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Abstract  

Identifying residues critical to protein-protein binding and efficient design of stable and 

specific protein binders are challenging tasks. Extending beyond the direct contacts in a 

protein-protein binding interface, our study employs computational modeling to reveal the 

essential network of residue interactions and dihedral angle correlations critical in protein-

protein recognition. We hypothesized that mutating residues exhibiting highly correlated 

dynamic motion within the interaction network could efficiently optimize protein-protein 

interactions to create tight and selective protein binders. We tested this hypothesis using 

the ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complex, since Ub 

is a central player in multiple cellular functions and PLpro is an antiviral drug target. Our 

designed ubiquitin variant (UbV) hosting three mutated residues displayed a ~3,500-fold 

increase in functional inhibition relative to wild-type Ub. Further optimization of two C-

terminal residues within the Ub network resulted in a KD of 1.5 nM and IC50 of 9.7 nM for 

the five-point Ub mutant, eliciting 27,500-fold and 5,500-fold enhancements in affinity 

and potency, respectively, as well as improved selectivity, without destabilizing the UbV 

structure. Our study highlights residue correlation and interaction networks in protein-

protein interactions, and introduces an effective approach to design high-affinity protein 

binders for cell biology research and future therapeutics. 

 

Introduction 

Understanding what drives protein-protein binding and selecting appropriate protein 

residues for modification to strengthen protein–protein interactions (PPIs) are crucial to 

designing a protein binder that targets its binding partner [1,2]. Strategies that can 

efficiently and accurately identify residues to enhance PPIs have broad applications in 

therapeutics and studies of cell biology. Knowledge-based, physics-based, and data-driven 

methods have all been developed previously to explore PPIs and to select mutations that 

enhance them [3–9]. Computational and combinatorial libraries or in vitro evolutionary 

approaches also represent popular protein engineering strategies to design stable and 

specific protein binders [10–12]. Importantly, minimizing the number of residues mutated 

to significantly enhance PPIs lowers the possibility of engineering unstable proteins. 

Nevertheless, protein engineering remains challenging, as highly integrated molecular 

modeling and experimental techniques are needed to understand PPIs in order to re-

engineer a protein to increase its binding affinity. 
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PPI networks are extremely complex, so selecting an appropriate target system for 

experimental modification requires specialized expertise. Here, we chose Ubiquitin (Ub) 

as our target system, as it plays critical roles in numerous biological functions [13]. Ub is a 

small 76-residue protein associated with post-translational modifications. This regulatory 

protein canonically binds to its cascade E1-E2-E3 enzymes to drive ubiquitination and Ub 

chain formation, thereby modifying nearly half of the human proteome [14,15]. 

Conversely, deubiquitinases (DUBs) [16] cleave the covalent isopeptide bonds from Ub 

chains or substrates to release Ub and its substrates. The interactome of Ub and cellular 

proteins have been assessed [15] revealing that precise Ub network regulation governs 

cellular fates. Misregulation of the responsible enzymes significantly impacts cellular 

functions, leading to diseases such as cancers [17]. Moreover, viral DUBs have been found 

to interfere with host antiviral defenses. For example, the Papain-like protease (PLpro) of 

coronaviruses (CoVs) is classified as a viral DUB specific to Ub and Ub-like ISG15 

[18,19]. Previous studies have shown that PLpro alters host innate immune responses, 

which contributes to the rapid spread of CoVs (such as MERS, SARS-CoV, SARS-CoV-

2) [20–24], thus causing pandemics, mortality and perturbing the global economy [25]. 

 

The PLpro proteins of MERS and SARS-CoV-2 are crucial for viral replication through 

their role in proteolytic cleavage of viral nonstructural proteins (NSPs). The PLpro domain 

resides in NSP3, which drives viral genome replication and subgenomic RNA synthesis 

[26,27]. PLpro recognizes and cleaves the NSP1-2, NSP2-3 and NSP3-4 junctions after the 

amino acid sequence LXGG to yield functional viral proteins, as well as to perform 

deubiquitination and deISGylation 
[23,24,28]. Deubiquitination and deISGylation alter host 

signaling pathways critical to induction of cellular antiviral and pro-inflammatory innate 

immune responses, ultimately suppressing the host antiviral response 
[28,29]. Therefore, 

inhibiting PLpro simultaneously disrupts viral replication and prevents PLpro from 

impairing the innate immune response. Given both these properties, PLpro represents an 

ideal antiviral drug target.  

 

Importantly, wild-type Ub (wtUb) exhibits high thermostability (Tm > 90˚C), so it is an 

ideal template for protein design. Re-engineered Ub also has potential advantages, such as 

enhanced binding specificity to PLpro and easier synthesis compared to chemical 

compounds. Screening of phage-displayed Ub variants (UbVs) against cognate enzymes, 

including MERS PLpro, has previously demonstrated the feasibility of regulating the 
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activities of E3 ligases and DUBs [30–32]. The phage-display screening technique focused 

on three surface patches in Ub to iteratively mutate and select variants that displayed tight 

binding. The resulting DUB UbVs proved to be strong inhibitors, exhibiting IC50 values in 

the range of 1-30 nM [31–33]. As an alternative approach, computational data were used to 

rationally design a screening library for the identification of tightly binding regulatory 

UbVs for USP7 [34] and USP21[35]. A combined computational and phage-display 

screening of UbVs targeting USP7 resulted in an equilibrium constant (KD) for the 

U7Ub25.2540 variant of 56 nM, whereas for wtUb-USP7 it was >200 µM. A pool of 

6,000 designed UbVs for USP21 revealed that ~10% of the variants tightly bound USP21 

consistently between experimental and computational screenings. However, in silico 

screenings of such large UbV-USP21 pairings requires intensive computational resources. 

