2566

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Asymptotic SEP Analysis and Optimization of
Linear-Quantized Precoding in Massive
MIMO Systems

Zheyu Wu", Graduate Student Member, IEEE, Junjie Ma™, Ya-Feng Liu", Senior Member, IEEE,
and A. Lee Swindlehurst™, Fellow, IEEE

Abstract— A promising approach to deal with the high
hardware cost and energy consumption of massive MIMO
transmitters is to use low-resolution digital-to-analog converters
(DACs) at each antenna element. This leads to a transmission
scheme where the transmitted signals are restricted to a finite
set of voltage levels. This paper is concerned with the analysis and
optimization of a low-cost quantized precoding strategy, referred
to as linear-quantized precoding, for a downlink massive MIMO
system under Rayleigh fading. In linear-quantized precoding, the
signals are first processed by a linear precoding matrix and
subsequently quantized component-wise by the DAC. In this
paper, we analyze both the signal-to-interference-plus-noise ratio
(SINR) and the symbol error probability (SEP) performances
of such linear-quantized precoding schemes in an asymptotic
framework where the number of transmit antennas and the
number of users grow large with a fixed ratio. Our results provide
a rigorous justification for the heuristic arguments based on
the Bussgang decomposition that are commonly used in prior
works. Based on the asymptotic analysis, we further derive the
optimal precoder within a class of linear-quantized precoders
that includes several popular precoders as special cases. Our
numerical results demonstrate the excellent accuracy of the
asymptotic analysis for finite systems and the optimality of the
derived precoder.
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I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) is a

key technology for 5G wireless communication sys-
tems. By equipping the base station (BS) with many antennas,
massive MIMO can significantly improve the channel capacity,
energy efficiency, and spectral efficiency of wireless commu-
nication systems [2], [3], [4]. Despite the great potential of
massive MIMO systems, high power consumption and hard-
ware cost are serious practical challenges for their commercial
deployment.

One of the main power-hungry components in a massive
MIMO system is the digital-to-analog-converter (DAC) [5], the
number of which scales linearly with the number of antennas at
the BS. To reduce circuit complexity and power consumption,
low-resolution DACs have been considered for massive MIMO
systems [6], [7], [8], [9], [10], [11], [12]. Unlike conventional
precoding schemes where at the symbol sampling points the
transmitted signals can be freely chosen from a continuous
set, only a small finite set of signals can be transmitted to
convey information when low-resolution DACs are employed.
The analysis and design of quantized precoding with the use
of low-resolution DACs has become an active research topics
in recent years [6], [7], [8], [9], [10], [11], [12].

Power ampifiers (PAs) are another main source of power
consumption in massive MIMO systems. To achieve the
highest power efficiency, the PAs need to operate close to
saturation, but for continuous-valued signals this incurs non-
linear distortion and causes difficulties for signals with high
peak-to-average power ratio (PAPR) [13]. A popular way to
handle such difficulty is to restrict the transmitted signal from
each antenna to have the same amplitude [14], [15], [16],
which minimizes the PAPR and enables the employment of
the most efficient and cheapest PAs. Combining such a con-
stant envelope (CE) constraint with the use of low-resolution
DACs motivates a new quantized precoding scheme, quantized
constant envelope (QCE) precoding, where at the symbol
sampling points the transmitted signals are restricted to have
a fixed amplitude and their phases are limited to finite values.
The QCE precoding scheme has attracted significant research
interest [17], [18], [19], [20], [21], [22], [23] as it combines
the advantage of using low-resolution DACs and energy-
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efficient PAs. In particular, as an extreme case of both QCE
and traditional quantized precoding, one-bit precoding (where
one-bit DACs are employed) has been widely and extensively
studied [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. The power efficiency gain can be several dB, and in many
cases is sufficient to overcome the loss in fidelity due to the
coarse quantization.

We note here that traditional quantized precoding (without
the CE constraint) and QCE precoding are both realized by
the use of low-resolution DACs and have a common feature
that the transmitted signals are only allowed to be selected
from a finite set. In the following discussion, we will refer
to them (and possibly other precoding schemes with the finite
transmission set feature) collectively as quantized precoding.

Existing quantized precoding schemes can be broadly cat-
egorized into two classes: linear-quantized precoding and
nonlinear precoding. A linear-quantized precoding scheme'
simply quantizes the output of a linear precoder [6], [7], [8],
[9], [24], [25], [26], [27], [28], [29]. In contrast, nonlinear
precoders do not have this simple structure and are typically
obtained by solving appropriate optimization problems [10],
(111, [12], [18], [19], [20], [21], [22], [23], [30], [31], [32],
[33], [34], [35].

In this paper, we focus on the analysis and optimization
of linear-quantized precoding schemes, which are arguably
more practical than the computationally expensive nonlinear
schemes. Unlike existing works that focus on either traditional
quantized precoding or QCE precoding, this paper deals with
these two types of quantized precoding in a unified framework.
In what follows, we first give a brief review of related works
and then present the main contributions of this paper.

A. Related Work

1) Linear-Quantized Precoding: A direct approach to
obtain linear-quantized precoders is to quantize the output
of classical linear precoders such as the matched filter (MF)
and zero-forcing (ZF) precoders [6]. However, this approach
does not take into account the effect of quantization and thus
yields precoders that, although simple, are suboptimal in the
context of quantized precoding. Noting this, the authors in
[7] characterized the mean square error (MSE) between the
desired symbol and the received signal with the presence
of low-resolution DACs and proposed the quantized transmit
Wiener filter (TxWFQ) precoder that minimizes the MSE.
Under the same setup as [7], the authors of [8] proposed
a gradient-based approach to maximize the weighted sum
rate of the system. For the one-bit case, the authors in
[24] proposed a minimum mean square error (MMSE) based
precoder. Later, a higher-rank linear precoder was designed in
[25] for a downlink one-bit massive MIMO system, showing
superior performance to traditional linear-quantized precoders
of channel rank. We remark here that all existing works on
the design of linear-quantized precoding focus on traditional
quantized precoding or the special one-bit case. To the best

'Note that the overall operation of a linear-quantized scheme is not linear
due to the presence of the quantization step, but for convenience we will use
this term throughout this paper.
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of our knowledge, no existing work considers the design of
linear-quantized precoding in the QCE context.

There are also some works focusing on the performance
analysis of linear-quantized schemes, e.g., [6] and [9] for
traditional quantized precoding, [26], [27], [28], [29] for
one-bit precoding, and [17] and [36] for QCE precoding.
Specifically, the authors in [6] and [9] derived lower-bounds on
the downlink achievable rates of linear-quantized precoding for
a flat-fading and a frequency-selective channel, respectively.
For a one-bit massive MIMO system, [26] derived a lower
bound on the achievable rate for MF precoding with estimated
channel state information (CSI). The performance of the
one-bit ZF precoder was investigated in [27], in which a
closed-form expression of the symbol error probability (SEP)
was derived in the asymptotic setting where the numbers of
transmit antennas and users both tend to infinity with a fixed
ratio. The same problem was considered in [28] and [29],
where the input-output correlation relationship was expanded
up to third-order instead of first-order as in [27], and the
derived SEP expression shows better accuracy than that in
[27] when the number of users is small relative to the number
of transmit antennas.

A widely used technique for analyzing the performances of
linear-quantized precoding schemes is the Bussgang decom-
position [37], which decomposes a non-linear function of a
Gaussian signal as the sum of a linear signal term and an
uncorrelated distortion term. We remark that although the
Bussgang decomposition is per se rigorous, it is often used in
conjunction with various heuristics to analyze the performance
of linear-quantized precoding. For instance, the distortion term
is often treated as a random variable that is independent of
all other random variables in the system. Although there is
strong numerical evidence that the heuristic treatments can
yield accurate predictions (e.g., SEP performance) for large
systems [27], [28], [29], a rigorous analysis of such heuristics
in the context of linear-quantized precoding is still lacking.
Please refer to Section II-C for a detailed discussion of the
Bussgang decomposition technique.

Beyond the analyses of traditional quantized precoding and
one-bit precoding, there are also some preliminary attempts
to analyze the performance of QCE precoding. Specifically,
[36] studied the statistical properties of the CE quantizer
(which models the overall operation of low-resolution DACs
and the CE constraint and generates signals satisfying the
QCE constraint) and derived closed-form expressions of the
cross-correlation factors between the input and output signals
of the CE quantizer. Very recently, the authors in [17] consid-
ered QCE precoding for a multiple-input single-output (MISO)
system and derived the diversity order of the MF precoder,
which characterized how fast the system SEP tends to zero as
the signal-to-noise ratio (SNR) grows [38].

2) Nonlinear Precoding: Besides linear-quantized precod-
ing schemes, various nonlinear precoders based on different
criteria have been proposed in recent years, see, e.g., [10], [11],
and [12] for traditional quantized precoding and [18], [19],
[20], [21], [22], and [23] for QCE precoding. There are also
many algorithms designed specifically for one-bit precoding,
see, e.g., [30], [31], [32], [33], and [34]. Nonlinear precoding
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schemes (especially symbol-level nonlinear precoders) usually
have better symbol error rate (SER) performance than their
linear counterparts but their computational complexity is much
higher.

Although there have been substantial progress in the design
of nonlinear precoding schemes, the performance analysis
of nonlinear precoding remains an open problem. This is
because nonlinear precoders are typically solutions to compli-
cated optimization problems without closed-form expressions.
In addition, the discrete nature of the transmitted signals in
quantized precoding leads to discrete constraints in the cor-
responding optimization problem, which further complicates
the analysis. Analyzing and designing nonlinear precoding
schemes are beyond the scope of this paper and can be
considered as a future work.

B. Our Contributions

In this paper, we analyze the performance of a broad class
of linear-quantized precoding schemes for a downlink massive
MIMO system. Our results rigorously justify and substantially
generalize existing results for MF and ZF based schemes
derived using heuristic Bussgang decomposition arguments.
The main contributions are summarized as follows.

1) Statistically equivalent model: By exploiting a recur-
sive characterization of the Haar random matrix [39],
we derive a model that is statistically equivalent to
the original system model. The statistically equivalent
model is close to a “signal plus independent Gaussian
noise” form and is more amenable to analysis. This
step is non-asymptotic and the technique we use may
be applicable to other problems as well.

2) Asymptotic analysis: We further consider the large sys-
tem limit as in [27] and show that in the asymptotic
regime, the statistically equivalent model is exactly
in a “signal plus independent Gaussian noise” form.
This provides a rigorous justification for the heuris-
tic analyzes based on the Bussgang decomposition.
We also prove that the signal-to-interference-plus-noise
ratio (SINR) and SEP of the original model converge to
those of the asymptotic model. Simulations show that
the asymptotic results are accurate for realistic systems
with finite dimensions.

3) Optimal linear-quantized precoder: Based on the asymp-
totic analysis, we derive the optimal linear-quantized
precoder that optimizes both the asymptotic SINR and
the asymptotic SEP performance. We show that the
optimal linear-quantized precoder is a regularized ZF
(RZF) precoder, whose regularization parameter is deter-
mined by the quantization type/level as well as the
system parameters. To the best of our knowledge, the
optimal RZF precoder derived in this paper is the first
linear-quantized precoder applicable to general forms of
quantization.

C. Organization and Notations

The remaining parts of the paper are organized as fol-
lows. Section II describes the system model and the problem
formulation. Some preliminaries for analysis are introduced
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in Section III. Section IV derives the statistically equiva-
lent model and gives the asymptotic analysis. The optimal
linear-quantized precoder is then given in Section V. Simula-
tion results are shown in Section VI and the paper is concluded
in Section VII.

