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ABSTRACT: The rich morphology of 2D materials grown
through chemical vapor deposition (CVD)), is a distinctive feature.
However, understanding the complex growth of 2D crystals under
practical CVD conditions remains a challenge due to various
intertwined factors. Real-time monitoring is crucial to providing
essential data and enabling the use of advanced tools like machine
learning for unraveling these complexities. In this study, we present
a custom-built miniaturized CVD system capable of observing and
recording 2D MoS, crystal growth in real time. Image processing
converts the real-time footage into digital data, and machine
learning algorithms (ML) unveil the significant factors influencing
growth. The machine learning model successfully predicts CVD
growth parameters for synthesizing ultralarge monolayer MoS,
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crystals. It also demonstrates the potential to reverse engineer CVD growth parameters by analyzing the as-grown 2D crystal
morphology. This interdisciplinary approach can be integrated to enhance our understanding of controlled 2D crystal synthesis

through CVD.
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he development of the CVD technique to grow large
single-crystalline van der Waals (VdW) monolayer
materials has been very successful in the past decade. A wide
variety of 2D monolayers and few layers including graphene,’
hBN,” MoS, and its family,S’4 SnSZ,S GaSe,° perovskite, and
more have been grown successfully using CVD.” Despite the
substantial growth of the number of publications on CVD
growth of 2D materials, there still exist inconsistencies of the
correlations between the growth conditions and the crystal
morphologies from different reports. For example, Wang et. al
reported the shape evolution of CVD-grown MoS, from
triangles to hexagons as the MoQ,/S ratio drops,® while Yang
et. al reported otherwise.” Those disagreements are oftentimes
confusing and cannot be neglected if we aim to push this
technique toward industry applications. A clearer picture of the
2D crystal growth must be developed to better understand the
underlying growth mechanism before consistent and reprodu-
cible CVD growth can be demonstrated. Additionally, there is
abundant evidence suggesting the hidden link between the
crystal morphologies and their chemical/physical proper-
ties.'””"® Therefore, by controlling the growth condition of
2D crystals and their correlated morphologies, it is possible to
rationally engineer these materials with desired properties.'®
It is well recognized that direct observation of crystal
morphology evolution plays an irreplaceable role in under-

© 2024 American Chemical Society

v ACS Publications 2465

standing the growth mechanism of materials.'”*® Dynamic

morphology evolution of crystals at different periods of growth,
when correlated with real-time growth conditions, can not only
correct misinterpreted growth process—experimental parame-
ter correlations (e.g., false assumption that the growth ends at a
specific point on the ramping-cooling curve) but also deliver
important information (e.g., sequence of nucleation events and
competition of growth of crystals with different sizes) that are
usually missing in conventional growth experiments with only
snapshots of starting and ending points of the growth
processes. For example, recent progress has shown direct
observations of 2D Pbl, growth on MoS,."” The latest
development has also demonstrated that a more challenging
experiment of direct observation of graphene single crystal
growth on top of liquid metal substrate can be done with a
customized reaction chamber.”””" Tt is worth noting that
transition-metal dichalcogenides (TMDs) such as MoS, are
one of the most important 2D materials beyond graphene, and
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Figure 1. Schematic illustration of the workflow established in this work. The bottom half of the panel represents the growth footage capturing
sector. The top right of the panel represents the growth footage digitizing sector. The top left of the panel represents the machine-learning sector.
The reaction parameters shown are examples representing one specific growth condition.
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MoS, has its own growth mechanism that is completely
different from graphene.”” Until now there was only a limited
number of reports on the direct observation of TMD growth in
CVD using high-end TEM reaction chambers™ and optical
microscope-based setups.””*> While the very early stage of
crystal nucleation could be observed in TEM at a very high
magnification, which inherently has a very small observation
window, this type of technique uses a different reaction
chamber layout compared to commonly used tube-furnace
based CVD syntheses. As a result, lots of the phenomena that
matter in a conventional TMD growth, especially those related
to fundamental growth mechanisms, such as the competition
between nucleation and growth of different crystals throughout
the growth period and Oswald ripening of neighboring
crystals,”® and those related to final product morphology
control, such as overall coverage,27 orientation of different
crystals and grain boundary density,”**” are very challenging to
be directly observed from the TEM-based growth experiment.
For earlier optical microscope-based setups, due to the
limitation imposed by the optics on top of the growth
chamber, the orientation of growth substrate and position of
the precursors are compromised and do not represent the
conventional CVD layout. Therefore, it is imperative to
develop another approach that could better mimic the
conventional CVD growth conditions while offering direct
observation capabilities to better understand the underlying
growth mechanism of 2D TMD crystals.

