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Abstract—Hybrid beamforming (HBF) is a key enabler for
massive multiple-input multiple-output (MIMO) systems thanks
to its capability to maintain significant spatial multiplexing gains
with low hardware cost and power consumption. However, HBF
optimizations are often challenging due to the nonconvexity and
highly coupled analog and digital beamformers. In this paper,
we propose an efficient HBF method based on deep unfolding
to maximize the sum rate of large multiuser MIMO systems.
We first derive closed-form expressions for the gradients of the
sum rate with respect to the analog and digital beamformers to
develop a projected gradient ascent (PGA) framework. We then
incorporate this framework with the deep unfolding technique in
an unfolded PGA deep neural network, which efficiently outputs
reliable hybrid beamformers with low complexity and fast ex-
ecution thanks to the well-trained hyperparameters. Numerical
results show that the proposed method converges much faster
than the conventional PGA scheme and significantly outperforms
the conventional PGA and the successive convex approximation
counterparts.

Index Terms—mmWave, hybrid beamforming, massive MIMO,
deep learning, Al, deep unfolding.

I. INTRODUCTION

High spatial beamforming gains offered by large arrays
in massive multiple-input multiple-output (MIMO) systems
can efficiently compensate for the severe propagation loss in
millimeter-wave (mmWave) channels [1]. In mmWave massive
MIMO systems, hybrid beamforming (HBF) transceivers can
maintain significant beamforming gains with reduced hardware
cost and power consumption with respect to the conventional
fully digital beamformers [2]-[5]. However, HBF designs and
optimization problems are often highly challenging due to
constant modulus constraints for analog beamforming coeffi-
cients and strongly coupled variables [6], [7]. Conventional
HBF methods, such as Riemannian manifold minimization
(RMM) [6] and alternating optimization (AO) [7] ensure good
performance. However, they have slow convergence and high
computational complexity [8], [9], which can be prohibitive
for practical applications.

A potential solution to avoid cumbersome numerical al-
gorithms in wireless communications systems is to leverage
the learning capabilities of deep learning (DL) models [10],
[11]. For example, deep neural networks (DNNs) [12]-[14]
and/or convolutional neural networks (CNNSs) [15]-[18] can be
built and trained to generate HBF beamformers. Such methods
usually lead to black-box models, which can offer satisfac-
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tory performance but lack explainability and have limitations
on resource constraints, long training time, and complicated
tuning of hyper-parameters [19], [20]. In contrast, model-
based machine learning methods are developed based on both
expert knowledge and learning capability of DL, offering more
flexibility to configure and optimize the learning model [9],
[11], [21]-[23]. A typical model-based learning technique is
deep unfolding [9], [20], [24]. It constructs a DNN unrolling
a well-developed iterative optimizer. Based on this advantage,
efficient deep unfolding models have been proposed [25]-
[28] for HBF designs with reduced feedback and complexity
and improved convergence speed. However, these schemes
require the implementation of highly-parameterized DNNs
[25] and/or multiple CNNs [27]. A projected gradient ascent
(PGA)-based fast and robust deep unfolding HBF design was
proposed in [26] for broadcast systems. In [8] and [9], hybrid
beamformers for point-to-point mmWave and THz massive
MIMO systems were developed via unfolding the Ao and lease
square methods. However, these unfolding methods are not
applicable to multiuser scenarios.

In this work, we consider the downlink of a multiuser mas-
sive MIMO system, where the base station (BS) is equipped
with a hybrid analog-digital beamformer. For the challenging
HBF design, we propose a deep unfolded PGA method that
unrolls the PGA optimizer [26]. Unlike [26], we herein in-
vestigate a practical downlink multiuser scenario, wherein the
hybrid precoders need to combat the inter-user interference to
maximize the system sum rate. We first derive the closed-form
gradients of the system sum rate with respect to the analog
and digital precoders. These allow us to develop the general
iterative PGA framework for calculating the precoders in an
alternating manner. This scheme can offer good performance,
but its convergence is slow, which causes high complexity
and latency. Therefore, we develop a deep unfolded PGA
model to efficiently output the precoders within a fixed and
limited number of iterations. Our simulation results show that
the proposed unfolded PGA scheme performs much faster
than its conventional counterparts while achieving substantial
performance improvements compared to the combined suc-
cessive convex approximation (SCA) and RMM approaches.
In particular, the unfolded PGA scheme requires only a few
iterations to converge to the same objective value attained by
the conventional PGA with 30 iterations.
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II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

