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Abstract 

Proteins are inherently dynamic, and their conformational ensembles are functionally important 

in biology. Large-scale motions may govern protein structure–function relationship, and 

numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play 

a crucial role in biological function. Investigating conformational ensembles to understand 

regulations and disease-related aggregations of IDPs is challenging both experimentally and 

computationally. In this paper we first introduced an unsupervised deep learning-based model, 

termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational 

changes from molecular dynamics (MD) simulation data. Second, we selected interpolating data 

points in the learned latent space that rapidly identify novel synthetic conformations with 

sophisticated and large-scale sidechains and backbone arrangements. Third, with the highly 

dynamic amyloid-β1-42 (Aβ42) monomer, our deep learning model provided a comprehensive 

sampling of Aβ42’s conformational landscape.  Analysis of these synthetic conformations 

revealed conformational clusters that can be used to rationalize experimental findings. 

Additionally, the method can identify novel conformations with important interactions in 

atomistic details that are not included in the training data. New synthetic conformations showed 

distinct sidechain rearrangements that are probed by our EPR and amino acid substitution 

studies. This approach is highly transferable and can be used for any available data for training. 

The work also demonstrated the ability for deep learning to utilize learned natural atomistic 

motions in protein conformation sampling. 

 

Introduction 

Proteins are complex and have dynamic properties. Conformational ensembles of proteins are 

essential for performing biological processes, including enzyme activities, protein folding, 

protein–ligand binding, and protein aggregation 1,2. Characterization of protein conformations 

allows researchers to understand protein function, activity, and mechanisms. However, the tasks 

may be daunting and are even more challenging for investigating intrinsically disordered proteins 

(IDPs), for which numerous conformations can be functionally important. Some IDPs, such as 

amyloid-β1-42 (Aβ42), are related to a number of protein aggregation-related diseases, including 

Alzheimer’s disease 3 . Revealing important conformations with atomistic details is crucial to 



fully understand the function of a protein and its regulation involved in basic science, 

therapeutics design and biotechnology. 

Experimental techniques determine protein structures and probe their dynamics, and 

bioinformatics tools such as AlphaFold2 and RoseTTAFold can accurately predict structures 

from given protein sequences 4–6. However, these techniques typically provide a handful of 

structures with limited information on dynamics. Advanced computational methods are widely 

used to investigate protein dynamics and sample protein conformational ensembles. A powerful 

method is all-atom molecular dynamic (MD) simulations, which is based on physical principals 

to sample protein conformations and model their dynamics 7,8. However, many stable protein 

conformations are separated by free energy barriers: an MD run can take excessively long 

computational time (i.e., beyond microsecond timescale) to cross energy barriers for sampling 

various conformations. Other methods developed to tackle sampling limitations include 

conformational search methods, MD-based enhanced sampling techniques, and Monte Carlo 

simulations 6,9–12.  A popular analysis tool, principal component analysis (PCA), has been used to 

extract information from sampled protein conformations to guide conformational search 13,14. 

Low-mode based conformational search methods use normal mode analysis (NMA) to perturb 

given structures along their low-mode eigenvectors to generate new conformations 15–18. 

Although these sampling approaches effectively extend the time scale of MD simulations, 

efficiently obtaining adequate conformations for highly flexible protein systems and/or 

overcoming significant energy barriers is still challenging.  

Artificial intelligence (AI) provides an alternative approach for accelerating the 

generation of protein conformational ensembles. Novel machine learning/deep learning (ML/DL) 

approaches analyze simulation results to further guide conformational search with enhanced 

sampling techniques 19–28. ML/DL optimizes coarse-grain models to speed up conformation 

transitions with preserved atomistic interactions 29,30. Several DL models accelerate protein 

conformational searches, such as training neural networks to model the distribution of 

conformational ensembles with generative modeling 31–40. By training with conformations 

obtained from MD simulations, these approaches can quickly generate conformational ensembles 

and bypass the kinetic barriers, the bottleneck of MD simulation.  



Generative models study conformations of chemical compounds and proteins in various 

settings; examples include coarse-grained models and protein conformations presented by a 

backbone 29,41. Ideally, the generative models can find new and thermodynamically stable protein 

conformational ensembles not seen in the training dataset obtained from MD simulations, as 

demonstrated in recent publications focusing on sampling conformations for IDPs 42–47. 

Nevertheless, proteins have complex conformational ensembles, and many conformational 

transitions are driven by backbone motions and, more importantly, sidechain interactions such as 

salt bridges, hydrogen bonds, and hydrophobicity. As a result, to find new protein conformations, 

features that can accurately describe all possible motions in atomistic details are critical in 

generative AI models.     

In this study, we present a generative DL model, termed Internal Coordinate Net (ICoN), 

which is trained on datasets from MD simulations to identify new conformations efficiently and 

accurately for highly flexible protein systems. ICoN uses novel features and an atomistic bond-

angle-torsion (BAT)-based vector representation, vBAT, to smoothly rotate various dihedral 

angles that lead to new conformations. Our model learns the physical principles that govern 

molecular motions, and the 3D latent space contains the transformations of various degrees of 

freedom (DOF), mainly dihedral rotations, to allow for efficient conformational searches. 

Essential protein motions analyzed by dihedral Principal Component Analysis (dPCA) are 

clearly revealed in the latent space, and generating new conformations is achieved by data-point 

interpolation within the latent space. Using a fraction (1%) of MD data as a training set, we 

demonstrated that ICoN rapidly found thousands of new, conformationally distinct and 

thermodynamically stable conformations for αB-crystallin57-69 and the Aβ42 monomer (Figure 

1) in a few minutes using a single gaming GPU card. Post-analysis of our novel synthetic Aβ42 

monomer conformations revealed various new conformations, including new Arg5-Ala42 

contacts and a new Asp23-Lys28 salt bridge not seen in the MD training set but reported in 

existing publications. Our synthetic conformations covered reported structures that were 

suggested to be less toxic or more prone to oligomerization 48–54. Our model provides a 

computationally efficient approach to identify new conformations for highly flexible protein 

systems. The novel synthetic Aβ42 monomer conformations also provide insights into Aβ42 

oligomerization.    



Figure 1. (A) Sequence of 42-residue amyloid beta peptide (Aβ42). (B) Sequence of 13-residue 

αB-crystallin57-69. (C) A synthetic conformation of αB-crystallin57-69 with intramolecular 

charge and aromatic ring interactions between Trp60 and Arg69. Red: negative charge residues; 

Blue: positive charge residues; Green: polar; Grey: neutral and non-polar residues. (D) A 

synthetic conformation of Aβ42 with all 4 turns A-D. (E) Classical internal bond-angle-torsion 

(BAT) coordinate representation (Z-matrix) for a small molecule. Atoms 1−3 are termed root 

atoms for this molecule. Atoms i > 3 are defined by (bi, ai, θi), where b, a and t are bond, angle 

and torsions, respectively. For example, atom 4 is presented by (b4, a4, θ4). The dashed light 

gray line shows the smooth rotation of the bond between atoms 2 and 3 (θ4).   

