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Abstract—Enabling communications in the (sub-)THz band will
call for massive multiple-input multiple-output (MIMO) arrays at
either the transmit- or receive-side, or at both. To scale down the
complexity and power consumption when operating across massive
frequency and antenna dimensions, a sacrifice in the resolution
of the digital-to-analog/analog-to-digital converters (DACs/ADCs)
will be inevitable. In this paper, we analyze the extreme scenario
where both the transmit- and receive-side are equipped with fully
digital massive MIMO arrays and 1-bit DACs/ADCs, which leads
to a system with minimum radio-frequency complexity, cost, and
power consumption. Building upon the Bussgang decomposition,
we derive a tractable approximation of the mean squared error
(MSE) between the transmitted data symbols and their soft
estimates. Numerical results show that, despite its simplicity, a
doubly 1-bit quantized massive MIMO system with very large
antenna arrays can deliver an impressive performance in terms
of MSE and symbol error rate.

Index Terms—1-bit ADCs, 1-bit DACs, doubly massive MIMO,
(sub-)THz communications.

I. INTRODUCTION

Beyond-5G wireless systems are envisioned to exploit the
large amount of bandwidth in the sub-THz and THz frequency
ranges (0.1-0.3 THz and 0.3-3 THz, respectively) [1]. To
overcome the severe pathloss and penetration loss, massive
multiple-input multiple-output (MIMO) arrays will be needed
at either the transmit- or receive-side, or at both [2]. Fully
digital massive MIMO architectures provide highly flexible
beamforming and large-scale spatial multiplexing while avoid-
ing the complex beam-management schemes of their hybrid
analog-digital counterparts. However, the power consumption of
the digital-to-analog/analog-to-digital converters (DACs/ADCs),
which scales linearly with the bandwidth and exponentially with
the number of resolution bits [3], poses significant practical
challenges. In this context, low-resolution DACs/ADCs have
been considered as a promising enabler of truly massive, fully
digital antenna arrays [4]-[6]. Simple 1-bit DACs/ADCs can
also alleviate the overall complexity and power consumption of
the radio-frequency (RF) chains. For instance, 1-bit DACs at
the transmitter allow the use of low-cost power amplifiers that
are not constrained to operate with backoff [7], whereas 1-bit
ADC:s at the receiver relax the requirements on the automatic
gain control. Hence, the performance loss arising from the 1-bit
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quantization can be compensated for by adding very low-cost
antennas and RF chains.

Massive MIMO systems with low-resolution data converters
have been generally studied assuming coarse quantization at the
base station (either in the DACs [4], [8] or in the ADCs [5], [9])
and full-resolution user equipment. In this paper, we analyze
the extreme scenario where both the transmit- and receive-side
are equipped with fully digital massive MIMO arrays [2] and
1-bit DACs/ADCs, which is referred to in the following as
doubly 1-bit quantized massive MIMO. Indeed, combining 1-bit
DACs and ADCs leads to a fully digital system with minimum
RF complexity, cost, and power consumption. Furthermore,
the short wavelengths characterizing the (sub-)THz band and
the use of 1-bit DACs/ADCs can pave the way for compact
and energy-efficient massive MIMO arrays that can also be
implemented at the user equipment (e.g., on cars and unmanned
aerial vehicles). Only a handful of works in the literature have
considered MIMO systems with both 1-bit DACs and 1-bit
ADC:s. For instance, [10] studied the 1-bit multiple-input single-
output capacity with perfect channel state information (CSI)
at both the transmitter and receiver. Moreover, [11] described
the 1-bit MIMO capacity with imperfect CSI assuming that
the number of transmit or receive antennas tends to infinity.
Lastly, [12] showed that a proper combination of transmit
beamforming and equiprobable signaling allows the system to
operate close to the 1-bit MIMO capacity.

The goal of this paper is to provide a tractable analytical
framework that lends itself to the performance analysis and
optimization of doubly 1-bit quantized massive MIMO systems.
Considering a point-to-point system, we build upon the
Bussgang decomposition [13] to unfold the relation between
the transmitted data symbols (at the input of the transmitter’s
1-bit DACs) and the soft-estimated symbols acquired via linear
combining of the quantized received signal (at the output of the
receiver’s 1-bit ADCs). Assuming perfect channel estimation,
we derive a tractable approximation of the mean squared error
(MSE) between the transmitted data symbols and their soft
estimates as well as the combining strategy that minimizes
it. This approximation is accurate in the regime of a large
number of transmit antennas, which makes the signal at the
input of the receiver’s 1-bit ADCs approximately Gaussian.
Numerical results show that, despite its simplicity, a doubly
1-bit quantized massive MIMO system with very large antenna
arrays can deliver an impressive performance in terms of MSE

Asilomar 2023

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 31,2024 at 21:41:25 UTC from IEEE Xplore. Restrictions apply.