We consider a downlink multiuser MIMO system, where a
base station (BS) equipped with /N antennas serves K single-
antenna users (UEs). The BS employs a fully connected HBF
architecture with analog precoder F € CN*M and digital
precoder W = [w1, Wy, ..., wg| € CM*E where M is the
number of RF chains. The transmit power constraint is given as
HFW||2f = P,, where ||H2F is the Frobenius norm of a matrix.
We denote by s = [s1,52,...,5K] € CEXL the transmitted
vector from the BS, with s, and wy, being the symbol and
precoding vectors intended for UE k. The received signal at
UE k is given by

K
=h}F hj,
Yk Kt WkSK + kzg#

where ny, ~ CN(0,02) is additive white Gaussian noise, and
h, € CVN*1 is the channel vector from the BS to UE k.
The channel hj is modeled following the extended Saleh-
Valenzuela model [6], [7]. Thus, we can express hy as [6]

Fwysp + nyg, (D

P
hi = > apral(dpr), )
p=1

where P is the number of propagation paths, oy, and ¢y, are
the complex gain and angle of departure of the p-th path to
the k-th user, respectively. Furthermore, a € CN*1 denotes the
transmit array response vectors. Assuming that the BS deploys
a uniform linear array (ULA) with half-wavelength antenna
spacing, we have [6]

1
a(ppk) = ﬁ

B. Problem Formulation

. . . . T
[17 ITsn(@) | oIm(N=Dsinope)| - (3)

Based on (1), the achievable sum rate of the system is given

K 2
W F
R=Ylog 14+ — L w’“‘Q @
k=1 > ozk MEFwWe|” + 02

We aim to find the HBF design that maximizes R, formulated
as:

as

maximize R (5a)
subject to  |[Flpm| = 1,Vn,m, (5b)
|[FW|% = P, (5¢)

where (5b) enforces the unity modulus of the analog precoding
coefficients, and (5c) constrains the transmit power to be
equal to the power budget P;. Problem (5) is nonconvex
due to the constant modulus constraint, while F and W are
highly coupled in the objective function and constraint (5c).
Therefore, this problem is challenging to solve. Next, we
develop the PGA procedure and the deep unfolded PGA model
solving (5).

III. PROPOSED UNFOLDED PGA DESIGN
A. PGA Procedure

We leverage the PGA method in combination with AO.
Specifically, in each iteration of the PGA procedure, one
precoder is solved with the other fixed. For a fixed W, F
can be updated at the (¢ 4 1)-th iteration as

Firy = F +uoVeR| (6)
= ()
F 3 nm
[F(z+1)]nm = %7 Vn7m7 (7)
|[F(i+1)]nm

where Vz R is the gradient of the sum rate R with respect to
Z. Similarly, given F, W can be updated at iteration ¢ + 1 as:
W) = Wi + Ao YwE| : 8
) =Wao H Ao VWl ®)

Wit

HF iy Wiy || 2

In (6) and (8), {(;), A(i)} are the step sizes. Furthermore, the
solutions to F' and W are projected into the feasible space in
(7) and (9). The closed-form gradients Vg R and Vw R are
derived in the following theorem.

Theorem 1: The gradients of the achievable rate with
respect to the analog and digital precoders, i.e., V¢ R and
Vw R, are given by

o Z HkFV B H,FV;
" tr(FVF'Hy) + 02 te(FV F*Hy) + 02 )’

Wi = ©)

(10)
K — —
VwR=Y" H.W - Hi: W
VT L\ u(WWiH) + 02 te(WWHHR) + 02 )
(11)

where

H; 2 h;h}, H, £ F'H,F,
VE2WW" V2 W, W/,

and Wj € CM*X jg obtained by replacing the k-th column
of W with all zeros.
Proof: See Appendix A. (]

B. Unfolded PGA Scheme

1) Network Structure and Training: The performance and
convergence of the PGA procedure in (6)-(9) are critically
affected by the step sizes p = {u() [ {/\()
Manually determining {u,)\} may not ensure an expected
convergence while employing a line search and backtracking
to optimize them would require excessively high additional
computational and time complexity, especially in massive
MIMO systems. Instead, we propose leveraging the learning
capability of DNNs to train and tune the hyperparameters
{p, A} to enable good convergence of the PGA scheme. To
this end, we incorporate [ iterations of the PGA procedure into
I layers of a deep unfolded DNN model, which is illustrated
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Fig. 1. Tllustration of the (i + 1)-th layer of the proposed unfolded PGA
model.