On the other hand, as multiple crystals form, merge, and
grow on the same substrate, it is important to track the
morphology information on each crystal so that a compre-
hensive picture on the growth mechanism can be drawn. To do
that, the obtained material growth footage must first be
digitized, and then the morphology parameters such as crystal
lateral size and growth rate need to be quantified. With such
information, powerful tools such as ML algorithms can be
employed to process the shear amount of data and help
building models to predict and control 2D crystal growth. It is
also worth noting that the fast development in implementing
machine-learning (ML) techniques into practical engineering
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processes in recent years has promoted the application of ML
approach in 2D TMDs-related studies, including data-mining
based assessment of CVD growth process,” Raman spectra
identification,®" defect dynamics, and growth condition
control.’** So time is ripe to integrate an advanced growth
system with the capability of observing and recording the
growth of 2D TMD crystals in real time with powerful ML
algorithms to better understand their underlying growth
mechanisms toward controlled scalable synthesis. Beyond
that, real-time CVD plus ML will not only allow us to validate
many 2D material growth theories based on ab initio and first-
principle calculations but also provide much larger and richer
data set than traditional CVD growth process as the ground
truth to improve the machine-learning models.

In this work, we have established a complete workflow for
such purposes and demonstrated its capability in guiding the
CVD growth of MoS, monolayers (Figure 1). The workflow
consists of utilizing a custom-built miniaturized CVD
apparatus integrated with an optical microscope to capture
the 2D MoS, crystal growth footage, applying computer-based
image processing algorithms to digitize the growth footage, and
then using machine-learning-enabled analysis to understand
the correlation between the obtained crystal morphology
parameters and the growth experiment conditions. More
importantly, we have demonstrated important applications of
such a workflow in guiding controlled growth to achieve
desired crystal morphologies as well as figuring out the growth
conditions by analyzing the obtained crystal morphology
parameters.

In our workflow, the first step is to record the whole growth
process with a digital camera. There are several practical
challenges when simply trying to reduce the size of a
conventional CVD setup and mount a digital camera above a
CVD furnace. First, there must be an open region on the
furnace to allow an unblocked optical view on the sample.
Second, Si with an oxidation layer can no longer be used as the
growth substrate, because in order to observe the growth from
above the furnace, the substrate must be transparent (as the
high quality 2D crystal growth typically occurs on the bottom
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Figure 2. Digitizing the growth footage to extract time-dependent information on crystal nucleation and growth. (a) — (c) Binarized snapshots of
the sample at different times. (d) False-color image of (c) before processing, in which MoS, flakes appear as triangular domains. Units for images
(a)-(d) are all pixels. (e) Time dependence of the overall area coverage, crystal number, average crystal size, and total edge length of all crystals

evaluated from the growth footage of the MoS, sample.

side of the growth substrates). Third, the objective lens needs
to have an ultralong working distance so there would be
enough space between the lens and the furnace heating zone to
allow appropriate air cooling of the objective lens. We designed
a custom-built miniaturized CVD system to address those
challenges. The system is made of a miniaturized CVD furnace
with an observation window, a rectangular quartz tubing, and
an optical microscope with ultralong working distance
objective lens (Figure S1). The commonly used layout of
Mo, S precursors, and substrate in a conventional CVD system
is retained in our system, except that Si is replaced by sapphire
to allow optical transparency of the growth substrate. With this
setup, what can be achieved in a conventional CVD can be
preserved to the largest extent, while real-time observation and
recording of the growth process become possible.