Transmitter Receiver
s — x=Ws —t=Qrx(x) — /pt = /pHt+2z — 1= —v5=vVHp
Qrx(x) — /p H | |y=pHt+ Qrx(y)
precoding 1-bit DACs 1-bit ADCs combining

Figure 1. Diagram of the considered doubly 1-bit quantized massive MIMO system.

and symbol error rate (SER), which is not far from that of a
massive MIMO system with full-resolution DACs and 1-bit
ADCs.

II. SYSTEM MODEL

We consider a point-to-point doubly 1-bit quantized massive
MIMO system, where a transmitter equipped with N antennas
and 1-bit DACs transmits K data streams to a receiver with
M antennas and 1-bit ADCs, with K < min(N, M). Such a
point-to-point system may represent, e.g., a wireless backhaul
scenario; however, the following discussion can be easily
extended to a multi-user uplink or downlink scenario. To model
the 1-bit DACs and ADCs, we introduce the 1-bit quantization
function Q,(-) : CB*' — Q,, with Q, £ V{1l £ 5B
and

Qu(b) £ [ (sgn(Relb) + jsgn(imib])). 1)

Note that the output of the 1-bit quantization function is a

vector of scaled quadrature phase-shift keying (QPSK) symbols.

In the following, we use the subscripts A = TX and A = RX
to indicate “transmitter” and “receiver”, respectively.

Let H € CM*Y denote the channel matrix between the
transmitter and the receiver. In this paper, we assume that H
is perfectly known at both the transmitter and receiver, and

we leave the analysis with imperfect CSI for future work.

The transmitter aims at conveying the data symbol vector s €
CE*1 (o the receiver. As in [4], [8], we consider a quantized
linear precoding strategy, whereby the precoding matrix is
designed based on H and independently of s and the subsequent
quantization step.! In this setting, s is first precoded as

x 2 WseCchVx! )

where W € CV*¥ is the precoding matrix, and then quantized
at the 1-bit DACs as

t £ Qu(x). 3)

Here, the scaling factor 7y of the 1-bit quantization function
in (1) is fixed as 7 = % to satisfy the power constraint
1t]* = 1.

Subsequently, the analog signal t is transmitted over the
channel with transmit power p and the signal arriving at the
receiver is given by

y & /pHt +z € CM*! )

where z ~ CN(0,1,/) is a vector of additive white Gaussian
noise (AWGN). Since the AWGN has unit variance, p can be

An alternative approach, which goes beyond the scope of this paper, is
symbol-level precoding, whereby the analog signal at the output of the 1-bit
DAC:s is designed based on H and s [7]. Symbol-level precoding outperforms
its quantized linear counterpart at the cost of higher complexity.

interpreted as the transmit signal-to-noise ratio (SNR). Then,
y is quantized at the 1-bit ADCs as

r £ Qu(y) = Qux(vVPHQ(Ws) + z). (5)

Here, the scaling factor 7,y of the 1-bit quantization function
in (1) is fixed as 7xx = p+ 1 so that the element-wise variance
of the output coincides with that of the input when the channel
elements have unit variance and N — oo (see (15) in the
following). Note that the doubly 1-bit quantized signal in (5) is
what is observed at the receiver. Finally, the receiver acquires
a soft estimate of s via linear combining of the digital signal
r as

§ 2 vhHp e it (6)

where V € CM*X s the combining matrix.

In this paper, we consider the MSE between s and its soft
estimate S in (6) as a performance metric, which is given by
1 .
e & — ., [ls - 3] ™
We observe that deriving the above MSE requires obtaining a
tractable expression for r in (5) as a function of s.

III. LINEARIZATION VIA THE BUSSGANG DECOMPOSITION

In this section, we consider Gaussian data symbols, i.e.,
s ~CN(0,If). Then, we express the doubly 1-bit quantized
signal observed at the receiver as a linear function using the
Bussgang decomposition [13], which allows one to write the
output of a nonlinear system as a scaled version of the input
plus an uncorrelated distortion. Finally, we derive a tractable
approximation of the MSE in (7).
A. Linearization at the Transmitter
Let us define
Cx £ Bs[xx""] = WW' e CVV, ®)
C: 2 Efttf] e VXV, 9)
Then, we use the Bussgang decomposition to linearize t in (3)
with respect to x in (2) (and, thus, with respect to s) as
t = Gux +di (10)
where d.x € CcMl s a zero-mean, non-Gaussian distortion
vector that is uncorrelated with x (and, obviously, with s) and

G 2 Egtx|C t e VXN (11)

is the Bussgang gain matrix. Indeed, Gxx and d,y are the
minimum MSE estimate of t given x and the corresponding
estimation error, respectively. Moreover, according to (10), Cg
in (9) can be obtained as