Algorithm 1 Proposed HBF Design

Input: H, P;, w, and the trained step sizes {, A}.
QOutput: F and W
1: Initialization: Initialize {F oy, W)} based on (12) and (13).
2: fori=0—1—1do
3: Set F(i,O) = F(i).
4 forj=0—J—1do
5 Compute gradient Ve R at (F, W) = (F(; ;), W(;)) based

on (10).
6: Update F; ;1) based on (6) and (7).
7:  end for
8:  Set F(;y1) = F(4,5) and apply the projection in (7).
9:  Compute gradient Vw R at (F, W) = (F(;41), W(;)) based
on (11).
10:  Obtain W ;1) based on (8) and (9).
11: end for

12: return F ;) and Wy as the solution to F and W.

in Fig. 1. This approach follows the updating process in (6)—
(9). More specifically, the (i + 1)-th layer takes {F;y, W},
H = |hy,...,hg]", P, and o2 as input data, and outputs
{F(i+1), W(i+1)}. To train the DNN, the loss function is set

to
K 2
h'F NWE(r
[,([,L,)\): E 10g2 <1+ K ’ ]1 &) ()‘2 5 |
k=1 Dotk |hkF(I)Wj(I)’ + oy

based on (4). The loss L(p,A) is a function of the train-
able step sizes {p,A} because {F(;), W(;)} depends on
{Fi) =g, {W()}i g, and {g, A}. The unfolded PGA model
is trained to optimize {gt, A} to maximize R within a predeter-
mined number of layers, i.e., I. This is unsupervised training
and does not require any labels.

2) Overall HBF Design: We outline the proposed HBF
design based on the unfolded PGA scheme in Algorithm 1.
First, the analog precoder is initialized as [29]

[F (0)]nm = e, (12)

where 1, is the phase of the (n,m)-th entries of H =
[hy,..., hg]. This offers large array gains as the phases of
the analog precoder are aligned well with the channel. With
F (o). the initial solution to the digital precoder is set to

With (13), W(O) has the least-squares distance to the zero-
forcing digital precoder [24]. The unfolded model uses the
trained step sizes {p, A} to perform the updates in (6)—(8)
and the projections (7) and (9), as outlined in steps 2-11
of Algorithm 1. Specifically, steps 3-8 compute the output
F(;11) over the J layers. Then, W ;) is obtained in step 10
based on the updated F ;). The outcome of the algorithm is
the final output of the unfolded PGA model. Here, compared
to W, F is updated over more iterations to ensure that the
updating speed of these two are comparable. Indeed, our
numerical results show that the gradient of R with respect to
W is much larger than that with respect to F' in magnitudes.
We refer readers to [24] for more details on this.

3) Complexity Analysis: We herein present the complexity
analysis of Algorithm 1. First, note that V and Vj are
unchanged over J inner iterations of updating F, while W is
of size (M x K') with M, K < N. Therefore, the computation
of VFR and VwDR requires most of the complexity of
Algorithm 1. In (10), computing H,F requires a complexity
of only O(N M) because H.F = h;hiF, ie., the term h}F
can be computed first before the right-multiplication with hy.
Therefore, the complexity of computing H,FV is O(NM?).
Furthermore, the complexity to compute trace{FVF“I:Ik} is
only O(NM). This is because VF"H; = (H,FV)", and
H,FV has already been computed. Thus, the complexity for
computing the first term in (10) is O(NM?K). The total
complexity in to obtain (10) is still O(NM?K) because
the two terms in (10) have the same complexity. Thus, the
overall complexity to obtain F is O(IJ max(NM?K, N?K)).
Similarly, we can obtain the complexity of determining W as
O(I max(M?K? N?K)). Because N > K and NM?K >
M?K?, the complexity required for F dominates that for
W. Thus, the overall computational load of Algorithm 1 is
O(IJmax(NM?K, N?K)).

I'V. NUMERICAL RESULTS

In the simulations, we assume KX = M = 4 and N = 32.
The channels for training and testing are generated based on
(2) with P = 10, apr, ~ CN(0,1), and 0, ~ U(0,2m) [7].
We implement and train the deep unfolded PGA model with
Python and the Pytorch library. For the model training, the
decaying learning rate and initial learning rate of 0.97 and
0.001, respectively, and the Adam optimizer are used. The
model is trained with a dataset of 500 channels over 20 epochs.
The step sizes are initialized as ji(g,0) = 0.01 and A(g ) =
0.0001, which are also used as the fixed step sizes for the
conventional PGA algorithm without unfolding. These are set
based on empirical observations. Specifically, we found that
A0,0) < 40,0y should be used to ensure the convergence of
the conventional PGA method.