Notation: Throughout the paper, we use the typefaces z, x,
X, and X to denote scalar, vector, matrix, and set, respectively.
For a vector x € C", x[i; : iz] denotes a sub-vector of x
consisting of its ¢;-th to ip-th elements, where 1 < ¢; <
io < n; in particular, x[i] is the i-th entry of x, and x; is
also used if it does not cause any ambiguity. For a matrix X,
Xli1,i2] is the (i1,i2)-th entry of X. The operators arg(-),
R(), Z(-), (O, ()T, ()", and (-)~! return the angle, the
real part, the imaginary part, the conjugate, the transpose, the
conjugate transpose, and the inverse of their corresponding
arguments, respectively. We use || - || to denote the ¢ norm
of the corresponding vector or the spectral norm of the
corresponding matrix. For m,n € N, we denote the m x m
identity matrix by I,, and the m X n matrix of all zero
entries by 0,,x,. We use diag(zq,zo,...,z,) to refer to a
diagonal matrix with {x;}" ; as its diagonal entries. We use
U(n) to denote the set of n X n unitary matrices over C.
The operators E[-], var(-), and P(-) return the expectation, the

variance, and the probability of their corresponding argument,

respectively. For two random variables X and Y, X Ly

means that they have the same distribution. We denote almost
sure convergence by —. We use CA/(0,02I) to denote the
zero-mean circularly symmetric complex Gaussian distribution
with covariance matrix 0?1, and Unif(S) to denote uniform
distribution on set S. We reserve the sans serif font (e.g., g)
for vectors with i.i.d. standard complex Gaussian random
variables. Finally, j is the imaginary unit satisfying j2 = —1.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Linear-Quantized Precoding

Consider the downlink of a multiuser massive MIMO
system in which an N-antenna BS simultaneously serves K
single-antenna users, where /X < N. The received signals at
the users can be modeled as

y = Hx +n,

where y € CK is the received signal vector of the users;
x € CV is the transmitted signal vector from the BS; H €
CH*N models the channel matrix between the BS and the
users, and n € CX is the additive noise. We assume that
the analog-to-digital converters (ADCs) equipped at the user
side are ideal and have infinite resolution and that perfect CSI
is available at the BS. We model the DAC as a quantization
function and ignore various practical effects such as glitches,
element mismatch, slewing, thermal noise, clipping, etc [40],
[41], [42].

In this paper, we consider the linear-quantized precoding
scheme, where the signal vector to be transmitted at the BS
has the following form

x = 1nq(Ps). (1)

In the above expression, s € CX is the desired data vector;
P ¢ CN*X is a precoding matrix; ¢(-) : C — X is a
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Fig. 1. An illustration of the linear-quantized precoding scheme.

quantization function that acts component-wise on its input
vector, where X, is a finite set with L elements and L is
referred to as the quantization level; 7 is a scaling factor to
ensure that the following average transmit power constraint is
satisfied:

1
~VElXI3] < Pr, @

where Pr > 0 is the maximum average transmit power. See
Fig. 1 for an illustration of the linear-quantized precoding
scheme.

We now introduce the quantization function corresponding
to traditional quantized precoding and QCE precoding, which
are most relevant for applications.

o Traditional quantized precoding: In this case, the real
and imaginary parts of the input signal are quantized
independently with a pair of low-resolution DACs and
X, can be expressed as

Xy = {mm(x),z(x) e {2 (2@—1—@),
E—l,.‘.,\/f}}, (3)

where A is the quantization interval. The corresponding
quantization function maps its input to the nearest point
in (3). In the following, we call it independent quantizer
since the quantizer acts independently on the real and
imaginary parts of its input, and denote it by ¢(-). For
an L-level independent quantizer, the resolution of the
DAC:s is %1og2 L bits, where L> 4 and is a power of 2.
e QCE precoding: In this case, the CE constraint is com-
bined with the use of low-resolution DACs and X, has
the following expression:
XL _ {ej (2221)7\'
The corresponding quantization function maps its input
to the nearest point in (4). In the following, we call it CE
quantizer and denote it by ¢ge(-). The resolution of the
DAC:s is log, % bits for an L-level CE quantizer, where
L> 4 and is a power of 2.

|€:1,2,...,L}. (4)

Note that when L = 4 and A = 2, the independent quantizer
and the CE quantizer are the same, both reducing to the one-bit
precoding case.

Let H = UDV" be the singular value decomposi-
tion (SVD) of H, where U € U(K),V € U(N), and
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Fig. 2. The structure of the precoding matrix in consideration.

D = (diag(dl,dg,...,d[() OKX(NfK)) € REXN with
di,ds,...,dx representing the non-zero singular values’ of
H. In this paper, we focus on precoding matrices with the
following structure:

P=VfD)"U", (5)

where f(-) acts independently on the nonzero singular values
of H, i.e.,

f(D) = (diag(f(d1), f(d2), ... f(dKk)) Oxx(n-K))-

See Fig. 2 for an illustration of the structure of P. The
motivations to consider the special class of the precoding
matrix in (5) are twofold. First, as will be shown in Section III,
the structure of P in (5) enables us to apply existing results
in random matrix theory for performance analysis. Second,
the structure of P is fairly general and includes the following
popular precoders as special cases:
e MF: P = H", which corresponds to f(x) = z in (5);
o ZF: P = HHY(HH")~!, which corresponds to f(z) =
2~ in (5);
e RZF: P = H'(HH" + pIx)~!, which corresponds to
flx) = wrf—ﬂ in (5).
With the above linear-quantized precoding scheme, the
received signals at the user side read

y = nHg(Ps) + n = yUDV"¢(Vf(D)"U"s) + n.  (6)

As in [19], [20], [21], and [22], we assume that each user is
able to rescale the received signal y;, by a factor G, € C,
i.e., 7y = Oryk. (This corresponds to removing the effective
channel gain.) After the rescaling step, the users employ
symbol-wise nearest-neighbor decoding, i.e., each user & maps
71 to the nearest constellation point.

As will be shown below, the nonlinear function f(-) in P
has a major impact on the performance of the overall system.
In this paper, we will first analyze the performance of the
linear-quantized scheme in the asymptotic regime where N
and K tend to infinity simultaneously, and then optimize f(-)
based on the asymptotic analysis.

B. Assumptions

In this subsection, we specify our assumptions on the system
model in (6). We first make a few standard assumptions on
H, n, and s.

2We assume throughout the paper that H is of full row rank. This holds
with probability one if Assumption | further ahead is satisfied, i.e., if the
entries of H are i.i.d. following CN (0, %)
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Assumption 1: The entries of H and n are independently
drawn from CN (0, %) and CN (0,02), respectively. The
entries of s are independently and uniformly drawn from
a finite set Sp; with nonzero elements (i.e., 0 ¢ Spr),
and E[|s1|*] = o2. Furthermore, H,s, and n are mutually
independent.

The i.i.d. Gaussian assumption on the channel H is widely
adopted in the massive MIMO literature for ease of analysis,
see, e.g., [27], [28], and [29]. This assumption is reasonable in
a rich scattering environment where the number of scattered
components is large and independent. Such a scenario arises
when the antennas are widely spaced or when the physical
environment exhibits scattering in all directions [43]. Note
that we have assumed H,;; ~ CN(0, %) instead of H;; ~
CN(0,1). This normalization is introduced as in [44], [45],
and [46] to ensure that the received power of the users does
not grow with N. We would like to emphasize that the i.i.d.
Gaussian assumption on the channel H is not essential to our
analysis. Our results can be extended to a broader class of
channel models, as discussed in Remark 3 below Theorem 2.

The assumption on s is quite general and is satisfied by
common constellation schemes including phase shift keying
(PSK) and quadrature amplitude modulation (QAM).

For technical reasons, we impose the following assumption
on the nonlinear function f(-) in P in (5).

Assumption 2: The function f(-) is positive, continuous
almost everywhere (a.e.), and bounded on any compact set
of (0, 00).

Notice that the f functions corresponding to the MF, ZF, and
RZF precoders discussed in the previous subsection all satisfy
Assumption 2. We emphasize that the positivity assumption
on f is not essential and can be relaxed to P (f(D) = 0) = 0.
Further, as will be shown in Section V, there always exists an
optimal precoder satisfying f > 0, implying that the positivity
assumption does not impose any restriction in terms of the best
achievable performance.

Finally, we assume that the quantization function ¢ in (1)
satisfies some regularity conditions, as stated in Assumption 3
below.

Assumption 3: The quantization function ¢ : C — X is
continuous a.e. and bounded.

It is straightforward to verify that the independent quantizer
¢(-) and the CE quantizer ¢q:(-) both satisfy Assumption 3
(as they are piecewise constant). We emphasize that some of
our results can be simplified for QCE precoding, i.e., when
q(-) = qee(+). In the following, we will first present our results
in the most general form and then discuss the case of QCE
precoding separately.

C. Heuristic Analysis Via Bussgang Decomposition

The nonlinear quantization function ¢(-) causes some diffi-
culties for performance analysis. A popular technique to deal
with it is the Busggang decomposition [6], [9], [26], [27],
[28], [29], which decomposes a nonlinear function of Gaussian
random variables into a linear signal term and an uncorrelated
nonlinear distortion term. We now outline a heuristic analysis
of the problem using the Bussgang decomposition technique.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Consider the nonlinear quantization process g(Ps), where
P = Vf(D)"U". Under Assumption 1, V and U are Haar
distributed (see Definition 1 and Lemma 1 further ahead) and
it can be shown that Ps is approximately distributed as

Ps ~ CN(0,aIy),
where
1
a? = NE[HPSHQ]-

Based on the Busggang decomposition technique [37], we can
write ¢(Ps) as

q(Ps) =C1(Ps) +q.,

where Cy = E[Zfq(aZ)]/a, Z ~ CN(0,1), and q is the
residual nonlinear distortion which is approximately orthogo-
nal to Ps. Substituting this decomposition into (6) gives

y =nHg(Ps) +n
=nCHPs+nHq, +n

= n%tr(HP)s
— 1
+nCh <HP - Ktr(HP)I) s+nHq, +n. (7)

In the above decomposition, the first term is a signal term and
the last three terms are effective noise terms. This demonstrates
the advantage of the Bussgang decomposition: it can transform
a nonlinear system into a linear one so that the useful signal
and the effective noise can be distinguished. However, the
problem is that the distribution of q; and its correlation with
(H,s) are hard to characterize, which makes it still highly
non-trivial to analyze the performance (e.g., SEP performance)
of the system with (7). Heuristically, one may treat g as
if it is independent of both H and s, so that Hq, can
be approximated as independent Gaussian noise. It turns out
that this treatment, though heuristic, leads to very accurate
predictions [27]. Developing a new analytical framework that
can rigorously justify the above heuristics is a main motivation
behind this work.

III. PRELIMINARIES

Our analysis is based on Householder dice [39], a technique
for recursively generating Haar random matrices. Before pre-
senting our main results, in this section we first give some
preliminaries on the Haar random matrix and the Householder
dice technique.

We begin with the definition of the Haar measure and the
Haar random matrix.

Definition 1 (Haar Measure [47]): The Haar measure on
U(N) is defined as the unique probability measure 1 on U(N)
that satisfies the following translation invariant property: for
any measurable subset A C U(N) and any fixed M € U(N),

#(MA) = p(AM) = p(A),

where MLA denotes the set obtained by taking all the elements
of A and multiplying them by M.
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In the following, we denote by Haar(N) the ensemble of
random unitary matrices drawn from the Haar measure on
U(N).

Lemma | below is a well-known fact in random matrix
theory [48] and suggests the crucial role of the Haar random
matrix plays in our analysis.

Lemma 1: Let H = UDV" be the SVD of H. Under
Assumption 1, U, D,V are mutually independent and U, V
are Haar distributed random matrices.