Ct = GTXCXGTX + Cde (12)
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Ci =

C.2

2 1
—Thx ( arcsin (Diag(Cx) ™ 2 Re[Cx|Diag(Cx)~
m

2
—Thx ( arcsin (Diag(Cy)*%Re[Cy]Diag(CyY%) + j arcsin (Diag(Cy)*%Im[Cy}Diag(Cy)*
71'

Nl

) + j arcsin (Diag(cx)—%Im[cx]Diag(cx)—%)), (14)

)

Nl=

2

with Cg,, 2 E[ddll] e CV*V,

Since s is Gaussian, we have that Gy is a diagonal matrix
that can be computed in closed form following well-known
steps (see, e.g., [S]) as

2 1
G = {/ —nDiag(Cx) 2. (13)
s

Note that, when K < N (i.e., when the number of data streams
is strictly smaller than the number of transmit antennas, which
is generally the case in downlink massive MIMO systems),
Cx in (8) is rank-deficient and G, cannot be computed as
in (11);> nonetheless, it can still be obtained via (13), which
does not involve the inversion of Cy. Furthermore, Cy in (9)
can be computed in closed form as in (14) at the top of the
page [5].

B. Linearization at the Receiver

Let us define

Cy 2 B, [yy"] = pHCH" 4+ 1), € cMxM,
C, 2 K ,[ref] e MM
where we point out that the above expectations are taken also

over the AWGN. Then, we use the Bussgang decomposition
to linearize r in (5) with respect to y in (4) as

r= kay + dix = GRX(\/EH(GTXWS + dTX) + Z) + dgx
(17)

15)
(16)

where dgx € CM*1 i a zero-mean, non-Gaussian distortion

vector that is uncorrelated with y and
G 2 Ey[ry")Cyt e MM (18)

is the Bussgang gain matrix. Moreover, according to (17), C,
in (16) can be obtained as

Cr = GRXCyGRX + Cde

with Cgp 2 E[dedll] € CM*M,

At this stage, we have achieved our goal to express the
doubly 1-bit quantized signal observed at the receiver as a
linear function of s. However, since y is not Gaussian due to
the 1-bit DACs at the transmitter,? we have that G, is generally
not diagonal. Consequently, C, and Gy are not available in
closed form, which makes the expression in (17) not tractable.
Despite that, we make the following observation: each element
of u2 Ht e CM*!isa weighted sum of N scaled QPSK
symbols. Therefore, when the number of transmit antennas [V is
large and the channel elements are weakly correlated, we have

(19)

2When Cyx is rank-deficient, its inverse in (11) can be replaced by its
pseudoinverse, as described in [14]. In this case, the resulting Grx may not
be diagonal, although Grxx will be the same whether Grx is obtained via
(11) or (13).

3This can be also observed from (17), which includes the non-Gaussian
distortion vector drx.

that u is approximately Gaussian, i.e., u ~ CA/(0, HC;H™Y).
This approximation becomes asymptotically exact as N — o0;
nonetheless, with i.i.d. channel elements, we observe through
numerical simulations that it is already quite accurate for N >
8. In this context, we have that y is approximately Gaussian,
ie., y ~ CN(0,Cy). Exploiting this argument, Gy in (18)
can be approximated as Gy ~ GRX, where

~ /2 . 1
GRX £ ;WRXDlag(Cy) 2

is obtained following similar steps as for (13). Furthermore,
C, in (16) can be approximated as C, ~ Cr, where ér is
given in (21) at the top of the page and results from following
similar steps as for (14).

(20)

C. Tractable Approximation of the MSE

Building upon the linearizations at the transmitter and at the
receiver described in Sections III-A and III-B, respectively, we
approximate the MSE in (7) as follows.

Proposition 1. The MSE in (7) can be approximated as € ~ €,
with

1 ~ 2 ~
EL 1+ gtr(VHCrV) — E\fptr(Re[VHGMHGTXW]).
(22)
Proof: See Appendix I [ |

Our numerical simulations in Section IV show that the
approximate MSE ¢ in (22) behaves as an upper bound on the
true MSE ¢. Moreover, for a fixed precoding matrix W,* we
have that € is a convex quadratic function of the combining
matrix V. Hence, we can minimize the approximate MSE with
respect to V, which yields

V* £ argminé = /pC; ' G HG W. (23)
A\

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the considered
doubly 1-bit quantized massive MIMO system in terms of MSE
between the transmitted data symbols and their soft estimates.
We consider far-field propagation and generate the channel
matrix H using the discrete physical channel model [15]. The
transmitter and receiver are equipped with square uniform
planar arrays of /N x /N (resp. VM x /M) half-wavelength
spaced antennas and are placed with their broadsides facing
each other. Between them lies a cluster of 10? scatterers, which
give rise to as many independent propagation paths. For both
the transmitter and receiver, the scatterers are confined within
an angle spread of & around the broadside direction in both
the azimuth and elevation. The channels are normalized such

