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Abstract—Joint communications and sensing (JCAS) is en-
visioned as a key feature in future wireless communications
networks. In massive MIMO-JCAS systems, the very large
number of antennas causes excessively high computational com-
plexity in beamforming designs. In this work, we investigate a
low-complexity massive multiple-input-multiple-output (MIMO)-
JCAS system employing the maximum-ratio transmission (MRT)
scheme for both communications and sensing. We first derive
closed-form expressions for the achievable communications rate
and Cramér–Rao bound (CRB) as functions of the large-scale
fading channel coefficients. Then, we develop a power allocation
strategy based on successive convex approximation to maximize
the communications sum rate while guaranteeing the CRB con-
straint and transmit power budget. Our analysis shows that the
introduction of sensing functionality increases the beamforming
uncertainty and inter-user interference on the communications
side. However, these factors can be mitigated by deploying a
very large number of antennas. The numerical results verify our
findings and demonstrate the power allocation efficiency.

Index Terms—Joint communications and sensing (JCAS), mas-
sive MIMO, maximum-ratio transmission.

I. INTRODUCTION

Joint communications and sensing (JCAS) has emerged

as a potential technology for future wireless communication

systems [1]. Thus, transmit beamforming design for JCAS

systems is the focus of growing attention in recent literature

[2]–[5]. In [2]–[4], the transmit beamformers were designed

to minimize the beampattern error constrained by the com-

munications signal-to-interference-plus-noise ratio (SINR). A

reliable transmit beampattern guarantees that the sensed targets

and communications users are covered at the same time, while

minimizing the Cramér–Rao bound (CRB) ensures consid-

eration of the estimation quality of the sensed parameters

[3], [6], [7]. Other SINR-based merit functions for sensing

are introduced and investigated in [4]. In most of these

existing works, small-sized antenna arrays were employed

for the JCAS transmission. This does not ensure high spa-

tial beamforming gains, and hence limits both sensing and

communications performance.

Compared to conventional multiple-input-multiple-output

(MIMO) communications, massive MIMO technology em-

ploying very large arrays offers superior spectral and energy

efficiency (SE/EE) for communications systems [8]–[10]. Re-

cent literature has shown that massive MIMO is also promising

for JCAS systems. Specifically, it has been shown in [11]

that by leveraging a massive MIMO radar-base station (BS),

the communications and radar systems can coexist with little

mutual interference. Temiz et al. [12] proposed a joint uplink

massive MIMO communications and orthogonal frequency-

division multiplexing (OFDM) radar sensing architecture,

wherein zero-forcing (ZF) and ordered successive interference

cancellation (OSIC) receivers are used to eliminate the inter-

user and radar interference during communications symbol de-

tection. In [13]–[16], the radar performance of massive MIMO

systems is optimized under constraints on communications

performance. On the other hand, the communications rate

of massive MIMO-JCAS systems is maximized in [17]–[19]

subject to constraints on the radar performance. While these

works all consider large or massive MIMO configurations,

the system design and optimization are complicated and are

conducted only over small-scale intervals. However, owing to

its large number of degrees of freedom, massive MIMO can

provide good communications performance with simple linear

beamforming methods such as maximum-ratio transmission

(MRT) and ZF [20].

In this work, we consider a mono-static multiuser massive

MIMO-JCAS system employing the MRT precoder. We first

derive closed-form expressions for the achievable sum rate

and the CRB as the performance metrics for the downlink

communications and the sensed target estimation, respectively.

These allow us to characterize the important properties of the

communications and sensing operations in massive MIMO

scenarios. Specifically, they show that the sensing objective

increases the MRT beamforming uncertainty and the inter-user

interference of the communications channels. However, these

drawbacks can be mitigated by deploying a very large number

of antennas. Then, we focus on the use of power allocation

to maximize the communications sum rate while constraining

the CRB. The formulated problem is nonconvex, but we

develop an efficient solution leveraging the successive convex

approximation (SCA) approach. Finally, we provide numerical

results to verify our theoretical findings and demonstrate the

performance of the power allocation scheme.