We now introduce the Householder dice (HD) technique
proposed in [39], which deals with an iterative process involv-
ing Haar matrices as follows:

Xep1 = fe(Qxy), 0 <t <T —1, ®)

where Q ~ Haar(N) and xo € CV are independent. HD was
originally proposed as an efficient numerical method for
simulating iterations like (8) of large dimension. In our paper,
we employ it as a tool for performance analysis, which is a
novel application of this technique. Specifically, using HD, one
can show that the sequence {xq,x1,X2, ..., X7} generated by
(8) is statistically equivalent to another sequence that is fully
determined by the initial vector xy and a sequence of inde-
pendent standard Gaussian random vectors. Compared to the
original sequence that exhibits complicated correlation through
the Haar matrix Q, the new sequence is more amenable
to analysis, particularly in the high-dimensional case, which
enables us to study the statistical properties of the original
sequence with greater ease.

To get some insight on how HD facilitates analysis, we con-
sider the following simple example that contains only two
iterations:

{Xl = fo(Qxo), ©)

Xo = f1(Qx1),

where Q ~ Haar(N) and xo € CV are independent. Using
HD, one can show that (xg, X1, X2) is statistically equivalent
to (x0,X1,X2) given below:
il - fO(aégl)v (10)
X2 = fi(aig1 + aigs),
where g1 ~ CA (0,1y) and g ~ CA (0, Iy) are independent
and both are independent of x, and the random variables
{a},al,a?} are defined by

1 Ixoll
a f—
7 el
~ ~ 12
B Al ) el
1_ )
el llealllixoll /g1 [?llg2l1? — le}e2]?
~ ~ 12
5 ||g1|\\/\|><1||2\|><o||2 — |xfx,
al—

Ixollv/llg1 [2llg2]I — le'e2[?

The statistical equivalence between (9) and (10) can be proved
using a technique similar to that in [39, Section 3.3] and thus
we omit the details here. Clearly, X; and X, are fully specified
by the initial vector x( and the two Gaussian vectors g; and
g2. The scaling factors {a},al,a?}, though correlated with
{X0,81,82} in a complicated way, converge in many cases
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to deterministic values as the matrix dimension N tends to
infinity. For instance, when fy(-) is separable and satisfies
some mild regularity conditions and the entries of xq are i.i.d.,
the convergence of {aj,ai,a?} can be easily proved via the
law of large numbers.

The above example illustrates the strength of the HD tech-
nique: it transforms the original sequence, which is specified
by the N x N Haar matrix Q, into another sequence that is
determined by only a few Gaussian vectors (e.g., two Gaussian
vectors of dimension N for the above example) with an
explicit form. The new sequence is usually more convenient
for analysis. The interested reader is referred to [39] for a
detailed description of the HD technique. We will provide a
comprehensive description of the HD technique for handling
our specific problem in Appendix A and Appendix B.

IV. STATISTICALLY EQUIVALENT MODEL AND
ASYMPTOTIC ANALYSIS

In this section, we first use the HD technique to derive
a statistically equivalent model for (6), which is close to
a “signal plus independent Gaussian noise” form. This step
is non-asymptotic and the equivalence holds for any finite
dimension when N, K > 3. The “signal plus Gaussian noise”
insight is made precise by further considering the large system
limit where N and K tend to infinity at a fixed ratio. We will
derive sharp asymptotic expressions for the SINR and SEP
performances of the linear-quantized precoding scheme.

A. Statistically Equivalent Model

Recall that our system model is
y = nHg(Ps) + n = nUDV"¢(Vf(D)"U"s) + n,

where U ~ Haar(K),V ~ Haar(N), and {U,V,D, s, n} are
mutually independent. The received signal y can be seen as
being obtained by performing the following iterations:

S1 = f(D)TUHSa

so = q(Vsy),

2 = q( Hl) (11)
SgZDV S,

y =nUss +n,

The above iterative process has a form similar to (8). At each
iteration, it involves one multiplication of a Haar random
matrix and a random vector, while the other operations
can be modeled as fi(-) in (8), since {D,n} are indepen-
dent of {U,V,s}. Specifically, fo(x) = f(D)Tx, fi(x) =
q(x), f2(x) = Dx, f3(x) = nx+n, where x is a vector of an
appropriate dimension. The only minor difference with (8) is
that two different Haar matrices and their conjugate transposes
are included in the above iterations. However, this difference is
not important and the HD technique can still be applied. With
the help of the HD technique, we can obtain the following
statistically equivalent model, which is more convenient for
analysis.

Theorem 1 (Statistically Equivalent Model): When N >
3, K > 3, the distribution of (y,s) in the original model (6)
is the same as that of (§¥,s) specified by the following model:

y =n1ss+nTgge + n, (12)
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where
T — g'{C1Ds; + C.DB(81)z2[2 : N|} _7 (R(s)"tgo)[1]
0 g1 l]Isl] ¢ s ’
T, | B(g1)"{C1Ds1 + C:DB(81)z2(2 : N} |
[(R(s)~'g2)[2: K]|| ’

R A

[81[lllza]l [z2[2 : N ’
s = Ll rmyTg,. (13)

gl

In the above expressions, gz ~ CN (0,Ig), g2 ~

CN (0,1k), z1 ~CN (0,1y), zo ~ CN (0,Iy) are mutu-
ally independent standard Gaussian random vectors, which are
further independent of the signal vector s, the singular value
matrix D, and the noise vector n; f(-) is a processing function
involved in the precoder (5); R(-) denotes the Householder
transform of the input vector and B(+) represents the submatrix
of R(+) with the first column removed (see (39) and (40) in
Appendix A).
Proof: See Appendix B. O
Before proceeding, let us take a look at the statistically
equivalent model in (12): the first term is the (scaled) signal
vector, the second term is an equivalent noise that captures
both the multi-user interference and the distortion caused by
quantization, and the last term is the channel noise. Note,
however, it is still difficult to exactly analyze the performance
of the system (e.g., SEP performance) based on the statistically
equivalent model in (12). This is because Ty and T} therein
are correlated with s and gy in a complicated way. Fortunately,
as N, K — oo and N/K — v € (1,00), both Ty and T} con-
verge to deterministic quantities, enabling us to derive sharp
asymptotic formulas for both the SINR and SEP performance.

B. Asymptotic Analysis

In this subsection, we consider the large system limit where
both N and K tend to infinity while keeping a finite ratio
% — 4 € (1,00). This is a common assumption in the
performance analysis of massive MIMO systems, and such
asymptotic analyses can usually provide tight approximations
for realistic systems with finite N, K (see, e.g., [44], [45],
[46], [49]). In what follows, all vectors and matrices should
be understood as sequences of vectors and matrices of growing
dimensions. For simplicity, their dependence on N and K is
not explicitly shown.

Our main asymptotic result is summarized in the following
theorem. Its proof is given in Appendix C.

Theorem 2 (Asymptotic Model): Define the following
asymptotic model:
yi=nTss+nTggs +n, (14)
where
Ts = CiE[df(d)),
T, = o Cifvarld f(d)] + T,
. = ]]*Z[Zqu_(dZ)]7
a
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O = \[Ele@2)P] - [EZig@D)?,
a = o] (15)
’)/ )

Z ~CN(0,1), d=+/), and \ follows the Marchenko-Pastur
distribution, whose probability density function is given by

V@ —aLb-a)s
2mex

witha = (1—/¢)%,b = (14++/¢)?,c = %; ()4 = max{x,0}.
Then under Assumptions 1-3, the following holds as N, K —
0o, and & — v € (1,00):

pa(z) = (16)

a.s.

(Uks 5k) — (Uk>5k), Yk e [K],

where (yx,si) and (yk,sk) are given in (12) and (14),
respectively.

Several remarks on Theorems 1 and 2 are in order.

Remark 1: It is worth noting that the conditioning tech-
nique developed in [50] and [51] may be used to derive the
asymptotic model in Theorem 2, though the model analyzed in
the current paper is more complicated than that in [51]; com-
pare (6) and [51, Eq. (15)]. Note that both the HD technique
and the conditioning method of [50] and [51] heavily rely on
the rotational invariance of the Haar random matrix. For our
problem, the HD technique is more direct and transparent.

Remark 2 (Connection With Bussgang Decomposition):
The asymptotic model (14) gives a precise characterization
of the Bussgang decomposition and results in (7):

y= n%tr(HP)s

— 1
+nC (HP - Ktr(HP)I) s+nHq, +n. (17)

Loosely speaking, we have the following correspondence
between (14) and (17):

nTsgs n%tr(HP)s
- _ 1
NTggr —nCy (HP - Ktr(HP)I> s +nHq

The above correspondence is in a distributional sense, i.e., the
corresponding terms have the same (asymptotic) distribution,
and is implied by our proof of Theorem 2.

Remark 3 (Assumption on Channel H): Theorems 1 and 2
are stated under the assumption that the elements of H are
ii.d. Gaussian, but can be extended to the following more
general models.

e (Unitarily invariant model) For the unitarily invariant
model, the SVD of H satisfies U ~ Haar(K),V ~
Haar(N), and {U,D,V} are independent [48], and
hence Theorem 1 holds. In addition, Theorem 2 holds as
long as the empirical spectral distribution (see Definition
3 in Appendix C) of HH" further has a continuous
limiting distribution with a bounded support, with A in
Theorem 2 following the limiting e.s.d. of HH".

o (Large scale fading) In the case where the users have
different large scale fading variances, the channel can be
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modeled as H = Zofl, where H satisfies Assumption 1
and X = diag(o1,09,...,0k) is a diagonal matrix with
o}, representing the standard deviation of the large scale
fading of user k, k = 1,2,...,K. Let H = UDV"
be the SVD of H. Theorems 1 and 2 can be directly
generalized to this more general channel model with
precoding matrices of the following form:

P = V(D) U (%),

where ¥, and ¢ satisfy some mild regularity conditions.
The above class of precoding matrices still includes MF
precoding and ZF precoding as special cases.

Theorem 2 shows that in the asymptotic regime, the system
model is in a simple “signal plus independent Gaussian
noise” form as (14). In the following, we will characterize
the individual performance of the K users with the help of
Theorem 2. Two commonly used performance measures are
the SINR:

|Pk|2EHSk|2]
SINR;, = , 18
© = Eflgn] — lon P Ellsel] e
where p = E[s]yx]/E[|sx|?], and the SEP:
SEP(3) := P (dec(Byx) # sk) (19)

where dec(+) is the decision function that maps its argument
to the nearest constellation point in Syy.

We note that the SINR and SEP performance of the
K users in the asymptotic model (14) are the same and
can be characterized by the following asymptotic scalar
model:

g:=nTss+nTgg+n, (20)

where s ~ Unif(Sy), g ~ CN(0,1), n ~ CN(0,0?) are
independent. Following the definitions in (18) and (19), the
SINR and SEP of the above scalar asymptotic model are given
by

sNR= %7 T E2[d £(d)]
SINR = - 21
INR 2 Te+02  varld f(d)] + ¢(a,n) LLE 21
where & = /02 E[f2(d)]/~ and
A o Ellq¢(aZ)?] — |E[ZTq(aZ)]|? + o2 /n?
(o, m) = EZ 2] . (22
and

SEP() = IP (dec(3y) # s)-

The second step of (21) is obtained based on the definitions
of Ts and T in (15).

Theorem 3 below shows that both the SINR and the SEP
performance of the original model converge to those of the
scalar asymptotic model in (20). Its proof can be found in
Appendix D. -

Theorem 3: Denote SINRy, and S/E\Pk(ﬂ) as the SINR and
SEP of user k of the model in (12), respectively. Under the
asymptotic setting in Theorem 2, the following hold for any
k€ [K]and § € C:
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(i) limy, k.00 SINR), = SINR;

(i) limy k0o SEPL(3) = SEP(8).
With the above theorem, we can give predictions of the
SINR and SEP performance of the original model based on the
asymptotic scalar model in (20). Note that SEP(f3) is defined
for a scalar additive white Gaussian noise (AWGN) channel
and therefore can be easily computed for specific constellation
types. Clearly, a natural scaling factor should be

oo T

n|Ts|?

