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Abstract— A promising approach to deal with the high
hardware cost and energy consumption of massive MIMO
transmitters is to use low-resolution digital-to-analog converters
(DACs) at each antenna element. This leads to a transmission
scheme where the transmitted signals are restricted to a finite
set of voltage levels. This paper is concerned with the analysis and
optimization of a low-cost quantized precoding strategy, referred
to as linear-quantized precoding, for a downlink massive MIMO
system under Rayleigh fading. In linear-quantized precoding, the
signals are first processed by a linear precoding matrix and
subsequently quantized component-wise by the DAC. In this
paper, we analyze both the signal-to-interference-plus-noise ratio
(SINR) and the symbol error probability (SEP) performances
of such linear-quantized precoding schemes in an asymptotic
framework where the number of transmit antennas and the
number of users grow large with a fixed ratio. Our results provide
a rigorous justification for the heuristic arguments based on
the Bussgang decomposition that are commonly used in prior
works. Based on the asymptotic analysis, we further derive the
optimal precoder within a class of linear-quantized precoders
that includes several popular precoders as special cases. Our
numerical results demonstrate the excellent accuracy of the
asymptotic analysis for finite systems and the optimality of the
derived precoder.
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I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is a

key technology for 5G wireless communication sys-

tems. By equipping the base station (BS) with many antennas,

massive MIMO can significantly improve the channel capacity,

energy efficiency, and spectral efficiency of wireless commu-

nication systems [2], [3], [4]. Despite the great potential of

massive MIMO systems, high power consumption and hard-

ware cost are serious practical challenges for their commercial

deployment.

One of the main power-hungry components in a massive

MIMO system is the digital-to-analog-converter (DAC) [5], the

number of which scales linearly with the number of antennas at

the BS. To reduce circuit complexity and power consumption,

low-resolution DACs have been considered for massive MIMO

systems [6], [7], [8], [9], [10], [11], [12]. Unlike conventional

precoding schemes where at the symbol sampling points the

transmitted signals can be freely chosen from a continuous

set, only a small finite set of signals can be transmitted to

convey information when low-resolution DACs are employed.

The analysis and design of quantized precoding with the use

of low-resolution DACs has become an active research topics

in recent years [6], [7], [8], [9], [10], [11], [12].

Power ampifiers (PAs) are another main source of power

consumption in massive MIMO systems. To achieve the

highest power efficiency, the PAs need to operate close to

saturation, but for continuous-valued signals this incurs non-

linear distortion and causes difficulties for signals with high

peak-to-average power ratio (PAPR) [13]. A popular way to

handle such difficulty is to restrict the transmitted signal from

each antenna to have the same amplitude [14], [15], [16],

which minimizes the PAPR and enables the employment of

the most efficient and cheapest PAs. Combining such a con-

stant envelope (CE) constraint with the use of low-resolution

DACs motivates a new quantized precoding scheme, quantized

constant envelope (QCE) precoding, where at the symbol

sampling points the transmitted signals are restricted to have

a fixed amplitude and their phases are limited to finite values.

The QCE precoding scheme has attracted significant research

interest [17], [18], [19], [20], [21], [22], [23] as it combines

the advantage of using low-resolution DACs and energy-
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efficient PAs. In particular, as an extreme case of both QCE

and traditional quantized precoding, one-bit precoding (where

one-bit DACs are employed) has been widely and extensively

studied [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],

[34]. The power efficiency gain can be several dB, and in many

cases is sufficient to overcome the loss in fidelity due to the

coarse quantization.

We note here that traditional quantized precoding (without

the CE constraint) and QCE precoding are both realized by

the use of low-resolution DACs and have a common feature

that the transmitted signals are only allowed to be selected

from a finite set. In the following discussion, we will refer

to them (and possibly other precoding schemes with the finite

transmission set feature) collectively as quantized precoding.

Existing quantized precoding schemes can be broadly cat-

egorized into two classes: linear-quantized precoding and

nonlinear precoding. A linear-quantized precoding scheme1

simply quantizes the output of a linear precoder [6], [7], [8],

[9], [24], [25], [26], [27], [28], [29]. In contrast, nonlinear

precoders do not have this simple structure and are typically

obtained by solving appropriate optimization problems [10],

[11], [12], [18], [19], [20], [21], [22], [23], [30], [31], [32],

[33], [34], [35].

In this paper, we focus on the analysis and optimization

of linear-quantized precoding schemes, which are arguably

more practical than the computationally expensive nonlinear

schemes. Unlike existing works that focus on either traditional

quantized precoding or QCE precoding, this paper deals with

these two types of quantized precoding in a unified framework.

In what follows, we first give a brief review of related works

and then present the main contributions of this paper.

A. Related Work

1) Linear-Quantized Precoding: A direct approach to

obtain linear-quantized precoders is to quantize the output

of classical linear precoders such as the matched filter (MF)

and zero-forcing (ZF) precoders [6]. However, this approach

does not take into account the effect of quantization and thus

yields precoders that, although simple, are suboptimal in the

context of quantized precoding. Noting this, the authors in

[7] characterized the mean square error (MSE) between the

desired symbol and the received signal with the presence

of low-resolution DACs and proposed the quantized transmit

Wiener filter (TxWFQ) precoder that minimizes the MSE.

Under the same setup as [7], the authors of [8] proposed

a gradient-based approach to maximize the weighted sum

rate of the system. For the one-bit case, the authors in

[24] proposed a minimum mean square error (MMSE) based

precoder. Later, a higher-rank linear precoder was designed in

[25] for a downlink one-bit massive MIMO system, showing

superior performance to traditional linear-quantized precoders

of channel rank. We remark here that all existing works on

the design of linear-quantized precoding focus on traditional

quantized precoding or the special one-bit case. To the best

1Note that the overall operation of a linear-quantized scheme is not linear
due to the presence of the quantization step, but for convenience we will use
this term throughout this paper.

of our knowledge, no existing work considers the design of

linear-quantized precoding in the QCE context.

There are also some works focusing on the performance

analysis of linear-quantized schemes, e.g., [6] and [9] for

traditional quantized precoding, [26], [27], [28], [29] for

one-bit precoding, and [17] and [36] for QCE precoding.