II. SIGNAL MODEL

We consider a mono-static massive MIMO JCAS system, in-

cluding a base station (BS), K single-antenna communications

users, and a sensed target. We assume that the BS is equipped
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with Nt transmit and Nr receive antennas, with Nt+Nr � 1.

At the BS, the Nt antennas simultaneously transmit probing

signals to the target at a given angle of interest and data signals

to the users. The echo from the sensed target is then processed

by the Nr receive antennas at the BS.

A. Communications Model

1) Signal Model: Denote by s� = [s1�, . . . , sk�, . . . , sK�] ∈
C

K×1 the transmit vector from the BS at the �-th time slot,

with E {s�sH

�} = IK . Here we assume that sk� is the signal

intended for the k-th user. Furthermore, let S = [s1, . . . , sL] ∈
C

K×L be the transmit symbol matrix, where L � 1 is the

length of the radar/communications frame. The data streams

are assumed to be independent of each other such that

SSH ≈ LIK , (1)

which holds asymptotically for Gaussian signaling when L is

sufficiently large [6].

The BS employs the linear precoder

F = WΓ+ vη̄T ∈ C
Nt×K , (2)

where W = [w1, . . . ,wK ] ∈ C
Nt×K and Γ =

diag
{√

γ1, . . . ,
√
γK

} ∈ C
K×K are the matrix of precoding

vectors and power allocation factors for communications users.

Specifically, wk and γk are the precoding vector and power al-

located for the kth communications user, with ‖wk‖2 = 1, ∀k.

On the other hand, v ∈ C
Nt×1 and η̄ = [

√
η1, . . . ,

√
ηK ]T ∈

C
K×1 are the precoding vector and power fraction allocated

for sensing in each communication stream. The k-th column F,

denoted as fk, represents the dual-functional precoding vector

for user k and is given as fk =
√
γkwk +

√
ηkv. Then,

the Nt × 1 transmit signal vector during the �-th time slot

is x� = Fs� =
∑K

k=1 fksk�, and the overall dual-functional

transmit waveform is denoted by X = [x1, . . . ,xL] ∈ C
Nt×L.

Equivalently, we have X = FS.

For transmit waveform X, the K×L combined signal matrix

received by the users can be expressed as

Y = HHX+N = HHFS+N, (3)

where N ∈ C
K×L is additive white Gaussian noise (AWGN)

with independent entries following distribution CN (0, σ2
u), and

H = [h1, . . . ,hk, . . . ,hK ] ∈ C
Nt×K is the channel matrix

from the BS to the K users. Here, hk denotes the channel

between the BS and the k-th user and is given as [21]

hk = β
1/2
k h̄k, (4)

where βk and h̄k represent the large-scale fading parameter

and the small-scale Rayleigh fading channels, respectively.

The received signal at user k over L time slots is given as

yT

k = hH

kFS+nT

k ∈ C
1×L. Equivalently, at the �-th time slot,

the received signal at user k is

yk� = hH

kfksk� + hH

k

∑
j �=k

fjs�j + nk�. (5)

2) Communications Channel Estimation: We assume a

time-division duplex (TDD) protocol for the considered JCAS

system. Specifically, the channel is first estimated via uplink

training, which is then used for the downlink transmission.

Let τc be the length of the coherence interval in samples, and

let τp < τc be the length of the pilot sequences. The pilot

sequence for the kth user is
√
τpψk ∈ C

τp×1, and the MMSE

channel estimate is given by

ĥk =

√
τpppβk

τppp
∑K

j=1 βj

∣∣ψH
jψk

∣∣2 + σ2
u

Ypψk, (6)

where Yp =
√
τppp

∑K
k=1 hkψ

H

k + Np is the received pilot

signal at the BS during uplink training, and pp is the average

power of the training symbols. Furthermore, we have ĥk ∼
CN (0, ξkINt

), with

ξk =
τpppβ

2
k

τppp
∑K

j=1 βj

∣∣ψH
jψk

∣∣2 + σ2
u

. (7)

The channel estimation error associated with ĥk is ek = hk−
ĥk, which is independent of ĥk, and ek ∼ CN (0, εkINt

) with

εk � βk − ξk =
βk

(
τppp

∑
j �=k βj

∣∣ψH
jψk

∣∣2 + σ2
u

)
τppp

∑K
j=1 βj

∣∣ψH
jψk

∣∣2 + σ2
u

. (8)

B. Radar Sensing Model

The BS receives and processes the echo signals from the

target for sensing functions such as detection and estimation.

