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Abstract—Enabling communications in the (sub-)THz band will
call for massive multiple-input multiple-output (MIMO) arrays at
either the transmit- or receive-side, or at both. To scale down the
complexity and power consumption when operating across massive
frequency and antenna dimensions, a sacrifice in the resolution
of the digital-to-analog/analog-to-digital converters (DACs/ADCs)
will be inevitable. In this paper, we analyze the extreme scenario
where both the transmit- and receive-side are equipped with fully
digital massive MIMO arrays and 1-bit DACs/ADCs, which leads
to a system with minimum radio-frequency complexity, cost, and
power consumption. Building upon the Bussgang decomposition,
we derive a tractable approximation of the mean squared error
(MSE) between the transmitted data symbols and their soft
estimates. Numerical results show that, despite its simplicity, a
doubly 1-bit quantized massive MIMO system with very large
antenna arrays can deliver an impressive performance in terms
of MSE and symbol error rate.

Index Terms—1-bit ADCs, 1-bit DACs, doubly massive MIMO,
(sub-)THz communications.

I. INTRODUCTION

Beyond-5G wireless systems are envisioned to exploit the

large amount of bandwidth in the sub-THz and THz frequency

ranges (0.1–0.3 THz and 0.3–3 THz, respectively) [1]. To

overcome the severe pathloss and penetration loss, massive

multiple-input multiple-output (MIMO) arrays will be needed

at either the transmit- or receive-side, or at both [2]. Fully

digital massive MIMO architectures provide highly flexible

beamforming and large-scale spatial multiplexing while avoid-

ing the complex beam-management schemes of their hybrid

analog-digital counterparts. However, the power consumption of

the digital-to-analog/analog-to-digital converters (DACs/ADCs),

which scales linearly with the bandwidth and exponentially with

the number of resolution bits [3], poses significant practical

challenges. In this context, low-resolution DACs/ADCs have

been considered as a promising enabler of truly massive, fully

digital antenna arrays [4]–[6]. Simple 1-bit DACs/ADCs can

also alleviate the overall complexity and power consumption of

the radio-frequency (RF) chains. For instance, 1-bit DACs at

the transmitter allow the use of low-cost power amplifiers that

are not constrained to operate with backoff [7], whereas 1-bit

ADCs at the receiver relax the requirements on the automatic

gain control. Hence, the performance loss arising from the 1-bit
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quantization can be compensated for by adding very low-cost

antennas and RF chains.

Massive MIMO systems with low-resolution data converters

have been generally studied assuming coarse quantization at the

base station (either in the DACs [4], [8] or in the ADCs [5], [9])

and full-resolution user equipment. In this paper, we analyze

the extreme scenario where both the transmit- and receive-side

are equipped with fully digital massive MIMO arrays [2] and

1-bit DACs/ADCs, which is referred to in the following as

doubly 1-bit quantized massive MIMO. Indeed, combining 1-bit

DACs and ADCs leads to a fully digital system with minimum

RF complexity, cost, and power consumption. Furthermore,

the short wavelengths characterizing the (sub-)THz band and

the use of 1-bit DACs/ADCs can pave the way for compact

and energy-efficient massive MIMO arrays that can also be

implemented at the user equipment (e.g., on cars and unmanned

aerial vehicles). Only a handful of works in the literature have

considered MIMO systems with both 1-bit DACs and 1-bit

ADCs. For instance, [10] studied the 1-bit multiple-input single-

output capacity with perfect channel state information (CSI)

at both the transmitter and receiver. Moreover, [11] described

the 1-bit MIMO capacity with imperfect CSI assuming that

the number of transmit or receive antennas tends to infinity.

Lastly, [12] showed that a proper combination of transmit

beamforming and equiprobable signaling allows the system to

operate close to the 1-bit MIMO capacity.

The goal of this paper is to provide a tractable analytical

framework that lends itself to the performance analysis and

optimization of doubly 1-bit quantized massive MIMO systems.