A typical growth experiment performed in such a
miniaturized CVD setup produces triangular crystals on the
sapphire substrate (Figure SSa). Two Raman peaks at 385.6
and 404.4 cm™" can be identified exclusively from the as-grown
crystals (Figure S2). These peak positions correspond to the
El2g and A,, vibration modes of MoS,, and the peak-to-peak
distance of 18.8 cm™" further suggests that they are monolayer
MoS, crystals.>**> A strong peak in photoluminescence (PL)
spectra around 1.88 eV and PL mapping (Figure SS) of the
crystal confirms the findings from the Raman spectra analysis
(Figure $3).>° The AFM image (the height profile) also shows
the crystal thickness of 0.6 nm matching the thickness of a
monolayer MoS, (Figure $S4).>**” Based on these character-
ization results, we confirmed that we have successfully grown
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MoS, monolayers on the sapphire substrate using the
miniaturized CVD setup.

A typical footage of monolayer MoS, growth using the
miniaturized CVD is shown as an example to demonstrate the
capability of the system (Supplementary video 1). 2D MoS,
crystals are emerging as dynamically expanding triangular
domains with darker contrast, which is visually different from
the commonly seen purplish flakes on the SiO,/Si substrate. In
the footage, a complete CVD growth process of MoS, crystals
was recorded, where the crystal nucleation, growth, and
coalescence and the termination of such growth can all be
visually identified. A lot of useful information that was missed
in conventional observations of the CVD growth is therefore
revealed. For instance, this particular footage directly shows
that there is a sequence among different MoS, crystals to
nucleate, suggesting the potential importance of nucleation
competition (if there is any) among neighboring crystals
during the early growth stage. The footage also reveals that the
majority of crystal growth happens in the time scale from tens
of seconds to several minutes.

The goal of the next step is to convert the CVD growth
footage (growth videos) into quantitative metrics of interest to
researchers and suitable for further computer analysis. In order
to do that, the contrast of MoS, crystals in the videos needs to
be first enhanced so they can be identified by appropriately
setting threshold of pixel brightness values. As mentioned
earlier, transparent substrates such as sapphire do not show
high contrast images naturally like SiO,/Si substrates do
(Figure 2d). However, image processing algorithms can be
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Figure 3. Machine-learning model prediction of average crystal size of miniaturized-CVD-grown MoS, monolayers. (a) Machine-learned feature
ranking of growth controlling factors. The y-axis indicates the significance of these parameters in determining the average size of MoS, (b) False-
color optical image of the MoS, crystals grown at a high temperature and low flow rate, where the largest average crystal size is obtained among the
tested growth conditions. Scale bar: 20 um (c) Reducing growth temperature decreases the crystal size. Scale bar: 20 ym (d) Increasing flow rate

significantly reduces the crystal size. Scale bar: 20 ym.

applied to enhance the contrast in the footage. By converting
the image from color mode into grayscale, the MoS, flakes start
to show improved contrast (Figure S6b). Further contrast
enhancement can be achieved by applying adaptive histogram
equalization to the image (Figure S6c). Artifacts from the
objective lens such as dirt can be removed by using a blank
substrate image as a background and subtracting it from every
frame of the video. After this step a higher quality image with a
more uniform background is obtained and ready for
binarization by selecting an appropriate brightness threshold
(Figure S6d,e). In the binarized image, isolated crystals can be
identified using a contour-finding algorithm. Lastly, noise such
as small sized speckles in the binary image can be removed by
applying a size filter to all identified crystals (Figure S6f).
Images processed by this workflow highlight the shape features
of the grown crystals and are suitable for further analysis to
extract key information on crystal morphology such as shape,
size, and orientation can be extracted.