The discrete-time radar signal received at the BS is given as

Ỹ = αA(θ)X+ Ñ, (9)

where Ñ ∈ C
Nr×L is an AWGN matrix with independent

entries distributed as CN (0, σ2
r). In (9), A(θ) ∈ C

Nr×Nt is

the two-way channel in the desired sensing directions. We

assume that the BS employs a uniform linear array (ULA)

with half-wavelength antenna spacing. The channel A(θ) in

(9) can be modeled as A(θ) = ar(θ)a
H
t(θ), where θ is the

angle of the target relative to the BS, and at(θ) and ar(θ) are

the steering vectors associated with the transmit and receive

arrays [3], [4]. To simplify the notation, we assume an even

number of antennas and choose the center of the ULA as the

reference point, such that and have [6]

ax(θ) =
[
e−j Nx−1

2 π sin(θ), e−j Nx−3
2 π sin(θ), . . . , ej

Nx−1
2 π sin(θ)

]T

,

(10)

where x ∈ {t, r}. In the following analysis, we drop (θ) for

further simplicity.

III. PERFORMANCE OF MASSIVE MIMO JCAS SYSTEMS

WITH MRT BEAMFORMING

In this section, we derive lower bounds on the achievable

sum rate of the communications subsystem that employs linear

MRT transmit beamforming. For the sensing subsystem, we

derive the CRB to evaluate the estimation accuracy.

First, to formulate the MRT precoder, based on (2) we

rewrite (9) as

Ỹ = αara
H

t (WΓ+ vη̄T)S+ Ñ = αara
H

tvη̄
TS+ ˜̃N, (11)

where
˜̃N � αara

H
tWΓS + Ñ. It is observed that for an

arbitrary WΓ, the sensing beamformer v = at maximizes

the received echo power at the BS. Furthermore, the MRT

beamformer toward the communication users is W = Ĥ =
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[ĥ1, . . . , ĥk, . . . , ĥK ], where ĥk is given in (6). Thus, F and

fk can be rewritten as

F = ĤΓ+ atη̄
T, fk =

√
γkĥk +

√
ηkat. (12)

A. Communications Sum Rate

We rewrite (5) as

yk� = DSksk� + BUksk� +
∑

j �=k
UIkjs�j + nk�, (13)

where DSk � E {hH

kfk}, BUk � hH

kfk − E {hH

kfk}, and

UIkj � hH

kfj represent the desired signal, beamforming un-

certainty, and inter-user interference, respectively. From (13),

the achievable rate of the k-th user over L time slots is given

by

Rk = τ̄ log2

(
1 +

|DSk|2

E

{
|BUk|2

}
+

∑
j �=k

E

{
|UIkj |2

}
+ σ2

u

)
,

(14)

where τ̄ �
(
τc − τp

)
/τc. The following theorem gives a

closed-form expression for the achievable rate of communi-

cations users.

Theorem 1: The achievable rate of the k-th user with the

MRT precoder is given in the following closed-form:

Rk(γ, η̄) = τ̄ log2

(
1 +

N2
t ξ

2
kγk

Ntβk

∑K
j=1(ξjγj + ηj) + σ2

u

)
,

(15)

where ξk and εk are given in (7) and (8), respectively, γ �
[γ1, . . . , γk, . . . , γK ]T, and η̄ � [

√
η1, . . . ,

√
ηk, . . . ,

√
ηK ]T.

