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Abstract

Proteins are inherently dynamic, and their conformational ensembles are functionally important
in biology. Large-scale motions may govern protein structure—function relationship, and
numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play
a crucial role in biological function. Investigating conformational ensembles to understand
regulations and disease-related aggregations of IDPs is challenging both experimentally and
computationally. In this paper we first introduced an unsupervised deep learning-based model,
termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational
changes from molecular dynamics (MD) simulation data. Second, we selected interpolating data
points in the learned latent space that rapidly identify novel synthetic conformations with
sophisticated and large-scale sidechains and backbone arrangements. Third, with the highly
dynamic amyloid-B1.42 (AB42) monomer, our deep learning model provided a comprehensive
sampling of AB42’s conformational landscape. Analysis of these synthetic conformations
revealed conformational clusters that can be used to rationalize experimental findings.
Additionally, the method can identify novel conformations with important interactions in
atomistic details that are not included in the training data. New synthetic conformations showed
distinct sidechain rearrangements that are probed by our EPR and amino acid substitution
studies. This approach is highly transferable and can be used for any available data for training.
The work also demonstrated the ability for deep learning to utilize learned natural atomistic

motions in protein conformation sampling.

Introduction

Proteins are complex and have dynamic properties. Conformational ensembles of proteins are
essential for performing biological processes, including enzyme activities, protein folding,
protein-ligand binding, and protein aggregation !*. Characterization of protein conformations
allows researchers to understand protein function, activity, and mechanisms. However, the tasks
may be daunting and are even more challenging for investigating intrinsically disordered proteins
(IDPs), for which numerous conformations can be functionally important. Some IDPs, such as
amyloid-B1-42 (AP42), are related to a number of protein aggregation-related diseases, including

Alzheimer’s disease * . Revealing important conformations with atomistic details is crucial to



fully understand the function of a protein and its regulation involved in basic science,

therapeutics design and biotechnology.

Experimental techniques determine protein structures and probe their dynamics, and
bioinformatics tools such as AlphaFold2 and RoseTTAFold can accurately predict structures
from given protein sequences *°. However, these techniques typically provide a handful of
structures with limited information on dynamics. Advanced computational methods are widely
used to investigate protein dynamics and sample protein conformational ensembles. A powerful
method is all-atom molecular dynamic (MD) simulations, which is based on physical principals
to sample protein conformations and model their dynamics "-8. However, many stable protein
conformations are separated by free energy barriers: an MD run can take excessively long
computational time (i.e., beyond microsecond timescale) to cross energy barriers for sampling
various conformations. Other methods developed to tackle sampling limitations include
conformational search methods, MD-based enhanced sampling techniques, and Monte Carlo
simulations %°12. A popular analysis tool, principal component analysis (PCA), has been used to
extract information from sampled protein conformations to guide conformational search !4,
Low-mode based conformational search methods use normal mode analysis (NMA) to perturb
given structures along their low-mode eigenvectors to generate new conformations '>18,
Although these sampling approaches effectively extend the time scale of MD simulations,

efficiently obtaining adequate conformations for highly flexible protein systems and/or

overcoming significant energy barriers is still challenging.

Artificial intelligence (AI) provides an alternative approach for accelerating the
generation of protein conformational ensembles. Novel machine learning/deep learning (ML/DL)
approaches analyze simulation results to further guide conformational search with enhanced
sampling techniques °2%. ML/DL optimizes coarse-grain models to speed up conformation
transitions with preserved atomistic interactions **°. Several DL models accelerate protein
conformational searches, such as training neural networks to model the distribution of
conformational ensembles with generative modeling >'*°. By training with conformations
obtained from MD simulations, these approaches can quickly generate conformational ensembles

and bypass the kinetic barriers, the bottleneck of MD simulation.



Generative models study conformations of chemical compounds and proteins in various
settings; examples include coarse-grained models and protein conformations presented by a
backbone 2%#!. Ideally, the generative models can find new and thermodynamically stable protein
conformational ensembles not seen in the training dataset obtained from MD simulations, as
demonstrated in recent publications focusing on sampling conformations for IDPs 47,
Nevertheless, proteins have complex conformational ensembles, and many conformational
transitions are driven by backbone motions and, more importantly, sidechain interactions such as
salt bridges, hydrogen bonds, and hydrophobicity. As a result, to find new protein conformations,

features that can accurately describe all possible motions in atomistic details are critical in

generative Al models.

In this study, we present a generative DL model, termed Internal Coordinate Net (ICoN),
which is trained on datasets from MD simulations to identify new conformations efficiently and
accurately for highly flexible protein systems. ICoN uses novel features and an atomistic bond-
angle-torsion (BAT)-based vector representation, VBAT, to smoothly rotate various dihedral
angles that lead to new conformations. Our model learns the physical principles that govern
molecular motions, and the 3D latent space contains the transformations of various degrees of
freedom (DOF), mainly dihedral rotations, to allow for efficient conformational searches.
Essential protein motions analyzed by dihedral Principal Component Analysis (dPCA) are
clearly revealed in the latent space, and generating new conformations is achieved by data-point
interpolation within the latent space. Using a fraction (1%) of MD data as a training set, we
demonstrated that ICoN rapidly found thousands of new, conformationally distinct and
thermodynamically stable conformations for aB-crystallin57-69 and the AB42 monomer (Figure
1) in a few minutes using a single gaming GPU card. Post-analysis of our novel synthetic AB42
monomer conformations revealed various new conformations, including new Arg5-Ala42
contacts and a new Asp23-Lys28 salt bridge not seen in the MD training set but reported in
existing publications. Our synthetic conformations covered reported structures that were
suggested to be less toxic or more prone to oligomerization **->*, Our model provides a
computationally efficient approach to identify new conformations for highly flexible protein
systems. The novel synthetic Af42 monomer conformations also provide insights into Ap42

oligomerization.
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Figure 1. (A) Sequence of 42-residue amyloid beta peptide (AB42). (B) Sequence of 13-residue
aB-crystallin57-69. (C) A synthetic conformation of aB-crystallin57-69 with intramolecular
charge and aromatic ring interactions between Trp60 and Arg69. Red: negative charge residues;
Blue: positive charge residues; Green: polar; Grey: neutral and non-polar residues. (D) A
synthetic conformation of AB42 with all 4 turns A-D. (E) Classical internal bond-angle-torsion
(BAT) coordinate representation (Z-matrix) for a small molecule. Atoms 1-3 are termed root
atoms for this molecule. Atoms i > 3 are defined by (bi, ai, 01), where b, a and t are bond, angle
and torsions, respectively. For example, atom 4 is presented by (b4, a4, 64). The dashed light
gray line shows the smooth rotation of the bond between atoms 2 and 3 (64).