(23)

We denote the corresponding asymptotic SEP as SEP. When
M-PSK modulation is adopted, SEP can be tightly approxi-
mated as [52, Section 4.3-2]:

SEP ~ 20 (\@ sin %\/ SINR) , 24)
where Q(z) = é = e~ dt. For M -QAM modulation, the
SEP has an explicit expression [52, Section 4.3-3]:

2
SEP4<1\/1M>EO4<1\/1M) E? (25)

EO:Q< M?)_lslNR>.

In the rest of this paper, we assume that (3 in (23) is used unless
otherwise stated. It is worth noting that the asymptotic SEP
formulas in (24) and (25), though derived under the asymptotic
assumption that the system dimension grows to infinity, are
also accurate for practical systems with moderate dimensions;
see the simulation results in Section VI.

where

(26)

C. Example: QCE Precoding

So far, our results hold for general ¢(-) satisfying Assump-
tion 3. In this subsection, we specify our results to the case of
CE quantizer g (-). We start with a few properties of g (-).

Lemma 2 (Properties of qc:(+)):

) |ge(x)| =1, V2 e C;

(i) gee(ar) = ges(), V.? €C,a>0;
(iii) E[Zq(2)] = “55=F, where Z ~ CA/(0,1) and L is

2
the number of quantization levels [36].

Under the above properties of g(-), the asymptotic SINR
in (21) simplifies to

_ E2[d f(d
SINRqce = [ c]*:( “)] Ve (27)
var(d f(d)] + S22 E[f2(d)]
where
L?sin? =
1 L + 0-2 2

CL’U’n - égrsin2 T /77 (28)

4w

The asymptotic SEP is a simple function of the SINR, as dis-
cussed above.

By further specifying the nonlinear function f(-) as
f(x) = z and f(x) = 2~ respectively (see discussions in
Section II-A) and using [48, Eq. (2.104)], we can obtain the
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following asymptotic SINR formulas for the quantized MF and
ZF precoders:

————=MF y

SINR, = —-—
ek CL,UJ] +1

< ZF v—1

SINR = ,
QCE C4L,a‘,7]

where C 5, is defined in (28). The above SINR formula for
quantized ZF precoding has been obtained for the one-bit case
(i.e., L = 4) using the Bussgang decomposition technique
in [27].

V. OPTIMAL LINEAR-QUANTIZED PRECODING

For the precoding scheme in (5), the function f(-) can be
designed to optimize the system SEP performance. In this
section, we derive the optimal f(-) based on the asymptotic
characterization developed in Theorem 2.

A. Optimal Linear-Quantized Precoding

Our goal is to find the optimal f(-) in terms of the asymp-
totic SEP performance. First, maximizing SINR is equivalent
to minimizing SEP, as shown in Appendix E. In what follows,
we shall focus on the following SINR maximization problem
(see (21)):

C E?[d f(d)]

fr>0.a>0 varld f(d)] + ¢(a, n) HLD

st.  n*Ellq(az)?] < Pr,
E[f2(d)] = 2 &%, (29)

where Z ~ CN(0,1), Pr > 0 is the maximum average
transmit power in (2), d is defined in Theorem 2, and ¢(&, n) is
defined in (22). If & in the second constraint is eliminated and
substituted into the first constraint, then the obtained constraint
represents the asymptotic counterpart of the actual average
power constraint in (2). Therefore, the function f(-) and the
transmit power 7 are jointly optimized in problem (29).

The SINR maximization problem (29) may seem challeng-
ing to solve as it involves optimization over a function f(-).
Moreover, the variables (&,7,f) are coupled by the con-
straints, which further complicates the problem. Fortunately,
the optimal solution of (29) has a simple structure, as shown
by the following theorem.

Theorem 4: Suppose that the following infimum is attained
by some a* > 0:

2 E AZ 2
o om (14 ) o ELSDEL
Pr ) a>0 [E[Ztq(aZ)]]
Then, (a*,n*, f*) is an optimal solution to the problem in
(29) where

(30a)

. Pr
"\ El@ DRy o
d
*(d) = _ 30
f() T*(d2+%) (30c)
% g ( d >2 30d
T = — : : (30d)
@\ BT
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Furthermore, the maximum SINR in (29) is equal to

1
F=——+———-1 (30e)
_E |4
e 2]
Proof: See Appendix F. (|

Remark 4: Some comments on Theorem 4 are in order.

1) In Theorem 4, we do not impose the positivity constraint
on f, and an optimal f satisfying f > 0 always exists;
see (30c). This supports our claim below Assumption 2
that the positivity assumption on f does not impose any
restriction in terms of the best achievable performance.

2) We assume that the infimum in (30a) is attainable. Our
numerical results suggest that this holds for commonly
used quantization functions ¢(-). In cases where the
infimum in (30a) is not attainable, we may modify the
theorem using a simple truncation argument. Specifi-
cally, we add an additional constraint ﬁ <a< M
to (30a) and let &}, be any optimal solution to the
constrained problem. We define ¢3,, 3, and f;, as in
(30) with & replaced by aj,. Then, it can be shown
that the SINR achieved by (a3},, 4/, f1;) tends to ¢*
as M — ooc.

We now take a closer look at (30a). Loosely speaking, it
may be interpreted as finding the optimal input power for the
quantization function ¢(-). More precisely, using the Bauss-
gang decomposition technique, we can decompose ¢(aZ) as

4

q(az) £ E[Z¢(az)]) Z +d,

where Z ~ CN(0,1) and d models the quantization error
which is uncorrelated with Z. Then, problem (30a) can be
viewed as maximizing the signal to quantization error plus
noise ratio (SQNR):

[E[Z'q(a2)]2 E[jZ]?]
Efld
_ [EZlq(az))?
Bla(@2)F] - (@)

T ElGDP |
[EZTq(a2)]]”

SQNR :=

For a general ¢(-), problem (30a) can be solved by a one-
dimensional search. For the special case of the CE quantizer,
the objective function of (30a) is actually a constant (see
Lemma 2) and the problem is trivial; see details in the next
subsection.

Remark 5 (Connection With the WFQ Precoder [7]):
Theorem 4 shows that for precoding matrices of the form
P = Vf(D)TU", the asymptotically optimal one is precisely
the RZF precoder:

* 1 H H ¢* -
P* = ;H <HH + ’YIK> , (31)

where 7% and ¢* can be obtained by solving the
one-dimensional optimization problem in (30a). Interestingly,
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(31) is closely related to the WFQ precoder [7] designed for
traditional quantized precoding:

2 —1
Pwro = 1 (HHH — pgnondiag(H"H) + GIN> H",
90 vPr
where go is a scaling factor that ensures a certain power
constraint to be satisfied. As N, K — oo, the diagonal entries
of H"H converge to

1

K
HYH)[,i) =) [H[,i> =5 =, i=1,2,...,N. (32)
j=1

b
Y
Therefore, Pwrg can be approximated as

1 2 -
Pwrg = — (HHH — pqnondiag(HHH) + UIN) H
go vPr

1 2 !
- ((1pq)HHH+pqdiag(HHH)+JIN) HH
9o yPr
+ 2 o
1 —_
O T & - UL o o B *
g0 Y
+Z o
1 —_—
O Lyr((1-pHEN P2 Pr g
90 Y
-5 o
(© 1 H H, PaT™ Pp
2~ mf (HHY 4+ L Proy)
90(1 = pq) < V(1= pq)
(33)
where (a) is due to (32), (b) uses the fact that

(XHX 4 pIy) " XH = XH (XXM 4 pIx) ™" for any X €
CKXN and p > 0, and (c) is obtained by extracting the
coefficient 1 — p, from the inverse matrix. Comparing the last
line of (33) with (31), we see that both Pwrq and P* are RZF
precoders, and are identical if the regularization parameters
and the scaling factors are the same:

i
'011_7:;, T = go(1 — pg).

Note that Pwrg and P* are derived based on different
criteria and motivations, and not directly comparable. For
the WFQ precoder, the independent quantizer ¢(-) is opti-
mized together with the linear precoder (see also [53], [54]
for optimization of the independent quantizer ¢(-)), and the
quantization intervals for ¢,(-) have to be chosen carefully to
satisfy several conditions (see [7, Egs. (7)-(9)]). On the other
hand, ¢(-) is a generic fixed function in this work, and the
input power of ¢(-) (dictated by &) is properly optimized.

o =

B. Example: QCE Precoding

In this subsection, we consider the special case of QCE
precoding. As a direct corollary of Theorem 4, we have the
following result.

Corollary 1: When ¢(-) is specified as ¢e(+) in problem
(29), the optimal 7 is n* = /Pr, and the optimal f has a
closed-form expression:

)= —2

e (34)
vy
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where C7, 5+ is given in (28). In this case, the asymptotically
optimal precoding matrix is given by

ClLoon -1
P = HY (HHH + % IK> , (35)

and its asymptotic SINR is

I Vu +4CL 50 +u
SINR g = u -1

b
2C'L,a,n*

where © = Cp 5« +7 — 1.

Proof: When ¢(+) = gc:(+), it follows from Lemma 2 and
(30b) that n* = /Pr and the objective function of problem
(30a) is a constant C, , ,», which is independent of . Hence,
the optimal solution set of problem (30a) is {&* | @* > 0} and
T* can be any positive number. Without loss of generality, here
we set 7° = 1. This further gives the optimal f*(-) and the
optimal precoding matrix Pgcg in (34) and (35), respectively.
Finally, SINRSCE can be obtained by plugging ¢* = Cp 5+
into (30e) and using [48, Eq. (2.42)]. O

We note that when ~ is large, \/u? + 4C, 5.n+ =~ u, which
implies that

vy i

L,omn*

. R
SINR ¢ =~ = SINRgcg,  (36)

; CL.om-
i.e., the performance of quantized ZF precoding is nearly
optimal when the antenna-user ratio is large.

VI. SIMULATION RESULTS

In this section, we present simulation results to demon-
strate the theoretical results obtained in previous sections.
We consider both traditional quantized precoding (where the
independent quantizer is used) and QCE precoding (where the
CE quantizer is used), and assume that the precoding factor
(namely, the linear scaling applied at the receiver side before
detection) in (23) is used. We also assume that the precoder
adopted in this section has the optimal input power for the
corresponding quantization function, i.e., & = &*, where a*
is an optimal solution to problem (30a). The transmit power
is set as Pr = 1. All results are averaged over 10° channel
realizations.

A. Numerical Validation of SEP Formulas

We first verify the accuracy of the SEP formulas given in
(24)—(26).

In Fig. 3, we plot the symbol error rate (SER) as a function
of the ratio of the number of antennas to users 7y for the
quantized MF and ZF precoding schemes. Both the cases
of a large system with K = 100 and a more practical
system with iK' = 20 are investigated, where the number of
transmit antennas is set as N = vK. We consider three types
of signal constellations: QPSK, 8-PSK, and 16-QAM, and
two types of quantization: CE quantization and independent
quantization. The channel noise is set as 0 = 0. As shown
in the figure, there is a slight mismatch between simulations
and asymptotic predictions when K = 20, and the differences
become indistinguishable when K = 100.
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Fig. 3. SER performance versus « for quantized MF and ZF precoding
with ¢ = 0, where PSK and QAM represent the type of constellation and
“independent” and “CE” represent the type of quantization. The quantization
interval for the independent quantizer in (3) is A = 2.