Proof: See Appendix A

Remark 1: It is observed from (15) that the sensing power

factors {ηj} lead to larger beamforming gain uncertainty and

inter-user interference, causing performance degradation to the

communications subsystem. However, note that the numerator

of the SINR term in (15) increases with N2
t , while the denom-

inator only increases with Nt. Therefore, the massive MIMO

JCAS system becomes free of interference as Nt → ∞, which

is similar to conventional massive MIMO systems without

any sensing function. In other words, deploying a very large

number of antennas can mitigate the effect of sensing on

communications.

B. Sensing CRB

The CRB serves as a lower bound on the variance of

unbiased estimators. In the following, we characterize the CRB

for estimating the target’s angle θ in the sensing subsystem.

Theorem 2: The closed-form CRB for estimating the target

angle θ is given as

CRB(γ, η̄) =
σ̄2
r(

Nt ‖ȧr‖2 +Nr ‖ȧt‖2
)
ξTγ +N2

t ‖ȧr‖2 ‖η̄‖2
,

(16)

where ξ = [ξ1, . . . , ξk, . . . , ξK ]T, σ̄2
r � σ2

r

2|α|2L , and

ȧx =

[
−j

Nx − 1

2
π cos(θ), . . . , j

Nx − 1

2
π cos(θ)

]T

� ax,

(17)

with � denoting the Hadamard product of two vectors.

Proof: See Appendix B. �
Remark 2: For fixed (γ, η̄), it is clear that CRB(γ, η̄) → 0

as Nt → ∞.

It can be concluded from Remarks 1 and 2 that both the

communications and sensing performance is improved when

Nt increases. Furthermore, the mutual interference between

the two functions is also mitigated as Nt grows.

IV. POWER ALLOCATION

With the derived achievable rate and CRB, we are interested

in a communications-centric design of the system that maxi-

mizes the sum rate while ensuring the sensing CRB and power

constraints. Based on (37) and the fact that trace (ata
H
t) = Nt,

the total transmit power is

E {trace (FFH)} = Nt

(
ξTγ + ‖η̄‖2

)
� Popt. (18)

Thus, the power allocation problem is formulated as

maximize
γ,η̄

K∑
k=1

Rk(γ, η̄) (19a)

subject to CRB(γ, η̄) ≤ CRB0θ, (19b)

ξTγ + ‖η̄‖2 ≤ Pt

Nt

, (19c)

where CRB0θ is a threshold to guarantee the sensing perfor-

mance. While the constraints are convex, the objective function

(19a) is non-convex. Next, we propose an efficient solution to

address (19) by leveraging the SCA method [22].

A. Proposed Solution

Concave approximation of (19a): To approximate Rk(γ, η̄),
we use the following inequality [23]:

ln
(
1 +

x

y

)
≥ ln

(
1 +

x(i)

y(i)

)
+ 2

x(i)

x(i) + y(i)

− (x(i))2

x(i) + y(i)
1

x
− x(i)

(x(i) + y(i))y(i)
y, (20)

where x(i) and y(i) are feasible points for x and y at the i-
th iteration, respectively. We can see that the right-hand side

(RHS) of (20) is a concave lower bound for ln
(
1 + x/y

)
.

Using (20), Rk(γ, η̄) in (15) is lower bounded at iteration i
by

R
(i)
k (γ, η̄) =

τ̄

ln 2

[
A

(i)
k − B

(i)
k

N2
t ξ

2
k

1

γk

− C
(i)
k

(
Ntβk

K∑
j=1

(γjξj + ηj) + σ2
u

)]
, (21)

where

A
(i)
k � ln

(
1 +

N2
t ξ

2
kγ

(i)
k

Ntβk

∑K
j=1(γ

(i)
j ξj + η

(i)
j ) + σ2

u

)

+ 2
N2

t ξ
2
kγ

(i)
k

N2
t ξ

2
kγ

(i)
k +Ntβk

∑K
j=1(γ

(i)
j ξj + η

(i)
j ) + σ2

u

B
(i)
k �

(
N2

t ξ
2
kγ

(i)
k

)2
N2

t ξ
2
kγ

(i)
k +Ntβk

∑K
j=1(γ

(i)
j ξj + η

(i)
j ) + σ2

u
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Algorithm 1 Iterative Algorithm for the Power Allocation