Results

ICoN model architecture, training, and validation.

Molecular representation using the vBAT coordinate. The ICoN model is a latent space-guided

generative Al model trained on protein conformational ensembles to learn physical properties
that govern conformational transitions in MD simulations (Figure 2). Because the dihedral
rotations are the major motions to determine conformations, using BAT to accurately describe
the concerted motions of multiple dihedral rotations is critical. Dihedral rotations have a
periodicity issue, so we used a vector called vBAT to avoid periodicity (Figure 2B and details in
Supplementary Material). All-atom vBAT internal coordinate representation is inherently

equivariant to rotations and translations and can exactly convert vBAT vectors to Cartesian



coordinates without any additional approximation. However, coordinate conversions can be
time-consuming. Thus, our model implemented GPU acceleration to perform coordinate
transformations; converting 5,000 frames from vVBAT to Cartesian coordinates took < 0.2 s for
Ap42. Figure S2 demonstrates the efficiency in coordinate transformations that successfully

avoided a computation bottleneck with the use of internal coordinates.
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Figure 2. Overview of the Internal Coordinate Net (ICoN) network architecture. (A) The input
data are thousands of protein conformations represented by BAT-based vBAT features. The
molecular conformations have 3N-6 degrees of freedom and 4x3(N-3) dimension features, where
N is the number of atoms. The high dimensions are compressed by a series of fully connected
layers into a 3D latent space using an encoder. The entire process is then inverted back to the
original dimensions using a decoder and then converted back to Cartesian coordinates. (B) An
illustration of vBAT features using 4 atoms with indexes, 1, j, k, and 1. The vectors connecting
the atoms _ﬁi]-, ﬁjk, Vi - Ajcand A are unit vectors normalized to the planes constructed by atoms
i-j-k and j-k-1, respectively.

ICoN network architecture and training. The neural network is based on autoencoder

architecture (Figure 2A). Classical BAT coordinates (the Z matrix) have 3N-6 DOF for

presenting the internal motions of a molecule, where N is the number of atoms, and the 6
external translation and rotation DOF are eliminated. Because vBAT uses the vectors instead of

one value for each bond, angle and dihedral DOF, we have 4x3x(N-3) features for each



molecule. As a result, aB-crystallin57-69 and AP42 have 2376 and 7488 features, respectively.
The hyperparameter training in the encoder resulted in 7 layers to reduce a large dimension
representation into 3D, so each molecular conformation can be presented in the 3D latent space
(Figures 2A and S3). The decoding process brought the representation from 3D back to the
original dimensions with the same number of layers but in reverse order. Each conformation is
converted from vBAT to Cartesian coordinates for further analysis. Throughout the iterative
training process, in addition to learning a relationship between a vast number of features, the
network also learns how to meaningfully compress the representation into the lower-dimensional

3D latent space by performing nonlinear dimensionality reduction.

Notably, although this study used 3D latent space for easy observation of conformation
distribution and visualization of interpolation, the network can reduce 4x3x(N-3) features to any
dimension desired by users. We used 3D to achieve efficient training and reduced memory
consumption as well. It took 4 min with one NVIDIA 1080Ti GPU card to perform 15000
epochs for successful training with 10,000 frames of Ap42.

Validation of the models by conformation reconstruction. A successful trained model should

accurately reconstruct a protein conformation from the reduced 3D representation to the original
conformation. To evaluate the accuracy, we presented conformations from our validation set
using the 3D representation and then reconstructed them back to atomistic Cartesian
representation and computed the root mean square deviation (RMSD) of all heavy atoms
between the 2 conformations, the original and reconstructed ones. A few representative
conformations are illustrated in Figure S4: aB-crystallin57-69 has RMSD < 0.9A and AB42 has
RMSD < 1.3A. As shown in Table 1, with our model, both backbone and sidechains
conformations can be accurately reconstructed back to the original input structure, ambient after
large dimensionality reduction in the latent space. We also performed a more detailed
comparisons between the original and reconstructed conformations, such as the distribution of
each dihedral rotation and their correlations, to ensure that all the properties were accurately
reproduced (Figures S5-S8). Notably, both aB-crystallin57-69 and AB42 exhibit large-scale

protein motions included in our training set. The validation demonstrates the robustness of our



model to learn a diverse range of conformational states with high precision, and we can describe

small sidechain rotations accurately.

MD simulations

ICoN model construction/validation

Synthetic Conformations

Step 1 Step 2 Step 3 Step 4
MD force field | # of frames for Validation of Model | # of confs # of # of # of novel
index | & initial training/validation | reconstructed index from initial | confs distinct synthetic
structure conformations, interpolation | within | confs confs
(PDB) average heavy in the latent | energy | (repeat (repeat
atom RMSD space cutoff | eliminated) | with MD
(backbone confs
RMSD) eliminated)
aB-crystalline (0.5 ps)
14sb (Alpha | 5,000/5,000 2.58 A Model I | 99990 97594 | 43484 38425
Seed 1 | Fold2 (1.84 A) (100%) (97.6%) | (43.5%) (38.4%)
predicted
Seed 2 | structure) 10,000 for comparison with synthetic conformations obtained by Model I
AB42
(1 ps for all runs)
MD ff14IDPSFF | 10,000/10,000 3.90 A (3.60 A) | Model 1 | 199990 187487 | 150713 127673
Runl | 2NAO) (100%) (93.7%) | (75.3%) (63.8%)
MD ff14IDPSFF | 10,000/10,000 6.18 A (596 A) | Model 2 | 199990 174012 | 148188 145925
Run2 | (1Z0Q) (100%) 87%) | (74%) (72.9%)
MD ff14SB 10,000/10,000 420 A (3.91 A) | Model 3 | 199990 189652 | 129482 90627
Run3 | (2NAO) (100%) (94.8%) | (64.7%) (45.3%)
MD ff14SB 10,000/10,000 4.15A (3.82A) | Model 4 | 199990 194449 | 166205 148320
Run4 | (1Z0Q) (100%) (94.4%) | (66.2%) (48.3%)
MD ESFF1 10,000/10,000 427 A (4.08 A) | Model 5 | 199990 166552 | 95126 87257
Run5 (100%) (83.3%) | (47.6%) (43.6%)
MD ff14IDPSFF
Runl.1 | (2NAO) 10,000 for comparison with synthetic conformations obtained by Model 1
MD ff14IDPSFF
Runl.2 | 2NAO) 10,000 for comparison with synthetic conformations obtained by Model 1
MD ff14IDPSFF
Runl.3 | 2NAO) 10,000 for comparison with synthetic conformations obtained by Model 1