TABLE I
¢* IN (30A) FOR SCALAR AND CE QUANTIZERS WITH 0 = 0

1bit 2bits 3 bits 4 bits
scalar  0.57 0.14 0.04 0.01
CE 0.57 0.34 0.29 0.28

We can also draw some interesting observations from Fig. 3.
First, the logarithm of SEP/SER decreases linearly with , i.e.,
the antenna-user ratio, which reveals the gain of increasing
the number of transmit antennas at the BS, and the slope
of the decrease is determined by the precoder, the quan-
tizer, and the constellation that are employed. Second, the
independent quantizer and the CE quantizer have different
behaviors under different precoding schemes. For example,
the superiority (in terms of SEP/SER) of the 2-bit independent
quantizer over the 2-bit CE quantizer under ZF precoding is
much more prominent than that under MF precoding.

In fact, the above observations are clear from our asymptotic
analysis. To be specific, applying the approximation Q(z) ~
%e*%"ﬁ [52] to the SEP predictions for M-PSK and M-QAM
constellations in (24) and (25), we get

_ —2sin® = SINR, for PSK;
In SEP ~ S )
37)

i.e., the logarithm of SEP decreases linearly with SINR.
According to (21), SINR for MF and ZF precoding can be
expressed as

ol
for MF;
- * 1 9 )
SNR—{ & T (38)
, for ZF,
d)*

where ¢* is given in (30a) and is determined by the quantiza-
tion type. The values of ¢* for scalar and CE quantizers with
o = 0 are given in Table I. Eqs (37) and (38) demonstrate the
linear decrease in the logarithm of the SEP with ~, and quan-
titatively characterize the effects of precoding, quantization,
and constellation on the slope of the decrease. In particular,
we can see that ¢* has a stronger impact on ZF than on
MF, since the slope of decrease is proportional to # and
ﬁ for ZF and MF, respectively, and ¢* is on the order
of 1072 — 107! as shown in Table I. This explains why the

2-bit independent quantizer has a greater performance gain

Fig. 4. SER performance versus DAC resolution for quantized MF with
v = 6 and QPSK modulation and quantized ZF with v = 3 and 8-PSK
modulation; o = 0.

) one-bit, v = 6, QPSK
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Fig. 5. SER performance versus SNR for one-bit quantized MF and ZF
precoding with v = 6 and QPSK modulation.

compared with the 2-bit CE quantizer under ZF precoding
than under MF precoding.

In Fig. 4, we plot the SER performance of quantized MF
and ZF for both traditional quantized precoding and QCE
precoding as a function of the DAC resolution. For MF, the
performance gain of both quantizers is small as the DAC
resolution increases, especially when the resolution is larger
than 2 bits. The same happens for ZF precoding with CE
quantization. However, there is a remarkable gain for ZF pre-
coding with independent quantization as the DAC resolution
increases. These observations can also be interpreted by our
previous discussions.

Finally, Fig. 5 shows the SER of quantized MF and ZF as a
function of the channel SNR (i.e., 1/ o?) for a one-bit system
with v = 6 and QPSK modulation. We see that ZF has a
noticeable performance gain compared with MF in the high
SNR region.

B. Optimality of Quantized RZF Precoding

In this subsection, we present some simulation results to
demonstrate the optimality of the quantized RZF precoding
matrix given in (31).

In Fig. 6, we consider quantized RZF precoding and depict
the SER as a function of the regularization parameter for a
one-bit system with v = 3, 0 = 0, and QPSK modulation.
As shown in the figure, the errors between the asymptotic
SER and the actual SER are within 0.002 and 0.005 for
K = 100 and K = 20, respectively, which again validates
the accuracy of our analytical results. In addition, it can
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Fig. 6. SER performance versus regularization parameter for a one-bit system
with v = 3 and QPSK modulation.
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Fig. 7. Comparison of the SER performance between different
linear-quantized precoders with K = 20, for 2-bit independent quantization
with QPSK.
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Fig. 8. Comparison of the SER performance between different
linear-quantized precoders with K = 20, for 2-bit CE quantization with
QPSK.

be observed that the simulation curves and the (asymptotic)
analysis curve show almost the same trends and all attain their
minimum at approximately 0.2, which agrees well with the
predicted value of 0.19 for the optimal regularization param-
eter. This demonstrates the optimality of the RZF precoding
matrix P* in (31).

In Figs. 7 and 8, we further consider realistic systems with
K = 20. We plot the SER performance of quantized MF,
ZF, and the proposed RZF precoding as a function of the
SNR for both independent quantization and CE quantization.
We investigate two different cases: v = 1.5 and v = 4, which
corresponds to small and large antenna-user ratio, respec-
tively. Compared with the quantized MF and ZF precoder,
the proposed quantized RZF precoder enjoys a substantial
performance gain for small v. When + is large, the proposed
quantized RZF precoder performs similarly to the quantized
ZF precoder (which is consistent with our discussion in (36)),
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and they both yield a much lower SER than the quantized MF
precoder.

VII. CONCLUSION

In this paper, we studied the performance of linear-quantized
precoding in massive MIMO downlink systems. Assum-
ing an ii.d. Gaussian channel matrix, we showed that the
linear-quantized precoding scheme is statistically equivalent
to a simple scalar model in the asymptotic sense when the
number of antennas N and the number of users K tend to
infinity with a fixed ratio. We further derived the optimal
precoding strategy within a class of linear-quantized precoders,
and found that it is precisely the RZF precoder where the
optimal regularization parameter depends on the type and
level of quantization and various system parameters. For
future work, it would be interesting to extend the current
analysis to encompass more general scenarios, such as general
correlated channels and imperfect CSI. It is also interesting to
give performance analysis of the more challenging nonlinear
precoding schemes.

APPENDIX A
PRELIMINARIES OF THE HOUSEHOLDER
DiCcE TECHNIQUE [39]

In this appendix, we collect some useful results about the
HD technique. We begin with the definition of the Householder
transform.

Definition 2 (Householder Transform): For a given vector
v = (v1,v2,...,un5)" € CV\{0}, denote

Jjarg(vs)
’

Dy = —e where s = min {7 | v; # 0} .
1

Let H(v) be the Householder transform of v, i.e.,

uuH

HV) = 1=

with u = v — py||v]ler, e; = (1,0,...,0)T. Further, define
R(v) = py H(v). 39)

With a slight abuse of notation, R(v) will also be called the
Householder transform matrix associated with v. We further
define a generalized Householder transform as [39]

)= (%5 Rtk )

The following lemma collects some useful properties of
R(v) that will be used in the subsequent analysis. The proofs
are straightforward and thus omitted.

Lemma 3 (Facts and Properties of R(v)): For a given
vector v € CV\{0}, the Householder transform R/(v) defined
in (39) satisfies:

(i) R(v) eU(N);
(i) R(v)"v =|vler;
(i) R(v)e; = T e R(v) can be expressed as

R(v) = (g B(W)),

where B(v) € CVN*(W=1 is a basis matrix for {v}+.

(40)
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The generalized Householder transform Ry,(v) has similar
properties as R(v), except that it leaves the first k — 1 entries
of v unchanged and applies a Householder transform on
v[k: N].

The following lemma is a recursive characterization of the
Haar random matrix introduced in [39, Lemma 1], which
serves as the theoretical basis of the HD technique. The only
difference is that we consider complex unitary matrices instead
of real orthogonal matrices.

Lemma 4: Letg ~ CN(0,1y), Qn_1 ~ Haar(N —1), and
v € CM\{0}, all of which are independent, where N > 2.
Then

Qn :=Ri(g) (1 0

0 QN1> R;(v)" ~ Haar(N)  (41)

and

Qy = Ri(v) (é Q](v’_l) Ri(g)" ~ Haar(N).  (42)

Moreover, Qy and Q n are independent of v.

Proof: We first note that the first column of R (g) is Tel ]\L
which is uniformly distributed on the unit sphere SV~ 1 ccC
Then according to [47, page 21], we have

R.(g) ((1) le) ~ Haar(N).

Moreover, since a Haar matrix is both left and right translation
invariant, we are free to multiply unitary matrices (either
deterministic or independent of the Haar matrix) from left or
right, hence (41) is correct. The above discussions imply that
the conditional distribution of Q given v is the same as the
distribution of Qp (both are Haar distributed), i.e.,

laxlv = HQy = 1, Vv e CN\{0}, (43)

where 4 denotes the Haar measure on U(N). Therefore,
Qn and v are independent. Finally, (42) is also true since
Q ~ Haar(N) implies Q" ~ Haar(N), and the independence
between Qn and v can be justified in a similar way as (43).

]

APPENDIX B
PROOF OF THEOREM 1

In this section, we provide the detailed proof of Theorem 1.
This section is long and is organized as follows:

e Section B-A contains the main proof of Theorem 1,
relying on two auxiliary results: Lemma 5 and Lemma 6;

e Lemma 5 is critical to the proof of Theorem 1. For better
understanding, we present some high-level ideas about
the proof of Lemma 5 in Section B-B;

o Section B-C contains the complete proof of Lemma 5;

o Section B-D contains the proof of Lemma 6.

A. Proof of Theorem 1

The proof of Theorem 1 contains two major steps. The first
step is to apply the HD technique [39] to our model in (11) to
obtain a statistically equivalent model that is more amenable to
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analysis. The result of this step is summarized in the following
lemma and the proof is given in Appendix B-C.

Lemma 5: The distribution of (s,y) given in (11) is the
same as that of (s,y) specified by the following model:

f(D) R1(g1)Ri(s)"s,
( 1(z1)R1(51)"81),

. . H (44)
3 = 1(51)R2(22)R1(V1) Vi,
¥ = nR1(s)Ra(g2)Ra(v2)"vs +n,
where vi = Rjy (21)H§2 and vo = R, (gl)H§3; g ~
CN(O7 IK)7 g2 ~ CN(O, IK)) zZ; CN(O7 IN)v Zy

CN(0,1y); {g1,82,21,22,,n,D} are mutually independent.

The second step is to simplify the above statistically equiv-
alent model (s,y) using basic properties of the Householder
transform in Lemma 3 to obtain the explicit model (12) in
Theorem 1. This step requires careful calculation and we leave
the details to Appendix B-D.

Lemma 6: The distribution of (s,y) given in (44) is the
same as that of (s,y) given in (12) in Theorem 1.

Combining Lemmas 5 and 6, we get the desired result in
Theorem 1.

B. Discussions on Lemma 5

Since Lemma 5 is critical to the proof of Theorem I,
we would like to provide some high-level ideas and informal
discussions before we present its full proof in Appendix B-C.

Recall that our original model in (11) reads

s; = f(D)TU"s;

s2 = q(Vs1);
S3 = DVHSQ;
y = Uss + n.

Our goal is to characterize the joint distribution of
(s,s1,82,83,y). Roughly speaking, for N, K > 3, fixing
the distribution of (s,s1,s2,83,y) does not fully fix the
randomness of the Haar matrices U and V, and we still have
freedom to generate the remaining randomness in a convenient
way. A systematic way of carrying out this process is via the
HD technique in [39]. To be clear, we use (s,s1,S2,83,y) to
denote the random vectors from the original model, and use
(s,81,82,83,Y¥) to denote the corresponding vectors generated
via the HD method in the following discussion.

The main idea of HD is to generate the Haar random matri-
ces U and V involved in the above iterations in a recursive
way by repeatedly applying Lemma 4. More specifically, the
HD technique tells that at each iteration we only need to
generate a single Gaussian vector to unfold the randomness
of U (or V) in one dimension, and the resulting sequence
will only depend on the initial condition {s,D,n} and the
exposed Gaussian vectors.

