Ny be
the number of transmitters. The depth value in a radio depth
map at location x; is defined as follows:

H(x;) = h()_ Ej(x;) - Bj(x:)), 2

where E;(-) captures power from different transmitters defined
by LPDL or IDW models, B;(-) is calculated from the
radiowave decay ratio over buildings considering the location
of j-th transmitter, and h(-) is the normalization function.
Instead of roughly defining PSD values, the radio depth map
highlights the radio propagation model and the fading effect
from buildings. We then utilize the radio depth map as the
new input for a neural network. The results of one exemplary
radiomap is shown in Fig. 4. Without suffering from overfitting
the landscape in the urban map, results from radio depth map
present a more accurate estimation on the radiomap patterns,
leading to lower mean squared error (MSE) of the predicted
received power compared to the traditional input features X,
thereby demonstrating the potential integration of the proposed

radio depth map and deep learning approaches in efficient
RME. Here, we utilize MSE to evaluate the performance since
it directly reflects the overall reconstruction accuracy. Other
potential metrics also include the normalized MSE (NMSE)
and the performance of outage map prediction derived from
the estimated radiomap [4].

Discussion: This type of RME after physics-based process-
ing provides flexibility to the design of learning framework.
Different techniques, such as model-based interpolation or
radio depth construction, can be used to extract features as
the input of learning machines. From there, users can cus-
tomize their neural networks design for estimation including
deep convolutional neural networks and generative adversarial
networks (GAN). Despite some demonstrated successes, se-
lecting suitable models can still be intricate. Existing model-
based feature extraction are usually LDPL-based. The specific
customization, such as shadowing effects and channel fading,
can improve performance and deserve further exploration.

B. Physics-Regularized Loss Function

Next, we introduce another type of physics-inspired ma-
chine learning based on physics-regularized loss function.
Different from RME with physics-extracted features, these
kind of methods still utilize the original features as input, while
embedding the radio model information in the modified loss
function. In general, the physics-regularized loss function can
be formulated as

min Li(R(Z,), R(Z,)) + aLs(R(Z)) + AL3(R(Z2),P) (3)

where R(Z) = go(X, R(Z,)) is the mapping function (e.g.
neural networks) with parameters ©, and P is the additional
physics-based inputs.

Here, L; is the empirical loss to measure the quality of
the approximation in the view of observed samples. Typical
examples include the squared loss, absolute value loss, Huber
loss and Log-Cosh loss, aiming to minimize the reconstructed
error between R(Z,) and R(Z,). Different designs of em-
pirical loss may exhibit advantages for different datasets. For
example, the squared loss can be differentiable everywhere,
while the absolute loss might be less sensitive to the noise.

Lo is a regularization term, which could assist the opti-
mization to capture a better geometric intuition and possess
certain properties. One category of regularization terms consist
of different norms, such as /{-norm, [5-norm, Frobenius norm
and nuclear norm. These norms regularise the loss function
during RME process. For example, the minimization on [y
norm promotes sparsity of radiomap estimation, which may
benefit the RME in the region with very low radio power.
Another example is nuclear norm, which highlights signal
properties in the singular domain and is widely used in
RME based on tensor completion [13]. Another category
of regularizers describes the geometric properties. A typical
example is Laplacian regularizer, which favors the smoothness
of the estimated radiomap.

Note that, the empirical loss L; and conventional regularizer
Lo mainly focus on properties of data, and rely on the
quantity and quality of the training data. For example, as
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Fig. 5. Examples of RME with Different Loss Function: 1) IDW - purely model-based interpolation; 2) TC - conventional tensor completion; 3) IDW+TC -
customized TC loss function integrated with model information (Buildings are marked as red).