Table 1. Summary of molecular dynamics (MD) simulations, numbers of MD frames used for
ICoN model training and validation, and numbers of conformations generated from ICoN models
in each step. The hyperparameters of AB42 ICoN model were obtained from dataset MD Runl,
and all Models 1 to 5 use the same hyperparameters. Energy cutoff was -200 and -400 kcal/mol
for aB-crystalline and AB42. Two conformations are treated as repeats when the computed heavy
atom RMSD is smaller than 1 A in Step 3. In Step 4, the RMSD cutoffis 1 A and 1.2 A for aB-

crystalline and AP42, respectively.

Learned physics in the latent space of aB-cristallin57-69

Because our ICoN model learns important dihedral rotations that determine molecular

conformations, the latent space stores information that leads to smooth conformational

transitions between 2 datapoints, such as various sets of concerted dihedral rotations. Moreover,

we can visualize conformation transitions and clusters and can perform data analysis in the 3D




latent space (Figures 3 and S10). We demonstrated that the DL model learned the physics
governing molecular motions, and the information captured in the latent space can be effectively

utilized.

Essential motions of aB-cristallin57-69 revealed in the latent space. We selected 2

conformations in the latent space, Conf indexes #50 and #53, from Figures 3 to examine the
conformational transitions in the latent space. Note that the MD saved one frame every 1 ps, and
we re-saved a frame every 100 ps when preparing our training and validation sets. Therefore,
Conf indexes #50 and #53 (2 red dots in Figure 3D) are significantly different; they present 2
end points from 300-ps time-period MD. To illustrate the conformation transition, we
superimposed 4 conformations (indexes #50 to #53 Figure 3A) and found that the first 6
residues were maintained in a helix secondary structure, and the middle region around Leu9
showed minor but important fluctuations to twist the center of the peptide, whereas the flexible
tail (residues 7 to 13) exhibited greater dynamics. A correlated sidechain movement (i.e.,

sidechains of Leu9 and Met12) was observed during the transitions as well.

In the latent space, we found that the 300-ps interval MD trajectory sampled
conformational jiggling during the transitions (light blue dots in Figure 3D). To extract the
essential motions from the conformation fluctuation, we applied PCA with BAT coordinates to
analyze the major motions from the 300-ps time-period MD to quantify the motions. The first
Principal Component (PC) revealed the major motions, which removed unessential fluctuations
(Figure 3B). Presenting these essential motions in the latent space resulted in a very smooth
curve (green dots in Figure 3D). Note that in the latent space, the PC motions appeared as a non-
linear curve, not a straight line. Figure S10C exhibits more smooth curves for motions following
the second PC and the first + second PC modes, so the latent space recorded similar information
obtained from PCA. As for PCA, our ICoN learned the important DOF that led to
conformational transition (i.e., various sets of concerted dihedral rotations), and the latent space
retained the information from DL. Therefore, interpolation between 2 dots in the latent space can
efficiently sample protein motions that are led by movements from critical DOFs. As illustrated
in Figure 3, the interpolation (black dots in Figure 3D) revealed the learned motions, which also
showed a more rigid helix secondary structure in the first 6 residues and the fluctuations in the

middle region around Leu9 to result in more distinct conformations with smooth transitions



(Figure 3C). Importantly, our model accurately identified the concerted motions shown in both
MD and PCA. These essential motions were in good agreement with those detected by dihedral
PCA and our observation of the MD trajectory. Of note, our vBAT and model can precisely learn

and present very small conformational changes, such as the methyl rotation of Met12.

D
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Figure 3. Conformational transitions of aB-crystallin57-69 peptide. (A) Super-imposed
conformations used for DL training (Conf indexes #50 to #53). (B) Conformational transitions
led by distortions using the first dihedral principal component (PC) mode. (C) Conformational
transitions led by interpolation between training Conf indexes #50 (red dot) and #53 (dark blue
dot). Leu9 and Met12, which have the most fluctuations, are presented in licorice. (D) 3D latent
space from the ICoN model. Light blue dots present conformations saved every 1 ps in MD, with
a total of 300 dots (300-ps simulation length). The MD frames were re-saved every 100 ps for
training, and 4 frames are presented in the plot (red, blue and orange dots). The green dot line
illustrates conformation distortions using the first PC mode, with the conformations shown in
(B). Note that the PC analysis involved using the 300-ps time-period not the whole 500-ns MD
run. Inspired by the green curve, non-linear interpolation between Conf indexes #50 and #53 was
used for conformational search and shown as black dots.

Interpolation-generated synthetic conformations of aB-cristallin57-69. Because ICoN identified

DOF that determine conformational changes, we used the latent space interpolation as a

conformational search engine to find more synthetic conformations. The search was achieved by



interpolation between 2 dots with consecutive indexes (i.e., Conf indexes #10 and #11).
Following the essential motions, we anticipated finding both new conformations and existing
ones sampled by MD. Using the same non-linear interpolation function illustrated in Figure 3D,
10 points were generated for each pair, yielding 99,990 synthetic conformations from
interpolating a total of 9,999 pairs of dots. We first eliminated high-energy conformations, then
each new synthetic conformation was compared with its predecessors and eliminated if it was a
repeat, yielding 43,484 distinct conformations (Table 1). We further compared these synthetic
conformations with the raw MD data with 500,000 frames to identify 38,425 novel synthetic

conformations.

PlE}

Figure 4. Examination of the stability of synthetic conformations using energy distribution
and known conformations. Comparison of energy distribution from conformations of the
original MD run (cyan) and synthetic (orange) conformations for (A) aB-crystallin57-69 and (B)
AB42. Synthetic conformation (orange) similar to a known conformation sampled by other MD
runs (purple) for (C) aB-crystallin57-69 and (D) AB42. The MD runs used for comparison but
not used for training are Seed 2 and MD Runl.1-3 in Table 1.