Problem (19)

Initialization: Set i := 1 and generate an initial feasible value
for (γ(i), η̄(i), ϕ(i)) to constraints in (26)

1: repeat
2: Solve (26) to obtain the optimal solution (γ∗, η̄∗, ϕ∗).
3: Update (γ(i), η̄(i), ϕ(i)) := (γ∗, η̄∗, ϕ∗)
4: Set i := i+ 1
5: until convergence
6: Output: (γ∗, η̄∗).

C
(i)
k � N2

t ξ
2
kγ

(i)
k

/[(
N2

t ξ
2
kγ

(i)
k +Ntβk

K∑
j=1

(γ
(i)
j ξj + η

(i)
j )

+ σ2
u

)(
Ntβk

K∑
j=1

(γ
(i)
j ξj + η

(i)
j ) + σ2

u

)]
. (22)

Convex approximation of (19b): The closed-form CRB in

(16) is convenient for performance analysis as well as solving

(19). However, it is only valid for the symmetric forms of at
and ar defined in (17). Thus, to address (19b), we use the

form of the CRB in (36) in Appendix B for a general array

model, i.e. CRB(γ, η̄) =
σ̄2
r T1(γ,η̄)

T2(γ,η̄)T1(γ,η̄)−|T3(γ,η̄)|2 . The product

of T1 and T2 makes constraint (19b) impossible to be tackled

directly. Alternatively, we introduce a new variable ϕ ∈ R+

to transform the constraint into the following equivalent form:

(19b) ⇔

⎧⎪⎨
⎪⎩

σ̄2
r

CRB0θ
T1(γ, η̄) + |T3(γ, ω)|2 ≤ ϕ2

ϕ2 ≤ T1(γ, η̄)T2(γ, η̄).

(23a)

(23b)

To iteratively convexify (23a), we approximate ϕ2 as:

σ̄2
r

CRB0θ
T1(γ, η̄) + |T3(γ, ω)|2 ≤ 2ϕ(i)ϕ− (ϕ(i))2, (24)

where 2ϕ(i)ϕ−(ϕ(i))2 is a concave lower bound of ϕ2 around

the point ϕ(i). It is clear that T1(γ, η̄) and T2(γ, η̄) are linear

with respect to (γ, η̄). As a result, we cast (23b) into a second-

order cone (SOC) constraint as follows:∥∥ϕ, 0.5(T1(γ, η̄)− T2(γ, η̄)
)∥∥

2
≤ 0.5

(
T1(γ, η̄) + T2(γ, η̄)

)
.

(25)

In summary, we solve the following approximate convex

version of (19) at iteration i:

maximize
γ,η̄,ϕ

K∑
k=1

R
(i)
k (γ, η̄) (26a)

subject to (19c), (24), (25). (26b)

B. Overall Algorithm and Complexity Analysis

The proposed algorithm to solve problem (19) is summa-

rized in Algorithm 1. We iteratively solve the approximate con-

vex program (26) to find the optimal solution, which acts as the

feasible point for the next iteration. The procedure is repeated

until convergence, as determined by the difference in the com-

munication sum rate between two successive iterations. Based

on [24], Algorithm 1 is guaranteed to produce a sequence of

better solutions with non-decreasing values for the objective
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Fig. 1. Communications sum rates of the proposed power allocation scheme.

function, i.e.
∑K

k=1 R
(i)
k (γ, η̄) ≤ ∑K

k=1 R
(i+1)
k (γ, η̄). The

sequence of the non-decreasing values is bounded by (19c),

and thus Algorithm 1 will converge to at least a local optimum

of (19). The convex program (26) includes 2K + 1 scalar

decision variables and 3 linear constraints. Using the interior-

point method [22, Chapter 6], the worst-case of per-iteration

complexity of Algorithm 1 is O(
8
√
3K3

)
.