 

Results  

ICoN model architecture, training, and validation. 

Molecular representation using the vBAT coordinate. The ICoN model is a latent space-guided 

generative AI model trained on protein conformational ensembles to learn physical properties 

that govern conformational transitions in MD simulations (Figure 2). Because the dihedral 

rotations are the major motions to determine conformations, using BAT to accurately describe 

the concerted motions of multiple dihedral rotations is critical. Dihedral rotations have a 

periodicity issue, so we used a vector called vBAT to avoid periodicity (Figure 2B and details in 

Supplementary Material). All-atom vBAT internal coordinate representation is inherently 

equivariant to rotations and translations and can exactly convert vBAT vectors to Cartesian 



coordinates without any additional approximation. However, coordinate conversions can be 

time-consuming. Thus, our model implemented GPU acceleration to perform coordinate 

transformations; converting 5,000 frames from vBAT to Cartesian coordinates took < 0.2 s for 

Aβ42. Figure S2 demonstrates the efficiency in coordinate transformations that successfully 

avoided a computation bottleneck with the use of internal coordinates.       

 

Figure 2. Overview of the Internal Coordinate Net (ICoN) network architecture. (A) The input 

data are thousands of protein conformations represented by BAT-based vBAT features. The 

molecular conformations have 3N-6 degrees of freedom and 4x3(N-3) dimension features, where 

N is the number of atoms. The high dimensions are compressed by a series of fully connected 

layers into a 3D latent space using an encoder. The entire process is then inverted back to the 

original dimensions using a decoder and then converted back to Cartesian coordinates. (B) An 

illustration of vBAT features using 4 atoms with indexes, i, j, k, and l. The vectors connecting 

the atoms 𝑣⃗ 𝑖𝑗, 𝑣⃗ 𝑗𝑘, 𝑣⃗ 𝑘𝑙.  . 𝑛̂ijk and 𝑛̂jkl are unit vectors normalized to the planes constructed by atoms 

i-j-k and j-k-l, respectively.  

 

ICoN network architecture and training. The neural network is based on autoencoder 

architecture (Figure 2A). Classical BAT coordinates (the Z matrix) have 3N-6 DOF for 

presenting the internal motions of a molecule, where N is the number of atoms, and the 6 

external translation and rotation DOF are eliminated. Because vBAT uses the vectors instead of 

one value for each bond, angle and dihedral DOF, we have 4x3x(N-3) features for each 



molecule. As a result, αB-crystallin57-69 and Aβ42 have 2376 and 7488 features, respectively. 

The hyperparameter training in the encoder resulted in 7 layers to reduce a large dimension 

representation into 3D, so each molecular conformation can be presented in the 3D latent space 

(Figures 2A and S3).  The decoding process brought the representation from 3D back to the 

original dimensions with the same number of layers but in reverse order. Each conformation is 

converted from vBAT to Cartesian coordinates for further analysis. Throughout the iterative 

training process, in addition to learning a relationship between a vast number of features, the 

network also learns how to meaningfully compress the representation into the lower-dimensional 

3D latent space by performing nonlinear dimensionality reduction.  

Notably, although this study used 3D latent space for easy observation of conformation 

distribution and visualization of interpolation, the network can reduce 4x3x(N-3) features to any 

dimension desired by users. We used 3D to achieve efficient training and reduced memory 

consumption as well. It took 4 min with one NVIDIA 1080Ti GPU card to perform 15000 

epochs for successful training with 10,000 frames of Aβ42.    

 

Validation of the models by conformation reconstruction. A successful trained model should 

accurately reconstruct a protein conformation from the reduced 3D representation to the original 

conformation. To evaluate the accuracy, we presented conformations from our validation set 

using the 3D representation and then reconstructed them back to atomistic Cartesian 

representation and computed the root mean square deviation (RMSD) of all heavy atoms 

between the 2 conformations, the original and reconstructed ones. A few representative 

conformations are illustrated in Figure S4: αB-crystallin57-69 has RMSD < 0.9Å and Aβ42 has 

RMSD < 1.3Å. As shown in Table 1, with our model, both backbone and sidechains 

conformations can be accurately reconstructed back to the original input structure, ambient after 

large dimensionality reduction in the latent space. We also performed a more detailed 

comparisons between the original and reconstructed conformations, such as the distribution of 

each dihedral rotation and their correlations, to ensure that all the properties were accurately 

reproduced (Figures S5-S8). Notably, both αB-crystallin57-69 and Aβ42 exhibit large-scale 

protein motions included in our training set. The validation demonstrates the robustness of our 



model to learn a diverse range of conformational states with high precision, and we can describe 

small sidechain rotations accurately. 

Table 1. Summary of molecular dynamics (MD) simulations, numbers of MD frames used for 

ICoN model training and validation, and numbers of conformations generated from ICoN models 

in each step. The hyperparameters of Aβ42 ICoN model were obtained from dataset MD Run1, 

and all Models 1 to 5 use the same hyperparameters. Energy cutoff was -200 and -400 kcal/mol 

for αB-crystalline and Aβ42. Two conformations are treated as repeats when the computed heavy 

atom RMSD is smaller than 1 Å in Step 3. In Step 4, the RMSD cutoff is 1 Å and 1.2 Å for αB-

crystalline and Aβ42, respectively.  

 

Learned physics in the latent space of αB-cristallin57-69   

Because our ICoN model learns important dihedral rotations that determine molecular 

conformations, the latent space stores information that leads to smooth conformational 

transitions between 2 datapoints, such as various sets of concerted dihedral rotations. Moreover, 

we can visualize conformation transitions and clusters and can perform data analysis in the 3D 

 

MD simulations  ICoN model construction/validation Synthetic Conformations 

                  Step 1             Step 2        Step 3          Step 4 

MD  

index 

force field 

& initial 

structure 

(PDB) 

# of frames for 

training/validation 

Validation of 

reconstructed 

conformations, 

average heavy 

atom RMSD 

(backbone 

RMSD) 

Model 

index 

# of confs 

from initial 

interpolation 

in the latent 

space 

# of 

confs 

within 

energy 

cutoff  

# of 

distinct 

confs 

(repeat 

eliminated) 

# of novel 

synthetic 

confs 

(repeat 

with MD 

confs 

eliminated) 

αB-crystalline (0.5 μs)                                                                                                         

 

Seed 1 

14sb (Alpha 

Fold2 

predicted 

structure) 

5,000/5,000 2.58 Å 

(1.84 Å) 

Model I 99990 

(100%) 

97594 

(97.6%) 

43484 

(43.5%) 

38425 

(38.4%) 

 

Seed 2 

 

10,000 for comparison with synthetic conformations obtained by Model I 
 

Aβ42 

(1 μs for all runs) 

 

MD 

Run1 

ff14IDPSFF 

(2NAO) 

10,000/10,000 3.90 Å (3.60 Å) Model 1 199990 

(100%) 

187487 

(93.7%) 