We also examined the stability of the synthetic conformations quantified by their
conformational energies using the molecular mechanics/generalized Born and surface areas
(MM/GBSA) calculations. Conformations sampled from MD and our deep learning model have

similar energy distribution (Figure 4A), which validates our synthetic conformations as being



thermodynamically stable. In addition, we also compared our synthetic conformations with
conformations obtained by another MD run (Table 1, Seed 2); none of the conformations from
this MD was used in our training set. Our interpolation sampling found similar conformations
found by another MD run Figure 4B, which demonstrates the efficiency and accuracy of the use

of the latent space for conformational sampling.
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Figure 5. Free energy profile on the 2D space of RMSD (y-axis) and radius of gyration (Rg, x-
axis) for AB42. For each pair of comparisons, the top depicts the conformation distribution from
the MD run with frames are resaved every 10 ps and the bottom shows the distribution from
distinct synthetic conformations. Using the same hyperparameters obtained from dataset MD
Runl, Synthetic Models 1-5 was trained with MD frames obtained from MD Runl-5 (A to E),
respectively. MD Runs 1 and 2 used the ff14IDPSFF, MD Runs 3 and 4 used the classical
Amber ff14SB, and MD Run5 used EFFS1 force field. Notably, a highly packed initial
conformation was used in MD Run 5 (Figure S11). The units of the free-energy landscapes are
kcal/mol.

Latent space interpolation-generated synthetic conformations of Ap42

The AB42 monomer exhibits a broad spectrum of conformations, from random coil to more
structured a-helical and B-sheet conformations. Sampling strategies that can accurately model
sidechain motions are crucial because the sidechain arrangements govern the intramolecular
attractions that lead to various local turns and pre-organized shapes for subsequent
oligomerization. Using the same hyperparameters obtained from MD Runl, we used the same
strategy for aB-cristallin57-69 to interpolate 2 consecutive dots in the latent space for MD Runs

1 to 5 (Table 1) to obtain synthetic conformations. The 5 MD runs were initiated by a different



AB42 monomer structure and/or with a different force field. To elucidate the search efficacy, we
plotted the distribution with coordinates of Rg and RMSD (Figure 5) for MD Runl-5 and our
synthetic conformations from Model 1-5 using these MD runs for training. The search using
generative Al efficiently found many new conformations without the need for lengthy MD

simulations (Table 1).

To validate that our synthetic conformations are thermodynamically stable, we again
plotted energy distribution of synthetic conformations found in Model 1 (Figure 4B). We also
compared the synthetic conformations to another 3 MD runs using the same initial structure and
IDP force field (MD Runl1.1-1.3) to examine whether our search could find those sampled by
other MD simulations. Although the AB42 monomer has numerous conformations, we could
identify similar conformations (Figure 4C). In addition to checking the total conformational
energy, we compared each energy component to verify that both bonded and non-bonded terms
have energy distribution similar to those modeled by MD runs (Figure S12 and S13). Notably,
the energy distribution from the synthetic conformations is relatively broader, thereby suggesting
a greater diversity in the sampled conformations, which cover high and low energy regions. The
energy comparison underscores the high quality of structural integrity of the synthetic

conformations.

Analysis and biological implications of novel synthetic AB42 conformation ensembles

Obtaining AP42 monomer conformations is a critical step for understanding the mechanisms of
initial encounters and interactions between monomers, which lead to subsequent oligomerization
and fibrillization. Because the oligomerization steps can be highly sensitive to different
environments (e.g., different membrane, existing fibrils, or ion concentrations), substantially
different monomer conformations may initiate aggregation using different mechanisms in
various environments. Several experiments and modeling work also suggest that some
conformations are prone to be aggregated or non-toxic **>2, Because of various experimental
results regarding the monomer structure—function relationship in AB42 aggregation, we focus on
structures with salt bridges and R5-A42 contacts to demonstrate the utility of the conformational

search results from our generative Al model.



Of note, because our method efficiently sampled numerous low-energy monomer conformations,
we used synthetic conformations found using Model 1 (Table 1) to demonstrate the biological

importance of these conformations revealed by our ICON model.
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Figure 6. Probability of intramolecular contacts of synthetic conformations between Ca atoms of
AP42 and representative conformations with Arg5-Ala42 contacts. (A) Four local bends are
circled: turn A (F4-H6), turn B (E11-H14), turn C (S26-K28), and turn D (V36-G38). Residues
contacting the C-terminal residues are marked in blue squares. Two representative novel
synthetic conformations found in ICoN Model 1 with IDP force field depicting non-polar
contacts between Arg5-Ala42 (B) with turn A and (C) without turn A. Both conformations
utilize turn D to stabilize the C-terminus. (D) A representative novel synthetic conformation
found in Model 3 with FF14SB force field shows an intermediate structure of forming Ap42
tetramer which comprises a six stranded B-sheet with Turn C and hydrophobic core (L17-F20
and [31-L34). (E) A representative novel synthetic conformation from Model 5 with ESFF1
force field shows a structure with Turn B, C and D contributing to the formation of hydrophobic
core. Residues of selection are shown in the van der Waal representation. Positively charged Arg
and non-polar residues are blue and grey, respectively.

Major conformation turns in a global tertiary structural ensemble.

The 127,673 distinct conformations (Table 1) are presented in the pairwise residue contact map
(Figure 6A). Four local bends are marked as turn A (F4-H6), turn B (E11-H14), turn C (S26-
K28), and turn D (V36-G38). We found novel synthetic conformations with all 4 turns (Figure
1D). Turn C has been widely reported in the fibril structures of both AB40% and AB42°¢ , and is
the turn in the commonly referenced “B-turn-f” motif. Cryo-EM studies of brain-derived AB42
fibrils*® reveal that AB42 adopts an S-shaped fold with turns C and D being the two bends in the



letter “S”. Turns A and B are located near the N-terminal, which is highly flexible and believed
to be the metal binding region under abnormal physiological conditions (residues D1 to K16) 7.
Although the conformations/turns and their population are obtained using only Model 1, they
provide an overview of spatial arrangements of the AB42 monomer. Notably, although AB42 is
intrinsically disordered, the protein sequence still can lead to many low-energy and highly
populated conformations. Turn A locates in the highly flexible N-terminus, where mutation
substitutions of Arg5 suppressed the aggregation of Ap42 . Our EPR measurements also
showed distinct spectral features at residue 5, indicating that Arg5 may feature a distinct
structure or interactions as compared with the nearby residues (Figure 7). The novel synthetic
conformations revealed that Arg5 can form interactions with Ala42 with or without the presence
of Turn A, as illustrated in Figures 6B and 7C, respectively. Of note, turn D (V36-G38) is
present alongside, which may help to orient and stabilize the C-terminus to form an interaction
with Arg5 (red circle in Figures 6B-C). Our previous work showed that substituting a nitroxide
spin label compound R1 at positions G37 and G38 altered the kinetics of AB42 fibril formation
38 and these synthetic conformations provide a possible monomer structure to guide future