Such expensive and time-consuming empirical screenings impede rational design of 

protein-based inhibitors.  

 

Here, we present an integrated computational and experimental approach to identify 

critical regions for protein-protein binding that display highly correlated dynamic motion. 

Specifically, we focus on side-chain dihedral angle correlations at the protein-protein 

contact interface where mutation of highly correlated residues resulted in both local and 

distal conformational changes. We demonstrate that mutating residues in these regions can 

efficiently optimize PPIs to create tight and selective protein binders. We show that our 

designed UbVs hosting two or three mutated residues achieved 3,500-fold inhibitory 

efficiency and binding affinity relative to wtUb for MERS PLpro (Table 1). MERS PLpro 

cleaves both K48- and K63-linked Ub chains 
[18,23], and it exhibits distinct inhibitor 

recognition specificity to that of the PLpro of SARS-CoV and SARS-CoV-2 
[36]. We used 

non-covalent amino acid interaction and side-chain dihedral angle networks of the Ub and 

MERS PLpro (Ub-PLpro) complex to guide our design of UbVs that enhance UbV–PLpro 

binding affinity, thereby inhibiting PLpro activity. Initially, we designed two-point 

mutations for cost efficiency and to retain intact the overall complex structure. Integrating 

experimental data and computational analyses informed our experimental design to yield 

more UbVs (Fig. 1). Binding affinity KD and IC50 measurements of our designed UbVs 

support that more extensively mutated UbV3, UbV4, and UbV5 represent strong 

inhibitors.  

 

Results and Discussion 
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The process of optimizing PPIs involves identifying residues suitable for mutation, and 

then determining substitutions aimed at generating novel protein variants. We used 

Molecular Dynamics (MD) simulation to reveal residues in protein interfaces displaying 

strongly correlated dynamic motions. The central hypothesis underlying our rationale is 

that residues exhibiting a high degree of correlation play a pivotal role within the protein-

protein interface. Moving just one protein side chain can influence the motion of other 

side chains. Thus, mutating highly correlated residues not only can strengthen or weaken 

local interactions, but can also maximize the impact of changes across all correlated 

residues in the interface. Mutating these dynamically correlated residues can enhance 

intermolecular attractions and thereby significantly improve PPIs. We employed a 

dihedral angle correlation network to identify important protein residues in the PPI 

interface of Ub and MERS PLpro. This network allowed us to understand how different 

parts of the proteins move in relation to one another. Then, we selected candidate residues 

for mutation by means of a pairwise force distribution analysis. For each of our designed 

UbVs, we computed their binding energy data using molecular mechanics Poisson-

Boltzmann surface area (MM/PBSA) and the dissociation time by means of PPI Gaussian-

accelerated MD (PPI-GaMD). To further validate our results, we employed a fluorescence 

polarization (FP)-based inhibition assay to quantify their binding affinities and 

selectivities, and adopted circular dichroism (CD) spectroscopy to assess protein 

thermostability. 

 

Identifying key residues in the PPI interface 

Mutating highly correlated residues to increase overall binding affinity necessitates 

investigating localized attraction, structural dynamics, and the biological effects of protein 

residues. The process of mutant design involved initial adjustments of Ub residues within 

stable Ub-PLpro complex domains, such as the hydrophobic core for the S1 Ub (HCS1) 

and alpha helix in the canyon (AHC), before extending modifications to more flexible 

domains such as the finger-Ub interaction (FBI) and Ub chain cleavage (UCC) domains in 

the C-terminal tail (Fig. 2A). 

 

First, we performed several 500-ns atomic MD simulations to model full protein flexibility 

of the wtUb–PLpro complex. We employed two principle techniques to study correlated 

protein motions, i.e., side-chain dihedral angle correlation (Fig. 2B) and force distribution 
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analysis (FDA) [37,38] (Fig. S1). Next, we selected highly interactive residues displaying 

strong correlation in the residue network and also in the Ub–PLpro interface as potential 

mutation targets in each region (Fig. 2B and C). Notably, previous studies have shown that 

altering residues near the C-terminus of Ub hampers its biological activity 
[39–41], so we 

hypothesized that mutating any residues in the UCC could prevent substrate 

ubiquitination. MERS PLpro favors binding and cleaving the K48- and K63-linked Ub 

chains [18,23], which implies that residues near the conjugation points interact frequently 

with PLpro. Notably, K48 and K63 lie in the HCS1 and FBI domains, respectively. 

Mutating residues within interactive hotspots may easily hamper PPI, but also offers the 

potential to strengthen them. Since the FBI and UCC are rather flexible [24], we began by 

modifying residues A46 and K48 in HCS1and V70 and R42 in the AHC. 

 

Selection of candidate residues for mutational analysis 

Residues A46 and K48 in HCS1 exhibit suboptimal interactions, with weak attraction to 

surrounding PLpro residues. Specifically, A46 is flanked by Y208 and Y223. To 

maximize the hydrophobic effect and local nonpolar attraction, we selected a bulkier non-

polar amino acid, PHE, for A46 substitution. TYR and TRP were excluded as substitute 

residues due to spatial constraints. Residue K48 is surrounded by the side-chain of K204. 

Both K48 and K204 are positively charged, so they are not favored to interact. 