Specifically, the authors in [6] and [9] derived lower-bounds on

the downlink achievable rates of linear-quantized precoding for

a flat-fading and a frequency-selective channel, respectively.

For a one-bit massive MIMO system, [26] derived a lower

bound on the achievable rate for MF precoding with estimated

channel state information (CSI). The performance of the

one-bit ZF precoder was investigated in [27], in which a

closed-form expression of the symbol error probability (SEP)

was derived in the asymptotic setting where the numbers of

transmit antennas and users both tend to infinity with a fixed

ratio. The same problem was considered in [28] and [29],

where the input-output correlation relationship was expanded

up to third-order instead of first-order as in [27], and the

derived SEP expression shows better accuracy than that in

[27] when the number of users is small relative to the number

of transmit antennas.

A widely used technique for analyzing the performances of

linear-quantized precoding schemes is the Bussgang decom-
position [37], which decomposes a non-linear function of a

Gaussian signal as the sum of a linear signal term and an

uncorrelated distortion term. We remark that although the

Bussgang decomposition is per se rigorous, it is often used in

conjunction with various heuristics to analyze the performance

of linear-quantized precoding. For instance, the distortion term

is often treated as a random variable that is independent of

all other random variables in the system. Although there is

strong numerical evidence that the heuristic treatments can

yield accurate predictions (e.g., SEP performance) for large

systems [27], [28], [29], a rigorous analysis of such heuristics

in the context of linear-quantized precoding is still lacking.

Please refer to Section II-C for a detailed discussion of the

Bussgang decomposition technique.

Beyond the analyses of traditional quantized precoding and

one-bit precoding, there are also some preliminary attempts

to analyze the performance of QCE precoding. Specifically,

[36] studied the statistical properties of the CE quantizer

(which models the overall operation of low-resolution DACs

and the CE constraint and generates signals satisfying the

QCE constraint) and derived closed-form expressions of the

cross-correlation factors between the input and output signals

of the CE quantizer. Very recently, the authors in [17] consid-

ered QCE precoding for a multiple-input single-output (MISO)

system and derived the diversity order of the MF precoder,

which characterized how fast the system SEP tends to zero as

the signal-to-noise ratio (SNR) grows [38].

2) Nonlinear Precoding: Besides linear-quantized precod-

ing schemes, various nonlinear precoders based on different

criteria have been proposed in recent years, see, e.g., [10], [11],

and [12] for traditional quantized precoding and [18], [19],

[20], [21], [22], and [23] for QCE precoding. There are also

many algorithms designed specifically for one-bit precoding,

see, e.g., [30], [31], [32], [33], and [34]. Nonlinear precoding
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schemes (especially symbol-level nonlinear precoders) usually

have better symbol error rate (SER) performance than their

linear counterparts but their computational complexity is much

higher.

Although there have been substantial progress in the design

of nonlinear precoding schemes, the performance analysis

of nonlinear precoding remains an open problem. This is

because nonlinear precoders are typically solutions to compli-

cated optimization problems without closed-form expressions.

In addition, the discrete nature of the transmitted signals in

quantized precoding leads to discrete constraints in the cor-

responding optimization problem, which further complicates

the analysis. Analyzing and designing nonlinear precoding

schemes are beyond the scope of this paper and can be

considered as a future work.

B. Our Contributions

In this paper, we analyze the performance of a broad class

of linear-quantized precoding schemes for a downlink massive

MIMO system. Our results rigorously justify and substantially

generalize existing results for MF and ZF based schemes

derived using heuristic Bussgang decomposition arguments.

The main contributions are summarized as follows.

1) Statistically equivalent model: By exploiting a recur-

sive characterization of the Haar random matrix [39],

we derive a model that is statistically equivalent to

the original system model. The statistically equivalent

model is close to a “signal plus independent Gaussian

noise” form and is more amenable to analysis. This

step is non-asymptotic and the technique we use may

be applicable to other problems as well.

2) Asymptotic analysis: We further consider the large sys-

tem limit as in [27] and show that in the asymptotic

regime, the statistically equivalent model is exactly

in a “signal plus independent Gaussian noise” form.

This provides a rigorous justification for the heuris-

tic analyzes based on the Bussgang decomposition.

We also prove that the signal-to-interference-plus-noise

ratio (SINR) and SEP of the original model converge to

those of the asymptotic model. Simulations show that

the asymptotic results are accurate for realistic systems

with finite dimensions.

3) Optimal linear-quantized precoder: Based on the asymp-

totic analysis, we derive the optimal linear-quantized

precoder that optimizes both the asymptotic SINR and

the asymptotic SEP performance. We show that the

optimal linear-quantized precoder is a regularized ZF

(RZF) precoder, whose regularization parameter is deter-

mined by the quantization type/level as well as the

system parameters. To the best of our knowledge, the

optimal RZF precoder derived in this paper is the first

linear-quantized precoder applicable to general forms of

quantization.

C. Organization and Notations

The remaining parts of the paper are organized as fol-

lows. Section II describes the system model and the problem

formulation. Some preliminaries for analysis are introduced

in Section III. Section IV derives the statistically equiva-

lent model and gives the asymptotic analysis. The optimal

linear-quantized precoder is then given in Section V. Simula-

tion results are shown in Section VI and the paper is concluded

in Section VII.

Notation: Throughout the paper, we use the typefaces x, x,

X, and X to denote scalar, vector, matrix, and set, respectively.

For a vector x ∈ Cn, x[i1 : i2] denotes a sub-vector of x
consisting of its i1-th to i2-th elements, where 1 ≤ i1 ≤
i2 ≤ n; in particular, x[i] is the i-th entry of x, and xi is

also used if it does not cause any ambiguity. For a matrix X,

X[i1, i2] is the (i1, i2)-th entry of X. The operators arg(·),
R(·), I(·), (·)†, (·)T, (·)H, and (·)−1 return the angle, the

real part, the imaginary part, the conjugate, the transpose, the

conjugate transpose, and the inverse of their corresponding

arguments, respectively. We use ‖ · ‖ to denote the �2 norm

of the corresponding vector or the spectral norm of the

corresponding matrix. For m, n ∈ N, we denote the m × m
identity matrix by Im and the m × n matrix of all zero

entries by 0m×n. We use diag(x1, x2, . . . , xn) to refer to a

diagonal matrix with {xi}n
i=1 as its diagonal entries. We use

U(n) to denote the set of n × n unitary matrices over C.