experimental design.
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Figure 8. Intermediate state with partial hair pin at Turn C conformations which require
minimal conformational arrangement to form Ap42 fibril. Different orientations (direction
indicated with red arrow) of F19 and F20 are observed leading to the formation of fibril
conformation. (A) Crystal structure of hair pin conformation that form AB42 fibril from human
brain (PDB: 7Q4M). (B-D) Novel sytnthetic strucutres are obtained from Model 3 with FF14SB
force field. (B) Type I AP42 fibril with F19 and F20 rotate inward to form hydrophobic pocket.
(C) Type 11 AB42 fibril with F20 rotate inward and F19 rotate outward. (D) Intermedicate states
with F19 and F20 both rotate outside of the hydrophobic pocket.

Existing studies showed that AB42 monomer has numerous conformations, and MD simulations
using initial conformation and/or force field can sample different conformations with few repeats
42434739 Using the hyperparameters obtained from MD Run 1 to train datasets with
conformations different from MD Run2-§, new intermediate states important in oligomerization
were identified with ICoN. For example, as illustrated in Figure 6 and 8, novel synthetic
conformations from the FF14SB force field (Model 3 in Table 1) reveal an intermediate state
with a partial hairpin conformation which only requires minimal conformational arrangement to

form and experimental determined AB42 fibril from human brain >® (Figure 8A). The partial



hairpin conformations pre-organize hydrophobic regions ranging from L17-F20 and 131-L34
with residues F19 or F20 rotate inward to stabilize a hydrophobic core with surrounding
nonpolar residues (Figure 8B-C). Interestingly, different directions of F19 and F20 could
contribute to different types of brain-isolated fibril structures *°, and our ICoN model suggested
the critical roles of their rearrangements. In addition, another partial hairpin conformation that
has potential of forming AB42 tetramer structure, which comprises a six stranded B-sheet with 2
B-strands in the middle and 2 B-turn-B on the side %°, are also observed (Figure S14). In Ap42
tetramer, sidechains of F19 and F20 need to rotate outward to interact with surrounding
monomers (Figure S14A). The partial hairpin conformation at Turn C leads to the formation of
fibril conformations (Figure 6D, 8, and S14). Although the models were constructed using MD
simulations for monomer, our synthetic conformations suggest a highly plausible intermediate
state during fibril formation. Furthermore, novel synthetic conformations from ESFF1 force field
(Model S in Table 1) show that turn C and turn D create highly packed hydrophobic regions
prone to oligomerization. Specifically, we observed that V18, F20, 132, and L34 form a
hydrophobic core (Figure 6E). Notably, unlike hydrogen bonds which are highly specific with
additional geometry restraints, hydrophobic regions usually allow fluid-like sidechain
movements to retain their flexibility. This different partial hairpin conformation from Figure 6D
again preorganized the hydrophobic regions and preserve conformational plasticity for

oligomerization.

Presence of salt bridges in toxic and less toxic monomer conformations. Salt bridges play an

important role in providing intra-molecular attractions and conformational specificity that
directly relate to AP42 aggregation. This non-covalent interaction forms when sidechains of
oppositely charged residues are close enough to each other to experience electrostatic attractions.
Therefore, protein structures must be described with precise atomistic details and sidechain
motions sampled accurately. Although the D23-K28 salt bridge did not exist in the 1-us MD
Runl used in our training set, by using interpolation in the latent space, the model sampled novel
synthetic conformations with a new salt bridge, D23-K28 (Figure 9), which is reported to
promote aggregation **. Experiments suggested the importance of this salt bridge, but the

conformation ensemble was never determined experimentally. The novel synthetic



conformations revealed distinctly different rearrangements with the D23-K28 salt bridge,
ranging from more extended to highly packed conformations (Figure 9). The D23-K28

constraint results in Turn C, which is important for oligomerization.
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Figure 9. Novel synthetic conformations with intramolecular salt bridges. Top: structures
with D23-K28 salt bridge. (A) and (B) show an open form with different local arrangements near
turns B and C, and (C) reveals a U-shape, partial hairpin conformation. Bottom: structures with
E22-K28 salt bridge with open (D), partial open (B) and compact (C) conformations.

The synthetic conformations revealed novel structures with the salt bridge E22-K28
(Figures 9D-F). This salt bridge was reported to prevent a toxic turn at positions E22 and D23,
for potentially a less-toxic monomer ®!. The synthetic conformation presents key features
suggested by experiments, with no turn at positions 22 and 23 when the salt bridge E22-K28
exists (Figure 9). Nevertheless, other publications suggested that the salt bridge E22-K28 may
help form other intramolecular contacts (e.g., contacts between the C-terminus and Arg5) to
stabilize a hairpin structure and promote dimer formation *°. Although which salt bridges
promote or inhibit monomer aggregation is debatable, our novel synthetic conformations provide
various possible sidechain rearrangements and salt-bridge conformations for further interpreting

experiments in understanding aggregation mechanisms.



Comparing ICoN with Phanto-IDP

Here we compare the conformational sampling using ICoN and Phanto-IDP, a new DL model
developed by the Chen’s group which can efficiently sample backbone conformations of IDPs.
Using backbone only representation, Phanto-IDP utilizes a graph-based encoder and a variational
layer to describe protein features. The variational layer sample neighboring area of points in
latent space with mean, stand deviation, random variable and temperature to yield impressive
sampling results with high diversity in a recent publication*’. In this paper, the Chen group used
MD Run 5 to train and generate new conformations with Phanto-IDP, where the raw data had
backbone only representation. For comparison, we added sidechains to their synthetic backbone
conformations and carried out minimization and subsequent steps to obtain distinct newly
synthetic conformations. Using the same MD Run 5, we applied the hyperparameters obtained
from our MD Run 1 to sample new synthetic conformations with ICoN (Table 1). Figure S15
presents similar plot as Figure 7 to compare the free energy profile on the RMSD and Rg for
AP42 for conformations from MD and the novel synthetic ones. Using the graph-based
representation for AB42 backbone, Phanto-IDP demonstrated a great reconstruction accuracy
(Table S1) and conformational sampling. Due to the nature of use of mean and standard
deviation in variational layer, Phanto-IDP focuses on searching new conformations close to
conformations that are highly populated in a MD simulation. In contrast, ICoN samples
conformations by interpolating data points in the latent space without discriminating popular
conformations or rare events modeled by MD, resulting in a broad range of novel synthetic
conformations. As illustrated in Figure S16, ICoN identified many new conformations in regions
shown as transient states in MD Run5. These newly sampled sidechain rearrangements form a
hydrophobic core with Turns B, C and D, where similar hydrophobic regions and turns have
been observed in several neurotoxic conformations determined by experiments (Figure 6E and
S16). These results display the strength that using internal coordinates to represent both protein
backbone and sidechains allows efficient combination of dihedral rotations in the latent space to

sample a wide variety of new and biological relevant synthetic conformations.