150713 

(75.3%) 

127673 

(63.8%) 

MD 

Run2 

ff14IDPSFF 

(1Z0Q) 

10,000/10,000 6.18 Å (5.96 Å) Model 2 199990 

(100%) 

174012 

(87%) 

148188 

(74%) 

145925 

(72.9%) 

MD 

Run3 

ff14SB 

(2NAO) 

10,000/10,000  4.20 Å (3.91 Å) Model 3 199990 

(100%) 

189652 

(94.8%) 

129482 

(64.7%) 

90627 

(45.3%) 

MD 

Run4 

ff14SB 

(1Z0Q) 

10,000/10,000  4.15 Å (3.82 Å) Model 4 199990 

(100%) 

194449 

(94.4%) 

166205 

(66.2%) 

148320 

(48.3%) 

MD 

Run5 

ESFF1 10,000/10,000 4.27 Å (4.08 Å) Model 5 199990 

(100%) 

166552 

(83.3%) 

95126 

(47.6%) 

87257 

(43.6%) 

MD 

Run1.1 

ff14IDPSFF 

(2NAO) 

 

10,000 for comparison with synthetic conformations obtained by Model 1 

MD 

Run1.2 

ff14IDPSFF 

(2NAO) 

 

10,000 for comparison with synthetic conformations obtained by Model 1 

MD 

Run1.3 

ff14IDPSFF 

(2NAO) 

 

10,000 for comparison with synthetic conformations obtained by Model 1 



latent space (Figures 3 and S10). We demonstrated that the DL model learned the physics 

governing molecular motions, and the information captured in the latent space can be effectively 

utilized. 

Essential motions of αB-cristallin57-69 revealed in the latent space. We selected 2 

conformations in the latent space, Conf indexes #50 and #53, from Figures 3 to examine the 

conformational transitions in the latent space. Note that the MD saved one frame every 1 ps, and 

we re-saved a frame every 100 ps when preparing our training and validation sets. Therefore, 

Conf indexes #50 and #53 (2 red dots in Figure 3D) are significantly different; they present 2 

end points from 300-ps time-period MD. To illustrate the conformation transition, we 

superimposed 4 conformations (indexes #50 to #53 Figure 3A) and found that the first 6 

residues were maintained in a helix secondary structure, and the middle region around Leu9 

showed minor but important fluctuations to twist the center of the peptide, whereas the flexible 

tail (residues 7 to 13) exhibited greater dynamics. A correlated sidechain movement (i.e., 

sidechains of Leu9 and Met12) was observed during the transitions as well.  

In the latent space, we found that the 300-ps interval MD trajectory sampled 

conformational jiggling during the transitions (light blue dots in Figure 3D). To extract the 

essential motions from the conformation fluctuation, we applied PCA with BAT coordinates to 

analyze the major motions from the 300-ps time-period MD to quantify the motions. The first 

Principal Component (PC) revealed the major motions, which removed unessential fluctuations 

(Figure 3B). Presenting these essential motions in the latent space resulted in a very smooth 

curve (green dots in Figure 3D). Note that in the latent space, the PC motions appeared as a non-

linear curve, not a straight line. Figure S10C exhibits more smooth curves for motions following 

the second PC and the first + second PC modes, so the latent space recorded similar information 

obtained from PCA. As for PCA, our ICoN learned the important DOF that led to 

conformational transition (i.e., various sets of concerted dihedral rotations), and the latent space 

retained the information from DL. Therefore, interpolation between 2 dots in the latent space can 

efficiently sample protein motions that are led by movements from critical DOFs. As illustrated 

in Figure 3, the interpolation (black dots in Figure 3D) revealed the learned motions, which also 

showed a more rigid helix secondary structure in the first 6 residues and the fluctuations in the 

middle region around Leu9 to result in more distinct conformations with smooth transitions 



(Figure 3C). Importantly, our model accurately identified the concerted motions shown in both 

MD and PCA. These essential motions were in good agreement with those detected by dihedral 

PCA and our observation of the MD trajectory. Of note, our vBAT and model can precisely learn 

and present very small conformational changes, such as the methyl rotation of Met12.   

 

Figure 3. Conformational transitions of αB-crystallin57-69 peptide. (A) Super-imposed 

conformations used for DL training (Conf indexes #50 to #53). (B) Conformational transitions 

led by distortions using the first dihedral principal component (PC) mode. (C) Conformational 

transitions led by interpolation between training Conf indexes #50 (red dot) and #53 (dark blue 

dot). Leu9 and Met12, which have the most fluctuations, are presented in licorice. (D) 3D latent 

space from the ICoN model. Light blue dots present conformations saved every 1 ps in MD, with 

a total of 300 dots (300-ps simulation length). The MD frames were re-saved every 100 ps for 

training, and 4 frames are presented in the plot (red, blue and orange dots). The green dot line 

illustrates conformation distortions using the first PC mode, with the conformations shown in 

(B). Note that the PC analysis involved using the 300-ps time-period not the whole 500-ns MD 

run. Inspired by the green curve, non-linear interpolation between Conf indexes #50 and #53 was 

used for conformational search and shown as black dots. 

 

Interpolation-generated synthetic conformations of αB-cristallin57-69. Because ICoN identified 

DOF that determine conformational changes, we used the latent space interpolation as a 

conformational search engine to find more synthetic conformations. The search was achieved by 



interpolation between 2 dots with consecutive indexes (i.e., Conf indexes #10 and #11). 

Following the essential motions, we anticipated finding both new conformations and existing 

ones sampled by MD. Using the same non-linear interpolation function illustrated in Figure 3D, 

10 points were generated for each pair, yielding 99,990 synthetic conformations from 

interpolating a total of 9,999 pairs of dots. We first eliminated high-energy conformations, then 

each new synthetic conformation was compared with its predecessors and eliminated if it was a 

repeat, yielding 43,484 distinct conformations (Table 1). We further compared these synthetic 

conformations with the raw MD data with 500,000 frames to identify 38,425 novel synthetic 

conformations.  

 

 

 

 

 

 

 

 

 

Figure 4. Examination of the stability of synthetic conformations using energy distribution 

and known conformations. Comparison of energy distribution from conformations of the 

original MD run (cyan) and synthetic (orange) conformations for (A) αB-crystallin57-69 and (B) 

Aβ42. Synthetic conformation (orange) similar to a known conformation sampled by other MD 

runs (purple) for (C) αB-crystallin57-69 and (D) Aβ42. The MD runs used for comparison but 

not used for training are Seed 2 and MD Run1.1-3 in Table 1. 

 

We also examined the stability of the synthetic conformations quantified by their 

conformational energies using the molecular mechanics/generalized Born and surface areas 

(MM/GBSA) calculations. Conformations sampled from MD and our deep learning model have 

similar energy distribution (Figure 4A), which validates our synthetic conformations as being 



thermodynamically stable. In addition, we also compared our synthetic conformations with 

conformations obtained by another MD run (Table 1, Seed 2); none of the conformations from 

this MD was used in our training set. Our interpolation sampling found similar conformations 

found by another MD run Figure 4B, which demonstrates the efficiency and accuracy of the use 

of the latent space for conformational sampling.       