The operators E[·], var(·), and P(·) return the expectation, the

variance, and the probability of their corresponding argument,

respectively. For two random variables X and Y , X
d= Y

means that they have the same distribution. We denote almost

sure convergence by
a.s.−−→. We use CN (0, σ2I) to denote the

zero-mean circularly symmetric complex Gaussian distribution

with covariance matrix σ2I, and Unif(S) to denote uniform

distribution on set S. We reserve the sans serif font (e.g., g)

for vectors with i.i.d. standard complex Gaussian random

variables. Finally, j is the imaginary unit satisfying j2 = −1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Linear-Quantized Precoding

Consider the downlink of a multiuser massive MIMO

system in which an N -antenna BS simultaneously serves K
single-antenna users, where K < N . The received signals at

the users can be modeled as

y = Hx + n,

where y ∈ CK is the received signal vector of the users;

x ∈ CN is the transmitted signal vector from the BS; H ∈
CK×N models the channel matrix between the BS and the

users, and n ∈ CK is the additive noise. We assume that

the analog-to-digital converters (ADCs) equipped at the user

side are ideal and have infinite resolution and that perfect CSI

is available at the BS. We model the DAC as a quantization

function and ignore various practical effects such as glitches,

element mismatch, slewing, thermal noise, clipping, etc [40],

[41], [42].

In this paper, we consider the linear-quantized precoding

scheme, where the signal vector to be transmitted at the BS

has the following form

x = η q(Ps). (1)

In the above expression, s ∈ CK is the desired data vector;

P ∈ CN×K is a precoding matrix; q(·) : C → XL is a
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Fig. 1. An illustration of the linear-quantized precoding scheme.

quantization function that acts component-wise on its input

vector, where XL is a finite set with L elements and L is

referred to as the quantization level; η is a scaling factor to

ensure that the following average transmit power constraint is

satisfied:

1
N

E[‖x‖2
2] ≤ PT , (2)

where PT > 0 is the maximum average transmit power. See

Fig. 1 for an illustration of the linear-quantized precoding

scheme.

We now introduce the quantization function corresponding

to traditional quantized precoding and QCE precoding, which

are most relevant for applications.

• Traditional quantized precoding: In this case, the real

and imaginary parts of the input signal are quantized

independently with a pair of low-resolution DACs and

XL can be expressed as

XL =
{

x | R(x), I(x) ∈
{

Δ
2

(
2� − 1 −

√
L
)

,

δ

2
� = 1, . . . ,

√
L

}}
, (3)

where Δ is the quantization interval. The corresponding

quantization function maps its input to the nearest point

in (3). In the following, we call it independent quantizer

since the quantizer acts independently on the real and

imaginary parts of its input, and denote it by qI(·). For

an L-level independent quantizer, the resolution of the

DACs is 1
2 log2 L bits, where L≥ 4 and is a power of 2.

• QCE precoding: In this case, the CE constraint is com-

bined with the use of low-resolution DACs and XL has

the following expression:

XL =
{

ej
(2�−1)π

L | � = 1, 2, . . . , L
}

. (4)

The corresponding quantization function maps its input

to the nearest point in (4). In the following, we call it CE

quantizer and denote it by qCE(·). The resolution of the

DACs is log2
L
2 bits for an L-level CE quantizer, where

L≥ 4 and is a power of 2.

Note that when L = 4 and Δ = 2, the independent quantizer

and the CE quantizer are the same, both reducing to the one-bit

precoding case.

Let H = UDVH be the singular value decomposi-

tion (SVD) of H, where U ∈ U(K),V ∈ U(N), and

Fig. 2. The structure of the precoding matrix in consideration.

D =
(
diag(d1, d2, . . . , dK) 0K×(N−K)

) ∈ RK×N with

d1, d2, . . . , dK representing the non-zero singular values2 of

H. In this paper, we focus on precoding matrices with the

following structure:

P = Vf(D)TUH, (5)

where f(·) acts independently on the nonzero singular values

of H, i.e.,

f(D) =
(
diag(f(d1), f(d2), . . . , f(dK)) 0K×(N−K)

)
.

See Fig. 2 for an illustration of the structure of P. The

motivations to consider the special class of the precoding

matrix in (5) are twofold. First, as will be shown in Section III,

the structure of P in (5) enables us to apply existing results

in random matrix theory for performance analysis. Second,

the structure of P is fairly general and includes the following

popular precoders as special cases:

• MF: P = HH, which corresponds to f(x) = x in (5);

• ZF: P = HH(HHH)−1, which corresponds to f(x) =
x−1 in (5);

• RZF: P = HH(HHH + ρIK)−1, which corresponds to

f(x) = x
x2+ρ in (5).

With the above linear-quantized precoding scheme, the

received signals at the user side read

y = ηHq(Ps) + n = ηUDVHq(Vf(D)TUHs) + n. (6)

As in [19], [20], [21], and [22], we assume that each user is

able to rescale the received signal yk by a factor βk ∈ C,

i.e., rk = βkyk. (This corresponds to removing the effective

channel gain.) After the rescaling step, the users employ

symbol-wise nearest-neighbor decoding, i.e., each user k maps

rk to the nearest constellation point.

As will be shown below, the nonlinear function f(·) in P
has a major impact on the performance of the overall system.

In this paper, we will first analyze the performance of the

linear-quantized scheme in the asymptotic regime where N
and K tend to infinity simultaneously, and then optimize f(·)
based on the asymptotic analysis.

B. Assumptions

In this subsection, we specify our assumptions on the system

model in (6). We first make a few standard assumptions on

H, n, and s.

2We assume throughout the paper that H is of full row rank. This holds
with probability one if Assumption 1 further ahead is satisfied, i.e., if the
entries of H are i.i.d. following CN (0, 1

N
).
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Assumption 1: The entries of H and n are independently

drawn from CN (
0, 1

N

)
and CN (

0, σ2
)
, respectively. The

entries of s are independently and uniformly drawn from

a finite set SM with nonzero elements (i.e., 0 /∈ SM ),

and E[|s1|2] = σ2
s . Furthermore, H, s, and n are mutually

independent.