Here we take the first iteration of (11) as an example to
shed some light on this. To compute U"'s, we can construct
a Haar random matrix U" according to Lemma 4 as

TH = Ru(a1) ((1) QI(()—l) Rau(s)", (45)
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where g1 ~ CN(0,Ix) and Qg 1 ~ Haar(K — 1) are
independent of each other and of s, D, and n. Then we have

§ = f(D)TU"s

= f(D)TR1(g1) <(1) QI?—l) Rl(s)Hs
= f(D)TRl(gl)Rl(S)HS7

where the last equality holds since R;(s)"s is only nonzero
in its first element due to Lemma 3. An important observation
is that S, depends on the Haar matrix U only through
a Gaussian vector g1, and is invariant to the remaining
Haar matrix Qg _1. Since Qg _1 involved in (45) is Haar
distributed and independent of all the other random variables
generated up to this point, we can apply the same technique to
Qx -1 when another multiplication involving U is required,
and a new Gaussian vector go ~ CA(0,Ix) will be exposed
(see the expression of y in (44)). The Haar matrix V can be
constructed similarly when we deal with the second and third
iterations, and two Gaussian vectors z; ~ CAN(0,Iy) and
2y ~ CN(0,Iy) will be exposed in these two iterations after
applying the HD technique (see the expression of Sy and S3 in
(44)). A detailed derivation of (11) using the HD technique is
provided in Appendix B-C.1I.

To gain some further insight, we directly give the form of
the two Haar matrices constructed using the HD technique
without proof (see Appendix B-C.1 for a detailed proof):

I, 0

U-RisRaten) (§ g

> Ro(v2)'Ry(g)"  (46)

and

I, 0

V =Ry (z1)Ra(v1) (0 Px_s

) Ro(z2)"Ri(31)". @7)
In the above expressions, Qo and Py _o are Haar matrices
independent of all the other random variables, which are the
unexposed random matrices that are absent in the final result;
g1,82,21,22 are the exposed Gaussian vectors; Si,vp, and
vy are some intermediate random vectors generated due to
the recursive nature of the HD technique. Equation (44) can
be interpreted as replacing the Haar random matrices U and
V in the original model (11) by the two unitary matrices
g and V given above. Here, we use the notation U and
V to emphasize the fact that their distributional properties

are yet to be proved. To show (s,y) 4 (s,¥), it remains
to check that U and V have the desired properties, i.e.,
U ~ Haar(K),V ~ Haar(N), and U, V, D, s, n are mutually

independent. We relegate the details to Appendix B-C.2.

C. Proof of Lemma 5

In this subsection, we give the complete proof of Lemma
5, which consists of the following two steps:

o We first show that (44) is the sequence generated by
applying the HD technique to (11);
« We then prove that (44) is statistically equivalent to (11).
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1) Derivation of (44): We first give a detailed derivation of
how (44) is obtained via the HD technique. Recall that our
original model (6) can be written as the following iterative
process (see (11)):

s] = f(D)TUHs;

s2 = q(Vs1);
S3 = DVHSQ;
y = Us3 +n.

Next, we apply the HD technique to deal with the above
model.
For the first iteration, we construct UM according to Lemma

4 as
EO) =ri o g, e

where g1 ~ CN(0,Ix) and Qg_1 ~ Haar(K — 1) are
independent of each other and of s, D, and n. Then we have

5 = f(D)T (U<1>)H s
= f(D)"Ry(g1) (é le) R, (s)"s
= f(D)"Ry(g1)Ri(s)s,

where the last equality holds since R;(s)"s is only nonzero
in its first element.

For the second iteration, we use a similar technique to
construct the Haar matrix V according to Lemma 4 as

1 0 -
V(l) = Rl(zl) (0 PN_l) Rl(sl)H,

where z; ~ CN(0,Iy) and Py_; ~ Haar(N — 1) are
independent of each other and of all the existing random
variables. It follows immediately that

(48)

(49)

- 1 0 - \H~
Vg = Ry(z1) <O PN—1> R, (51)"8
= Ra(z1)Ri(51)"51,

and thus
82 = ¢(VW51)=q(R1(z1)R1(51)"51).

For the third iteration, we need to calculate DVHS,. From
(49), we get

(V<1>)H — R, (51) ((1) PHN01> R, (z))".

Let vi = Ry(z1)"8,. Since PY,_| is Haar distributed and
independent of v;, we can still apply the above technique to
construct PH,_ | as

PH | =R, (z2[2: N)) ((1) P,va’_) Ry (vi[2: MM,

where zo ~ CN(0,Iy) and Py_o ~ Haar(N — 2) are
independent of each other and of all the existing random
variables. Then we have

(V®)" =R (5 Rs(22) (10 p]H?) Ra(v1) R (21)"
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and
H
g:D@@)s
; I, O M
:DR1(51)R2(22) H RQ(Vl) Vi
0 Py_,
= DR (51)Ra(z2)Ra(v1) vy,

where PY ., disappears in the second equality since
R (v1)Hvy is only nonzero in its first two elements.
Finally, we calculate y = Us3 + n. According to (48),

Uﬂthﬂ@(é Q£4>Rﬂaw.

Similarly, let vo = R (g1)"83 and construct QY% _; as

Q= Rileali KD (o oF ) Ratwal2 K™

where go ~ CN(0,Ix) and Qg_2 ~ Haar(K — 2) are
independent of each other and of all the existing random
variables. Then we have

U = R, (5)Rs (g2) (12 0

0 QK—Q) Ra(v2)" Ry (g1)"

and

y=U%8 +n

= Ri(s)Ra(g2) (Ig Q22> Ro(v2)"Ri(g1)"85 + n

=R (S)RQ(gQ)RQ(Vg)HVQ + n.

This gives the sequence (S1,52,83,y) in (44), and the two
constructed Haar matrices are U = U® and V = V@,
which are exactly those given in (46) and (47).

2) Statistical Equivalence of (44) and (11): The proof
follows the general principle proposed in [39, Theorem 2].
Here we provide a complete proof to make the paper self-
contained.

First, it is easy to check that (s,y) given in (44) can be
obtained by substituting U in (46) and V in (47) into (11).
To show the statistical equivalence, we still need to prove
that U and V in (46) and (47) have the following desired
properties:

e U ~ Haar(K), V ~ Haar(N);
° ﬁ, \77 s, D, n are mutually independent.

(50a)
(50b)

Next, we prove the above properties for I~J, and those for V
can be proved by similar arguments. We first analyze the inner

term Ro(go) (I(’f Q;?,z) Ry (v2)" in U:

_(1 0
~\0 Ri(g02:K]) (0qr

(1 0>
- \0 Qg-1)°

By the definition of v, and from the method of generating
Qx_2 and go, it is clear that go, Qi o, and vy are mutually
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independent. It follows immediately from Lemma 4 that
Qx -1 ~ Haar(K — 1) and is independent of v,, and hence
independent of all other random variables except Qx o and
go that construct Qx ;. We then investigate

iL:Rm@(é Qg%)RﬂgW.

Again from Lemma 4, we know that U ~ Haar(K) and
is independent of all other random variables (except Qg 2,
go, and g;), i.e., U has the desired properties in (50). This
completes our proof of the statistical equivalence between
(s,y) in (11) and (s,y) in (44).

D. Proof of Lemma 6
In this subsection, we give the proof of Lemma 6, i.e.,

we derive (12) from (44). For clarity, we copy the expressions
of §1,89,83,y in (44) here.

§1 = f(D) Ri(g1)Ru(s)s;

Sy = Q(Rl(zl)Rl(él)H§1);

= DR, (51)Ra(z2) R (v1) vy

R (s)Ra2(g2)Ra(v2)'va +m,
where v; = Rl(zl) S and vo = R;y(g1)"s3. In the

subsequent analysis, we will frequently encounter Householder
transform-vector multiplications of the following form:

R (g)Ri(v)v,

where g ~ CN(0,1) and v is a random vector independent of
g. According to the properties of the Householder transform,
i.e., (ii) and (iii) of Lemma 3, we have

R1(g)Ri(v)"'v = |[v]|Ri(g)e; = Tzl (51)
It follows immediately that
- S .
S1 = f(D)TRl (gl)Rl (S)HS = ||g1||| f(D)Tgl = 81, (52)

where the last equality is due to the definition of §; in (13).
Next we begin our derivation of (12). First, we compute

Ro(g2)Ra(v2)™vs in y using (51):
VQ[].]
) (i)

R (g2)Ra(v2) v
(urmmn e
Ri(g2[2: K])Ry(v2[2 : K])Pva[2: K]

Vg[l]
Vo 2: K . .
~ B &2 K

Combining the above equation with the definition R;(s) =
B(s)),

_(1 0
B 0 Rl(gQ[QK])Rl(VQ[QK])

ﬁ we can express y as

¥ = nRi(s)Ra(g2)Ra(v2)'va +

S Vo [1]
U(MB@D<hﬁ§W@p;m>+n
WH Ival2: K]ll 5 . .
el S T Mgl K B e K+ (53)
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By further noting that

gal[l]

B(s)g2[2: K] = R(s)g2 — sl S

and substituting it into (53), we get

(vl gl v K|
y_"(Hﬂ %HH@B:KM)
nmR(S)gz +n. (54)

Note that if g ~ CN(0,I), then for any unitary matrix U
independent of g, Ug ~ CN(0,1), i.e., Ug 4 g, and Ug is
independent of U. Therefore, since g, is independent of all
other random variables in (54), i.e., s, Vo, and n, R(s) 'gy 4
g2 and R(s)!g, is also independent of s, v, and n, and hence
we can replace go with R(s) gy in (54), which yields

_a (v2[l]  (R(s) 'g)[l]
y_"<h| Is]
Iva[2 : K]

TR TR K8 T

a2 )
[(R(s) &) : K]
(55

We next analyze
va = Ri(g1)"85 = Ri(g1)" DR (81)Ra(2z2)Ra(v1) v (56)
step by step. First, from the definitions of v; and S5, we have

vi =Ry (z)"q(Ri(z1)R1(31)151)

zl) (from (51))

=Ri(z1)"g (illl zl) (from (52))
1
2] I8 )
= Tz ] f 40
(Buwoq(wlzl ffrom (00
Ala( i)

- =]
B(z1)"q ('jﬁ'zl)

(57)

Then we have
R2 (22)R2 (vl)Hvl

B ((1) Ry (z2[2: N])S{l(vl[z : N])H) <v1‘[f§ :I]N])

AT
R1(22[2 : N])Rl(vl[Q : N])HV1[2 : N]

Ho (81l
Zlq( =T Zl)
Iz

[Bera(iein)|

2]
llz2[2: V]|l

b

‘ z5[2: N
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where the last equality comes from (51) and (57). It follows
from the above equality, (40), and (52) that

Ri1(81)Ra(z2)Ra(v1) vy
=R (81)Ra(z2)Ra(v1) vy

Ho (L5 )
z z
1‘1( [z 11 %2

B (uziu B(él)) )B<21|>Z“2q[2(:§];llzill)) pal2: N]
dq(fdz)  [Bere(Bfa)|
STl St mE N BE=R: N

=Ch81 + C2B(§1)22[2 : N]

Finally, from the above equality, (40), and (56), we have

Vo = <B|(§gil|) H) (C1D8; + C,DB(8)22[2 : N))

gl {C1Ds; +C>DB(51)2z2[2:N])}
= " el A . (58
B(g:)"{C1Ds; + C2DB(81)z2[2 : N]}
Plugging (58) into (55), we can get the desired model (12).

APPENDIX C
PROOF OF THEOREM 2

In this section, we provide a detailed proof of Theorem 2.
In Section C-A, we first give some definitions and preliminary
results of the asymptotic analysis. Section C-B gives two
useful auxiliary results that are important for the proof, and
Section C-C contains the main proof of Theorem 2.