Considering a point-to-point system, we build upon the

Bussgang decomposition [13] to unfold the relation between

the transmitted data symbols (at the input of the transmitter’s

1-bit DACs) and the soft-estimated symbols acquired via linear

combining of the quantized received signal (at the output of the

receiver’s 1-bit ADCs). Assuming perfect channel estimation,

we derive a tractable approximation of the mean squared error

(MSE) between the transmitted data symbols and their soft

estimates as well as the combining strategy that minimizes

it. This approximation is accurate in the regime of a large

number of transmit antennas, which makes the signal at the

input of the receiver’s 1-bit ADCs approximately Gaussian.

Numerical results show that, despite its simplicity, a doubly

1-bit quantized massive MIMO system with very large antenna

arrays can deliver an impressive performance in terms of MSE
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Figure 1. Diagram of the considered doubly 1-bit quantized massive MIMO system.

and symbol error rate (SER), which is not far from that of a

massive MIMO system with full-resolution DACs and 1-bit

ADCs.

II. SYSTEM MODEL

We consider a point-to-point doubly 1-bit quantized massive

MIMO system, where a transmitter equipped with N antennas

and 1-bit DACs transmits K data streams to a receiver with

M antennas and 1-bit ADCs, with K ≤ min(N,M). Such a

point-to-point system may represent, e.g., a wireless backhaul

scenario; however, the following discussion can be easily

extended to a multi-user uplink or downlink scenario. To model

the 1-bit DACs and ADCs, we introduce the 1-bit quantization

function QA(·) : CB×1 → QA, with QA �
√

ηA

2 {±1± j}B×1

and

QA(b) �
√

ηA

2

(
sgn

(
Re[b]

)
+ j sgn

(
Im[b]

))
. (1)

Note that the output of the 1-bit quantization function is a

vector of scaled quadrature phase-shift keying (QPSK) symbols.

In the following, we use the subscripts A = TX and A = RX

to indicate “transmitter” and “receiver”, respectively.

Let H ∈ C
M×N denote the channel matrix between the

transmitter and the receiver. In this paper, we assume that H
is perfectly known at both the transmitter and receiver, and

we leave the analysis with imperfect CSI for future work.

The transmitter aims at conveying the data symbol vector s ∈
C

K×1 to the receiver. As in [4], [8], we consider a quantized

linear precoding strategy, whereby the precoding matrix is

designed based on H and independently of s and the subsequent

quantization step.1 In this setting, s is first precoded as

x � Ws ∈ C
N×1 (2)

where W ∈ C
N×K is the precoding matrix, and then quantized

at the 1-bit DACs as

t � QTX(x). (3)

Here, the scaling factor ηTX of the 1-bit quantization function

in (1) is fixed as ηTX = 1
N to satisfy the power constraint

‖t‖2 = 1.

Subsequently, the analog signal t is transmitted over the

channel with transmit power ρ and the signal arriving at the

receiver is given by

y � √
ρHt+ z ∈ C

M×1 (4)

where z ∼ CN (0, IM ) is a vector of additive white Gaussian

noise (AWGN). Since the AWGN has unit variance, ρ can be

1An alternative approach, which goes beyond the scope of this paper, is
symbol-level precoding, whereby the analog signal at the output of the 1-bit
DACs is designed based on H and s [7]. Symbol-level precoding outperforms
its quantized linear counterpart at the cost of higher complexity.

interpreted as the transmit signal-to-noise ratio (SNR). Then,

y is quantized at the 1-bit ADCs as

r � QRX(y) = QRX

(√
ρHQTX(Ws) + z

)
. (5)

Here, the scaling factor ηRX of the 1-bit quantization function

in (1) is fixed as ηRX = ρ+1 so that the element-wise variance

of the output coincides with that of the input when the channel

elements have unit variance and N → ∞ (see (15) in the

following). Note that the doubly 1-bit quantized signal in (5) is

what is observed at the receiver. Finally, the receiver acquires

a soft estimate of s via linear combining of the digital signal

r as

ŝ � VHr ∈ C
K×1 (6)

where V ∈ C
M×K is the combining matrix.