The i.i.d. Gaussian assumption on the channel H is widely

adopted in the massive MIMO literature for ease of analysis,

see, e.g., [27], [28], and [29]. This assumption is reasonable in

a rich scattering environment where the number of scattered

components is large and independent. Such a scenario arises

when the antennas are widely spaced or when the physical

environment exhibits scattering in all directions [43]. Note

that we have assumed Hij ∼ CN (0, 1
N ) instead of Hij ∼

CN (0, 1). This normalization is introduced as in [44], [45],

and [46] to ensure that the received power of the users does

not grow with N . We would like to emphasize that the i.i.d.

Gaussian assumption on the channel H is not essential to our

analysis. Our results can be extended to a broader class of

channel models, as discussed in Remark 3 below Theorem 2.

The assumption on s is quite general and is satisfied by

common constellation schemes including phase shift keying

(PSK) and quadrature amplitude modulation (QAM).

For technical reasons, we impose the following assumption

on the nonlinear function f(·) in P in (5).

Assumption 2: The function f(·) is positive, continuous

almost everywhere (a.e.), and bounded on any compact set

of (0,∞).
Notice that the f functions corresponding to the MF, ZF, and

RZF precoders discussed in the previous subsection all satisfy

Assumption 2. We emphasize that the positivity assumption

on f is not essential and can be relaxed to P (f(D) = 0) = 0.

Further, as will be shown in Section V, there always exists an

optimal precoder satisfying f > 0, implying that the positivity

assumption does not impose any restriction in terms of the best

achievable performance.

Finally, we assume that the quantization function q in (1)

satisfies some regularity conditions, as stated in Assumption 3

below.

Assumption 3: The quantization function q : C → XL is

continuous a.e. and bounded.

It is straightforward to verify that the independent quantizer

qI(·) and the CE quantizer qCE(·) both satisfy Assumption 3

(as they are piecewise constant). We emphasize that some of

our results can be simplified for QCE precoding, i.e., when

q(·) = qCE(·). In the following, we will first present our results

in the most general form and then discuss the case of QCE

precoding separately.

C. Heuristic Analysis Via Bussgang Decomposition

The nonlinear quantization function q(·) causes some diffi-

culties for performance analysis. A popular technique to deal

with it is the Busggang decomposition [6], [9], [26], [27],

[28], [29], which decomposes a nonlinear function of Gaussian

random variables into a linear signal term and an uncorrelated

nonlinear distortion term. We now outline a heuristic analysis

of the problem using the Bussgang decomposition technique.

Consider the nonlinear quantization process q(Ps), where

P = Vf(D)TUH. Under Assumption 1, V and U are Haar

distributed (see Definition 1 and Lemma 1 further ahead) and

it can be shown that Ps is approximately distributed as

Ps
d≈ CN (0, ᾱ2IN ),

where

ᾱ2 =
1
N

E[‖Ps‖2].

Based on the Busggang decomposition technique [37], we can

write q(Ps) as

q(Ps) = C1(Ps) + q⊥,

where C1 = E[Z†q(ᾱZ)]/ᾱ, Z ∼ CN (0, 1), and q⊥ is the

residual nonlinear distortion which is approximately orthogo-

nal to Ps. Substituting this decomposition into (6) gives

y = η Hq(Ps) + n

= η C1HPs + η Hq⊥ + n

= η
C1

K
tr(HP)s

+ η C1

(
HP − 1

K
tr(HP)I

)
s + ηHq⊥ + n. (7)

In the above decomposition, the first term is a signal term and

the last three terms are effective noise terms. This demonstrates

the advantage of the Bussgang decomposition: it can transform

a nonlinear system into a linear one so that the useful signal

and the effective noise can be distinguished. However, the

problem is that the distribution of q⊥ and its correlation with

(H, s) are hard to characterize, which makes it still highly

non-trivial to analyze the performance (e.g., SEP performance)

of the system with (7). Heuristically, one may treat q⊥ as

if it is independent of both H and s, so that Hq⊥ can

be approximated as independent Gaussian noise. It turns out

that this treatment, though heuristic, leads to very accurate

predictions [27]. Developing a new analytical framework that

can rigorously justify the above heuristics is a main motivation

behind this work.

III. PRELIMINARIES

Our analysis is based on Householder dice [39], a technique

for recursively generating Haar random matrices. Before pre-

senting our main results, in this section we first give some

preliminaries on the Haar random matrix and the Householder

dice technique.

We begin with the definition of the Haar measure and the

Haar random matrix.

Definition 1 (Haar Measure [47]): The Haar measure on

U(N) is defined as the unique probability measure μ on U(N)
that satisfies the following translation invariant property: for

any measurable subset A ⊂ U(N) and any fixed M ∈ U(N),

μ(MA) = μ(AM) = μ(A),

where MA denotes the set obtained by taking all the elements

of A and multiplying them by M.
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In the following, we denote by Haar(N) the ensemble of

random unitary matrices drawn from the Haar measure on

U(N).
Lemma 1 below is a well-known fact in random matrix

theory [48] and suggests the crucial role of the Haar random

matrix plays in our analysis.

Lemma 1: Let H = UDVH be the SVD of H. Under

Assumption 1, U,D,V are mutually independent and U,V
are Haar distributed random matrices.

We now introduce the Householder dice (HD) technique

proposed in [39], which deals with an iterative process involv-

ing Haar matrices as follows:

xt+1 = ft(Qxt), 0 ≤ t ≤ T − 1, (8)

where Q ∼ Haar(N) and x0 ∈ CN are independent. HD was

originally proposed as an efficient numerical method for

simulating iterations like (8) of large dimension. In our paper,

we employ it as a tool for performance analysis, which is a

novel application of this technique. Specifically, using HD, one

can show that the sequence {x0,x1,x2, . . . ,xT } generated by

(8) is statistically equivalent to another sequence that is fully

determined by the initial vector x0 and a sequence of inde-

pendent standard Gaussian random vectors. Compared to the

original sequence that exhibits complicated correlation through

the Haar matrix Q, the new sequence is more amenable

to analysis, particularly in the high-dimensional case, which

enables us to study the statistical properties of the original

sequence with greater ease.