Figure 5. Free energy profile on the 2D space of RMSD (y-axis) and radius of gyration (Rg, x-

axis) for Aβ42. For each pair of comparisons, the top depicts the conformation distribution from 

the MD run with frames are resaved every 10 ps and the bottom shows the distribution from 

distinct synthetic conformations. Using the same hyperparameters obtained from dataset MD 

Run1, Synthetic Models 1-5 was trained with MD frames obtained from MD Run1-5 (A to E), 

respectively. MD Runs 1 and 2 used the ff14IDPSFF, MD Runs 3 and 4 used the classical 

Amber ff14SB, and MD Run5 used EFFS1 force field. Notably, a highly packed initial 

conformation was used in MD Run 5 (Figure S11). The units of the free-energy landscapes are 

kcal/mol. 

 

Latent space interpolation-generated synthetic conformations of Aβ42 

The Aβ42 monomer exhibits a broad spectrum of conformations, from random coil to more 

structured α-helical and β-sheet conformations. Sampling strategies that can accurately model 

sidechain motions are crucial because the sidechain arrangements govern the intramolecular 

attractions that lead to various local turns and pre-organized shapes for subsequent 

oligomerization. Using the same hyperparameters obtained from MD Run1, we used the same 

strategy for αB-cristallin57-69 to interpolate 2 consecutive dots in the latent space for MD Runs 

1 to 5 (Table 1) to obtain synthetic conformations. The 5 MD runs were initiated by a different 



Aβ42 monomer structure and/or with a different force field. To elucidate the search efficacy, we 

plotted the distribution with coordinates of Rg and RMSD (Figure 5) for MD Run1-5 and our 

synthetic conformations from Model 1-5 using these MD runs for training. The search using 

generative AI efficiently found many new conformations without the need for lengthy MD 

simulations (Table 1). 

To validate that our synthetic conformations are thermodynamically stable, we again 

plotted energy distribution of synthetic conformations found in Model 1 (Figure 4B). We also 

compared the synthetic conformations to another 3 MD runs using the same initial structure and 

IDP force field (MD Run1.1-1.3) to examine whether our search could find those sampled by 

other MD simulations. Although the Aβ42 monomer has numerous conformations, we could 

identify similar conformations (Figure 4C). In addition to checking the total conformational 

energy, we compared each energy component to verify that both bonded and non-bonded terms 

have energy distribution similar to those modeled by MD runs (Figure S12 and S13). Notably, 

the energy distribution from the synthetic conformations is relatively broader, thereby suggesting 

a greater diversity in the sampled conformations, which cover high and low energy regions. The 

energy comparison underscores the high quality of structural integrity of the synthetic 

conformations.  

 

Analysis and biological implications of novel synthetic Aβ42 conformation ensembles 

Obtaining Aβ42 monomer conformations is a critical step for understanding the mechanisms of 

initial encounters and interactions between monomers, which lead to subsequent oligomerization 

and fibrillization. Because the oligomerization steps can be highly sensitive to different 

environments (e.g., different membrane, existing fibrils, or ion concentrations), substantially 

different monomer conformations may initiate aggregation using different mechanisms in 

various environments. Several experiments and modeling work also suggest that some 

conformations are prone to be aggregated or non-toxic 48–52. Because of various experimental 

results regarding the monomer structure–function relationship in Aβ42 aggregation, we focus on 

structures with salt bridges and R5-A42 contacts to demonstrate the utility of the conformational 

search results from our generative AI model.  



Of note, because our method efficiently sampled numerous low-energy monomer conformations, 

we used synthetic conformations found using Model 1 (Table 1) to demonstrate the biological 

importance of these conformations revealed by our ICoN model. 

Figure 6. Probability of intramolecular contacts of synthetic conformations between Cα atoms of 

Aβ42 and representative conformations with Arg5-Ala42 contacts. (A) Four local bends are 

circled: turn A (F4-H6), turn B (E11-H14), turn C (S26-K28), and turn D (V36-G38). Residues 

contacting the C-terminal residues are marked in blue squares. Two representative novel 

synthetic conformations found in ICoN Model 1 with IDP force field depicting non-polar 

contacts between Arg5-Ala42 (B) with turn A and (C) without turn A. Both conformations 

utilize turn D to stabilize the C-terminus. (D) A representative novel synthetic conformation 

found in Model 3 with FF14SB force field shows an intermediate structure of forming Aβ42 

tetramer which comprises a six stranded β-sheet with Turn C and hydrophobic core (L17-F20 

and I31-L34). (E) A representative novel synthetic conformation from Model 5 with ESFF1 

force field shows a structure with Turn B, C and D contributing to the formation of hydrophobic 

core. Residues of selection are shown in the van der Waal representation. Positively charged Arg 

and non-polar residues are blue and grey, respectively. 

 

Major conformation turns in a global tertiary structural ensemble.  

The 127,673 distinct conformations (Table 1) are presented in the pairwise residue contact map 

(Figure 6A). Four local bends are marked as turn A (F4-H6), turn B (E11-H14), turn C (S26-

K28), and turn D (V36-G38). We found novel synthetic conformations with all 4 turns (Figure 

1D). Turn C has been widely reported in the fibril structures of both Aβ4055 and Aβ4256 , and is 

the turn in the commonly referenced “β-turn-β” motif. Cryo-EM studies of brain-derived Aβ42 

fibrils56 reveal that Aβ42 adopts an S-shaped fold with turns C and D being the two bends in the 



letter “S”. Turns A and B are located near the N-terminal, which is highly flexible and believed 

to be the metal binding region under abnormal physiological conditions (residues D1 to K16) 57. 

Although the conformations/turns and their population are obtained using only Model 1, they 

provide an overview of spatial arrangements of the Aβ42 monomer. Notably, although Aβ42 is 

intrinsically disordered, the protein sequence still can lead to many low-energy and highly 

populated conformations. Turn A locates in the highly flexible N-terminus, where mutation 

substitutions of Arg5 suppressed the aggregation of Aβ42 49. Our EPR measurements also 

showed distinct spectral features at residue 5, indicating that Arg5 may feature a distinct 

structure or interactions as compared with the nearby residues (Figure 7). The novel synthetic 

conformations revealed that Arg5 can form interactions with Ala42 with or without the presence 

of Turn A, as illustrated in Figures 6B and 7C, respectively. Of note, turn D (V36-G38) is 

present alongside, which may help to orient and stabilize the C-terminus to form an interaction 

with Arg5 (red circle in Figures 6B-C). Our previous work showed that substituting a nitroxide 

spin label compound R1 at positions G37 and G38 altered the kinetics of Aβ42 fibril formation 

58, and these synthetic conformations provide a possible monomer structure to guide future 

experimental design.   