In this paper, we consider the MSE between s and its soft

estimate ŝ in (6) as a performance metric, which is given by

ε � 1

K
Es,z[‖s− ŝ‖2]. (7)

We observe that deriving the above MSE requires obtaining a

tractable expression for r in (5) as a function of s.

III. LINEARIZATION VIA THE BUSSGANG DECOMPOSITION

In this section, we consider Gaussian data symbols, i.e.,

s ∼ CN (0, IK). Then, we express the doubly 1-bit quantized

signal observed at the receiver as a linear function using the

Bussgang decomposition [13], which allows one to write the

output of a nonlinear system as a scaled version of the input

plus an uncorrelated distortion. Finally, we derive a tractable

approximation of the MSE in (7).

A. Linearization at the Transmitter
Let us define

Cx � Es[xx
H] = WWH ∈ C

N×N , (8)

Ct � Es[tt
H] ∈ C

N×N . (9)

Then, we use the Bussgang decomposition to linearize t in (3)

with respect to x in (2) (and, thus, with respect to s) as

t = GTXx+ dTX (10)

where dTX ∈ C
N×1 is a zero-mean, non-Gaussian distortion

vector that is uncorrelated with x (and, obviously, with s) and

GTX � Es[tx
H]C−1

x ∈ C
N×N (11)

is the Bussgang gain matrix. Indeed, GTXx and dTX are the

minimum MSE estimate of t given x and the corresponding

estimation error, respectively. Moreover, according to (10), Ct

in (9) can be obtained as

Ct = GTXCxGTX +CdTX
(12)
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Ct =
2

π
ηTX

(
arcsin

(
Diag(Cx)

− 1
2Re[Cx]Diag(Cx)

− 1
2

)
+ j arcsin

(
Diag(Cx)

− 1
2 Im[Cx]Diag(Cx)

− 1
2

))
, (14)

C̃r �
2

π
ηRX

(
arcsin

(
Diag(Cy)

− 1
2Re[Cy]Diag(Cy)

− 1
2

)
+ j arcsin

(
Diag(Cy)

− 1
2 Im[Cy]Diag(Cy)

− 1
2

))
(21)

with CdTX
� E[dTXd

H
TX
] ∈ C

N×N .

Since s is Gaussian, we have that GTX is a diagonal matrix

that can be computed in closed form following well-known

steps (see, e.g., [5]) as

GTX =

√
2

π
ηTXDiag(Cx)

− 1
2 . (13)

Note that, when K < N (i.e., when the number of data streams

is strictly smaller than the number of transmit antennas, which

is generally the case in downlink massive MIMO systems),

Cx in (8) is rank-deficient and GTX cannot be computed as

in (11);2 nonetheless, it can still be obtained via (13), which

does not involve the inversion of Cx. Furthermore, Ct in (9)

can be computed in closed form as in (14) at the top of the

page [5].

B. Linearization at the Receiver
Let us define

Cy � Es,z[yy
H] = ρHCtH

H + IM ∈ C
M×M , (15)

Cr � Es,z[rr
H] ∈ C

M×M (16)

where we point out that the above expectations are taken also

over the AWGN. Then, we use the Bussgang decomposition

to linearize r in (5) with respect to y in (4) as

r = GRXy + dRX = GRX

(√
ρH(GTXWs+ dTX) + z

)
+ dRX

(17)

where dRX ∈ C
M×1 is a zero-mean, non-Gaussian distortion

vector that is uncorrelated with y and

GRX � Ey[ry
H]C−1

y ∈ C
M×M (18)

is the Bussgang gain matrix. Moreover, according to (17), Cr

in (16) can be obtained as

Cr � GRXCyGRX +CdRX
(19)

with CdRX
� E[dRXd

H
RX
] ∈ C

M×M .

At this stage, we have achieved our goal to express the

doubly 1-bit quantized signal observed at the receiver as a

linear function of s. However, since y is not Gaussian due to

the 1-bit DACs at the transmitter,3 we have that GRX is generally

not diagonal. Consequently, Cr and GRX are not available in

closed form, which makes the expression in (17) not tractable.