Discussion

In this work, we demonstrated the capability of a deep learning model to directly generate new
protein conformational ensembles by learning the physics of protein motions. Our approach
utilized a neural network trained with protein conformations from classical MD simulations with
all-atom representation in explicit solvent. We saved frames from MD trajectories without
further processing, reducing protein atomic coordinates to a 3D latent space, where each
conformation is a data point that can be accurately reconstructed back into a protein structure.
ICoN uses nonlinear interpolation between 2 data points in the 3D latent space to guide the
search for conformational changes, identifying natural molecular motions. The vector-based
BAT (VBAT) feature overcomes problems with Cartesian coordinates that fail to smoothly
present dihedral rotation during conformation sampling, which is crucial in sampling large-scale
motions, especially in IDPs. vBAT also effectively handles dihedral periodicity. The model is
highly efficient for identifying novel synthetic AB42 conformation ensembles not seen in the MD
trajectory. These ensembles have different large-scale motions (i.e., new compact conformations)

and detailed sidechain rearrangements such as forming a new salt bridge between D23 and K28.

The synthetic AB42 conformations sampled by the ICoN model provide a comprehensive
view of the conformational landscape for A42 monomers. For example, the ICoON model finds
salt bridges involving residues E22 or D23 (Figure 8), both of which are hotspots for familial
mutations in Alzheimer’s disease. The ICoN model also identifies four local bends at residue
positions 4-6, 11-14, 26-28, and 36-38 (Figures 1D and 6). Although all 4 turns have been
previously observed in isolation, it is worth noting that the experimentally determined Ap42
structures do not contain all these turns in the same structure. For example, turn D has been
found in the brain-derived AP42 fibril structures®® , but is absent in the AP42 oligomers formed
in the presence of detergents®® . The co-occurrence of different turns in the synthetic AB42
conformations may help decode the AP aggregation pathways that lead to the formation of

specific oligomers and fibrils.

Training of the ICON model requires sufficient protein conformations, so the DL can
reveal natural motions of the protein to guide the search toward new low-energy structures. Since
experimentally determined structures typically cover only a small proportion of the overall

conformation ensembles, we rely on MD simulations. Force-field parameters used in MD may



affect the performance in sampling. For example, the model trained by MD runs using a less
flexible ff14SB yielded fewer novel synthetic conformations (Table 1). However, our training
set did not need to cover the complete conformational distribution. As long as conformation
fluctuation governed by key dihedral rotations can be included in the training set, the model can
identify these key elements for guiding the conformational search to generate novel synthetic

conformations.

Conceptually, ICoN performs as a conformational search method rather than a
deterministic simulation method. Therefore, the search results do not directly reflect the
equilibrium distributions of protein conformations. While structured proteins have highly stable
global energy minima, IDPs exhibit numerous fluctuating heterogeneous conformations with
similar energy. The IDPs can be highly sensitive to their environment, making it impractical to
precisely reproduce physiological conditions in experiments or simulations. Therefore,
thoroughly finding IDP conformational ensembles is more practical and useful instead of aiming
for the population distribution in equilibrium under specific physiological environment.
Importantly, unlike structured proteins whose native structures are functionally important, meta-
stable conformations of IDPs can be crucial in performing the biological function. For example,
experiments showed that AB42 monomer aggregation has a rate-limiting nucleation-dependent
polymerization process >, which suggests that the highly populated monomer conformations
might not be the ones that drive nucleation, and the monomers are not pre-organized as a ready-
to-aggregate conformation. Therefore, as compared with the conformational search for structure
proteins, thoroughly sampling meta-stable conformations for IDPs is critical. As demonstrated in
this study, the novel synthetic Af42 monomer conformations provide atomistic details to support
several experimental observations, which also bring insights into mechanisms of

oligomerization.

Conformational changes of biomolecules follow principles of physics, which are
consequences of different arrangements of atoms rotating around a set of single bonds, the
internal degrees of freedom having the highest flexibility. Both PCA and NMA describe the
natural motions of a molecule, which are commonly used to determine essential protein
dynamics and guide conformational sampling. The two techniques are linear transforms that

extract the most important elements in a data matrix, a covariance or Hessian matrix. However,



real protein systems can have very complicated and higher-order correlations that have intrinsic
nonlinear effects and may not be well described using standard PCA or NMA. Moreover,
although PC space is commonly used for data analysis, there is no function to convert
manipulated data points in PC space back to its atomistic protein structure. The activation
function used in the neural network adds nonlinear effects to process nonlinear features. With
use of BAT, a transition between two proteins can be achieved by interpolating two data points
(conformations) in the latent space. As illustrated in Figure 4, if one obtains conformations
along the smooth green curve in the latent space, the conformational changes reproduce the
motions following the first PC mode. As for the natural motions identified by PCA or NMA, the
deep learning algorithm learns natural motions of the protein system (black dot line in Figure 4),

and new conformations can be found by processing the interpolations in the latent space.

Although the ICoN model is fast, taking a few minutes to train 10,000 frames of Ap42
and hours to perform quick energy minimization for the synthetic conformations generated from
latent space interpolation using a GPU card, the training set is from a physics-based MD
sampling. It typically takes days, if not weeks, to perform sufficiently long MD simulations to
obtain the training set. To speed up the sampling, one can apply the ICoN model for preliminary
results to select dissimilar protein conformations to seed more MD runs '°. An advantage in
using BAT-based coordinates is that one can easily select a set of dihedral angles that determine
the motions of interest for training, instead of using all DOF. For small proteins or peptides such
as AP42 and aB-crystallin57-69, our classical internal BAT (Z-matrix)-based vBAT nicely
presents local sidechain rearrangements and large-scale backbone motions. However, for larger
(>200 residues) proteins, rotations of some dihedral angles near the root atoms may result in
unrealistic motions on the far end of the protein. The issue can be addressed easily by using
multilayer BAT coordinates, assigning multiple fragments/chains for a protein or multi-protein
complex. Also, reconnecting fragments with pseudo-DOF can avoid the accumulated
dependence problem 2. Future work will implement the multilayer BAT coordinates to eliminate
the protein size limitation when building the ICoN model. Various interpolation and
extrapolation strategies in the latent space will be examined for generating novel synthetic

conformations as well.



