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Abstract—Hybrid beamforming (HBF) is a key enabler for
massive multiple-input multiple-output (MIMO) systems thanks
to its capability to maintain significant spatial multiplexing gains
with low hardware cost and power consumption. However, HBF
optimizations are often challenging due to the nonconvexity and
highly coupled analog and digital beamformers. In this paper,
we propose an efficient HBF method based on deep unfolding
to maximize the sum rate of large multiuser MIMO systems.
We first derive closed-form expressions for the gradients of the
sum rate with respect to the analog and digital beamformers to
develop a projected gradient ascent (PGA) framework. We then
incorporate this framework with the deep unfolding technique in
an unfolded PGA deep neural network, which efficiently outputs
reliable hybrid beamformers with low complexity and fast ex-
ecution thanks to the well-trained hyperparameters. Numerical
results show that the proposed method converges much faster
than the conventional PGA scheme and significantly outperforms
the conventional PGA and the successive convex approximation
counterparts.

Index Terms—mmWave, hybrid beamforming, massive MIMO,
deep learning, AI, deep unfolding.

I. INTRODUCTION

High spatial beamforming gains offered by large arrays

in massive multiple-input multiple-output (MIMO) systems

can efficiently compensate for the severe propagation loss in

millimeter-wave (mmWave) channels [1]. In mmWave massive

MIMO systems, hybrid beamforming (HBF) transceivers can

maintain significant beamforming gains with reduced hardware

cost and power consumption with respect to the conventional

fully digital beamformers [2]–[5]. However, HBF designs and

optimization problems are often highly challenging due to

constant modulus constraints for analog beamforming coeffi-

cients and strongly coupled variables [6], [7]. Conventional

HBF methods, such as Riemannian manifold minimization

(RMM) [6] and alternating optimization (AO) [7] ensure good

performance. However, they have slow convergence and high

computational complexity [8], [9], which can be prohibitive

for practical applications.

A potential solution to avoid cumbersome numerical al-

gorithms in wireless communications systems is to leverage

the learning capabilities of deep learning (DL) models [10],

[11]. For example, deep neural networks (DNNs) [12]–[14]

and/or convolutional neural networks (CNNs) [15]–[18] can be

built and trained to generate HBF beamformers. Such methods

usually lead to black-box models, which can offer satisfac-

tory performance but lack explainability and have limitations

on resource constraints, long training time, and complicated

tuning of hyper-parameters [19], [20]. In contrast, model-

based machine learning methods are developed based on both

expert knowledge and learning capability of DL, offering more

flexibility to configure and optimize the learning model [9],

[11], [21]–[23]. A typical model-based learning technique is

deep unfolding [9], [20], [24]. It constructs a DNN unrolling

a well-developed iterative optimizer. Based on this advantage,

efficient deep unfolding models have been proposed [25]–

[28] for HBF designs with reduced feedback and complexity

and improved convergence speed. However, these schemes

require the implementation of highly-parameterized DNNs

[25] and/or multiple CNNs [27]. A projected gradient ascent

(PGA)–based fast and robust deep unfolding HBF design was

proposed in [26] for broadcast systems. In [8] and [9], hybrid

beamformers for point-to-point mmWave and THz massive

MIMO systems were developed via unfolding the Ao and lease

square methods. However, these unfolding methods are not

applicable to multiuser scenarios.

In this work, we consider the downlink of a multiuser mas-

sive MIMO system, where the base station (BS) is equipped

with a hybrid analog-digital beamformer. For the challenging

HBF design, we propose a deep unfolded PGA method that

unrolls the PGA optimizer [26]. Unlike [26], we herein in-

vestigate a practical downlink multiuser scenario, wherein the

hybrid precoders need to combat the inter-user interference to

maximize the system sum rate. We first derive the closed-form

gradients of the system sum rate with respect to the analog

and digital precoders. These allow us to develop the general

iterative PGA framework for calculating the precoders in an

alternating manner. This scheme can offer good performance,

but its convergence is slow, which causes high complexity

and latency. Therefore, we develop a deep unfolded PGA

model to efficiently output the precoders within a fixed and

limited number of iterations. Our simulation results show that

the proposed unfolded PGA scheme performs much faster

than its conventional counterparts while achieving substantial

performance improvements compared to the combined suc-

cessive convex approximation (SCA) and RMM approaches.

In particular, the unfolded PGA scheme requires only a few

iterations to converge to the same objective value attained by

the conventional PGA with 30 iterations.
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II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

We consider a downlink multiuser MIMO system, where a

base station (BS) equipped with N antennas serves K single-

antenna users (UEs). The BS employs a fully connected HBF

architecture with analog precoder F ∈ C
N×M and digital

precoder W = [w1,w2, . . . ,wK ] ∈ C
M×K , where M is the

number of RF chains. The transmit power constraint is given as

‖FW‖2F = Pt, where ‖·‖2F is the Frobenius norm of a matrix.