Despite that, we make the following observation: each element

of u � Ht ∈ C
M×1 is a weighted sum of N scaled QPSK

symbols. Therefore, when the number of transmit antennas N is

large and the channel elements are weakly correlated, we have

2When Cx is rank-deficient, its inverse in (11) can be replaced by its
pseudoinverse, as described in [14]. In this case, the resulting GTX may not
be diagonal, although GTXx will be the same whether GTX is obtained via
(11) or (13).

3This can be also observed from (17), which includes the non-Gaussian
distortion vector dTX.

that u is approximately Gaussian, i.e., u ∼̇ CN (0,HCtH
H).

This approximation becomes asymptotically exact as N → ∞;

nonetheless, with i.i.d. channel elements, we observe through

numerical simulations that it is already quite accurate for N ≥
8. In this context, we have that y is approximately Gaussian,

i.e., y ∼̇ CN (0,Cy). Exploiting this argument, GRX in (18)

can be approximated as GRX ≈ G̃RX, where

G̃RX �
√

2

π
ηRXDiag(Cy)

− 1
2 (20)

is obtained following similar steps as for (13). Furthermore,

Cr in (16) can be approximated as Cr ≈ C̃r, where C̃r is

given in (21) at the top of the page and results from following

similar steps as for (14).

C. Tractable Approximation of the MSE
Building upon the linearizations at the transmitter and at the

receiver described in Sections III-A and III-B, respectively, we

approximate the MSE in (7) as follows.

Proposition 1. The MSE in (7) can be approximated as ε ≈ ε̃,
with

ε̃ � 1 +
1

K
tr(VHC̃rV)− 2

K

√
ρtr

(
Re[VHG̃RXHGTXW]

)
.

(22)

Proof: See Appendix I

Our numerical simulations in Section IV show that the

approximate MSE ε̃ in (22) behaves as an upper bound on the

true MSE ε. Moreover, for a fixed precoding matrix W,4 we

have that ε̃ is a convex quadratic function of the combining

matrix V. Hence, we can minimize the approximate MSE with

respect to V, which yields

V� � argmin
V

ε̃ =
√
ρC̃−1

r G̃RXHGTXW. (23)

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the considered

doubly 1-bit quantized massive MIMO system in terms of MSE

between the transmitted data symbols and their soft estimates.

We consider far-field propagation and generate the channel

matrix H using the discrete physical channel model [15]. The

transmitter and receiver are equipped with square uniform

planar arrays of
√
N×√

N (resp.
√
M×√

M ) half-wavelength

spaced antennas and are placed with their broadsides facing

each other. Between them lies a cluster of 102 scatterers, which

give rise to as many independent propagation paths. For both

the transmitter and receiver, the scatterers are confined within

an angle spread of π
6 around the broadside direction in both

the azimuth and elevation. The channels are normalized such
4Note that (22) depends on the specific choice of the precoding matrix W

and also on Cx in (8) through GTX in (13), G̃RX in (20), and C̃r in (21).
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Figure 2. MSE for 1-bit DACs/ADCs and full-resolution DACs/1-bit ADCs
versus number of transmit/receive antennas. The true MSE ε is obtained via
Monte Carlo simulations.
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Figure 3. Approximate MSE for 1-bit DACs/ADCs versus number of transmit
antennas for different numbers of receive antennas. The dotted curves are
obtained by switching N and M .

that their elements have unit variance and the pathloss is

incorporated into the transmit SNR ρ. The following numerical

results are obtained by averaging over 103 independent channel

realizations. For each realization of H, the precoding matrix W
comprises the K principal right eigenvectors of H, whereas the

combining matrix V is computed as in (23), which minimizes

the approximate MSE in (22). The values of the simulation

parameters N , M , K, and ρ are reported above each figure.