To get some insight on how HD facilitates analysis, we con-

sider the following simple example that contains only two

iterations: {
x1 = f0(Qx0),
x2 = f1(Qx1),

(9)

where Q ∼ Haar(N) and x0 ∈ CN are independent. Using

HD, one can show that (x0,x1,x2) is statistically equivalent

to (x0, x̃1, x̃2) given below:{
x̃1 = f0(a1

0g1),

x̃2 = f1(a1
1g1 + a2

1g2),
(10)

where g1 ∼ CN (0, IN ) and g2 ∼ CN (0, IN ) are independent

and both are independent of x0, and the random variables

{a1
0, a

1
1, a

2
1} are defined by

a1
0 =

‖x0‖
‖g1‖ ,

a1
1 =

xH
0 x̃1

‖g1‖ − gH
1 g2

‖g1‖‖x0‖

√
‖x̃1‖2‖x0‖2 − ∣∣xH

0 x̃1

∣∣2√
‖g1‖2‖g2‖2 − |gH

1 g2|2
,

a2
1 =

‖g1‖
√
‖x̃1‖2‖x0‖2 − ∣∣xH

0 x̃1

∣∣2
‖x0‖

√
‖g1‖2‖g2‖2 − |gH

1 g2|2
.

The statistical equivalence between (9) and (10) can be proved

using a technique similar to that in [39, Section 3.3] and thus

we omit the details here. Clearly, x̃1 and x̃2 are fully specified

by the initial vector x0 and the two Gaussian vectors g1 and

g2. The scaling factors {a1
0, a

1
1, a

2
1}, though correlated with

{x0, g1, g2} in a complicated way, converge in many cases

to deterministic values as the matrix dimension N tends to

infinity. For instance, when f0(·) is separable and satisfies

some mild regularity conditions and the entries of x0 are i.i.d.,

the convergence of {a1
0, a

1
1, a

2
1} can be easily proved via the

law of large numbers.

The above example illustrates the strength of the HD tech-

nique: it transforms the original sequence, which is specified

by the N × N Haar matrix Q, into another sequence that is

determined by only a few Gaussian vectors (e.g., two Gaussian

vectors of dimension N for the above example) with an

explicit form. The new sequence is usually more convenient

for analysis. The interested reader is referred to [39] for a

detailed description of the HD technique. We will provide a

comprehensive description of the HD technique for handling

our specific problem in Appendix A and Appendix B.

IV. STATISTICALLY EQUIVALENT MODEL AND

ASYMPTOTIC ANALYSIS

In this section, we first use the HD technique to derive

a statistically equivalent model for (6), which is close to

a “signal plus independent Gaussian noise” form. This step

is non-asymptotic and the equivalence holds for any finite

dimension when N, K ≥ 3. The “signal plus Gaussian noise”

insight is made precise by further considering the large system

limit where N and K tend to infinity at a fixed ratio. We will

derive sharp asymptotic expressions for the SINR and SEP

performances of the linear-quantized precoding scheme.

A. Statistically Equivalent Model

Recall that our system model is

y = ηHq(Ps) + n = ηUDVHq(Vf(D)TUHs) + n,

where U ∼ Haar(K),V ∼ Haar(N), and {U,V,D, s,n} are

mutually independent. The received signal y can be seen as

being obtained by performing the following iterations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1 = f(D)TUHs,

s2 = q(Vs1),

s3 = DVHs2,

y = ηUs3 + n,

(11)

The above iterative process has a form similar to (8). At each

iteration, it involves one multiplication of a Haar random

matrix and a random vector, while the other operations

can be modeled as ft(·) in (8), since {D,n} are indepen-

dent of {U,V, s}. Specifically, f0(x) = f(D)Tx, f1(x) =
q(x), f2(x) = Dx, f3(x) = ηx+n, where x is a vector of an

appropriate dimension. The only minor difference with (8) is

that two different Haar matrices and their conjugate transposes

are included in the above iterations. However, this difference is

not important and the HD technique can still be applied. With

the help of the HD technique, we can obtain the following

statistically equivalent model, which is more convenient for

analysis.

Theorem 1 (Statistically Equivalent Model): When N ≥
3, K ≥ 3, the distribution of (y, s) in the original model (6)

is the same as that of (ŷ, s) specified by the following model:

ŷ = ηTs s + ηTg g2 + n, (12)
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where

Ts =
gH
1 {C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

‖g1‖‖s‖ − Tg
(R(s)−1g2)[1]

‖s‖ ,

Tg =
‖B(g1)H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}‖

‖(R(s)−1g2)[2 : K]‖ ,

C1 =
zH
1 q
(

‖ŝ1‖
‖z1‖ z1

)
‖ŝ1‖‖z1‖ , C2 =

∥∥∥B(z1)Hq
(

‖ŝ1‖
‖z1‖ z1

)∥∥∥
‖z2[2 : N ]‖ ,

ŝ1 =
‖s‖
‖g1‖f(D)Tg1. (13)

In the above expressions, g1 ∼ CN (0, IK) , g2 ∼
CN (0, IK) , z1 ∼ CN (0, IN ) , z2 ∼ CN (0, IN ) are mutu-

ally independent standard Gaussian random vectors, which are

further independent of the signal vector s, the singular value

matrix D, and the noise vector n; f(·) is a processing function

involved in the precoder (5); R(·) denotes the Householder

transform of the input vector and B(·) represents the submatrix

of R(·) with the first column removed (see (39) and (40) in

Appendix A).

Proof: See Appendix B. �
Before proceeding, let us take a look at the statistically

equivalent model in (12): the first term is the (scaled) signal

vector, the second term is an equivalent noise that captures

both the multi-user interference and the distortion caused by

quantization, and the last term is the channel noise. Note,

however, it is still difficult to exactly analyze the performance

of the system (e.g., SEP performance) based on the statistically

equivalent model in (12). This is because Ts and Tg therein

are correlated with s and g2 in a complicated way. Fortunately,

as N, K → ∞ and N/K → γ ∈ (1,∞), both Ts and Tg con-

verge to deterministic quantities, enabling us to derive sharp

asymptotic formulas for both the SINR and SEP performance.

B. Asymptotic Analysis

In this subsection, we consider the large system limit where

both N and K tend to infinity while keeping a finite ratio
N
K → γ ∈ (1,∞). This is a common assumption in the

performance analysis of massive MIMO systems, and such

asymptotic analyses can usually provide tight approximations

for realistic systems with finite N, K (see, e.g., [44], [45],

[46], [49]). In what follows, all vectors and matrices should

be understood as sequences of vectors and matrices of growing

dimensions. For simplicity, their dependence on N and K is

not explicitly shown.