A. Preliminaries

Lemma 7: Let {Xx} and {Yx} be sequences of random
variables. If

XN a.s. X’ YN a.s. Y

9

then
Xn+Yy 25X +Y, XnYy 25 XY,
and
XN a.s. X .
Ya BalliiN v (if Yn,Y #0).

Lemma 8 (Kolmogorov’s Strong Law of Large Numbers
[55]): Assume that X, X5, ... are independent with means

2
[, p2, - .. and variances o, 03, ... such that >\ T& < oo.
Then
X1+X2+~"+XN*(M1+H2+"'+NN) a.s.
— 0.

N

As a corollary, if X, Xo,... are i.i.d. with mean p, then

X1+X2++XN a.s.
N —pu—0.
Lemma 9 [56, Theorem 3]: Let {X v} be a sequence of
random variables. If {Xn} converges in distribution to X,
then

E[g(Xn)] — E[g(X)]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 31,2024 at 21:41:10 UTC from IEEE Xplore. Restrictions apply.



2582

for all bounded measurable functions g such that P{X &
C(g)} = 1, where C(g) = {x | g is continuous at =} denotes
the continuity set of g.

Definition 3 (Empirical ~ Spectral — Distribution [57]):
Consider an NV x N Hermitian matrix T y. Define its empirical
spectral distribution (e.s.d.) FTV to be the distribution
function of the eigenvalues of Ty, i.e., for z € R,

Zl{A <z} (@

where A1, ..., Ay are the eigenvalues of T .

Lemma 10 [57, Section 3.2 and Section 7.1]: Consider a
matrix X € CK>*N with i.i.d. entries following CA (0, %)
As K,N — oo with £ — ¢ € (0,1), the following results
hold:

(i) the e.s.d. of XXH converges weakly and almost surely
to a distribution function F' with density given by:

p(@) = —— @ —a) s b—2);

2mcx
where a = (1 — e)2,b = (1 + /)%, and (2); =
max{x,0};
(ii) the largest eigenvalue of XXM, denoted by Ay, satisfies

=25 (1+Ve)2

FT (2

)\max

B. Auxiliary Lemmas

This subsection introduces two auxiliary lemmas used in
the main proof in Section C-C.

Lemma 11: Define D = diag(dy,ds,...,dk), where
dy,ds,...,dx are the nonzero singular values of H (satis-
fying Assumption 1). Assume that o(-) is a function that is
continuous a.e. and bounded on any compact set of (0, 00);
g1 ~ CN(0,1x), go ~ CN(0,Ig), and D are mutually
independent. Then as N, K — oo and % — v > 1, it holds
that _

i E7DEr as,

e E[o(d)];

G
gro(D)ga a.s. 0.

(i1) 7
where d = v/ and \ follows the Marchenko-Pastur distribu-
tion, whose density is given in (16).

Proof:  First, from the definition of o(-) and (ii) of
Lemma 10, we know that for sufficiently large N and K,

there exists a constant M > 0 such that

sup |o(d;)] <M
1<i<K

with probability one. Then according to the strong law of large
numbers in Lemma 8, we have

2
i d;)|g[1]

ngU(

i
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and
e K
g p D g 1 3 . a.s.
% = = D> o(d)g ) gli] =0,
i=1

which immediately gives (ii) of Lemma 11. Next we continue
to prove (i) of Lemma 11. Note that

1 & 1 &
?Z;Jd :?210

where A1, Ao, ..., A\g are the eigenvalues of HHY. Let Xg
be a random variable following the e.s.d. of HH"Y, then

jéwm ~E[o(vX)|.

if 2 €[0,(14++c)?+1];

0, otherwise,

where ¢ = 1. Then g(-) is continuous a.e. and bounded.
It follows from (ii) of Lemma 10 that with probability one, the
largest eigenvalue of HH" is bounded by (1 + \/c)? + 1 for
sufficiently large K, which implies that

E [o(vXx)| = Elg(Xx)].

Let A be a random variable following the Marchenko-Pastur
distribution. Then we have P{\ € C(g)} = 1 since \ is a
continuous random variable and ¢ is continuous a.e., where the
definition of C'(g) is given in Lemma 9. Therefore, according
to (i) of Lemma 10, we can apply Lemma 9 to {Xx} and A
to obtain

Elg(Xk)] — Elg\)] = E [o(V})] .
Combining the above discussions, we get the desired result

HO’ D 1 a.s.
% E5E [o(VA)] = Elo(d).

The proof is completed. ]
Lemma 12: Assume that z ~ CN(0,Iy), a =% &, and
q(+) satisfies Assumption 3. Then,
Mg(az) os. .

Proof: Note that

Mg(az)

iy
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To show the almost sure convergence, it suffices to show that
each of the above four terms converges almost surely to a
constant. Next, we will prove that

1 N
N ZR(%)R(Q(

where Z ~ CN(0,1), and the convergence of the other three
terms can be proved using similar arguments. Let g(z) =
R(q(x)). For any given € > 0, we construct the following
lower and upper bounds of g:

le(x) = inf {g(y) + %\y - wl} :
wlo) = sup {a) - Zly - al |

Y

azi)) == E[R(Z)R(¢(aZ))],

According to [56, page 15], [, and u,. satisfy

(1) le(z) < g(x) < ue(x),Va eC.

@ii) [ and wu, are Lipschitz continuous with Lipschitz con-
stant £, i.e., |l (z1) —lc(22)] < 1|21 —22] and [uc(z1)—
ue(r2)| < tlan — xof.

(iii) lc(z) and u.(z) are bounded, i.e., 3 B > 0 not depend-
ing on e such that |l.(z)] < B and |u.(z)| < B,
Va e C.

(iv) If = is a continuous point of ¢(-), then lelf(r)l le(x) =

g(z) = 161%1 Ue ().
Denote G(z,a) = R(x)R(g(ax)) = R(z)g(azx). Based on

the above upper and lower bounds of g(x), we can upper and
lower bound G(x, ) as

G(z,0) < R(x)uc(aw) + R(z)-l(ax) £ Uc(z, o)
and
G(z,0) > R(x) 1l (ax) + R(z) _uc(ax) & Lz, a),
where x4 = max{z,0} and x_ = min{x,0}. It follows that
for any e>0,
N N

To show that +; Zi:l G(zi, a) 22 E[G(Z 07)] we will first
prove that for a given € > 0,

N
1 a.s. —
N > Le(zi,0) =5 E[Le(Z, @), (60a)
i=1
XN
~ 2 Uelz,a) = ElUAZ,a)), (60b)
i=1
which, together with (59) implies
liminf — ZG (zi, ¢ L(Z,a)] a.s. (6la)

N—o0

lim sup — Z G(zi,«

N—o0 i—1

<E[U(Z,&)] a.s. (61b)

Then we will show that

limE[L(Z,0)] = ImE[U,(Z.a)] = E[G(Z.0)]. (6

2583
Letting € | 0 in (61) and using (62) give the desired result:

1 N
~ Z Gz, ) 225 E[G(Z,a)).

It remains to prove (60) and (62). We will only provide the
proof of (60) and (62) for the lower bound L. since the upper
bound can be proved in exactly the same way. First,

N
Z Le(zi, )

1=1

—E[L(Z,a)]

2=

IN
=
>

N
Il
=

Le(zi,a) — — ‘ZLE(zi7 a)

1 N
+ N ;Le(zi,&) —

It follows immediately from the strong law of large numbers
(i.e., Lemma 8) that the second term tends to zero almost
surely. For the first term, we have

1
< N s |L (Ziva> L (Zi’a)l
N
1 |zi(a — a)
< ¥ LRG|
S|Oé—04| 12|212 a.s. ’

where the second inequality holds due to Lipschitz continuity
(i.e., property (ii))) of l.(x) and wu.(z), and the almost con-
vergence is due to the assumption o —>» &, Lemma 8, and
Lemma 7. This proves (60). Since [ and u. are bounded (i.e.,
property (iii))), we have

|Le(2, @)| < BIR(x)].

According to the dominated convergence theorem [55],

lmE[L(Z,
€l0

)] =E {IEH} LE(Z,Q)} .

Property (iv) of . implies that lim, o L.(z, @) = G(z, &), if

ax is a continuous point of g(z), ie., lim. o L.(z,&) =
G(x,@) almost everywhere. Therefore,
ling[LE(Z,o‘z)] =E [lilrgLE(Z,d)} =E[G(Z,a)],
which completes the proof.
(|

C. Main Proof of Theorem 2

To prove Theorem 2, it suffices to prove (see Lemma 7)

Ts “*5Ts and T, =25 Ty,
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where
T _gr{CiDs; +|C2D”B”(§1)Z2[2 : N1} 1 (R(S)”_1|g2)[1}7
g1 S
7 _|B(g)"{C1Ds, +CzDB(Sl)22[ NI
¢ [(R(s)"'g2)[2: K]
and
Ts = C1E[df(d)],
Ty, = \/03 |C1 |2 var[d f(d)] + 63.

In the above equations,

H o (184l H, (18]l
- Zq (Hz1|\ 21) - HB(Zl) q (nzlu Zl)H
Bl el M
_ to(a _
A M 0, = \[Ella(a2)P] - [ElZig(a2)] .
Further, §; = H ”f( )Tg1 and & = 22 EPD]

5
We start with analyzmg the limiting values of C'; and Cs.
From the strong law of large numbers in Lemma 8, we have

a2 lgill* o  lsl® as. -
— l, —/ —o

) K ) K s

a.s.
/1

(63)
Furthermore, applying Lemma 11 in Section C-B with o(z) =
f?(x) yields

|/(D)7e1|* _ &' f(D)f(D)g1 as. o
i — == E[f*(d)].

It follows immediately from (63), (64), and Lemma 7 that

T 2 2
Isl 1FD) el oo [EL2D)0? _  6s)
lgull [zl gl

Note that C; can be expressed as

Ho (5]
21q (uzln Zl) 2'q(azy)

1= ~ = .
182 ][[|za allz:?

(64)

_ el _
]

According to Lemma 12 in Section C-B and noting that o >
&, we have

H
ziq(az1) as.
N
where Z ~ CN(0,1). This, together with (63), (65), and
Lemma 7, proves the convergence of C':

2i'q(az1) a.s. E[Zq(aZ)] -0,

E[ZTq(aZ)], (66)

C pr—
Rk a
To show the convergence of Cy = %, we first note
that
2
Bz )
2
. Hq(az) 2
H( zlllw) (z)| = | ™
N
2
_lglez)|I®  |Zq(ez)|” N 67)
N N [z’
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M
where the second equality holds because R(z;)" = ( T . )
B(z1)
and ||-|| is rotationally invariant. Similar to Lemma 12, we can
show that

2
”q(ojffl)H a.s. EH(](@Z)F]
Comblnlng this with (63), (66), and (67), and noticing that

M 2%, 1, we have

Cy == \/E[ICJ(@Z)P] — [E[Zq(aZ)]|? = C2.