Accordingly, we selected E48, L48, S48, and I48 as mutation candidates. These 

substitutions introduce negative, nonpolar, or polar properties, thereby augmenting the 

potential for enhanced interactions with K204 and Y208 (Fig. 3B). V70 is subjected to 

weak repulsion from neighboring residues, so the E70 substitution represented a 

promising mutation due to the ability of its longer and polar side-chain to enhance 

electrostatic interaction between the G247 backbone and G248 side-chain (Fig. S2).  

 

In the AHC, R42 presents a strong compensatory effect through strong repulsive forces 

with the D164 side-chain and an attractive force with the S165 backbone. We generated a 

D42 mutant variant displaying a negative charge and a shorter side-chain with a view to 

minimizing the repulsive forces that mainly arise from crossing van der Waal (vdW) radii 

(Fig. S2).  

 

In the FBI, our dihedral angle correlation network selected E64 and S65 as targets in 

different MD simulation runs because of the inherent flexibility of the FBI. MERS PLpro 
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unambiguously recognizes K63-linked Ub chains, so we postulated that modifying E64, 

i.e., between K63 and S65, may simultaneously enhance binding strength and specificity. 

E64 lies in close proximity to G208 and G209, both of which are nonpolar (Fig. 3C). To 

maximize nonpolar interactions, we generated 64Y and 64F substitution variants that have 

large hydrophobic rings.  

 

We targeted R74 and G75 in the UCC for mutation, both of which lie in the LXGG 

recognition site. Mutating residues of the LXGG recognition site can block the proteolytic 

cleavage activity of PLpro. [24] We tested several dual mutations proposed previously 

[33], including R74P/R74N and G75R/G75S. From a structural point of view, steric 

hindrance within the UCC introduces strong vdW repulsion. Therefore, we assumed that 

the smaller and polar side-chain of the N74 substitution would minimize this repulsive 

force while retaining polar attraction. We also selected P74 mutation because it could 

generate localized steric hindrance to stabilize rotation of the surrounding side-chain. R75 

and S75 are both polar residues and have the potential to increase local electrostatic 

interaction relative to nonpolar G75 (Fig. 3D). 

 

To predict the intermolecular attractions between each of our UbV-PLpro variants, we 

used MM/PBSA to evaluate PPI energy (Fig. S3) and local structural analysis to 

investigate localized attraction (Fig. S2). Variants harboring the A46 and K48 mutations 

displayed enhanced UbV–PLpro attraction. However, the K48E-V70E variant did not 

yield good vdW interactions, and the R42D mutation that resulted in an opposing charge 

yielded poor predicted UbV–PLpro interaction energies (Table S1 and Fig. S2). These 

results indicated that mutating R42 or V70 may not promote tight binding, so thereafter 

we focused on altering the A46 and K48 residues. Additionally, for every designed UbV 

exhibiting UbV–PLpro attractions that were predicted to be stronger than that of wtUb 

(Table S1), we also performed PPI-GaMD in an explicit solvent model (to account for 

solvent effects) to examine their binding residence time [42] (Fig. S4). Since PPI-GaMD 

may enhance conformational sampling, the residence time cannot be compared directly to 

binding affinity or dissociation rate constant (koff) data. Nevertheless, the dissociation 

times for these UbVs were invariably longer than that determined for wtUb, supporting 

that these variants likely exhibit tighter binding than wtUb.  

 

Experimental characterization of inhibitory UbVs 
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Next, we evaluated the UbV-dependent inhibitory efficiencies for MERS PLpro by means 

of sensitive fluorescent polarization (FP) to monitor the dynamics of fluorescein 

conjugated to the C-terminus of ISG15 (Fig. 4A). We assessed four designed UbVs 

harboring the dual mutations of A46F and K48E/S/I/L, as well as the two single-mutation 

UbVs, i.e., A46F and K48E. These UbVs all efficiently inhibited PLpro enzyme function, 

displaying reduced IC50 values (Fig. 5B, Table 1 and Fig. S6), and all bound tightly to 

PLpro (KD values shown in Table 1 and Fig. S7). Relative to wtUb, substitution of A46 in 

the HCS1 by non-polar PHE resulted in stronger vdW attractions with nearby PLpro 

residues (Fig. 6A and Table S1). More specifically, A46F induced local conformational 

arrangements to prompt Y208 and Y223 in PLpro into forming - interactions and R233 

in PLpro into forming -cation attraction with the UbV (Fig. 6A). Moreover, A46F 

substitution substantially stabilized overall Ub-PLpro interactions, increasing the KD value 

15-fold compared to wtUb (Table S1). The polarity of K48 in wtUb significantly affects 

both local interactions and network correlation due to the repulsive force with the nearby 

K204 residue of PLpro. We postulated that mutating K48 to a nonpolar or negatively 

charged residue such as LEU or GLU would enhance the attractive force between K48 and 

K204 (Fig. 6A). Notably, the single-point A46F or K48E mutations alone resulted in IC50 

values of 1.6 and 3.9 µM, respectively (52.9 µM for wtUb). The respective dual mutant 

variant further elevated the IC50 value to ~0.2 µM (Table 1), i.e., approximately 250-fold 

greater PLpro inhibition compared to wtUb. Overall, we observed a synergistic inhibitory 

effect and enhanced binding affinity for A46F and K48E (or K48L/K48S/K48I) 

substitutions in terms of PLpro and UbV interactions (Fig. 3C, 4A and Fig. S7).  