We denote by s = [s1, s2, . . . , sK ] ∈ C
K×1 the transmitted

vector from the BS, with sk and wk being the symbol and

precoding vectors intended for UE k. The received signal at

UE k is given by

yk = hH

kFwksk + hH

k

∑K

��=k
Fw�s� + nk, (1)

where nk ∼ CN (0, σ2
n) is additive white Gaussian noise, and

hk ∈ C
N×1 is the channel vector from the BS to UE k.

The channel hk is modeled following the extended Saleh-

Valenzuela model [6], [7]. Thus, we can express hk as [6]

hk =

P∑
p=1

αpka(φpk), (2)

where P is the number of propagation paths, αpk and φpk are

the complex gain and angle of departure of the p-th path to

the k-th user, respectively. Furthermore, a ∈ C
N×1 denotes the

transmit array response vectors. Assuming that the BS deploys

a uniform linear array (ULA) with half-wavelength antenna

spacing, we have [6]

a(φpk) =
1√
N

[
1, ejπ sin(φpk), . . . , ejπ(N−1) sin(φpk)

]T

. (3)

B. Problem Formulation

Based on (1), the achievable sum rate of the system is given

as

R =

K∑
k=1

log

(
1 +

|hH

kFwk|2∑K
��=k |hH

kFw�|2 + σ2
n

)
. (4)

We aim to find the HBF design that maximizes R, formulated

as:

maximize
F,W

R (5a)

subject to |[F]nm| = 1, ∀n,m, (5b)

‖FW‖2F = Pt, (5c)

where (5b) enforces the unity modulus of the analog precoding

coefficients, and (5c) constrains the transmit power to be

equal to the power budget Pt. Problem (5) is nonconvex

due to the constant modulus constraint, while F and W are

highly coupled in the objective function and constraint (5c).

Therefore, this problem is challenging to solve. Next, we

develop the PGA procedure and the deep unfolded PGA model

solving (5).

III. PROPOSED UNFOLDED PGA DESIGN

A. PGA Procedure

We leverage the PGA method in combination with AO.

Specifically, in each iteration of the PGA procedure, one

precoder is solved with the other fixed. For a fixed W, F
can be updated at the (i+ 1)-th iteration as

F(i+1) = F(i) + μ(i)∇FR
∣∣∣
F=F(i)

, (6)

[F(i+1)]nm =
[F(i+1)]nm∣∣[F(i+1)]nm

∣∣ , ∀n,m, (7)

where ∇ZR is the gradient of the sum rate R with respect to

Z. Similarly, given F, W can be updated at iteration i+1 as:

W(i+1) = W(i) + λ(i)∇WR
∣∣∣
W=W(i)

, (8)

W(i+1) = Pt

W(i+1)∥∥F(i+1)W(i+1)

∥∥
F
. (9)

In (6) and (8), {μ(i), λ(i)} are the step sizes. Furthermore, the

solutions to F and W are projected into the feasible space in

(7) and (9). The closed-form gradients ∇FR and ∇WR are

derived in the following theorem.

Theorem 1: The gradients of the achievable rate with

respect to the analog and digital precoders, i.e., ∇FR and

∇WR, are given by

∇FR =

K∑
k=1

(
H̃kFV

tr(FVFHH̃k) + σ2
n

− H̃kFVk̄

tr(FVk̄F
HH̃k) + σ2

n

)
,

(10)

∇WR =

K∑
k=1

(
H̄kW

tr(WWHH̄k) + σ2
n

− H̄kWk̄

tr(Wk̄W
H

k̄
H̄k) + σ2

n

)
,

(11)

where

H̃k � hkh
H

k, H̄k � FHH̃kF,

V � WWH, Vk̄ � Wk̄W
H
k̄ ,

and Wk̄ ∈ C
M×K is obtained by replacing the k-th column

of W with all zeros.

Proof: See Appendix A. �

B. Unfolded PGA Scheme

1) Network Structure and Training: The performance and

convergence of the PGA procedure in (6)–(9) are critically

affected by the step sizes μ � {μ(i)}I−1
i=0 ,λ � {λ(i)}I−1

i=0 .

Manually determining {μ,λ} may not ensure an expected

convergence while employing a line search and backtracking

to optimize them would require excessively high additional

computational and time complexity, especially in massive

MIMO systems. Instead, we propose leveraging the learning

capability of DNNs to train and tune the hyperparameters

{μ,λ} to enable good convergence of the PGA scheme. To

this end, we incorporate I iterations of the PGA procedure into

I layers of a deep unfolded DNN model, which is illustrated
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Fig. 1. Illustration of the (i + 1)-th layer of the proposed unfolded PGA
model.