Next, we analyze the convergence of Ty and T,. We begin
with T5:

. _ 81{CiDs1 + C:DBE)2R: N} (R(9) 'e2)]1]
: lealls & sl
_¢, g'Df (D)7 s gi' DB(s1)2:[2 : N]
el Tealls
(R e)l]
el

=T +Tia + Th3,

where the second equality uses the definition of §; in (13).
In what follows, we will show

Ty == CLE[d f(d)], (68a)
Typ 250, (68b)
Tis =25 0. (68¢)
Substituting o(z) = 2 f(z) into Lemma 11, we have
eD/ D81 22 g (),
which, together with “g;{w 2%, 1 and C; 225 C4, implies

(68a). We next show that 7’5 vanishes as§mptotlcally. Recall-

ing the definition R($;) = H:%H B(S1) ), we then have
. . §
B(81)22[2 : N] = R(81)z2 — 221] Héi\l (69)

Using (69) and the definition of §; in (13), we can upper bound
T12 by

‘T12‘ _ CQ ngDB(él)ZQ[Q : N] ‘

gl

g'DR(8;)zo
gl

g DR(51)z
g1l

g DR(31)z>
el

2[1] g Dyly

g llIsll

g'Df(D) g
[1f(D)Tgllglllsl]
||D||‘

< Oy 2

:CQ +C2

22[1]

< Oy

+Cs

Since both §; and g; are independent of z, R(S1)z2 4 z5 and
R(81)z2 is independent of g;. It follows immediately from
(63) and Lemmas 7 and 11 that

gll—iDR(él)ZQ &) 0
el
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22[1]

In addition, since % 2%, 0 and |D|| X2

iEl
that Cy, +%5 (5, we further have (68b). Finally, since
w 2%, 0 and Ty converges almost surely to a
constant (which will be shown in the sequel), we have (68c).

Combining the above discussions, we get

L+ VT

(see (ii) of Lemma 10), we have

Ts =Ty + Tio + Tiz =25 CLE[d f(d)] .

We next show the almost sure convergence of T, to a

constant. Note that R(s) 'g, 4 g2 due to the independence
between s and gy. Hence the following holds for the denom-
inator of Tg:

I (R(s)""g2) 2: K[| as.,
VK

For the numerator, using (69) and the definition of §; in (13),
we have

1.

|B(g1)"{C1D81 + C:DB(81)z2[2 :

VK
_ IB(g)"{C1D8, + C:DR(51)za} |

VK
HD $1 ||
[EA

NI

12[1] B(g:
VK
|22(1]] || B(g1)"Df (D) g1 |
VE||f(D)Tei
|z2[1][IB(g)IID]] a.s.
VK

where the almost sure convergence uses the facts that
ID|| 2% 1+ /1/v, |B(g)|| < 1, and Cy =% Ch.
Furthermore,

>~0L2

<Oy

0,

|B(g1)"{C1D8; + C:DR(81)z2} ||

K
4 |B(g1)"{C1Ds; + CoDzy}|
K
- 2
_ ||R(g1)H{Clel + CQDZQ}H
B K
[ tcips + vz}
K
B 1Cy HH;HH Df(D)Tg; + CoDzy?
B K
2
1 |ef{Ci{EkDF(D) g + CoDzy}
K g1l
= T21 — TQQ, (70)

where the first equality holds since z5 is independent of g1, D,
and §1; the second equality is due to the definition of B(+) in
(40); the third equality uses the definition of §; in (13) and
the rotational invariance of || - ||. The first term 7%; in (70) can

2585

be expressed as

Is|* &f'f(D)D'Df(D)"g:

Toy =|Cy |
g1l K
Lo 2D Dz, [Is]| R(CngngTDf(D)Tgl)
2 .

K gl K

Applying Lemma 11 with o(z) = 22f?(z), o(r) = 22, and

o(z) = 2?f(x), and using the almost sure convergence of
C1 and C5, we have

Tyr 255 62 |C1|? Eld? f2(d)] + Ca E[d?].

Similarly, for the second term 755 in (70), we have

2
1 | VRISl /D51, VE gDz,
" lleall? K el K
o2 |C1 P E?[d f(d)].
Combining the above discussions and noting that E[d?] = 1

[48], we can conclude that

T, % \Jo? Oy |2 varld f(d)] + T2,

which completes our proof.

APPENDIX D
PROOF OF THEOREM 3

In this section, we give the proof of Theorem 3. We first

prove the convergence of SINRj, and then show the conver-
gence of SEP,(0).

A. Proof of Convergence of Smk

Note that E[|s;|?] = 02 is a constant (see Assumptlon 1).
If we can show that E[\yk| ] — E[|yx|?] and ]E[skyk} —
]E[ngjk] then according to the definition of the SINR in (18),
we have

SINR,, — SINR.

In the following, we will only prove the convergence of
E[|9x|?], and the convergence of ]E[slgk} can be shown
similarly.

Firstly, it follows from Theorem 2 that g Z5, Yk, and thus

A

To show the convergence of expectation, we only need to
prove that {|§x|?} is uniformly integrable [55]. Note that for a
sequence of random variables { Xy, N > 1}, the boundedness
of E[| X x|?] can imply uniform integrability of { X} (see [55,
Section 9.5] for details about uniform integrability of random
variables). Therefore, it suffices to prove that the sequence
{E|[|yx|*} is bounded. According to (12), we have

|ikl* = [nTssr + nTpgalk] + nk|*
< 27|nTysi|* + 27|nTyga [K]* + 27|ny|*

27
< 5(?78\Ts|8 +lsul® + 07| Tel® + lga[K]1® + 2lnal®),

(71
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where the first inequality holds since |a + b + c|? < 3|a|? +
3|b|> + 3|c|?. From Theorem 2 and Lemma 7, we have

T* == T and [T == [Tg",
where Ts and T’ are both constants, and thus

E[T5°] — [Ts|® and E[|T[*] —

|Tg®. (72)

Taking expectations over both the left-hand and the right-hand
sides of (71) and using (72), we can conclude that

SngHﬂkm < +o0,

which completes the proof.

B. Proof of Convergence of ﬁk( 0)

Given a constellation symbol s, we use Dy to denote
its decision region, i.e., the regg)n within which s will be
recovered. With this notation, SEP(/3) can be expressed as

P(ﬁ:&k S Dsk)

- 1_m]\/zjlp(5k: = s(m)) P<ﬁ@k €Dy | s = S(M))

SEP,(3) =1 —

M
=1-— % mZ:lIP’ (ﬂ?)k €D, | sx = S(W)) o (73)

where the third equality holds since sj is uniformly drawn
from Sy;. Similarly,

M

Z P (ﬁgk € Ds, | sk = s(m)) .

m=1

SEPL(5) =1 -

From Theorem 2, we have (sg,Jx) —>> (s, ). Hence,
the joint distribution of (s, ¢x) converges weakly to that of
(Sk, Ur)- If we can further show

P (ﬁgk € 0Ds, | sk = s(m)) =0,

where 0D;, denotes the boundary of Dj, , then according to
[58, Lemma 2.2],

P (ng = Dsk ‘ Sk = S(m)> —F (ﬁgk S Dsk | Sk = S(m)) )

and hence S/E\Pk(ﬁ) — SEP.(3) = SEP(/3).
We next show (74). When nearest-neighbor decoding is
employed as assumed in this paper, the decision region of

s can be expressed as’

Dsz{rr—s|2<

or equivalently,

(74)

12
r—s®|

Vs e S, s #+ s},

s)Tr) +1s* —

Vs e Sy, st 753}

D, = {r|2R((s(“— 1592 <0,

(75)

3 A minor problem is that the decision regions given here are all open sets
and cannot cover the whole complex space. This is not an essential problem:
if r lies on the boundary of two decision regions, we can just randomly choose
one of the corresponding constellation point as the recovered symbol.
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It follows that the boundary of D, can be expressed as
0D, = {r | {2R((s(i) —5)Tr) 4 |s]? — |s(i)\2} = 0} .

Recall that 8yx = B(nTs s + nTg g2[k] + ni). Then

max
i,5(0) s

P (85 € 6D, | 55 = 5)

=P (ﬂ (nTs stm) 4 nTq g2[k] + nk> € 5Ds(m)>

_p (max {R (ainvi(nfg golk] + nk)> + cm,i} - o) :

where a,; = 28(s") — s™) and C,; =
27%(7775@;’13(’”)) + |52 — |5(D]2 are both constants.

The last probability can further be upper bounded as

’ (H;m {R (e (T g2lk) +10)) + Coni | = o)
<P ( ( m,i nngz[ank)) +Cm,i=0).

i#Em

Since 1T g2[k] +ny, is Gaussian, each term of the right-hand
side of the above inequality is 0, which further implies that
P (ﬁgjk €Dy, | sk = s(””)) = 0. This completes our proof.

APPENDIX E
EQUIVALENCE OF MAXIMIZING THE ASYMPTOTIC SINR
AND MINIMIZING THE ASYMPTOTIC SEP

For the scalar asymptotic model (20) with precoding factor
[ in (23), the received signal is

rall
T i
Bg:Han P(nng+n>és+n, (76)
E}
UQTQ‘F 2 .
where i ~ CN | 0, i ) since g ~ CN(0,1) and n ~

CN(0,0?) are independent. Following (73) in Appendix D,
we can express the asymptotic SEP as

M
ﬁ=1—%zp<ﬁﬂEDs‘s=S(m)>.

Each probability in the above summation can further be
expressed as

P (5?7 €D |s= s(m)> =P (ﬁ € Dyimy — s(m)>

SINR
—Pp (z € = (Ds(m) . s<m>)) ,
OS
where we have rewritten 7i as 1 = === Z with Z ~ CN/(0,1).

SINR
From (75), it is easy to check that D (., —s(™) is a polyhedron

containing 0, and thus the above probability is increasing in
SINR, i.e., SEP is a decreasing function of SINR.
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APPENDIX F
PROOF OF THEOREM 4

In this section, we give the proof of Theorem 4, i.e.,
we prove that (a*, n*, f*) given in (30) is the optimal solution
to the following problem:

. B2 f(d)
fm>0,a>0 var[d f(d)] + ¢(a,n) IE[1”( )l
st.  *Eflg(az)P’] < P
E[f*(d)] = d2 (77)

¢ o=

We first note that ¢* = oo (see the definition in (30a)) is a
pathological case where the SINR in (77) is identically zero®*
and any (@, ), f) is optimal. This happens, e.g., when ¢(-) is a
constant function. In the rest of the proof, we assume ¢* < co.

It is convenient to work with the inverse of the objec-
tive function in (77) and consider the following equivalent
problem:

o . E[d? f2(d)] + 422 E[£2(d)] X
= in _
7>0,a>0, f E2[d f(d)]
st n*Elle(az))’] < Pr,

E[f*(d)] = 7 &%

(78)

We first ignore the constraints. By the Cauchy-Swarchz
inequality, we can upper bound the denominator of the objec-
tive function of (78) by

E%[d f(d)] < E {(dQ + M) fz(d)] 8 d2+d¢2’<0;”> ’

and thus
E[/2(d)) + “Cn @] E[(d®+ 250) P2
E2[d f(d) (0]

Y

az ’
E | st
where the inequality holds with equality when

f(z) = VT #£0.

T

2 ¢@m)’
T(m—i—v)

By the above inequality, the constrained infimum in (78) is
further lower bounded by

1
®* > inf B ——
n>0a>0 | [ dz }
d2+¢(6‘777)/'7

st.  n*E[lg(az)]’] < Pr,
E[f(d)] = 75 ™

S

(79)

Note that the objective function of (79) is independent of
f(+), and thus the second constraint can be removed. In addi-
tion, E[d?/(d? + z)] is decreasing in x € [0,00) and it is
straightforward to check that ¢(a@,n) > 0 (see (22)). Hence,

“This is not the case for quantization functions used in practice.

2587

the optimization problem in the right-hand side of (79) is
equivalent to
inf _
S R CY)

st.  °E[jg(az)]’] < Pr. (80)

Since ¢(@,n) is decreasing in 71 (see (22)), the power con-
straint in (80) must be satisfied with equality at the infimum,
namely,

1)

Substituting (81) into (80) yields the optimization problem in
(30a), whose optimal value is given by ¢*. Hence,

<1 1

d2
-5 [t ]
The proof is complete by further verifying that (a*, n*, f*) is
feasible for (78) and ®* is attained at (&*,n*, f*).
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