The established image processing workflow is applied to
every frame in the video footage. The process of the nucleation
of multiple crystals and their growth from small dots into fully
developed triangles can be clearly seen from the snapshots at
different times (Figure 2a—c, Figure S7, and Figure S8a—c). As
previously mentioned, image processing packages, such as
OpenCV can be used to identify the features of each individual
crystal and crystal cluster. In the current workflow, we track the
number of crystals, the cumulative crystal areal coverage, and
the overall edge length of the crystals as a function of the real
growth time (Figure 2e). Crystal growth kinetics could be
inferred from the time dependence of these morphology
parameters. Other features of individual crystals, such as their
size, shape, and orientation distributions and spatial
correlation, will be extracted in an updated workflow to
provide additional insights on the growth mechanisms of the
2D crystals. The specific growth footage shown in Figure 2e
reveals several notable features of the CVD process. First, burst
nucleation of MoS, crystals occurred after an incubation
period. The majority (>50%) of the crystal nuclei emerged in
the field of view in a very short time period (within several
seconds). The remaining crystals formed in the subsequent 15
s, after which the nucleation rate dropped to zero. Second, the
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growth of crystals exhibits a similar two-stage process. After the
burst nucleation, the crystal average size and areal coverage
steadily increased before stagnating at ~70 s (Figure 2e). The
reduction in the nucleation and growth rates reflects the
gradual decrease of the precursor supersaturation above the
substrate during the CVD process due to the exhaustion of the
Mo and/or S precursors. In another example (Figure S8b,c),
the number of crystal islands declined after reaching a
maximum at ~27 s (Figure S8d) because of the coalescence
of individual crystals. The quantification of the time depend-
ence of the crystal nucleation, growth and morphology from
the in situ observation offers valuable insights on the control of
the CVD process. For example, it shows that it is important to
suppress the burst nucleation event to enhance the 2D crystal
size.

A couple of previous studies have compared the MoS,
crystal morphologies at different growth temperatures and
precursor layouts, showing convincing evidence that these
parameters have a critical effect on the crystal morphology
determination.¥”** However, none of the studies includes
more than two growth parameters at the same time in their
comparison due to the challenge in the manual analysis of
multiple controlling factors. Feature selection in machine
learning provides an excellent tool to tackle such problems.*®
We choose MoO; growth temperature, S temperature and
weight, and flow rate as the input features (X). In the
experiments, their respective values were independently varied,
which is evidenced by their correlation matrix (Figure S9)
being close to a unit matrix. Crystal morphology descriptors
including coverage, average size, edge length density,
nucleation density, nucleation rate, growth rate, and grain
boundary density are listed as output features (Y). A multiple
linear regression model can be built based on these data sets.
Methods to select the most relevant input features for each
morphology descriptor, which include recursive feature
addition (RFA) and elimination (RFE), and exhaustive search
for the optimal combination are used to determine the feature
sets (Figure S11). In an example of the selected feature set
determined by the exhaustive combination search (Figure
S12), the correlations of relevant growth parameters (selected
features) on each morphology parameter are shown as bar
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Figure 4. “A letter from the glow” — decipher growth condition from growth footage. (a) Machine-learning model showing the correlation between
the four growth parameters and five morphology parameters. The y-axis indicates the correlation strength of these morphology parameters to the
growth parameters. (b) False-color snapshot of a completely grown MoS, monolayer sample. Scale bar: 20 ym (c) Comparison of growth
parameters predicted by the machine-learning model and their actual experimental values. The percentage difference between the model and the
experiment, using the experiment as the baseline, is labeled in the figure.

plots. Comparison of all plots reveals that the MoOj;
temperature has a high ranking of importance (strong
correlation) for the highest number (six out of seven) of
morphology descriptors.

An important application of the feature analysis is to control
and guide the material growth process based on the machine-
learning prediction. Taking the average MoS, crystal size for
example, we plot the coefficients (y-axis) of linear regression of
each input features (X) including MoO; temperature, S
temperature and weight, and flow rate (x-axes) in Figure 3a.
The y-axis indicates the significance of these parameters in
determining the final average size of MoS,; the scale and
symbol of the values represent how strong the dependencies
are and whether the correlation is positive or negative. When
large-sized crystals are desired, the model predicts that higher
MoO; temperature, lower S temperature, and lower flow rate
would push the growth toward the right direction. In fact,
experimental observation that increasing MoO; temperature
leads to enlarged crystal size has been reported in a previous
study,”> in agreement with our machine-learning model
prediction. The same work claims that the flow rate has no
significant effect on the crystal size. In contrast, our in situ
observation reveals that higher flow rates result in smaller
crystals. Guided by our prediction, we intentionally increased
MoO; growth temperature and decreased flow rate in several
additional growth trials. A significant increase in crystal size is
obtained at a combined condition of a high MoO; temperature
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of 876 °C and low flow rate of 70 sccm (Figure 3b) compared
to the baseline condition (~800 °C and ~200 sccm).
Decreasing the temperature to ~800 °C but retaining the
low flow rate of 70 sccm reduces the crystal size (Figure 3c),
which is nonetheless still larger than the baseline condition.
When the flow rate is increased to 290 sccm, the crystal size
becomes considerably smaller (Figure 3d). In summary, a new
experimental condition to produce MoS, monolayers with
larger crystal size is identified with guidance from machine-
learning prediction.