Algorithm 1 Proposed HBF Design

Input: H, Pt, ω, and the trained step sizes {μ,λ}.
Output: F and W

1: Initialization: Initialize {F(0),W(0)} based on (12) and (13).
2: for i = 0 → I − 1 do
3: Set F(i,0) = F(i).
4: for j = 0 → J − 1 do
5: Compute gradient ∇FR at (F,W) = (F(i,j),W(i)) based

on (10).
6: Update F(i,j+1) based on (6) and (7).
7: end for
8: Set F(i+1) = F(i,J) and apply the projection in (7).
9: Compute gradient ∇WR at (F,W) =

(
F(i+1),W(i)

)
based

on (11).
10: Obtain W(i+1) based on (8) and (9).
11: end for
12: return F(I) and W(I) as the solution to F and W.

in Fig. 1. This approach follows the updating process in (6)–

(9). More specifically, the (i+1)-th layer takes {F(i),W(i)},

H = [h1, . . . ,hK ]H, Pt, and σ2
n as input data, and outputs

{F(i+1),W(i+1)}. To train the DNN, the loss function is set

to

L(μ,λ) =
K∑

k=1

log2

(
1 +

∣∣hH

kF(I)wk(I)

∣∣2∑K
��=k

∣∣hH

kF(I)wj(I)

∣∣2 + σ2
n

)
,

based on (4). The loss L(μ,λ) is a function of the train-

able step sizes {μ,λ} because {F(I),W(I)} depends on

{F(i)}I−1
i=0 , {W(i)}I−1

i=0 , and {μ,λ}. The unfolded PGA model

is trained to optimize {μ,λ} to maximize R within a predeter-

mined number of layers, i.e., I . This is unsupervised training

and does not require any labels.

2) Overall HBF Design: We outline the proposed HBF

design based on the unfolded PGA scheme in Algorithm 1.

First, the analog precoder is initialized as [29]

[F(0)]nm = e−jϑnm , (12)

where ϑnm is the phase of the (n,m)-th entries of H =
[h1, . . . ,hK ]. This offers large array gains as the phases of

the analog precoder are aligned well with the channel. With

F(0), the initial solution to the digital precoder is set to

W(0) = F†
(0)H

†, W(0) =
√
Pt

W(0)∥∥F(0)W(0)

∥∥
F
. (13)

With (13), W(0) has the least-squares distance to the zero-

forcing digital precoder [24]. The unfolded model uses the

trained step sizes {μ,λ} to perform the updates in (6)–(8)

and the projections (7) and (9), as outlined in steps 2–11

of Algorithm 1. Specifically, steps 3–8 compute the output

F(i+1) over the J layers. Then, W(i+1) is obtained in step 10

based on the updated F(i+1). The outcome of the algorithm is

the final output of the unfolded PGA model. Here, compared

to W, F is updated over more iterations to ensure that the

updating speed of these two are comparable. Indeed, our

numerical results show that the gradient of R with respect to

W is much larger than that with respect to F in magnitudes.

We refer readers to [24] for more details on this.

3) Complexity Analysis: We herein present the complexity

analysis of Algorithm 1. First, note that V and Vk̄ are

unchanged over J inner iterations of updating F, while W is

of size (M×K) with M,K � N . Therefore, the computation

of ∇FR and ∇WR requires most of the complexity of

Algorithm 1. In (10), computing H̃kF requires a complexity

of only O(NM) because H̃kF = hkh
H

kF, i.e., the term hH

kF
can be computed first before the right-multiplication with hk.

Therefore, the complexity of computing H̃kFV is O(NM2).
Furthermore, the complexity to compute trace{FVFHH̃k} is

only O(NM). This is because VFHH̃k = (H̃kFV)H, and

H̃kFV has already been computed. Thus, the complexity for

computing the first term in (10) is O(NM2K). The total

complexity in to obtain (10) is still O(NM2K) because

the two terms in (10) have the same complexity. Thus, the

overall complexity to obtain F is O(IJ max(NM2K,N2K)).
Similarly, we can obtain the complexity of determining W as

O(Imax(M2K2, N2K)). Because N ≥ K and NM2K ≥
M2K2, the complexity required for F dominates that for

W. Thus, the overall computational load of Algorithm 1 is

O(IJ max(NM2K,N2K)).

IV. NUMERICAL RESULTS

In the simulations, we assume K = M = 4 and N = 32.

The channels for training and testing are generated based on

(2) with P = 10, αpk ∼ CN (0, 1), and θpk ∼ U(0, 2π) [7].

We implement and train the deep unfolded PGA model with

Python and the Pytorch library. For the model training, the

decaying learning rate and initial learning rate of 0.97 and

0.001, respectively, and the Adam optimizer are used. The

model is trained with a dataset of 500 channels over 20 epochs.