In Figs. 2(a) and 2(b), we demonstrate the convergence
and sum rate performance of the proposed unfolded PGA
scheme. For comparison, we consider HBF designs using the
conventional PGA procedure with / = 30 iterations and the

w
W) = FErO)HT7 Wy =VvEH © . (13) design combining successive convex approximation (SCA) and
HF(O)W(O) H]—‘ Riemannian manifold minimization (RMM), which is termed
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Fig. 2. Convergence and sum rate performance of the proposed deep unfolding HBF design with N =32 and K = M = 4.

as “SCA-RMM, HBF” in the figures. Specifically, in this
combined SCA-RMM scheme, the effective precoder is first
found via SCA [30] and then factored into analog and digital
components with the RMM method [6]. We also include the
results of the fully digital zero-forcing (ZF) beamformer.

It is seen in Fig. 2(a) that the sum rate of the PGA
algorithms (with and without unfolding) can converge to a
higher value than the SCA-RMM approach. The significant
performance loss of the SCA-RMM scheme is due to the
sub-optimality while solving the effective precoder with SCA
and the factorization in two steps with RMM. In particular,
the sum rate objective of the unfolded PGA model increases
quickly and reaches a high value with only I = 10 layers.
The conventional PGA converges slowly and is still far from
convergence even after / = 30 iterations. It is clear that with
the learned step sizes, the unfolded PGA scheme requires
only three layers to achieve the same objective value of the
conventional PGA with 30 iterations. In Fig. 2(b), it is seen
that the unfolded PGA scheme outperforms the compared
traditional HBF designs, especially at moderate and high
SNRs, and performs close to the fully-digital ZF scheme.

V. CONCLUSION

We have proposed an unfolded PGA model for HBF design
in large multiuser MIMO systems. In the proposed scheme,
the learning capability of DNNs is leveraged to efficiently
tune the step sizes of the PGA procedure to improve and
accelerate its convergence. As a result, the proposed unfolded
framework follows the optimization principle of the conven-
tional PGA method with better performance while requiring
much lower complexity. Our simulation results validated the
fast convergence as well as superior performance of the pro-
posed algorithm compared with other traditional optimization
approaches. Our future work will consider more practical
sub-connected HBF architectures in wideband multicarrier
scenarios.
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APPENDIX A
PROOF OF THEOREM 1

We first rewrite (4) as
K K 2
Ro S log, ( i W Fwil” + 07 )
= 2
k=1 2rercny WiFwe|” + o2

tr(FWW"F"h;hY 2
log, i eh) + 0y (14)
te(FW, WiFh,ht) + 02

1> 71

log, (tr(FVF“I:Ik) n aﬁ)

>
Il
—

K
— ZlogQ (tr(FV,;FHI:Ik) + ai) ) (15)

k=1
where V£ WW", Vi £ W, WX H, £ h;h}, and W;, €
CMxK js obtained by replacing the k-th column of W with
all zeros. As a result, Vg R can be computed as

K
9 .
VeR = ]; v logs (tr(FVF”Hk) + ag)

L0401
K a ~
=Y e log (tr(F“V,;FHHk) + aﬁ) .16
k=1
2040
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By leveraging the result Otr(ZA¢Z"A,)/0Z* =
[31], we obtain Oy

AZA,
and Oyo as
-2 (tr(FVF“ﬁk) + o—g)
In2(tr(FVF*H}) + 02)
- ﬁ’“FY , (17)
In2(tr(FVF"Hy) + 02)
H,FV;

O = k . 18
P m2(tr(FVLF Hy) + 02) (1%

Ok1 =

From (16), (17), and (18), we obtain 1. To compute Vw R,
we follow a similar method for deriving Vg R and rewrite IR
in (14) as

tr(WWHF'h,hiF) + o
%82 | t(W;WIF'hyh{F) + 02

1

M=

R =

>
Il

1

I
] >

log, (tr(WWHI:Ik) + 0121)

=
I
—

K

- Z log, (tr(WyWiHy) +07)
k=1

19)

with H;, £ F”ﬁkF. Following similar derivations as in (16)—
(18), we obtain (11), and the proof is completed.
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