A Nakaya diagram, which is also known as “a letter from the
sky”, allows one to infer the temperature and humidity of
upper atmosphere from the shape of snowflakes without direct
measurement.”” The underlying logic is that humidity and
temperature effectively determine the morphology of snow-
flakes. The same thinking can be applied to CVD growth of
MoS, crystals. As such, we examined the possibility of
extracting the growth conditions from the morphology
parameters of MoS, monolayers. The term “a letter from the
glow” is adopted as we intend to use the growth footage
(letter) to decipher growth (glowing at growth temperature)
parameters. Similar to the feature analysis in the previous
section, the linear regression method is used to analyze the
correlation between multiple morphology parameters (X),
which serve as input features here, and the growth condition
parameters (Y). The correlation among different morphology
parameters is first examined (Figure S10) and the nucleation
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density is excluded in the model due to their high correlation
(>0.7) to more than one growth parameter in the matrix. A
multiple linear regression machine-learning model is then
established based on the refined data set (Figure 4a). The
model uses the morphology parameters extracted from a film
(Figure 4b) as inputs and predicts the growth parameters. In
this particular example, predicted growth conditions including
MoO; temperature, S temperature, and S weight are in good
agreement with actual experimental values (Figure 4c). We
think this is a simple yet powerful demonstration of the idea of
“a letter from the glow”, while its accuracy and applicability
could be further improved in the future based on a larger
amount of experimental data and more detailed character-
ization of crystal morphologies and their dynamic evolutions.

Growth of the MoS, monolayer by CVD was captured in
real time using our customized miniaturized CVD apparatus
under an optical microscope. The captured footage covered
important features of MoS, growth, including time-dependent
crystal nucleation, growth, and mergence. Morphological
parameters including nucleation density and rate, crystal
growth rate, final crystal coverage, average crystal size, and
edge length can be quantitatively obtained by digitizing growth
footage with image processing algorithms. The importance of
growth control factors in determining the MoS, morphology
was determined by using a machine-learning algorithm. The
machine-learning model predicted that, at high growth
temperature and with low flow rate, MoS, crystals with large
lateral size can be grown, and experiments successfully
validated the prediction—Ilarger than 20 ym single crystalline
monolayer MoS, triangles were grown at higher than 800 °C
temperature and less than 70 sccm carrier gas flow rate. The
model also provided close feedback on growth condition
parameters based on analysis of the growth footage. Our
system and the corresponding workflow established in this
work including the growth capturing, digitizing, and machine-
learning can work for CVD growth of other 2D materials as
well as their heterostructures, therefore offering a powerful
platform to understand and control 2D crystal growth and
shedding light onto new interdisciplinary areas such as the
reverse engineering of materials as well as the data-driven and
Al-enabled material design.
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Experimental methods; miniature CVD setup (Figure
S1); Raman spectra of MoS, grown by miniature CVD
on sapphire (Figure S2); PL spectra of MoS, grown by
miniature CVD on sapphire (Figure S3); AFM of MoS,
grown by miniature CVD on sapphire (Figure S4); PL
mapping of MoS, flakes grown in the miniature CVD
(Figure SS); gallery of original and processed images
from MoS, growth footage (Figure S6); typical growth
footage processed at elapsing time instants (Figure S7);
processed growth footage with massive crystal mergence,
time-dependent crystal number curve (Figure S8);
correlation matrix of the CVD growth parameters
(Figure S9); correlation matrix of morphology param-
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eters (Figure S10); parity plots for growth guidance
features selected by RFA, RFE, and exhaustive search
(Figure S11); growth process features selected and
ranking of importance for each morphology parameter
(Figure S12); summarized data set (Table S1) (PDF)
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