Methods

All-atom Molecular Dynamics Simulations and Preparation of Training and Validation

Data Sets

MD runl-4 were performed using the AMBER20 package using either ff14SB or ff14IDPSFF
force fields (Table 1) with GPU acceleration . The systems were simulated using TIP3P
explicit solvent model * at temperature of 298K with NPT ensemble. 12 A cutoff was used for
short range non-bonded interactions and the long-range electrostatic interactions were computed
by the particle mesh Ewald method (PME) . MD run5 with ESFF1 force field, another IDP

specific force field, is obtained from Chen’s group *7-°.

Ap42

MD Runl was initiated using PDB: 2NAO with ff14IDPSFF force field (Table 1). Each frame
was saved at 1-ps time integral which made up a total of 1,000,000 frames. Other MD
trajectories using either PDB 2NAO or 1Z0Q as the initial structure were obtained from our
previous work and detailed in Table 1 *3-*¢7. Conformations of MD Run1 to 5 were used for
training, validation, sampling conformations from latent space and generate synthetic
conformations, while MD Run1.1 to 1.3 were utilized for pairwise RMSD search for synthetic

conformations obtained by Model 1 (Table 1).
ap-crystallin57-69

AlphaFold2 computed structure of ap-crystallin57-69 (PDB: AF_AFP02511F1) was used as
initial structure for MD simulations. Two randomly seeded 500-ns MD simulations were
obtained from our previous work, where each frame was collected at 1-ps interval which made
up 500,000 frames . Conformations of Seed1 (Table 1) were used for training, validation, and
sampling conformations from latent space, while Seed2 was utilized for pairwise RMSD search

for synthetic conformations.
Preparation of training and validation data sets

To construct our dataset for [ICON model training, we saved 1 frame every 100-ps starting from
0-ps of AB42 MD Runl-5 (10,000 conformations; 1% of raw MD) to prepare training sets.
Similarly, we saved 1 frame every 100-ps starting from frame 50-ps of AB42 MD Runl-5 for



validation sets. Similar approach is used for ap-crystallin57-69 Seed1, where 1 frame every 50-
ps starting from 0-ps (5,000 conformations; 1% of raw MD) used for training, and 1 frame every
50-ps starting from 25-ps used for validation. This ensures training and validation datasets are
separated by 50-ps and 25-ps time interval for AB42 and aB-crystallin57-69 respectively. Details
of other training and validation datasets are shown in Table 1. This approach allows training a
model from minimal amount of input data yet generate numerous conformations with extended

conformational space.

Dihedral PCA (dPCA)
To extract conformations with major protein motions, we utilized dihedral Principal Component

Analysis (dPCA) employing torsion angles with in-house code. The resulting conformations,
derived from the first three principal components, were then projected onto a latent space using
the IcoN model in order to get insight on conformational transition of the af3-crystallin57-69 300-
ps trajectory, composed of 300 frames. Notably, the transitions observed in the latent space,
governed by principal component modes, manifested as smooth nonlinear trajectories.

Consequently, we opted for nonlinear interpolation to produce synthetic conformations.

The dPCA calculation involves mapping torsion angles to a unit circle using trigonometric
functions. This enables accurate estimation of differences (involving subtraction) and averages
(involving summation) during the construction of the covariance matrix, thereby preventing

erroneous computation of their correlation at the discontinuity margin (£180° or 360°/0°) 627277,

Protein Structure Representation
Classical Bond-Angle-Torsion coordinates

Bond Angle Torsion (BAT) is the internal coordinate representation 7!

, where "bond" denotes
the distance between a pair of bonded atoms, "angle" refers to the bond angle between pairs of
bonds connected to a central atom, and "torsion" indicates the dihedral angle formed by four
bonded atoms via three bonds. Specifically, the dihedral angle is defined as the angle between
the plane containing atoms (i, j, k) and another plane containing atoms (j, k, 1) (Figure 1E). BAT
coordinates can be accurately transformed back to all atom Cartesian coordinates. In this, the
placement of each atom i1 > 3 that is not bounded to atom 2 is specified by its bond length (by),

bond angle (ai), and dihedral angle (0;) with respect to three other atoms that are bonded in



sequence and whose positions are already defined (details in SI). Three terminal atoms,
designated as root-based atoms, are used to initiate conversion from BAT to Cartesian. Root

based atoms carry six external degrees of freedom such as global translations and rotations.

Vector Representation of BAT (vBAT)

Although BAT coordinates effectively capture concerted motions, they suffer from a periodicity
problem. Dihedral rotation from 179° to -179° is actually a 2° shift in angular space. However,
the basic arithmetic operation used in computing a covariance matrix results in a large, 179°-(-
179°) = 358°, rotation "%. Hence, we used vector representation of BAT coordinates termed
vBAT as input features to ICoN model. The vBAT internal coordinate representation is
equivariant under global translations and rotations, and thus provided strong inductive bias for
our ICoN model. Furthermore, compared to other structural representations such as Anchored
Cartesian ** or PCA based representations 3, internal coordinate representation is independent of
reference structure. A detailed description of vBAT computation is provided in this section and

in Supplementary Information.

For a set of four bonded atoms with atom indexes 1, j, k, and 1 (Figure 2B), we defined three
bond vectors vij, ik, and v, that are the relative positions between the atoms. The unit vectors
that are normal to the plane made by a pair of neighboring bond vectors defined vector features,
denoted as 7;; and 7y,

—l?inI_i)jk —EjkxT;kl (1)
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Riji =
VvBAT vector features comprising 7y, Ry, ¥;j, and v, were used as an input to [CoN model.
When sampling conformations in latent space, all external degrees of freedom (root-based
coordinates) were inferred from the reference conformation. Sampled features #;jy, %, U;;, and
vy, were first converted to bond angles, and torsions, and then transformed back to Cartesian
coordinates in large batches using a highly optimized GPU implementation (Figure S2). Since
changes in bond length are very minimal throughout MD simulations, we used fixed bond length

inferring from the reference structure for all generated conformations.