 

Above, we have demonstrated that mutating two residues in HCS1 represents an effective 

strategy for designing binding inhibitors, so we explored mutating additional residues 

based on local structural analysis. We focused on further modifying the A46F-K48E 

variant (termed UbV2 hereafter), which exhibited favorable IC50 and KD values. First, we 

subjected UbV2 to E64Y mutation, representing a residue in the FBI. Experimental 

measurements of the A46F-K48E-E64Y variant (hereafter denoted UbV3) revealed 

remarkable binding specificity to and inhibition of PLpro, with an IC50 of 15 nM, i.e., in 

significant agreement with the strongest computed binding energy (Table 1). Both the root 

mean square fluctuation (RMSF) and dihedral entropy of PLpro (Fig. S5) were reduced 

upon interaction with UbV3 compared to UbV2, with the FBI of the UbV3–PLpro 

complex being more stabilized (Fig. 6B). We measured a KD of 2.77 nM for UbV3-PLpro, 
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which is ~80-fold greater than that determined for UbV2-PLpro. Furthermore, the IC50 

value of A46F-E64Y (34 nM) is 48-fold or 8-fold greater than that of A46F or E64Y 

alone, respectively. Thus, our inhibition assays and binding affinity data greatly support 

that the three residues at positions 46, 48 and 64 cooperatively stabilize the interaction of 

Ub with PLpro, hence UbV3 is a better inhibitor of PLpro than UbV2 (Fig. 4C, 5).  

Altering the surface charge (K48E and E64Y) or hydrophobicity (A46F and E64Y) of the 

small 76-residue Ub peptide may be structurally destabilizing. Therefore, we employed 

circular dichroism (CD) spectroscopy to measure the far-UV CD spectra of Ub and nine 

selected UbVs at 25 ˚C and 80 ˚C to validate their thermostability. This analysis revealed 

that UbV3 displays higher thermostability than the single (A46F, K48E, E64Y) or double-

point (UbV2) mutants (Fig. S8).  

 

Ub C-terminal mutations R74N and G75S further stabilize PPIs 

Next, we altered two additional residues of UbV2, R74 and G75 of the UCC region based 

on information from our non-covalent correlation network, with these residues serving a 

role in preventing cells from recognizing the UbVs. The four-point A46F-K48E-R74N-

G75S mutant variant (hereafter termed UbV4) yielded a reduced IC50 of 110 nM.  Similar 

to the data for double mutants, the K48E/K48L/K48S/K48I mutations resulted in the same 

inhibitory effect (IC50: 110-290 nM, Table S1). Therefore, we further included the E64Y 

substitution in UbV4 to encompass all three highly correlated regions, with the resulting 

designed five-point UbV5 mutant displaying an IC50 value of 9.7 nM (i.e., 5,500-fold that 

of wtUb) and a KD of 1.5 nM (Table 1). The characterized KD values for UbV3 and UbV5 

are approximately 20-fold greater than those established for the phage-display-screened 

UbVs ME.2 and ME.4 generated in a previous study [33] (Table S1). In addition to their 

impressive attribute of functional PLpro inhibition, both UbV3 and UbV5 bound highly 

specifically to MERS PLpro (Fig. S9), which is also an essential attribute for a good 

inhibitor. Thus, our UbV3 and UbV5 variants exhibit strong inhibition, equivalent to 

reported variants for MERS PLpro [33]. In contrast to the preserved thermostability of the 

UbVs designed in this study, the previously reported ME.2 and ME.4 variants harboring 

15 mutated residues denatured at 80 ˚C [34], and thus are significantly less thermostable 

than our UbVs (Fig. S8). Similarly, the Tm value of the nine-point U7Ub25.2540 mutant 

for USP7 is 64 ˚C lower than that of wtUb [34]. Consequently, mutating too many residues 

in Ub can easily elicit stability issues. Our study demonstrates the advantage and efficacy 

of modifying only a few residues of a protein template to enhance PPI.   
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In this study, we established a novel approach to computationally select key residues 

responsible for PPI based on dihedral angle networks. We found that the mapped dihedral 

angle networks are useful for identifying critical interactions between proteins. Then, we 

used this information to select residues for mutation to alter PPI strengths. Using Ub-

PLpro as our model system, we have demonstrated that modifying only two or three 

residues within the correlation network of the Ub–PLpro interface successfully enhanced 

PPI and resulted in a 250- to 3,500-fold reduction of MERS PLpro activity. A 

combination of five mutated residues in the HCS1, FBI and UCC domains of the Ub-

PLpro complex resulted in a 5,500-fold (IC50 = 9.7 nM) reduction in PLpro activity and a 

27,500-fold enhancement in UbV–PLpro complex affinity. Our design platform can be 

used to computationally examine a correlation network of protein side-chains and local 

pair-wise forces to efficiently design UbVs for further experimental assessment. The 

considerable correlation between IC50 and KD values (R2=0.94) implies that our 

experimental IC50 data can be used to indirectly estimate KD values for UbV-PLpro 

complexes. Integrating experimental measurements and structural analyses using MD 

simulations, together with appropriate post-hoc analysis, can iteratively inform new 

designs.  