shown in Fig. 5, model-based interpolation is able to capture
the smooth patterns while failing to capture the detailed
patterns near buildings. The tensor completion (TC) with
conventional loss function needs more training samples to
detect shadowing and obstacle effect compared to model-based
interpolation. This observation motivates us to introduce a
physics-inspired regularization term L3 by integrating data
statistics with physical radio models. One intuitive design of
L3 is first to estimate a radiomap based on MBI denoted by
Ry, , and define the physics terms as Ls(R, Ry,,,,). For
example, in [4], a conditional GAN is trained according to
the cosine similarity of gradients for each location between R
and Ry, wsr 10 L3 to smooth the estimated radiomap. Another
design is to minimize the weighted error between R and
Ry, v tO restrict the optimization in the direction of LDPL
propagation model. Shown in the first row in Fig. 5 with 5%
observations, after embedding the IDW-based regularization
term with conventional tensor completion loss, the IDW-TC
succeeds in reconstructing the radiomap and overcomes failure
of the TC-based method. Moreover, integrating the data-
based empirical and regularization loss with models, the IDW-
TC method can model blocking and shadowing effects from
landscape in comparison with IDW, as shown in the second
row in Fig. 5. Other potential design of L3 may also consider
the segmentation of outage area, the intensity of radiomap
pattern and the model-based pre-selected observations.

Discussion: Traditional data-driven and regularized loss
functions may be limited by the quality and quantity of
training samples. To address such challenges, learning with
physics-regularized loss function can be an intuitive way to
embed the model information to compensate for the low-
fidelity of data samples. The key here is the effective design
of L3 and the adjustment of the weighting parameters, i.e.,
«a and . To leverage the model information, model-based
interpolation and physical radio propagation properties can
be utilized to design the L. Still, much work is needed to
develop elegant integration to fit the datasets by considering
channel noise, shadowing effects, and interference. Beyond
the LDPL model, more accurate physical models, such as ray

tracing, uniform geometrical theory of diffraction or Maxwells
equation solvers may be considered for RME in some specific
small-scale scenarios. Equally important is the realization
that various regions may have different degrees of model
sensitivity, thereby motivating an adaptive weighting strategy
for efficient RME. For example, the weight A may depends
on smoothness or regularity of the surrounding geographical
features.

C. Learning with Physics-Guided Models

Beyond feature extraction and loss function design, we
now consider customization of learning algorithms based on
specific domain knowledge and model information, which was
shown in Fig. 3.

We utilize model information to modify the conventional
learning algorithms for specific tasks in RME. Here, we
consider the RME for the restricted area as an example for
illustration. As shown in Type-B in Fig. 2, RME for blank
area aims to estimate PSD for the entire missing area, which is
similar to the traditional image inpainting problem in computer
vision [14]. Among a variety of image inpainting algorithms,
exemplar-based image inpainting (EI) estimates missing values
patch-by-patch from boundaries between observed regions and
restricted regions, leading to the center of the restricted area.
In this known efficient approach, the most important step is to
determine the priority of the block to be filled and the direction
of inpainting. Traditional EI methods favor the textures of
images, where the inpainting direction shall follow the strength
of isophotes hitting the boundary, defined by the gradient of
texture s, and the normal n,, at location p in the boundary. It is
important to note that, unlike photographic images, radiomaps
display clear patterns following the radio propagation from
the transmitter. Thus, we integrate traditional image inpainting
algorithms with physics-based models. Shown as Fig. 6, radio
isophotes can be defined as the strength of the radio hitting
the boundary between observed regions and missing regions.
Different from traditional EI favoring the texture gradient, we
define a radio texture term based on the radio propagation
direction with a strength defined by the inverse distance or
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Fig. 6. Examples of RME of Restricted Areas: Traditional EI inpaints
the missing area with texture gradients (MSE: 137.33); and Model-guided
EI inpaints the missing area following the radio propagation model (MSE:
111.07).

LDPL models. Calculating the factors with the boundary norm,
we could define a novel model-based priority and filling
direction for image inpainting in radiomaps. The results are
shown in Fig. 6, where the proposed model-guided algorithms
can significantly improve the traditional image inpainting and
dictionary learning approaches for radiomap estimation in
restricted areas.

Beyond model-guided modification on the traditional learn-
ing algorithms for RME, another emerging technique is the
physics-embedded neural network [11], which utilizes model
information to guide the design and training process of neural
networks. Usually, this kind of techniques formulate imaging
or image reconstruction as a compressed sensing problem for
estimating € from ®e¢, where @ is the sensing matrix based on
the radio and geometry of the domain of investigation (Dol)
embedding the model information. Deep learning networks
based on unrolling have played an important role in solving
such problems. A classic method is the iterative shrinkage
thresholding algorithm (ISTA), which iteratively performs
proximal gradient descent [15] to optimize e. Despite the
successes of unrolling in other applications, such as electro-
magnetic imaging and reconstruction, there have been very
few related works in the domain of RME and reconstruction.
Therefore, further research on the integration of the physics-
embedded neural networks with RME is justified.