 

 

Figure 7. EPR spectra of spin-labeled Aβ42 

fibrils show unique spectral features at residues 

4 and 5. R1 represents the spin label. Left: EPR 

data are superimposed on the best fit of 

simulated EPR spectra. Right: Individual EPR 

spectral components for obtaining the best fit. 

Note that only the EPR spectra at residues 4 and 

5 require a second spectral component. These 

data are consistent with a turn structure at 

residues 4-5. 

 

 

 

 

 



 

Figure 8. Intermediate state with partial hair pin at Turn C conformations which require 

minimal conformational arrangement to form Aβ42 fibril. Different orientations (direction 

indicated with red arrow) of F19 and F20 are observed leading to the formation of fibril 

conformation. (A)  Crystal structure of hair pin conformation that form Aβ42 fibril from human 

brain (PDB: 7Q4M). (B-D) Novel sytnthetic strucutres are obtained from Model 3 with FF14SB 

force field. (B) Type I Aβ42 fibril with F19 and F20 rotate inward to form hydrophobic pocket. 

(C) Type II Aβ42 fibril with F20 rotate inward and F19 rotate outward. (D) Intermedicate states 

with F19 and F20 both rotate outside of the hydrophobic pocket.  

 

Existing studies showed that Aβ42 monomer has numerous conformations, and MD simulations 

using initial conformation and/or force field can sample different conformations with few repeats 

42,43,47,59. Using the hyperparameters obtained from MD Run 1 to train datasets with 

conformations different from MD Run2-5, new intermediate states important in oligomerization 

were identified with ICoN. For example, as illustrated in Figure 6 and 8, novel synthetic 

conformations from the FF14SB force field (Model 3 in Table 1) reveal an intermediate state 

with a partial hairpin conformation which only requires minimal conformational arrangement to 

form and experimental determined Aβ42 fibril from human brain 56 (Figure 8A). The partial 



hairpin conformations pre-organize hydrophobic regions ranging from L17-F20 and I31-L34 

with residues F19 or F20 rotate inward to stabilize a hydrophobic core with surrounding 

nonpolar residues (Figure 8B-C). Interestingly, different directions of F19 and F20 could 

contribute to different types of brain-isolated fibril structures 56, and our ICoN model suggested 

the critical roles of their rearrangements. In addition, another partial hairpin conformation that 

has potential of forming Aβ42 tetramer structure, which comprises a six stranded β-sheet with 2 

β-strands in the middle and 2 β-turn-β on the side 60, are also observed (Figure S14). In Aβ42 

tetramer, sidechains of F19 and F20 need to rotate outward to interact with surrounding 

monomers (Figure S14A). The partial hairpin conformation at Turn C leads to the formation of 

fibril conformations (Figure 6D, 8, and S14).  Although the models were constructed using MD 

simulations for monomer, our synthetic conformations suggest a highly plausible intermediate 

state during fibril formation. Furthermore, novel synthetic conformations from ESFF1 force field 

(Model 5 in Table 1) show that turn C and turn D create highly packed hydrophobic regions 

prone to oligomerization. Specifically, we observed that V18, F20, I32, and L34 form a 

hydrophobic core (Figure 6E). Notably, unlike hydrogen bonds which are highly specific with 

additional geometry restraints, hydrophobic regions usually allow fluid-like sidechain 

movements to retain their flexibility. This different partial hairpin conformation from Figure 6D 

again preorganized the hydrophobic regions and preserve conformational plasticity for 

oligomerization.     

 

Presence of salt bridges in toxic and less toxic monomer conformations. Salt bridges play an 

important role in providing intra-molecular attractions and conformational specificity that 

directly relate to Aβ42 aggregation. This non-covalent interaction forms when sidechains of 

oppositely charged residues are close enough to each other to experience electrostatic attractions. 

Therefore, protein structures must be described with precise atomistic details and sidechain 

motions sampled accurately. Although the D23-K28 salt bridge did not exist in the 1-µs MD 

Run1 used in our training set, by using interpolation in the latent space, the model sampled novel 

synthetic conformations with a new salt bridge, D23-K28 (Figure 9), which is reported to 

promote aggregation 48. Experiments suggested the importance of this salt bridge, but the 

conformation ensemble was never determined experimentally. The novel synthetic 



conformations revealed distinctly different rearrangements with the D23-K28 salt bridge, 

ranging from more extended to highly packed conformations (Figure 9). The D23-K28 

constraint results in Turn C, which is important for oligomerization.      

Figure 9. Novel synthetic conformations with intramolecular salt bridges. Top: structures 

with D23-K28 salt bridge. (A) and (B) show an open form with different local arrangements near 

turns B and C, and (C) reveals a U-shape, partial hairpin conformation. Bottom: structures with 

E22-K28 salt bridge with open (D), partial open (B) and compact (C) conformations.     

 

The synthetic conformations revealed novel structures with the salt bridge E22-K28 

(Figures 9D-F). This salt bridge was reported to prevent a toxic turn at positions E22 and D23, 

for potentially a less-toxic monomer 61. The synthetic conformation presents key features 

suggested by experiments, with no turn at positions 22 and 23 when the salt bridge E22-K28 

exists (Figure 9). Nevertheless, other publications suggested that the salt bridge E22-K28 may 

help form other intramolecular contacts (e.g., contacts between the C-terminus and Arg5) to 

stabilize a hairpin structure and promote dimer formation 49. Although which salt bridges 

promote or inhibit monomer aggregation is debatable, our novel synthetic conformations provide 

various possible sidechain rearrangements and salt-bridge conformations for further interpreting 

experiments in understanding aggregation mechanisms.   

 

 



Comparing ICoN with Phanto-IDP 

Here we compare the conformational sampling using ICoN and Phanto-IDP, a new DL model 

developed by the Chen’s group which can efficiently sample backbone conformations of IDPs. 

Using backbone only representation, Phanto-IDP utilizes a graph-based encoder and a variational 

layer to describe protein features. The variational layer sample neighboring area of points in 

latent space with mean, stand deviation, random variable and temperature to yield impressive 

sampling results with high diversity in a recent publication47. In this paper, the Chen group used 

MD Run 5 to train and generate new conformations with Phanto-IDP, where the raw data had 

backbone only representation. For comparison, we added sidechains to their synthetic backbone 

conformations and carried out minimization and subsequent steps to obtain distinct newly 

synthetic conformations. Using the same MD Run 5, we applied the hyperparameters obtained 

from our MD Run 1 to sample new synthetic conformations with ICoN (Table 1). Figure S15 

presents similar plot as Figure 7 to compare the free energy profile on the RMSD and Rg for 

Aβ42 for conformations from MD and the novel synthetic ones.  Using the graph-based 

representation for Aβ42 backbone, Phanto-IDP demonstrated a great reconstruction accuracy 

(Table S1) and conformational sampling. Due to the nature of use of mean and standard 

deviation in variational layer, Phanto-IDP focuses on searching new conformations close to 

conformations that are highly populated in a MD simulation. In contrast, ICoN samples 

conformations by interpolating data points in the latent space without discriminating popular 

conformations or rare events modeled by MD, resulting in a broad range of novel synthetic 

conformations. As illustrated in Figure S16, ICoN identified many new conformations in regions 

shown as transient states in MD Run5. These newly sampled sidechain rearrangements form a 

hydrophobic core with Turns B, C and D, where similar hydrophobic regions and turns have 

been observed in several neurotoxic conformations determined by experiments (Figure 6E and 

S16). These results display the strength that using internal coordinates to represent both protein 

backbone and sidechains allows efficient combination of dihedral rotations in the latent space to 

sample a wide variety of new and biological relevant synthetic conformations. 