Figure 2 plots the MSE versus the number of transmit/receive

antennas, with N = M . The approximate MSE ε̃ in (22)

behaves as a tight upper bound on the true MSE ε in (7),

where the latter is obtained via Monte Carlo simulations with

103 independent realizations of the data symbol vector s for

each realization of H. Furthermore, we observe that truly

massive antenna arrays at both the transmitter and receiver are

necessary to achieve impressive values of the MSE, e.g., about

5×10−2 for N = M = 1600. Nonetheless, the performance of

2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

K

ε̃

ρ = 10 dB

N = M = 400

N = M = 1024

N = M = 1600

Figure 4. Approximate MSE for 1-bit DACs/ADCs versus number of data
streams for different numbers of transmit/receive antennas.

the considered doubly 1-bit quantized massive MIMO system

is not far from that of a massive MIMO system with full-

resolution DACs and 1-bit ADCs. Specifically, replacing the

1-bit DACs with full-resolution ones reduces the MSE not even

by a factor of two at the cost of much higher RF complexity

and power consumption at the transmitter.

Figure 3 illustrates the approximate MSE versus the number

of transmit antennas for different numbers of receive antennas

(solid lines) and versus the number of receive antennas for

different numbers of transmit antennas (dotted lines). We

observe that increasing the number of either transmit or receive

antennas produces roughly the same effect. However, since

the combining matrix is optimized for a given channel and

precoding matrix, the second option provides slightly better

results in this case. Figure 4 depicts the approximate MSE

versus the number of data streams for different numbers of

transmit/receive antennas, with N = M . For each configuration,

there is an optimal number of data streams: on the one hand,

judiciously increasing the number of data streams generates

a useful scrambling of the 1-bit quantized signals at the

M receive antennas [9]; on the other hand, the inter-stream

interference becomes dominant for large values of K.

V. DATA DETECTION

In this section, we briefly evaluate the data detection

performance with non-Gaussian data symbols in terms of

SER. In this respect, we point out that x in (2) may be

approximately Gaussian even with non-Gaussian data symbols

when K is large. Figure 5 plots the soft-estimated symbols

with 16-PSK (phase-shift keying) data symbols for different

numbers of transmit/receive antennas, with N = M . As

the number of antennas increases, the dispersion of the soft-

estimated symbols around the transmitted data symbols reduces

noticeably, which translates into an improved SER performance.

For N = M = 1600, a remarkable SER in the order of 10−4

is obtained. Nonetheless, an acceptable SER (considering the

absence of coding) in the order of 10−2 is achieved already
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for N = M = 400.

VI. CONCLUSIONS

Among fully digital systems, doubly 1-bit quantized massive

MIMO systems are endowed with minimum RF complexity,

cost, and power consumption. In this setting, we derived a

tractable approximation of the MSE between the transmitted

data symbols and their soft estimates as well as the combining

strategy that minimizes it. We showed that, despite its simplicity,

a doubly 1-bit quantized massive MIMO system with very large

antenna arrays can deliver an impressive performance in terms

of MSE and SER, which is not far from that of a massive

MIMO system with full-resolution DACs and 1-bit ADCs.

Future work will analyze the impact of imperfect CSI along

with the overall energy efficiency.

APPENDIX I

PROOF OF PROPOSITION 1

We begin by writing (7) as

ε =
1

K
Es,z

[‖s−VHr‖2] (24)

=
1

K
Es,z

[
tr(ssH) + tr(VHrrHV)− 2tr

(
Re[VHrsH]

)]
(25)

= 1 +
1

K
tr(VHCrV)− 2

K
tr
(
Re

[
VH

E[rsH]
])
. (26)

Then, by plugging (17) into the remaining expectation term in

(26), we obtain

E[rsH] = Es,z

[(
GRX

(√
ρH(GTXWs+ dTX) + z

)
+ dRX

)
sH

]
(27)

=
√
ρGRXHGTXWEs[ss

H] (28)

where (28) follows from the fact that dTX, z, and dRX are all

uncorrelated with s. Hence, plugging (28) into (26) yields

ε = 1 +
1

K
tr(VHCrV)− 2

K

√
ρtr

(
Re[VHGRXHGTXW]

)
.

(29)

Finally, the approximate MSE in (22) is obtained by replacing

GRX with G̃RX in (20) and Cr with C̃r in (21).
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