Our main asymptotic result is summarized in the following

theorem. Its proof is given in Appendix C.

Theorem 2 (Asymptotic Model): Define the following

asymptotic model:

ȳ := ηT s s + ηT g g2 + n, (14)

where

T s = C1 E[d f(d)],

T g =
√

σ2
s |C1|2var[d f(d)] + C

2

2,

C1 =
E[Z†q(ᾱZ)]

ᾱ
,

C2 =
√

E[|q(ᾱZ)|2] − |E[Z†q(ᾱZ)]|2,

ᾱ =

√
σ2

s E[f2(d)]
γ

, (15)

Z ∼ CN (0, 1), d =
√

λ, and λ follows the Marchenko-Pastur

distribution, whose probability density function is given by

pλ(x) =

√
(x − a)+(b − x)+

2πcx
(16)

with a = (1−√
c)2, b = (1+

√
c)2, c = 1

γ ; (x)+ = max{x, 0}.
Then under Assumptions 1-3, the following holds as N, K →
∞, and N

K → γ ∈ (1,∞):

(ŷk, sk) a.s.−−→ (ȳk, sk), ∀ k ∈ [K],

where (ŷk, sk) and (ȳk, sk) are given in (12) and (14),

respectively.

Several remarks on Theorems 1 and 2 are in order.

Remark 1: It is worth noting that the conditioning tech-

nique developed in [50] and [51] may be used to derive the

asymptotic model in Theorem 2, though the model analyzed in

the current paper is more complicated than that in [51]; com-

pare (6) and [51, Eq. (15)]. Note that both the HD technique

and the conditioning method of [50] and [51] heavily rely on

the rotational invariance of the Haar random matrix. For our

problem, the HD technique is more direct and transparent.

Remark 2 (Connection With Bussgang Decomposition):
The asymptotic model (14) gives a precise characterization

of the Bussgang decomposition and results in (7):

y = η
C1

K
tr(HP)s

+ η C1

(
HP − 1

K
tr(HP)I

)
s + ηHq⊥ + n. (17)

Loosely speaking, we have the following correspondence

between (14) and (17):

ηT s s ↔ η
C1

K
tr(HP)s

ηT g g2 ↔ η C1

(
HP − 1

K
tr(HP)I

)
s + ηHq⊥

The above correspondence is in a distributional sense, i.e., the

corresponding terms have the same (asymptotic) distribution,

and is implied by our proof of Theorem 2.

Remark 3 (Assumption on Channel H): Theorems 1 and 2

are stated under the assumption that the elements of H are

i.i.d. Gaussian, but can be extended to the following more

general models.

• (Unitarily invariant model) For the unitarily invariant

model, the SVD of H satisfies U ∼ Haar(K),V ∼
Haar(N), and {U,D,V} are independent [48], and

hence Theorem 1 holds. In addition, Theorem 2 holds as

long as the empirical spectral distribution (see Definition

3 in Appendix C) of HHH further has a continuous

limiting distribution with a bounded support, with λ in

Theorem 2 following the limiting e.s.d. of HHH.

• (Large scale fading) In the case where the users have

different large scale fading variances, the channel can be
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modeled as H = Σ0H̃, where H̃ satisfies Assumption 1

and Σ0 = diag(σ1, σ2, . . . , σK) is a diagonal matrix with

σk representing the standard deviation of the large scale

fading of user k, k = 1, 2, . . . , K. Let H̃ = UDVH

be the SVD of H̃. Theorems 1 and 2 can be directly

generalized to this more general channel model with

precoding matrices of the following form:

P = Vf(D)TUHg(Σ0),

where Σ0 and g satisfy some mild regularity conditions.

The above class of precoding matrices still includes MF

precoding and ZF precoding as special cases.

Theorem 2 shows that in the asymptotic regime, the system

model is in a simple “signal plus independent Gaussian

noise” form as (14). In the following, we will characterize

the individual performance of the K users with the help of

Theorem 2. Two commonly used performance measures are

the SINR:

SINRk :=
|ρk|2 E[|sk|2]

E[|yk|2] − |ρk|2 E[|sk|2] , (18)

where ρk = E[s†kyk]/E[|sk|2], and the SEP:

SEPk(β) := P (dec(βyk) �= sk) , (19)

where dec(·) is the decision function that maps its argument

to the nearest constellation point in SM .

We note that the SINR and SEP performance of the

K users in the asymptotic model (14) are the same and

can be characterized by the following asymptotic scalar

model:

ȳ := ηT s s + ηT g g + n, (20)

where s ∼ Unif(SM ), g ∼ CN (0, 1), n ∼ CN (0, σ2) are

independent. Following the definitions in (18) and (19), the

SINR and SEP of the above scalar asymptotic model are given

by

SINR =
σ2

s η2 T
2

s

η2 T
2

g + σ2
=

E2[d f(d)]

var[d f(d)] + φ(ᾱ, η) E[f2(d)]
γ

, (21)

where ᾱ =
√

σ2
s E[f2(d)]/γ and

φ(ᾱ, η) :=
E[|q(ᾱZ)|2] − |E[Z†q(ᾱZ)]|2 + σ2/η2

|E[Z†q(ᾱZ)]|2 , (22)

and

SEP(β) = P (dec(βȳ) �= s) .

The second step of (21) is obtained based on the definitions

of T s and T g in (15).

Theorem 3 below shows that both the SINR and the SEP

performance of the original model converge to those of the

scalar asymptotic model in (20). Its proof can be found in

Appendix D.