“Note that (22) depends on the specific choice of the precoding matrix W
and also on Cx in (8) through Grx in (13), Grx in (20), and Cy in (21).
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Figure 2. MSE for 1-bit DACs/ADCs and full-resolution DACs/1-bit ADCs
versus number of transmit/receive antennas. The true MSE ¢ is obtained via
Monte Carlo simulations.
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Figure 3. Approximate MSE for 1-bit DACs/ADCs versus number of transmit
antennas for different numbers of receive antennas. The dotted curves are
obtained by switching N and M.

that their elements have unit variance and the pathloss is
incorporated into the transmit SNR p. The following numerical
results are obtained by averaging over 103 independent channel
realizations. For each realization of H, the precoding matrix W
comprises the K principal right eigenvectors of H, whereas the
combining matrix V is computed as in (23), which minimizes
the approximate MSE in (22). The values of the simulation
parameters N, M, K, and p are reported above each figure.
Figure 2 plots the MSE versus the number of transmit/receive
antennas, with N = M. The approximate MSE ¢ in (22)
behaves as a tight upper bound on the true MSE ¢ in (7),
where the latter is obtained via Monte Carlo simulations with
103 independent realizations of the data symbol vector s for
each realization of H. Furthermore, we observe that truly
massive antenna arrays at both the transmitter and receiver are
necessary to achieve impressive values of the MSE, e.g., about
5x 1072 for N = M = 1600. Nonetheless, the performance of

p =10 dB
0.5
— N =DM =400
— N=M=1024
0.4 [{—— N = M = 1600

2 4 8 16 32 64
K

Figure 4. Approximate MSE for 1-bit DACs/ADCs versus number of data
streams for different numbers of transmit/receive antennas.

the considered doubly 1-bit quantized massive MIMO system
is not far from that of a massive MIMO system with full-
resolution DACs and 1-bit ADCs. Specifically, replacing the
1-bit DACs with full-resolution ones reduces the MSE not even
by a factor of two at the cost of much higher RF complexity
and power consumption at the transmitter.

Figure 3 illustrates the approximate MSE versus the number
of transmit antennas for different numbers of receive antennas
(solid lines) and versus the number of receive antennas for
different numbers of transmit antennas (dotted lines). We
observe that increasing the number of either transmit or receive
antennas produces roughly the same effect. However, since
the combining matrix is optimized for a given channel and
precoding matrix, the second option provides slightly better
results in this case. Figure 4 depicts the approximate MSE
versus the number of data streams for different numbers of
transmit/receive antennas, with N = M. For each configuration,
there is an optimal number of data streams: on the one hand,
judiciously increasing the number of data streams generates
a useful scrambling of the 1-bit quantized signals at the
M receive antennas [9]; on the other hand, the inter-stream
interference becomes dominant for large values of K.

V. DATA DETECTION

In this section, we briefly evaluate the data detection
performance with non-Gaussian data symbols in terms of
SER. In this respect, we point out that x in (2) may be
approximately Gaussian even with non-Gaussian data symbols
when K is large. Figure 5 plots the soft-estimated symbols
with 16-PSK (phase-shift keying) data symbols for different
numbers of transmit/receive antennas, with N = M. As
the number of antennas increases, the dispersion of the soft-
estimated symbols around the transmitted data symbols reduces
noticeably, which translates into an improved SER performance.
For N = M = 1600, a remarkable SER in the order of 10~*
is obtained. Nonetheless, an acceptable SER (considering the
absence of coding) in the order of 1072 is achieved already
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Figure 5. Soft-estimated symbols for 1-bit DACs/ADCs and full-resolution DACs/1-bit ADCs with 16-PSK data symbols for different numbers of transmit/receive

antennas. The magenta solid marks represent the transmitted data symbols.

for N = M = 400.
VI. CONCLUSIONS

Among fully digital systems, doubly 1-bit quantized massive
MIMO systems are endowed with minimum RF complexity,
cost, and power consumption. In this setting, we derived a
tractable approximation of the MSE between the transmitted
data symbols and their soft estimates as well as the combining
strategy that minimizes it. We showed that, despite its simplicity,
a doubly 1-bit quantized massive MIMO system with very large
antenna arrays can deliver an impressive performance in terms
of MSE and SER, which is not far from that of a massive
MIMO system with full-resolution DACs and 1-bit ADCs.
Future work will analyze the impact of imperfect CSI along
with the overall energy efficiency.

APPENDIX I
PROOF OF PROPOSITION 1

We begin by writing (7) as

[1]

Finally, the approximate MSE in (22) is obtained by replacing

Gqyx with Gy in (20) and C, with C; in (21). ]
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