The step sizes are initialized as μ(0,0) = 0.01 and λ(0,0) =
0.0001, which are also used as the fixed step sizes for the

conventional PGA algorithm without unfolding. These are set

based on empirical observations. Specifically, we found that

λ(0,0) � μ(0,0) should be used to ensure the convergence of

the conventional PGA method.

In Figs. 2(a) and 2(b), we demonstrate the convergence

and sum rate performance of the proposed unfolded PGA

scheme. For comparison, we consider HBF designs using the

conventional PGA procedure with I = 30 iterations and the

design combining successive convex approximation (SCA) and

Riemannian manifold minimization (RMM), which is termed
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Fig. 2. Convergence and sum rate performance of the proposed deep unfolding HBF design with N = 32 and K = M = 4.

as “SCA-RMM, HBF” in the figures. Specifically, in this

combined SCA-RMM scheme, the effective precoder is first

found via SCA [30] and then factored into analog and digital

components with the RMM method [6]. We also include the

results of the fully digital zero-forcing (ZF) beamformer.

It is seen in Fig. 2(a) that the sum rate of the PGA

algorithms (with and without unfolding) can converge to a

higher value than the SCA-RMM approach. The significant

performance loss of the SCA-RMM scheme is due to the

sub-optimality while solving the effective precoder with SCA

and the factorization in two steps with RMM. In particular,

the sum rate objective of the unfolded PGA model increases

quickly and reaches a high value with only I = 10 layers.

The conventional PGA converges slowly and is still far from

convergence even after I = 30 iterations. It is clear that with

the learned step sizes, the unfolded PGA scheme requires

only three layers to achieve the same objective value of the

conventional PGA with 30 iterations. In Fig. 2(b), it is seen

that the unfolded PGA scheme outperforms the compared

traditional HBF designs, especially at moderate and high

SNRs, and performs close to the fully-digital ZF scheme.

V. CONCLUSION

We have proposed an unfolded PGA model for HBF design

in large multiuser MIMO systems. In the proposed scheme,

the learning capability of DNNs is leveraged to efficiently

tune the step sizes of the PGA procedure to improve and

accelerate its convergence. As a result, the proposed unfolded

framework follows the optimization principle of the conven-

tional PGA method with better performance while requiring

much lower complexity. Our simulation results validated the

fast convergence as well as superior performance of the pro-

posed algorithm compared with other traditional optimization

approaches. Our future work will consider more practical

sub-connected HBF architectures in wideband multicarrier

scenarios.
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APPENDIX A

PROOF OF THEOREM 1

We first rewrite (4) as

R =

K∑
k=1

log2

( ∑K
k=1 |hH

kFwk|2 + σ2
n∑

�∈K\k |hH

kFw�|2 + σ2
n

)

=
K∑

k=1

log2

(
tr(FWWHFHhkh

H

k) + σ2
n

tr(FWk̄W
H

k̄
FHhkhH

k) + σ2
n

)
(14)

=
K∑

k=1

log2

(
tr(FVFHH̃k) + σ2

n

)

−
K∑

k=1

log2

(
tr(FVk̄F

HH̃k) + σ2
n

)
, (15)

where V � WWH, Vk̄ � Wk̄W
H
k̄

, H̃k � hkh
H

k, and Wk̄ ∈
C

M×K is obtained by replacing the k-th column of W with

all zeros. As a result, ∇FR can be computed as

∇FR =

K∑
k=1

∂

∂F∗ log2

(
tr(FVFHH̃k) + σ2

n

)
︸ ︷︷ ︸

�∂k1

−
K∑

k=1

∂

∂F∗ log2

(
tr(FHVk̄F

HH̃k) + σ2
n

)
︸ ︷︷ ︸

�∂k2

. (16)
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By leveraging the result ∂tr(ZA0Z
HA1)/∂Z

∗ = A1ZA0

[31], we obtain ∂k1 and ∂k2 as

∂k1 =

∂
∂F∗

(
tr(FVFHH̃k) + σ2

n

)
ln 2(tr(FVFHH̃k) + σ2

n)

=
H̃kFV

ln 2(tr(FVFHH̃k) + σ2
n)

, (17)

∂k2 =
H̃kFVk̄

ln 2(tr(FVk̄F
HH̃k) + σ2

n)
. (18)

From (16), (17), and (18), we obtain 1. To compute ∇WR,

we follow a similar method for deriving ∇FR and rewrite R
in (14) as

R =

K∑
k=1

log2

(
tr(WWHFHhkh

H

kF) + σ2
n

tr(Wk̄W
H

k̄
FHhkhH

kF) + σ2
n

)

=
K∑

k=1

log2
(
tr(WWHH̄k) + σ2

n

)

−
K∑

k=1

log2
(
tr(Wk̄W

H

k̄H̄k) + σ2
n

)
, (19)

with H̄k � FHH̃kF. Following similar derivations as in (16)–

(18), we obtain (11), and the proof is completed.
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