Discussion: Compared to physics-extracted features and
physics-regularized loss function, learning algorithms guided
by the physics models tend to be more complex but can
perform better in specific applications [3]. Moreover, more
efforts shall be contributed to the selection and design of
suitable learning models that are amenable for integrating with
radio propagation models.

IV. OPPORTUNITIES AND CHALLENGES

To further develop physics-inspired learning for RME and
wireless communication applications, we address some oppor-

tunities and challenges in this field.

« Data Collection: For efficient implementation of machine
learning algorithms, rich and large number of datasets
play important roles. Existing datasets are mostly derived
from software simulation, such as WinProp and Wireless
Insite. One open dataset is RadioMapSeer Dataset! [8]
generated from WinProp, which is frequency-sensitive.
It consists of 700 maps, 80 transmitter locations per
map, providing coarsely simulated radio maps in Europe.
Another available data is the BRATLAB Dataset 2 [3],
which contains WinProp-simulated radiomaps for both
single-band and multi-band scenarios, covering several
US cities. Different from RadioMapSeer dataset, BRAT-
LAB Dataset includes both coarse and fine resolution
radiomaps. In addition, Johns Hopkins University Ap-
plied Physics Laboratory (JHU-APL) provided a dataset
simulated from Wireless inSite with 1-meter resolution
Light Detection and Ranging (LIDAR) information of a
select region in Atlanta, Georgia, USA [3]. This high-
fidelity simulated JHU-APL dataset includes shadowing
and obstacle effects. Despite the success of synthetic
datasets, easier access to real-life datasets collected by
sensors could improve radio propagation modeling and
further assist RME algorithm development. In addition,
data generation from synthetic samples and realistic mea-
surements based on the emerging generative learning
models can be another promising direction. Another
shortcoming is that most datasets focus on the 2D spatial
geometry, whereas 3D radiomap is also of great interest,
especially for UAV deployment. There is an acute need
for, and plenty of opportunities in, acquiring multi-band
higher resolution radio coverage information in 2D/3D.

o Radio Model Physics: Incorporating physics theory into
data-driven methods is challenging. A general model
can strengthen the robustness of physics-inspired RME,
whereas a specified physics model can lead to accurate
RME in a given scenario. The selection of a suitable
model is important for all three types of physics-inspired
machine learning algorithms we have discussed. Beyond
radio propagation models, there is also a strong need for
better interference models and channel fading models to
provide a more accurate description of the radiomaps.

o Down-Stream Applications: Rapid growth and broad de-
ployment of IoT and 5G systems make efficient estima-
tion and utilization of radiomaps increasingly important.
Radiomap estimation is a valuable tool in resource alloca-
tion and network planning of future wireless communica-
tion systems. One promising direction is radiomap-based
localization and footprinting. Evaluating spectral distribu-
tion from estimated radiomaps, efficient approaches can
be designed for traditional wireless localization. Another
direction can be the end-to-end learning frameworks of
spectrum/power management and network optimization.
With RME, one may develop end-to-end data-driven
approaches for specific network applications, such as

Uhttps://radiomapseer.github.io/
Zhttps://github.com/BRATLab-UCD/Radiomap-Data
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outage detection, fault diagnosis and wireless spectrum
planning. Other practical directions include radiomap
based interference estimation across different bands and
regions, as well as dynamic radiomap prediction.

V. CONCLUSION

This article provides an overview of physics-inspired ma-
chine learning for radiomap estimation based on integrating
real-time measurement data with physical properties of radio
propagation. Specifically, we introduce three different types
of physics-inspired RME: 1) learning with physics-extracted
features; 2) learning with physics-regularized loss functions;
and 3) learning guided by physics models. Fundamentally,
the incorporation of physics models facilitates the machine
learning with ability to uncover the hidden PSD distribution
more efficiently, even without high quality or dense data
samples. The development of efficient and accurate RME so-
lutions, can lead to extensive applications such as interference
management, spectrum resource allocation, UAV path planning
and outage detection. With the development of artificial intelli-
gence and its integration within wireless networking, efficient
physics-inspired RMEs are expected to generate more accurate
and valuable radiomaps to significantly benefit future wireless
communication networks.
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