 

 



Discussion 

In this work, we demonstrated the capability of a deep learning model to directly generate new 

protein conformational ensembles by learning the physics of protein motions. Our approach 

utilized a neural network trained with protein conformations from classical MD simulations with 

all-atom representation in explicit solvent. We saved frames from MD trajectories without 

further processing, reducing protein atomic coordinates to a 3D latent space, where each 

conformation is a data point that can be accurately reconstructed back into a protein structure. 

ICoN uses nonlinear interpolation between 2 data points in the 3D latent space to guide the 

search for conformational changes, identifying natural molecular motions.  The vector-based 

BAT (vBAT) feature overcomes problems with Cartesian coordinates that fail to smoothly 

present dihedral rotation during conformation sampling, which is crucial in sampling large-scale 

motions, especially in IDPs. vBAT also effectively handles dihedral periodicity. The model is 

highly efficient for identifying novel synthetic Aβ42 conformation ensembles not seen in the MD 

trajectory. These ensembles have different large-scale motions (i.e., new compact conformations) 

and detailed sidechain rearrangements such as forming a new salt bridge between D23 and K28.  

The synthetic Aβ42 conformations sampled by the ICoN model provide a comprehensive 

view of the conformational landscape for Aβ42 monomers. For example, the ICoN model finds 

salt bridges involving residues E22 or D23 (Figure 8), both of which are hotspots for familial 

mutations in Alzheimer’s disease. The ICoN model also identifies four local bends at residue 

positions 4-6, 11-14, 26-28, and 36-38 (Figures 1D and 6). Although all 4 turns have been 

previously observed in isolation, it is worth noting that the experimentally determined Aβ42 

structures do not contain all these turns in the same structure. For example, turn D has been 

found in the brain-derived Aβ42 fibril structures56 , but is absent in the Aβ42 oligomers formed 

in the presence of detergents60 . The co-occurrence of different turns in the synthetic Aβ42 

conformations may help decode the Aβ aggregation pathways that lead to the formation of 

specific oligomers and fibrils.  

Training of the ICoN model requires sufficient protein conformations, so the DL can 

reveal natural motions of the protein to guide the search toward new low-energy structures. Since 

experimentally determined structures typically cover only a small proportion of the overall 

conformation ensembles, we rely on MD simulations. Force-field parameters used in MD may 



affect the performance in sampling. For example, the model trained by MD runs using a less 

flexible ff14SB yielded fewer novel synthetic conformations (Table 1). However, our training 

set did not need to cover the complete conformational distribution. As long as conformation 

fluctuation governed by key dihedral rotations can be included in the training set, the model can 

identify these key elements for guiding the conformational search to generate novel synthetic 

conformations.  

Conceptually, ICoN performs as a conformational search method rather than a 

deterministic simulation method. Therefore, the search results do not directly reflect the 

equilibrium distributions of protein conformations. While structured proteins have highly stable 

global energy minima, IDPs exhibit numerous fluctuating heterogeneous conformations with 

similar energy. The IDPs can be highly sensitive to their environment, making it impractical to 

precisely reproduce physiological conditions in experiments or simulations. Therefore, 

thoroughly finding IDP conformational ensembles is more practical and useful instead of aiming 

for the population distribution in equilibrium under specific physiological environment. 

Importantly, unlike structured proteins whose native structures are functionally important, meta-

stable conformations of IDPs can be crucial in performing the biological function. For example, 

experiments showed that Aβ42 monomer aggregation has a rate-limiting nucleation-dependent 

polymerization process 52 , which suggests that the highly populated monomer conformations 

might not be the ones that drive nucleation, and the monomers are not pre-organized as a ready-

to-aggregate conformation. Therefore, as compared with the conformational search for structure 

proteins, thoroughly sampling meta-stable conformations for IDPs is critical. As demonstrated in 

this study, the novel synthetic Aβ42 monomer conformations provide atomistic details to support 

several experimental observations, which also bring insights into mechanisms of 

oligomerization.  

Conformational changes of biomolecules follow principles of physics, which are 

consequences of different arrangements of atoms rotating around a set of single bonds, the 

internal degrees of freedom having the highest flexibility. Both PCA and NMA describe the 

natural motions of a molecule, which are commonly used to determine essential protein 

dynamics and guide conformational sampling. The two techniques are linear transforms that 

extract the most important elements in a data matrix, a covariance or Hessian matrix. However, 



real protein systems can have very complicated and higher-order correlations that have intrinsic 

nonlinear effects and may not be well described using standard PCA or NMA. Moreover, 

although PC space is commonly used for data analysis, there is no function to convert 

manipulated data points in PC space back to its atomistic protein structure. The activation 

function used in the neural network adds nonlinear effects to process nonlinear features. With 

use of BAT, a transition between two proteins can be achieved by interpolating two data points 

(conformations) in the latent space. As illustrated in Figure 4, if one obtains conformations 

along the smooth green curve in the latent space, the conformational changes reproduce the 

motions following the first PC mode. As for the natural motions identified by PCA or NMA, the 

deep learning algorithm learns natural motions of the protein system (black dot line in Figure 4), 

and new conformations can be found by processing the interpolations in the latent space.  

Although the ICoN model is fast, taking a few minutes to train 10,000 frames of Aβ42 

and hours to perform quick energy minimization for the synthetic conformations generated from 

latent space interpolation using a GPU card, the training set is from a physics-based MD 

sampling. It typically takes days, if not weeks, to perform sufficiently long MD simulations to 

obtain the training set. To speed up the sampling, one can apply the ICoN model for preliminary 

results to select dissimilar protein conformations to seed more MD runs 19. An advantage in 

using BAT-based coordinates is that one can easily select a set of dihedral angles that determine 

the motions of interest for training, instead of using all DOF. For small proteins or peptides such 

as Aβ42 and αB-crystallin57-69, our classical internal BAT (Z-matrix)-based vBAT nicely 

presents local sidechain rearrangements and large-scale backbone motions. However, for larger 

(>200 residues) proteins, rotations of some dihedral angles near the root atoms may result in 

unrealistic motions on the far end of the protein. The issue can be addressed easily by using 

multilayer BAT coordinates, assigning multiple fragments/chains for a protein or multi-protein 

complex. Also, reconnecting fragments with pseudo-DOF can avoid the accumulated 

dependence problem 62. Future work will implement the multilayer BAT coordinates to eliminate 

the protein size limitation when building the ICoN model. Various interpolation and 

extrapolation strategies in the latent space will be examined for generating novel synthetic 

conformations as well.      