Theorem 3: Denote ŜINRk and ŜEPk(β) as the SINR and

SEP of user k of the model in (12), respectively. Under the

asymptotic setting in Theorem 2, the following hold for any

k ∈ [K] and β ∈ C:

(i) limN,K→∞ ŜINRk = SINR;

(ii) limN,K→∞ ŜEPk(β) = SEP(β).
With the above theorem, we can give predictions of the

SINR and SEP performance of the original model based on the

asymptotic scalar model in (20). Note that SEP(β) is defined

for a scalar additive white Gaussian noise (AWGN) channel

and therefore can be easily computed for specific constellation

types. Clearly, a natural scaling factor should be

β =
T

†
s

η|T s|2
. (23)

We denote the corresponding asymptotic SEP as SEP. When

M -PSK modulation is adopted, SEP can be tightly approxi-

mated as [52, Section 4.3-2]:

SEP ≈ 2Q
(√

2 sin
π

M

√
SINR

)
, (24)

where Q(x) = 1√
2π

∫∞
x

e−
t2
2 dt. For M -QAM modulation, the

SEP has an explicit expression [52, Section 4.3-3]:

SEP = 4
(

1 − 1√
M

)
E0 − 4

(
1 − 1√

M

)2

E2
0 (25)

where

E0 = Q

(√
3

M − 1
SINR

)
. (26)

In the rest of this paper, we assume that β in (23) is used unless

otherwise stated. It is worth noting that the asymptotic SEP

formulas in (24) and (25), though derived under the asymptotic

assumption that the system dimension grows to infinity, are

also accurate for practical systems with moderate dimensions;

see the simulation results in Section VI.

C. Example: QCE Precoding

So far, our results hold for general q(·) satisfying Assump-

tion 3. In this subsection, we specify our results to the case of

CE quantizer qCE(·). We start with a few properties of qCE(·).
Lemma 2 (Properties of qCE(·)):
(i) |qCE(x)| = 1, ∀x ∈ C;

(ii) qCE(αx) = qCE(x), ∀x ∈ C, α > 0;

(iii) E[Z†qCE(Z)] = L sin π
L

2
√

π
, where Z ∼ CN (0, 1) and L is

the number of quantization levels [36].

Under the above properties of qCE(·), the asymptotic SINR

in (21) simplifies to

SINRQCE =
E2[d f(d)]

var[d f(d)] + CL,σ,η

γ E[f2(d)]
, (27)

where

CL,σ,η =
1 − L2 sin2 π

L

4π + σ2/η2

L2 sin2 π
L

4π

. (28)

The asymptotic SEP is a simple function of the SINR, as dis-

cussed above.

By further specifying the nonlinear function f(·) as

f(x) = x and f(x) = x−1 respectively (see discussions in

Section II-A) and using [48, Eq. (2.104)], we can obtain the
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following asymptotic SINR formulas for the quantized MF and

ZF precoders:

SINR
MF

QCE =
γ

CL,σ,η + 1
,

SINR
ZF

QCE =
γ − 1
CL,σ,η

,

where CL,σ,η is defined in (28). The above SINR formula for

quantized ZF precoding has been obtained for the one-bit case

(i.e., L = 4) using the Bussgang decomposition technique

in [27].

V. OPTIMAL LINEAR-QUANTIZED PRECODING

For the precoding scheme in (5), the function f(·) can be

designed to optimize the system SEP performance. In this

section, we derive the optimal f(·) based on the asymptotic

characterization developed in Theorem 2.

A. Optimal Linear-Quantized Precoding

Our goal is to find the optimal f(·) in terms of the asymp-

totic SEP performance. First, maximizing SINR is equivalent

to minimizing SEP, as shown in Appendix E. In what follows,

we shall focus on the following SINR maximization problem

(see (21)):

ζ∗ := sup
f,η>0,ᾱ>0

E2[d f(d)]

var[d f(d)] + φ(ᾱ, η) E[f2(d)]
γ

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f2(d)] =
γ

σ2
s

ᾱ2, (29)

where Z ∼ CN (0, 1), PT > 0 is the maximum average

transmit power in (2), d is defined in Theorem 2, and φ(ᾱ, η) is

defined in (22). If ᾱ in the second constraint is eliminated and

substituted into the first constraint, then the obtained constraint

represents the asymptotic counterpart of the actual average

power constraint in (2). Therefore, the function f(·) and the

transmit power η are jointly optimized in problem (29).

The SINR maximization problem (29) may seem challeng-

ing to solve as it involves optimization over a function f(·).
Moreover, the variables (ᾱ, η, f) are coupled by the con-

straints, which further complicates the problem. Fortunately,

the optimal solution of (29) has a simple structure, as shown

by the following theorem.

Theorem 4: Suppose that the following infimum is attained

by some ᾱ∗ > 0:

φ∗ :=
(

1 +
σ2

PT

)
inf
ᾱ>0

E[|q(ᾱZ)|2]
|E[Z†q(ᾱZ)]|2

− 1. (30a)

Then, (ᾱ∗, η∗, f∗) is an optimal solution to the problem in

(29) where

η∗ :=

√
PT

E[|q(ᾱ∗Z)|2] , (30b)

f∗(d) := ± d

τ∗(d2 + φ∗
γ )

, (30c)

τ∗ :=

√√√√√ σ2
s

γ(ᾱ∗)2
E

⎡⎣( d

d2 + φ∗
γ

)2
⎤⎦. (30d)

Furthermore, the maximum SINR in (29) is equal to

ζ∗ =
1

1 − E

[
d2

d2+ φ∗
γ

] − 1. (30e)

Proof: See Appendix F. �

Remark 4: Some comments on Theorem 4 are in order.

1) In Theorem 4, we do not impose the positivity constraint

on f , and an optimal f satisfying f > 0 always exists;

see (30c). This supports our claim below Assumption 2

that the positivity assumption on f does not impose any

restriction in terms of the best achievable performance.

2) We assume that the infimum in (30a) is attainable. Our

numerical results suggest that this holds for commonly

used quantization functions q(·). In cases where the

infimum in (30a) is not attainable, we may modify the

theorem using a simple truncation argument. Specifi-

cally, we add an additional constraint 1
M ≤ ᾱ ≤ M

to (30a) and let ᾱ∗
M be any optimal solution to the

constrained problem. We define φ∗
M , η∗

M and f∗
M as in

(30) with ᾱ∗ replaced by ᾱ∗
M . Then, it can be shown

that the SINR achieved by (ᾱ∗
M , η∗

M , f∗
M ) tends to ζ∗

as M → ∞.