V. SIMULATION RESULTS

In this section we provide numerical results to validate

the theoretical findings and proposed design. We consider a

scenario where the users are uniformly and randomly dis-

tributed within a cell of radius of 500 meters (m), where

the BS is located at the center. We assume that no user is

closer to the BS than rh = 100 m. The large-scale fading

parameters are computed as βk = zk/(rk/rh)
ν , where zk

is a log-normal random variable with standard deviation

σshadow = 8 dB, rk is the distance between the k-th user

and the BS, and ν = 3.2 is the path loss exponent [10]. We

set Nt = Nr = {15, 35}, K = 4, L = 30, and Pt = 30
dBm. During the uplink training phase, we employ τp = 10,

τc = 100, and pp = 10 dBm. The communications and sensing

SNRs are defined as SNRcom = Pt/σ
2
u and SNRsen = Pt/σ̄

2
r

[6], respectively. We assume that the target angle is θ = 0◦

and set SNRsen = 5 dB, CRB0θ = 10−3. For comparison,

we consider two approaches referred to as “equal power”

and “equal & full power.” In the former, the power factors

(γ̃, η̃) are set such that γ̃1 = . . . = γ̃K , η̃1 = . . . = η̃K ,

and Nt(ξ
Tγ̃ +

∑K
k=1 η̃k) = Popt, where Popt is given in

(18) and obtained with the optimized power factors. In the

latter, we employ power factors (γ̂, η̂) with γ̂1 = . . . = γ̂K ,

η̂1 = . . . = η̂K , and Nt(ξ
Tγ̂ +

∑K
k=1 η̂k) = Pt. Both

benchmarks have a total transmit power larger than or equal

to the proposed design.

In Fig. 1, we show the achievable sum rates obtained based

on both our closed-form expressions and Monte-Carlo sim-

ulations of the proposed power allocation scheme compared

with the benchmarks. It is observed that for all the considered

scenarios, the analytical and simulation results match well with
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each other, validating our theoretical findings. A comparison

of the considered power allocation methods demonstrates that

the proposed approach offers the highest sum rate, and the

gains become more significant as the number of antennas

increases. In particular, despite using the entire power budget

for transmission, the “equal & full power” scheme performs far

worse than the others. This is because of the large interference

introduced by the sensing on the communications.

In Fig. 2 and Fig. 3, we show the tradeoff between the

communications sum rate and sensing CRBs of the compared

approaches for various choices of (Nt, Nr) and SNRcom. In

both figures, it is clear that the considered algorithms guaran-

tee the design constraint CRB ≤ CRB0θ = 10−3. With a larger

power fraction allocated to sensing, the “equal & full power”

scheme achieves a much lower CRB than the other approaches.

However, this comes at the cost of poor communication rates.

In contrast, the proposed power allocation method offers

the best communications–sensing performance tradeoff. For

example, with Nt = Nr = 35 and CRB = 10−4, the proposed

design offers 24% higher sum rate compared with the “equal

power” design. It is observed in Fig. 3 that as the number

of antennas increases, all the considered approaches have

lower CRBs and increased sum rates, verifying our theoretical

findings in Remarks 1 and 2.

VI. CONCLUSION

We investigated mono-static multiuser massive MIMO

JCAS systems with linear MRT precoding. To characterize

the system performance, we derived closed-form expressions

for the achievable communications sum rate and sensing CRB

for estimating the target angle. The analytical findings reveal

important properties about JCAS operations in massive MIMO

scenarios such as the subsystems’ mutual interference and

the impact of the large number of antennas. We proposed an

algorithm for power allocation among the precoders for the

communications users and the sensed target to maximize the

users’ sum rate with a constraint on the CRB. Our theoretical

finding and proposed algorithm were verified by numerical

results, which show superior communications and sensing

performance in massive MIMO JCAS systems. Our future

work will consider additional radar sensing parameters such

as the range and range-rate.
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APPENDIX A

PROOF OF THEOREM 1

In the following, we compute |DSk|2, E

{
|BUk|2

}
, and

E

{
|UIkj |2

}
. Using (12), we first have

hH

kfi =
(
ĥk + ek

)H (√
γiĥi +

√
ηiat

)
=

√
γiĥ

H

kĥi +
√
ηiĥ

H

kat + eH

k(
√
γiĥi +

√
ηiat) (27)

for k, i = 1, . . . ,K. We note that

E

{√
ηiĥ

H

kat + eH

k(
√
γiĥi +

√
ηiat)

}
= 0, ∀k, i, (28)

because ek and ĥi are independent for k �= i, and both have

zero means.