 



Methods 

 

All-atom Molecular Dynamics Simulations and Preparation of Training and Validation 

Data Sets 

MD run1-4 were performed using the AMBER20 package using either ff14SB or ff14IDPSFF 

force fields (Table 1) with GPU acceleration 63. The systems were simulated using TIP3P 

explicit solvent model 64 at temperature of 298K with NPT ensemble. 12 Å cutoff was used for 

short range non-bonded interactions and the long-range electrostatic interactions were computed 

by the particle mesh Ewald method (PME) 65. MD run5 with ESFF1 force field, another IDP 

specific force field, is obtained from Chen’s group 47,66.  

Aβ42 

MD Run1 was initiated using PDB: 2NAO with ff14IDPSFF force field (Table 1). Each frame 

was saved at 1-ps time integral which made up a total of 1,000,000 frames. Other MD 

trajectories using either PDB 2NAO or 1Z0Q as the initial structure were obtained from our 

previous work and detailed in Table 1 53,54,67. Conformations of MD Run1 to 5 were used for 

training, validation, sampling conformations from latent space and generate synthetic 

conformations, while MD Run1.1 to 1.3 were utilized for pairwise RMSD search for synthetic 

conformations obtained by Model 1 (Table 1).  

aβ-crystallin57-69 

AlphaFold2 computed structure of aβ-crystallin57-69 (PDB: AF_AFP02511F1) was used as 

initial structure for MD simulations. Two randomly seeded 500-ns MD simulations were 

obtained from our previous work, where each frame was collected at 1-ps interval which made 

up 500,000 frames 68. Conformations of Seed1 (Table 1) were used for training, validation, and 

sampling conformations from latent space, while Seed2 was utilized for pairwise RMSD search 

for synthetic conformations.  

Preparation of training and validation data sets 

To construct our dataset for ICoN model training, we saved 1 frame every 100-ps starting from 

0-ps of Aβ42 MD Run1-5 (10,000 conformations; 1% of raw MD) to prepare training sets. 

Similarly, we saved 1 frame every 100-ps starting from frame 50-ps of Aβ42 MD Run1-5 for 



validation sets. Similar approach is used for aβ-crystallin57-69 Seed1, where 1 frame every 50-

ps starting from 0-ps (5,000 conformations; 1% of raw MD) used for training, and 1 frame every 

50-ps starting from 25-ps used for validation. This ensures training and validation datasets are 

separated by 50-ps and 25-ps time interval for Aβ42 and aβ-crystallin57-69 respectively. Details 

of other training and validation datasets are shown in Table 1. This approach allows training a 

model from minimal amount of input data yet generate numerous conformations with extended 

conformational space.  

Dihedral PCA (dPCA) 

To extract conformations with major protein motions, we utilized dihedral Principal Component 

Analysis (dPCA) employing torsion angles with in-house code. The resulting conformations, 

derived from the first three principal components, were then projected onto a latent space using 

the IcoN model in order to get insight on conformational transition of the aβ-crystallin57-69 300-

ps trajectory, composed of 300 frames. Notably, the transitions observed in the latent space, 

governed by principal component modes, manifested as smooth nonlinear trajectories. 

Consequently, we opted for nonlinear interpolation to produce synthetic conformations. 

 

The dPCA calculation involves mapping torsion angles to a unit circle using trigonometric 

functions. This enables accurate estimation of differences (involving subtraction) and averages 

(involving summation) during the construction of the covariance matrix, thereby preventing 

erroneous computation of their correlation at the discontinuity margin (±180° or 360°/0°) 62,72,77. 

 

Protein Structure Representation 

Classical Bond-Angle-Torsion coordinates  

Bond Angle Torsion (BAT) is the internal coordinate representation 69–71, where "bond" denotes 

the distance between a pair of bonded atoms, "angle" refers to the bond angle between pairs of 

bonds connected to a central atom, and "torsion" indicates the dihedral angle formed by four 

bonded atoms via three bonds. Specifically, the dihedral angle is defined as the angle between 

the plane containing atoms (i, j, k) and another plane containing atoms (j, k, l) (Figure 1E). BAT 

coordinates can be accurately transformed back to all atom Cartesian coordinates. In this, the 

placement of each atom i > 3 that is not bounded to atom 2 is specified by its bond length (bi), 

bond angle (αi), and dihedral angle (θi) with respect to three other atoms that are bonded in 



sequence and whose positions are already defined (details in SI). Three terminal atoms, 

designated as root-based atoms, are used to initiate conversion from BAT to Cartesian. Root 

based atoms carry six external degrees of freedom such as global translations and rotations.   

 

Vector Representation of BAT (vBAT) 

Although BAT coordinates effectively capture concerted motions, they suffer from a periodicity 

problem. Dihedral rotation from 179° to -179° is actually a 2° shift in angular space. However, 

the basic arithmetic operation used in computing a covariance matrix results in a large, 179°-(-

179°) = 358°, rotation 72. Hence, we used vector representation of BAT coordinates termed 

vBAT as input features to ICoN model. The vBAT internal coordinate representation is 

equivariant under global translations and rotations, and thus provided strong inductive bias for 

our ICoN model. Furthermore, compared to other structural representations such as Anchored 

Cartesian 42 or PCA based representations 33, internal coordinate representation is independent of 

reference structure. A detailed description of vBAT computation is provided in this section and 

in Supplementary Information.  

 

For a set of four bonded atoms with atom indexes i, j, k, and l (Figure 2B), we defined three 

bond vectors vij, vjk, and vkl, that are the relative positions between the atoms. The unit vectors 

that are normal to the plane made by a pair of neighboring bond vectors defined vector features, 

denoted as 𝑛𝑖𝑗𝑘 and 𝑛𝑗𝑘𝑙  .                                                             

 

       𝑛𝑖𝑗𝑘 =
−𝑣⃗ 𝑖𝑗×𝑣⃗ 𝑗𝑘

|𝑣⃗ 𝑖𝑗||𝑣⃗ 𝑗𝑘|
                                   𝑛𝑗𝑘𝑙 =

−𝑣⃗ 𝑗𝑘×𝑣⃗ 𝑘𝑙

|𝑣⃗ 𝑗𝑘||𝑣⃗ 𝑘𝑙|
                       (1)  

 

vBAT vector features comprising 𝑛𝑖𝑗𝑘, 𝑛𝑗𝑘𝑙, 𝑣 𝑖𝑗, and 𝑣 𝑗𝑘   were used as an input to ICoN model. 

When sampling conformations in latent space, all external degrees of freedom (root-based 

coordinates) were inferred from the reference conformation. Sampled features  𝑛𝑖𝑗𝑘, 𝑛𝑗𝑘𝑙, 𝑣 𝑖𝑗, and 

𝑣 𝑗𝑘  were first converted to bond angles, and torsions, and then transformed back to Cartesian 

coordinates in large batches using a highly optimized GPU implementation (Figure S2). Since 

changes in bond length are very minimal throughout MD simulations, we used fixed bond length 

inferring from the reference structure for all generated conformations.   