 

Our strategy is transformative and highly efficient for identifying key mutation sites and 

specific residues to guide rational design of many disease-linked DUBs and Ub-bound 

proteins [31,32], including USP4[43], USP7[44], USP11[45], and PLpro of SARS-CoV-

2[31]. Apart from producing variant-specific antibodies/vaccines for diverse spike 

proteins of viruses, blocking the functions of viral nonstructural proteins represents an 

alternative therapeutic solution to tackle COVID-19 and other coronaviruses. Designing 

tightly binding and specific UbV inhibitors for the coronavirus PLpro complex is an 

elegant solution to retard viral replication and simultaneously rescue the host antiviral 

immune response. This same strategy can be applied straightforwardly to other protein-

protein interacting systems related to signaling and enzymatic activity. As these cellular 

events frequently reoccur, the protein complexes involved in cell signaling and enzymatic 

reactions do not have perfectly optimized PPI as stably bound complexes. Therefore, 

mutating residues in their interacting regions can remarkably improve binding. Overall, 

modifying residues displaying highly correlated dynamic motion can be used to engineer 

tightly binding variants for various applications.  
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Materials and Methods 

MD Simulation Protocol 

The X-ray crystal structure of MERS-CoV-PLpro-wtUb was obtained from the RCSB 

protein data bank (PDBID: 4RF0)[26]. PLpro was extended by one residue at the N-

terminus, and wtUb was extended by two residues to ensure consistent numbers of 

residues for comparison with preexisitng UbVs such as ME.2[33]. PLpro comprises 319 

residues and Ub comprises 78 residues. The Molecular Operating Environment platform 

[46] was used to perform all UbV mutations. All MD simulations were performed in the 

AMBER 20 package with GPU acceleration [47] Force Field ff14sb[48] was applied to 

proteins. First, we minimized the hydrogen atoms, amino acid side-chain, and the entire 

protein system for 500, 1000, and 5000 steps, respectively, in a generalized Born implicit 

solvent. All systems were then solvated in TIP3P water, with an extension of 12 Å from 

the solute edge. Two Cl- counter-ions were added to neutralize the charge of the system. 

The solvated system contains approximately 72,000 atoms. The water molecules were 

minimized for 1000 steps, followed by minimization of the entire system for 2000 steps. 

The solvated system was equilibrated under constant pressure and temperature (NPT 

ensemble) from 50 K to 275 K with 25 K increments and 100 ps each, and finally at 298 K 

for 500 ps. Production runs were also performed in the NPT ensemble at 298 K using a 

Langevin Thermostat with 2-fs time-steps. The first 50 ns of the MD simulation were 

treated as equilibrium plus. Force Distribution Analysis (FDA) [37,38] and molecular 

mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations were performed 

using data from the subsequent 450 ns. The cutoff for nonbonding interactions, which 

includes vdW and electrostatic components, was set to 12 Å. The particle Mesh Ewald 

Method was used to compute long-range electrostatic interactions.  

 

It is possible that a large protein-protein system becomes trapped at a specific local 

minimum, resulting in suboptimal outcomes. We performed three independent 150-ns MD 

simulations for each conformation and selected the lowest energy trajectories by 

calculating MM/PBSA energies. The exterior dielectric constant was set to 15 to 

accommodate the polar protein residues at the protein-water interface. The trajectories 

with the lowest energy were extended to a 500-ns production run. Output trajectories were 

saved every 1 ps for further analysis.   
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Side-chain Dihedral Angle Correlation Network 

The following steps were used as a rationale for selecting residues for substitution: 

1. Construct a correlation network of side-chain dihedral angles for wtUb-PLpro  

We used T-analyst [49] to calculate the side-chain dihedral rotations of each amino acid 

residue and their pairwise correlations. Each side-chain dihedral angle was recorded every 

100 ps through 500 ns trajectories to generate 5000 different angles per dihedral selection. 

Pairwise correlations were computed using a Pearson correlation formula. We converted 

the side-chain dihedral angles to Cartesian coordinates by means of equations (1)-(3) to 

accurately capture their differences and means, thereby preventing erroneous computation 

of their correlation at the discontinuity margin (±180° or 360°/0°) 
[49]. Notably, positive 

correlation between two side-chains indicates that the two sides rotate similarly during 

MD simulation.  

𝑟𝑥𝑦 =  
∑ (𝑥𝑖−𝑥̅)𝑛

𝑖=1 (𝑦𝑖−𝑦̅)

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 (1) 

 

𝑥̅ = arctan (
𝑠𝑖𝑛(𝑥1)+𝑠𝑖𝑛(𝑥2)+⋯+𝑠𝑖𝑛(𝑥𝑛)

𝑐𝑜𝑠(𝑥1)+cos(𝑥2)+⋯+𝑐𝑜𝑠(𝑥𝑛)
)  (2) 

𝑥𝑖 − 𝑥̅ =  arctan (
sin(𝑥𝑖) cos(𝑥̅)+ sin(𝑥̅) cos(𝑥𝑖)

cos(𝑥𝑖) cos(𝑥̅)−sin(𝑥𝑖) sin(𝑥̅)
) (3) 

𝑟𝑥𝑦 =  𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛,  𝑥̅ = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑎𝑛𝑔𝑙𝑒𝑠,   

𝑥𝑖 = 𝑠𝑖𝑑𝑒 𝑐ℎ𝑎𝑖𝑛 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑎𝑛𝑔𝑙𝑒𝑠  

From the pairwise correlation matrix, we generated a correlation network by using python 

library NetworkX [50], enabling us to visualize the correlation between each residue. 

Specific side-chain rotation can generate a chain effect and impact the rotation of distal 

residues. We applied a correlation cutoff of 0.3 to eliminate less correlated residues. The 

Ub residues selected for further analysis were: I3, T14, T22, E24, K27, I30, E34, R42, 

K48, Q62, S65, T66, H68, V70, L71, L73, R74, and D77. 