Model Architecture and Training

Model Architecture

The ICoN model is an autoencoder type architecture based on fully connected neural network
(Figure 2A) trained on MD data to directly output all atom protein conformations. The model is
designed to compress an input representation into lower dimensional latent space (3D) with an
encoder that can be directly visualized. These points representing conformations in 3D latent

space are decompressed back to the original input dimension with decoder.

Initially, vBAT vectors were flattened followed by concatenation into a high dimensional
array to use as input features to the ICoN model. As a result, we have 4x3x(N-3) features for
each molecule 2376, and 7488 features for aB-crystallin57-69 and ap42 respectively. The
activation units were gradually reduced to 3-dimensional latent space in seven layers, where each
molecular conformation can be presented in the 3D latent space, as illustrated in Figure 2A. For
both systems, the encoding process reduced the dimension from nr, to n¢4, ng/8 , ng/16, ng/32,
ni/64, ng64, and 3, where nris the total number of input features. Then, the decoding process
brought the representation from 3D to 2376 dimension with the same number of layers but

reverse the order.

The LeakyReLU activation function was applied to all layers except the last layer. Layer
normalization is applied in the second layer. To prevent overfitting, 10% of the weights were
randomly set to zero in the third layer, which led to better convergence of validation loss. The
decoder takes the latent vector as input and decompresses it back to its original feature
dimension. The decoder also featured LeakyReLU nonlinearity but did not include any layer
normalization or dropout layers. The bias units are omitted aiming to minimize the model's
parameter count. Meanwhile, all model parameters were initialized through the Xavier Uniform
weight initialization method, which is known to enhance training stability and efficiency . The
total count of model parameters utilized is 3,294,964 for aB-crystallin57-69 and 32,721,156 for
aP42. Throughout the iterative training process, in addition to learning a relationship between
vast number of features, the network also learns how to meaningfully compress the

representation into the lower dimensional 3D latent space by performing nonlinear



dimensionality reduction. Each conformation is converted from vBAT to Cartesian for further

analysis.

Loss Function

The combination of L1 and L2 loss functions, the Smooth L1 loss, was used to minimize the
difference between the model output (yi) and the original input (Xi). The equation for the smooth
L1 loss function, L, is given below (Eq. 2):

Ga=yd)? o
L= 25 Jifle —yil < B )

|x; — yi| — 0.58, otherwise
where, (xi-yi)? is L2 loss and [xi-yi| is L1 loss.

The L1 and L2 functions intersect at f=1.0 resulting in a smooth, continuous loss function that is
less sensitive to outliers compared to the L1 loss. However, for larger errors, the function
transitions to an L1 loss, ensuring robustness to extreme values. As a result, using Smooth L1

loss can lead to more stable training and better convergence.

Optimization was performed using the Adam optimizer ' for both protein systems. For Ap42
training, the learning rate was manually reduced from 0.002 to 0.001 after 5000 iterations,
resulting in a total of 10,000 training iterations. The learning rate was kept constant at 0.001 for
af-crystallin57-69, comprising a total of 5000 training iterations. We fed 200 conformations in
mini-batches per iteration to the model, randomly selecting frames from the data pool during
each training iteration. Training was terminated upon convergence of both the training and
validation loss, a process that took a few minutes for both systems. The MDAnalysis Python

library 7° used as the tool of choice for reading and writing trajectories.
Evaluation of reconstructed conformations

Reconstruction accuracy was measured by computing the RMSD of all heavy atoms (all non-
hydrogen atoms) and backbone atoms (N, Ca, C, and O atoms) between the original and

reconstructed conformations (Table 1) (see SI for details).

Implementation



In this study, we employed the PyTorch library to implement all deep learning algorithms 76
MDAnalysis, a Python library, facilitated MD trajectory input/output operations and torsion list
construction” . Leveraging the torch tensor data structure in PyTorch, we implemented GPU-
optimized BAT and vBAT calculations. The code and pre-trained ICoN model parameters can be

accessed at the following link: https://github.com/chang-group/ICoN

Generation of Novel Conformations

In this process we have 4 steps. The first step is interpolation. We first encode training and
validation data set into the latent space. Then, non-linear interpolation is performed between
each pair of consecutive points in 3D latent space. 10 points were interpolated from each
consecutive pair of points yielding a total of 19,9990 and 99,990 interpolated conformations for
AB42 MD-Runl and af-crystallin57-69-Seed1, respectively (Table 1). In the second step, we
refine the generated structures through minimization to avoid potential atomic clashes. Steps three
and four remove self-repeats and repeats with raw MD to ensure the creation of novel and unique

synthetic conformations (see details of each step in SI).

Analysis of synthetic conformations

Free energy profiles

To derive free energy profiles, we initially constructed a two-dimensional histogram by binning
the radius of gyration (Rg) and backbone root mean squared deviation (RMSD) of protein
conformations with respect to a reference structure. Subsequently, we determined the normalized
population (P) for each bin throughout the entire trajectory. The free energy values were then
computed using the equation F = -kgT log(P), where kg represents the Boltzmann constant and T

is a room temperature.

Contact maps
The contact maps were generated by applying a cutoff of 6.5 A to all intramolecular distances
between C-alpha positions. A contact density of one is assigned when a contact is formed, and

zero otherwise, for each frame. Local contact densities of residue pairs with indexes i and j,


https://github.com/chang-group/ICoN

where [i-j| <4 were set to zero. The average across all frames (conformations) yielded the contact

probability between the pairs of residues.

AP42 turn characterization

Four local turns have been identified as turn A (F4-H6), turn B (E11-H14), turn C (S26-K28),
and turn D (V36-G38). To selectively isolate conformations characterized by turns occurring in
specific regions, we initially identified residue pairs exhibiting a high pair contact density in
proximity to the corresponding turn region, as depicted in contact map of Figure 7.
Subsequently, a turn was deemed to be formed if the C-alpha distance between the selected pair
of residues was less than 6.5 A. Conversely, a turn was classified as not formed when the contact
distance exceeded 9.0 A. For turns A, B, C, and D, the residue pairs utilized for contact
identification are Ala2:Asp7, Tyr10:Gly15, Val24:GIn29, and Gly33:Val40, respectively are

selected.

Data Availability
The code, pre-trained ICoN model parameters, and data sets are available at:

https://github.com/chang-group/ICoN
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