 

Model Architecture and Training  

Model Architecture 

The ICoN model is an autoencoder type architecture based on fully connected neural network 

(Figure 2A) trained on MD data to directly output all atom protein conformations. The model is 

designed to compress an input representation into lower dimensional latent space (3D) with an 

encoder that can be directly visualized. These points representing conformations in 3D latent 

space are decompressed back to the original input dimension with decoder.  

 Initially, vBAT vectors were flattened followed by concatenation into a high dimensional 

array to use as input features to the ICoN model. As a result, we have 4x3x(N-3) features for 

each molecule 2376, and 7488 features for αB-crystallin57-69 and aβ42 respectively.  The 

activation units were gradually reduced to 3-dimensional latent space in seven layers, where each 

molecular conformation can be presented in the 3D latent space, as illustrated in Figure 2A.  For 

both systems, the encoding process reduced the dimension from nf , to nf/4, nf/8 , nf/16, nf/32, 

nf/64,  nf/64, and 3, where  nf is the total number of input features. Then, the decoding process 

brought the representation from 3D to 2376 dimension with the same number of layers but 

reverse the order.  

 The LeakyReLU activation function was applied to all layers except the last layer. Layer 

normalization is applied in the second layer. To prevent overfitting, 10% of the weights were 

randomly set to zero in the third layer, which led to better convergence of validation loss. The 

decoder takes the latent vector as input and decompresses it back to its original feature 

dimension. The decoder also featured LeakyReLU nonlinearity but did not include any layer 

normalization or dropout layers. The bias units are omitted aiming to minimize the model's 

parameter count. Meanwhile, all model parameters were initialized through the Xavier Uniform 

weight initialization method, which is known to enhance training stability and efficiency 73. The 

total count of model parameters utilized is 3,294,964 for αB-crystallin57-69 and 32,721,156 for 

aβ42. Throughout the iterative training process, in addition to learning a relationship between 

vast number of features, the network also learns how to meaningfully compress the 

representation into the lower dimensional 3D latent space by performing nonlinear 



dimensionality reduction. Each conformation is converted from vBAT to Cartesian for further 

analysis. 

Loss Function 

The combination of L1 and L2 loss functions, the Smooth L1 loss, was used to minimize the 

difference between the model output (yi) and the original input (xi). The equation for the smooth 

L1 loss function, L, is given below (Eq. 2):  

 

                                   𝐿 = {

(𝑥𝑖−𝑦𝑖)
2

2𝛽
, 𝑖𝑓|𝑥𝑖 − 𝑦𝑖| < 𝛽

|𝑥𝑖 − 𝑦𝑖| − 0.5𝛽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (2) 

where, (xi-yi)
2 is L2 loss and |xi-yi| is L1 loss. 

The L1 and L2 functions intersect at β=1.0 resulting in a smooth, continuous loss function that is 

less sensitive to outliers compared to the L1 loss. However, for larger errors, the function 

transitions to an L1 loss, ensuring robustness to extreme values. As a result, using Smooth L1 

loss can lead to more stable training and better convergence.  

 

Optimization was performed using the Adam optimizer 74 for both protein systems. For Aβ42 

training, the learning rate was manually reduced from 0.002 to 0.001 after 5000 iterations, 

resulting in a total of 10,000 training iterations. The learning rate was kept constant at 0.001 for 

aβ-crystallin57-69, comprising a total of 5000 training iterations. We fed 200 conformations in 

mini-batches per iteration to the model, randomly selecting frames from the data pool during 

each training iteration. Training was terminated upon convergence of both the training and 

validation loss, a process that took a few minutes for both systems. The MDAnalysis Python 

library 75 used as the tool of choice for reading and writing trajectories. 

Evaluation of reconstructed conformations 

Reconstruction accuracy was measured by computing the RMSD of all heavy atoms (all non-

hydrogen atoms) and backbone atoms (N, Cα, C, and O atoms) between the original and 

reconstructed conformations (Table 1) (see SI for details).  

Implementation 



In this study, we employed the PyTorch library to implement all deep learning algorithms 76. 

MDAnalysis, a Python library, facilitated MD trajectory input/output operations and torsion list 

construction75 . Leveraging the torch tensor data structure in PyTorch, we implemented GPU-

optimized BAT and vBAT calculations. The code and pre-trained ICoN model parameters can be 

accessed at the following link: https://github.com/chang-group/ICoN 

 

Generation of Novel Conformations  

In this process we have 4 steps. The first step is interpolation. We first encode training and 

validation data set into the latent space. Then, non-linear interpolation is performed between 

each pair of consecutive points in 3D latent space. 10 points were interpolated from each 

consecutive pair of points yielding a total of 19,9990 and 99,990 interpolated conformations for 

Aβ42 MD-Run1 and aβ-crystallin57-69-Seed1, respectively (Table 1). In the second step, we 

refine the generated structures through minimization to avoid potential atomic clashes. Steps three 

and four remove self-repeats and repeats with raw MD to ensure the creation of novel and unique 

synthetic conformations (see details of each step in SI). 

 

Analysis of synthetic conformations 

Free energy profiles 

To derive free energy profiles, we initially constructed a two-dimensional histogram by binning 

the radius of gyration (Rg) and backbone root mean squared deviation (RMSD) of protein 

conformations with respect to a reference structure. Subsequently, we determined the normalized 

population (P) for each bin throughout the entire trajectory. The free energy values were then 

computed using the equation F = -kBT log(P), where kB represents the Boltzmann constant and T 

is a room temperature. 

 

Contact maps 

The contact maps were generated by applying a cutoff of 6.5 Å to all intramolecular distances 

between C-alpha positions. A contact density of one is assigned when a contact is formed, and 

zero otherwise, for each frame. Local contact densities of residue pairs with indexes i and j, 

https://github.com/chang-group/ICoN


where |i-j| < 4 were set to zero. The average across all frames (conformations) yielded the contact 

probability between the pairs of residues. 

 

Aβ42 turn characterization 

Four local turns have been identified as turn A (F4-H6), turn B (E11-H14), turn C (S26-K28), 

and turn D (V36-G38). To selectively isolate conformations characterized by turns occurring in 

specific regions, we initially identified residue pairs exhibiting a high pair contact density in 

proximity to the corresponding turn region, as depicted in contact map of Figure 7. 

Subsequently, a turn was deemed to be formed if the C-alpha distance between the selected pair 

of residues was less than 6.5 Å. Conversely, a turn was classified as not formed when the contact 

distance exceeded 9.0 Å. For turns A, B, C, and D, the residue pairs utilized for contact 

identification are Ala2:Asp7, Tyr10:Gly15, Val24:Gln29, and Gly33:Val40, respectively are 

selected.  

 

Data Availability  

The code, pre-trained ICoN model parameters, and data sets are available at: 

https://github.com/chang-group/ICoN  
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