2. Define the contact interface and eliminate residues not at the contact interfaces  

We adopted FDA to select the contact interface between wtUb and PLpro. A cutoff of 10 

(pN) was applied to disregard areas of low interaction. Next, we generated a heatmap of 

pairwise forces between wtUb and PLpro (Fig. S1). From this heatmap, we identified four 

clear interface regions: HCS1, AHC, FBI, and UCC. Some highly correlated residues 

selected from the previous step are not located at the contact interface. Residues located 

outside the contact interface contribute little or no interaction to binding affinity, so they 

were discarded from further analysis. Ub residues selected for analysis: R42, K48, Q62, 

S65, V70, L71, L73, and R74. 
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3. Consider multiple residues at the FBI  

The FBI region is highly dynamic, displaying high RMSF values and it has been shown 

previously to crystallize in different conformations [24] Our FDA data also revealed 

differential patterns among randomly-seeded production runs. Notably, our dihedral angle 

correlation network selected residues S65 and T66, as well as K63 on the conjugated side 

of PLpro. We postulated that mutating E64, which lies between S65 and K63, could 

further optimize our results. Ub residues selected for analysis based on this step: R42, 

K48, Q62, E64, S65, T66 H68, V70, L71, L73, and R74. 

4. Include ALA, GLY and PRO residues  

ALA, GLY and PRO residues do not have side-chains, so they would have been excluded 

from dihedral angle selection. To avoid excluding potentially useful mutation sites, we 

included all ALA, GLY and PRO residues within 5 Å of our previously selected mutation 

sites. Ub residues selected for analysis from this step: R42, A46, K48, Q62, E64, S65, 

T66, H68, V70, L71, L73, R74, and G75. 

5. Further select residues based on FDA data  

Residues of interest displaying strong attraction to their surrounding residues will not have 

been selected for mutation in the previous steps. Accordingly, we sought residues that 

displayed strong repulsion or weak interactions with their surrounding residues. A46 

interacts only weakly with its surrounding residues, and K48 has weak interactions with 

surrounding residues K204, Y208 and V209 of PLpro at the HCS1. Therefore, we felt that 

A46 and K48 represented ideal residues for mutation. In addition, R42, V70, and G75 

presented repulsive forces with their surroundings and accordingly were chosen for 

mutation. In contrast, L71 and L73 in the UCC exert strong attractive forces on the BL2 

and AHC domains, so they were excluded from mutational analysis. Although E64 and 

R74 present strong attractive forces to their surroundings, we still considered them as 

possible mutational sites because both the dihedral angle correlation network and FDA 

results from different random seeds resulted in large standard deviations at the FBI and 

UCC because of their highly flexible nature (Fig. S1). Moreover, R74 is part of the LRGG 

recognition site, with mutation of R74 further hindering proteolytic cleavage [24]. 

Accordingly, only seven residues were ultimately selected for mutational analysis: R42, 

A46, K48, E64, V70, R74, and G75. 

  

PPI-GAMD Simulation Protocol 
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Starting from the last frame of our MD simulation, we performed 5 ns of classical MD 

simulation, followed by 5 ns of PPI-GAMD equilibration to obtain the boost parameters 

(ntcmdprep = 500,000, ntcmd=2,500,000, ntebprep = 500,000, and nteb=2,500,000 steps). 

Production runs were performed in the NPT ensemble at 350 K using a Langevin 

Thermostat with a 2-fs time-step. We applied both potential boost and dihedral boost 

(igamd=17) on Ub residues within 5 Å of the PLpro residues at the contact interfaces. 

Applying dual boost potentials on the entire Ub structure can result in denaturation of the 

protein structure, leading to suboptimal results. The threshold energy of potential boost 

was set to the upper bound limit (iEP=2), and the threshold energy for dihedral boost was 

set to the lower bound limit (iED=1). The upper limit of the standard deviation for dual 

boost potential was set to 10 kcal/mol (sigma0P and sigma0D=10). The production run 

continued until we observed Ub dissociating from PLpro. We defined dissociation 

according to a sudden increase in Cα RMSD values. Production runs were repeated with 

three different random seeds, with the longest dissociation times being reported herein.   

 

Protein expression and purification 

Genes encoding SARS-CoV-2 PLpro, MERS PLpro, ISG15 and ubiquitin were 

synthesized by GenScript (NJ, USA). Ubiquitin variants were made by site-directed 

mutagenesis or directed amplification (C-terminal mutations). UbV genes ME.2 and ME.4 

were synthesized and subcloned by Genomics (Genomics Inc., Taiwan). All genes were 

placed in pRSFDuet-1 vector with a N-terminal hexahistidine tag (his-tag) and a TEV 

cleavage sequence. All resulting plasmids were transformed into the BL21 RIL cell line 

for protein production. For PLpro and ISG15-AVTRYVDC, E. coli grown in LB medium 

at 37 °C to an OD600 of 0.6-0.8 was induced by treatment with 0.6 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) overnight at 16 °C (MERS PLpro and SARS-CoV-2 PLpro) 

or at 25 °C (ISG15-AVTRYVDC). For all 26 UbVs assessed in the current study, E. coli 

was grown in autoinduction medium containing base broth (25 mM Na2HPO4, 25 mM 

KH2PO4 pH 7.2, 85 mM NaCl, 0.5% yeast extract, 2% tryptone) and a sugar mix (15% v/v 

glycerol, 1.25% w/v glucose, 5% w/v lactose) at a 25:1 volume ratio. The E. coli was 

cultured at 37 °C for 24 hours, with UbV proteins being automatically expressed once 

glucose had been depleted.  