• Computation of |DSk|2: Using (27) and (28), we have

|DSk|2 = γk

∣∣∣E{
‖ĥk‖2

}∣∣∣2 = N2
t ξ

2
kγk. (29)

• Computation of E
{
|BUk|2

}
: We have

E

{
|BUk|2

}
= E

{
|hH

kfk|2
}
− |E {hH

kfk}|2

= γkE
{
‖ĥk‖4

}
+ ηkE

{
|ĥH

kat|2
}

+ E

{
|eH

k(
√
γkĥk +

√
ηkat)|2

}
− |E {hH

kfk}|2 . (30)
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Noting that the elements of at are deterministic with unit

modulus and ĥk ∼ CN (0, ξkINt
), we have

E

{
‖ĥk‖4

}
= Nt(Nt + 1)ξ2k, (31)

E

{
|ĥH

kat|2
}
= E

{∥∥∥ĥk

∥∥∥2} = Ntξk, (32)

E

{
|eH

k(
√
γkĥk +

√
ηkat)|2

}
= γkE

{∣∣∣eH

kĥk

∣∣∣2}

+ ηkE
{
|eH

kat|2
}
= Ntεk (γkξk + ηk) . (33)

From (29)–(33) and the fact that ξk + εk = βk, we obtain

E

{
|BUk|2

}
= Ntβk (ξkγk + ηk) . (34)

• Computation of E

{
|UIkj |2

}
: Using the results in (32)

and (33), we have

E

{
|UIkj |2

}
= γjE

{∣∣∣ĥH

kĥj

∣∣∣2}+ ηjE

{∣∣∣ĥH

kat

∣∣∣2}

+ E

{∣∣∣eH

k(
√
γjĥj +

√
ηjat)

∣∣∣2} = Ntβk(γjξj + ηj). (35)

From (29), (34), and (35), we obtain (15).

APPENDIX B

PROOF OF THEOREM 2

We start from the general CRB for θ as [6]

CRB(γ, η̄) =
σ̄2
rT1(γ, η̄)

T2(γ, η̄)T1(γ, η̄)− |T3(γ, η̄)|2
, (36)

where σ̄2
r � σ2

r

2|α|2L , T1(γ, η̄) � trace (AHARx), T2(γ, η̄) �
trace

(
ȦHȦRx

)
, and T3(γ, η̄) � trace

(
ȦHARx

)
. Here,

Ȧ = ȧra
H
t+arȧ

H
t, where ȧx denotes the derivative of ax with

respect to θ, and Rx is the covariance matrix of X. Based on

(1) and (12), and assuming that L is very large, we have

Rx =
1

L
E {XXH} = E

{
ĤΓ2ĤH + ‖η̄‖2 ataH

t

}
= ξTγINt

+ ‖η̄‖2 ataH

t. (37)

Furthermore, with the symmetric forms of at and ar defined

in (17), we have

aH

tȧt = aH

rȧr = 0, ‖at‖2 = Nt, ‖ar‖2 = Nr. (38)

Using (37) and (38), we obtain

T1(γ, η̄) = NtNrξ
Tγ +N2

tNr ‖η̄‖2 , (39)

T2(γ, η̄) =
(
Nt ‖ȧr‖2 +Nr ‖ȧt‖2

)
ξTγ +N2

t ‖ȧr‖2 ‖η̄‖2 ,
(40)

T3(γ, η̄) = 0, (41)

where we have omitted detailed derivations due to the limited

space. We obtain (16) by substituting (39)–(41) into (36), and

the proof is complete.
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