E. coli cell pellets were spun down and resuspended in Buffer A (25 mM Tris-HCl pH 7.6, 

200 mM NaCl, 3 mM 2-Mercaptoethanol) with the addition of 1 mM PMSF for 
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sonication. Cell lysates were then centrifuged, before loading the supernatant on Roche 

cOmplete nickel resin and then washing and eluting it using 300 mM imidazole. The his-

tag of PLpro was removed by means of TEV protease treatment, and the resulting proteins 

were further purified by size exclusion chromatography (SEC) on an Akta FPLC system 

(Cytiva). ISG15-AVTRYVDC was further crosslinked with fluorescein-5-Maleimide 

(Santa Cruz Biotechnology) at 4 °C for 1 hour. Excess fluorescein was removed by 

processing through desalting columns. All proteins were flash-frozen in liquid nitrogen, 

aliquoted and stored at -80 °C.  

Fluorescence polarization (FP)-based inhibition assay 

To detect and characterize the inhibitory effects on PLpro by UbVs, we used fluorescein-

labeled ISG15-AVTRYVDC (denoted ISG15* hereafter), where AVTRYVD is the N-

terminal sequence of SARS-CoV-2 and a CYS residue was introduced at the C-terminal 

end for crosslinking with the Fluorescein-5-maleimide (Ana Spec). Values of fluorescence 

polarization (FP) for ISG15* and the cleaved AVTRYVDC* are approximately 120 and 

20, respectively (Fig. S6), representing a sensitive tool to unravel the activity of MERS 

PLpro. We measured 40-µl samples in multiple wells composed of 2 µM ISG15*, 50 nM 

MERS PLpro (or SARS-CoV-2 PLpro), and a wide range of UbV concentrations (i.e., 

from 0.06 nM – 150 µM) in a 384-well plate for 1,800 seconds or longer. ISG15* alone 

was used as a control. Assessments of individual UbV concentrations were conducted in 

triplicate to determine standard errors. 

The reaction rate constants (kobs) of ISG15* cleavages were obtained by curve fitting using 

one-phase decay (equation 4). Enzymatic activity was normalized according to the ratio of 

the kobs values with or without UbV. To determine IC50 values, normalized UbV 

concentration-dependent enzymatic activities were fitted according to the logistic non-

linear regression model (equation 5). 

𝑦 = (𝑦0 − 𝑦𝑖)
∗𝑒((−𝐾∗𝑥)+𝑦𝑖) (4) 

where y0 is the Y value when X (time) is zero, yi is a plateau Y value at infinite time, and 

K is the rate reaction constant. 

𝑦 = 1 + (
𝑥

𝐼𝐶50
)

𝐻𝑖𝑙𝑙 𝑠𝑙𝑜𝑝𝑒

 (5) 
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The Y values (representing the FP readouts) were normalized to between 0 and 1.0 for the 

fitting that included “Hill slope”, with all of the values being ~1.0. 

Bio-Layer Interferometry (BLI) 

BLI experiments were performed on an Octet RED 96 system (Sartorius) using anti-GST 

antibody biosensors for GST-tagged MERS PLpro and UbV (or Ub) as analytes at 25 °C. 

The ligand and analytes were diluted into reaction buffer (25 mM Tris-HCl pH 7.6, 150 

mM NaCl, 0.1 mg/ml BSA, 0.01% Tween-20). Steady-state response wavelength shifts of 

analytes in multiple concentrations were used to fit a single-site binding system and 

determine the dissociation constant (KD) according to equation 6. 

𝑅𝑒𝑞 = 𝑅𝑚𝑎𝑥
[𝐶]

𝐾𝐷+ [𝐶]
 (6) 

where Req is the steady-state response shift of the sensorgram curve, [C] is the 

concentration of analytes, Rmax is the maximal response, and KD is the dissociation 

constant. To determine Rmax and KD values, we applied a Levenberg–Marquardt algorithm 

to perform iterative non-linear least squares curve fitting. 

 

 The kon and koff values of UbV3 and UbV5 were globally fitted to the time-dependent  

response wavelength shifts in the association and dissociation well, respectively, using the 

Octet Data Analysis software (Sartorius). KD values for UbV3 and UbV5 were calculated 

as “koff/kon”. 

 

Circular Dichroism (CD) Spectroscopy 

CD measurements were performed on a Jasco J-815 spectropolarimeter. Far-UV spectra 

were measured from 260 to 195 nm at 25 and 80 °C. UbV samples (10 µM) diluted in 25 

mM Tris pH 7.6 and 50 mM NaCl buffer were measured in a 1 mm quartz cell (Hellma 

GmbH). Melting temperature experiments were performed at 25 and 80 °C at 1 °C 

intervals. The CD spectra were averaged from triplicates acquired at a scanning speed of 

50 nm/min and a digital integration time of 1 second.  
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Figure 1. Workflow for the rational design of ubiquitin (Ub) variants. Molecular 

modeling by means of molecular dynamics (MD) simulations and post-hoc analysis 

reveals highly correlated regions in the interface (red) between PLpro (blue) and Ub 

(orange). The workflow shows how we integrated computational and experimental design, 

validation, and interpretation.  
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Figure 2. Highly correlated regions between Ub and MERS-CoV PLpro. (A) Four highly 

correlated regions at the contact interface of Ub (stick model) and PLpro (surface model) 

are shown: FBI (pale green), HCS1 (pale purple), AHC (pale yellow) and UCC (pale 

orange). (B) The side-chain dihedral angle correlation network showing how mutation 

leads to conformational changes in distal regions (see Methods for details). The specific 

dihedral angles are indicated as χ. (C) Residues targeted for mutation based on interaction 

networks: R42, A46, K48, E64, V70, R74, and G75. Note that R42 and V70 were not 

considered in further Ub variant (UbV) designs and experiments after computational 

prediction.  
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Figure 3. Selection of candidate residues suitable for mutational analysis to strengthen 

localized attraction. (A) Residues targeted for mutation based on interaction networks: 

R42, A46, K48, E64, V70, R74, and G75. (B) wtUb displays weak interaction with 

surrounding residues. The A46F and K48E mutations have the potential to increase both 

vdW and electrostatic interactions. (C) The E64Y mutation increases vdW attraction for 

G228 and G229. (D) The R74N mutation enhances electrostatic attraction for V275, 

whereas the G75S mutation increases the attraction for G276. Inward-pointing arrows 

indicate attraction, outward-pointing arrows represent repulsion. Color-coded regions: 

Ubiquitin (Ub, orange stick model), PLpro (blue surface model), FBI (pale green), HCS1 

(pale blue), AHC (pale yellow), and UCC (pale orange). 
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Figure 4. The inhibitory IC50 values for designed UbVs. The schematics to the right in (A) 

represent the cleavage reaction for ISG15* substrate, where * stands for the AVTRYVDC 

sequence (part of SARS-CoV-2 NSP2) crosslinked with a fluorescein probe. When an 

UbV is added to the mixture, the substrate binding site is blocked and cleavage is retarded. 

The grayscale gradient reflects inhibition strength. (B) Monitoring the real-time cleavage 

reaction by detecting fluorescence polarization. Relative inhibitory activity (IC50 curves) 

of seven selected UbVs and wtUb reveal how PLpro activity is progressively inhibited as 

the number of mutations increases from two to five. (C) Experimentally measured IC50 

values for 26 UbVs summarized on a logarithmic scale, with black, green, orange, and 

blue circles indicating weak, medium, strong and, very strong inhibitors, respectively. 
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Figure 5. (A, B) BLI sensorgrams (left) and fitting curves (right) for UbV2 and UbV4 

show KD values of 0.22 µM and 0.15 µM, respectively. (C) UbV3 and UbV5 bind tightly 

to PLpro, showing KD values of 2.77 and 1.48 nM, respectively. The fitting values for kon 

and koff are colored red in the titrated BLI sensorgrams. (D) The IC50 and KD values we 

measured are strongly correlated (R2= 0.94). The KD values of ME.2 and ME.4 were 

published previously[33]. 
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Figure 6. Conformational dynamics and interactions of wtUb and UbVs residues with the 

HCS1 and FBI regions of the Ub-PLpro complex. Ub and PLpro are shown in orange or 

blue, respectively. (A) The new attraction forces introduced by the A46F and K48E 

mutations in the HCS1 region are shown in the right panels. (B) Superimposition of 50 

PLpro conformations from a 500-ns MD run. The FBI region (pale green) of the Ub-

PLpro complex is highly stabilized by the E64Y mutation, with the hinging motion of 

backbone residue E230 (pink) in the interaction network contributing significantly to the 

loop conformations. Wild-type E64 or mutated Y64 of Ub (orange) is shown in stick 

format.  

 



 27 

Table 1. Computational and experimental evaluation of the binding affinity between 

MERS PLpro and UbVs.  

 

 

* Each “+” indicates a 0-20% reduction of PLpro activity compared with UbV-free 

conditions.  

** ME.2 and ME.4 are UbVs [33] both of which harbor 15 mutated sites. The KD values 

and PLpro selectivity for the ME.2 and ME.4 UbVs were extracted from a study published 

previously [34].  

 

 

 

 

 

 

 

 

 

 

 

Ubiquitin and variants Binding 
energy 

(kcal/mol) 

Dissociation 
time (ns) 

IC50 KD PLpro selectivity* 

MERS SARS-CoV-2 

wtUb -41.95 ± 2.56 32 52.91 ± 6.98 µM 40.75 ± 3.82 µM - - 

A46F -48.25 ± 1.09 67.5 1.64 ± 0.03 µM 2.74 ± 0.29 µM +++ - 

K48E -49.52 ± 2.56 75 3.94 ± 0.42 µM 5.15 ± 0.71 µM ++ - 

E64Y -42.00 ± 1.49 68 0.29 ± 0.03 µM 0.46 ± 0.04 µM ++++ - 

A46F-K48E (UbV2) -50.54 ± 2.35 207 0.20 ± 0.00 µM 0.22 ± 0.03 µM +++++ - 

A46F-K48L -49.03 ± 2.33 200 0.23 ± 0.01 µM N/A N/A N/A 

A46F-K48S -47.13 ± 2.84 N/A 0.18 ± 0.01 µM N/A N/A N/A 

A46F-K48E-G75R -45.24 ± 1.48 40 9.74 ± 0.15 µM 11.41 ± 1.26 µM N/A N/A 

A46F-K48I N/A N/A 0.49 ± 0.04 µM N/A N/A N/A 

A46F-K48E-E64Y (UbV3) -53.77 ± 1.37 >250 14.84 ± 1.44 nM 2.77 nM +++++ - 

A46F-K48E-R74N-G75S (UbV4) -50.18 ± 0.88 65 0.11 ± 0.01 µM 0.15 ± 0.02 µM +++++ - 

A46F-K48L-R74N-G75S -46.49 ± 0.98 >250 0.13 ± 0.01 µM 0.14 ± 0.02 µM N/A N/A 

A46F-K48E-E64Y-R74N-G75S 
(UbV5) 

-50.81 ± 3.25 88 9.71 ± 0.74 nM 1.48 nM +++++ - 

ME.2** -47.98 ± 1.72 >250 15.62 ± 2.54 nM 53.2 ± 2.2 nM  +++++ - 

ME.4** N/A N/A 28.57 ± 1.94 nM 35.9 ± 1.6 nM  +++++ - 