We now take a closer look at (30a). Loosely speaking, it

may be interpreted as finding the optimal input power for the

quantization function q(·). More precisely, using the Bauss-

gang decomposition technique, we can decompose q(ᾱZ) as

q(ᾱZ) d= E[Z†q(ᾱZ)]Z + d,

where Z ∼ CN (0, 1) and d models the quantization error

which is uncorrelated with Z. Then, problem (30a) can be

viewed as maximizing the signal to quantization error plus

noise ratio (SQNR):

SQNR :=
|E[Z†q(ᾱZ)]|2 E[|Z|2]

E[|d|2]
=

|E[Z†q(ᾱZ)]|2
E[|q(ᾱZ)|2] − |E[Z†q(ᾱZ)]|2

=
1

E[|q(ᾱZ)|2]
|E[Z†q(ᾱZ)]|2 − 1

.

For a general q(·), problem (30a) can be solved by a one-

dimensional search. For the special case of the CE quantizer,

the objective function of (30a) is actually a constant (see

Lemma 2) and the problem is trivial; see details in the next

subsection.

Remark 5 (Connection With the WFQ Precoder [7]):
Theorem 4 shows that for precoding matrices of the form

P = Vf(D)TUH, the asymptotically optimal one is precisely

the RZF precoder:

P∗ =
1
τ∗HH

(
HHH +

φ∗

γ
IK

)−1

, (31)

where τ∗ and φ∗ can be obtained by solving the

one-dimensional optimization problem in (30a). Interestingly,
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(31) is closely related to the WFQ precoder [7] designed for

traditional quantized precoding:

PWFQ =
1
g0

(
HHH − ρqnondiag(HHH) +

σ2

γPT
IN

)−1

HH,

where g0 is a scaling factor that ensures a certain power

constraint to be satisfied. As N, K → ∞, the diagonal entries

of HHH converge to

(HHH)[i, i] =
K∑

j=1

|H[j, i]|2 a.s.−−→ 1
γ

, i = 1, 2, . . . , N. (32)

Therefore, PWFQ can be approximated as

PWFQ =
1
g0

(
HHH − ρqnondiag(HHH) +

σ2

γPT
IN

)−1

HH

=
1
g0

(
(1−ρq)HHH+ρqdiag(HHH)+

σ2

γPT
IN

)−1

HH

(a)≈ 1
g0

(
(1 − ρq)HHH +

ρq + σ2

PT

γ
IN

)−1

HH

(b)
=

1
g0

HH

(
(1 − ρq)HHH +

ρq + σ2

PT

γ
IK

)−1

(c)
=

1
g0(1 − ρq)

HH

(
HHH +

ρq + σ2

PT

γ(1 − ρq)
IK

)−1

,

(33)

where (a) is due to (32), (b) uses the fact that(
XHX + ρIN

)−1
XH = XH

(
XXH + ρIK

)−1
for any X ∈

CK×N and ρ > 0, and (c) is obtained by extracting the

coefficient 1−ρq from the inverse matrix. Comparing the last

line of (33) with (31), we see that both PWFQ and P∗ are RZF

precoders, and are identical if the regularization parameters

and the scaling factors are the same:

φ∗ =
ρq + σ2

PT

1 − ρq
, τ∗ = g0(1 − ρq).

Note that PWFQ and P∗ are derived based on different

criteria and motivations, and not directly comparable. For

the WFQ precoder, the independent quantizer qI(·) is opti-

mized together with the linear precoder (see also [53], [54]

for optimization of the independent quantizer qI(·)), and the

quantization intervals for qI(·) have to be chosen carefully to

satisfy several conditions (see [7, Eqs. (7)-(9)]). On the other

hand, q(·) is a generic fixed function in this work, and the

input power of q(·) (dictated by ᾱ) is properly optimized.

B. Example: QCE Precoding

In this subsection, we consider the special case of QCE

precoding. As a direct corollary of Theorem 4, we have the

following result.

Corollary 1: When q(·) is specified as qCE(·) in problem

(29), the optimal η is η∗ =
√

PT , and the optimal f has a

closed-form expression:

f∗(d) =
d

d2 + CL,σ,η∗
γ

, (34)

where CL,σ,η∗ is given in (28). In this case, the asymptotically

optimal precoding matrix is given by

P∗
QCE = HH

(
HHH +

CL,σ,η∗

γ
IK

)−1

, (35)

and its asymptotic SINR is

SINR
∗
QCE =

√
u2 + 4CL,σ,η∗ + u

2CL,σ,η∗
− 1,

where u = CL,σ,η∗ + γ − 1.

Proof: When q(·) = qCE(·), it follows from Lemma 2 and

(30b) that η∗ =
√

PT and the objective function of problem

(30a) is a constant CL,σ,η∗ , which is independent of ᾱ. Hence,

the optimal solution set of problem (30a) is {ᾱ∗ | ᾱ∗ > 0} and

τ∗ can be any positive number. Without loss of generality, here

we set τ∗ = 1. This further gives the optimal f∗(·) and the

optimal precoding matrix P∗
QCE in (34) and (35), respectively.

Finally, SINR
∗
QCE can be obtained by plugging φ∗ = CL,σ,η∗

into (30e) and using [48, Eq. (2.42)]. �
We note that when γ is large,

√
u2 + 4CL,σ,η∗ ≈ u, which

implies that

SINR
∗
QCE ≈ u

CL,σ,η∗
− 1 =

γ − 1
CL,σ,η∗

= SINR
ZF

QCE, (36)

i.e., the performance of quantized ZF precoding is nearly

optimal when the antenna-user ratio is large.

VI. SIMULATION RESULTS

In this section, we present simulation results to demon-

strate the theoretical results obtained in previous sections.

We consider both traditional quantized precoding (where the

independent quantizer is used) and QCE precoding (where the

CE quantizer is used), and assume that the precoding factor

(namely, the linear scaling applied at the receiver side before

detection) in (23) is used. We also assume that the precoder

adopted in this section has the optimal input power for the

corresponding quantization function, i.e., ᾱ = ᾱ∗, where ᾱ∗

is an optimal solution to problem (30a). The transmit power

is set as PT = 1. All results are averaged over 105 channel

realizations.

A. Numerical Validation of SEP Formulas

We first verify the accuracy of the SEP formulas given in

(24)–(26).

In Fig. 3, we plot the symbol error rate (SER) as a function

of the ratio of the number of antennas to users γ for the

quantized MF and ZF precoding schemes. Both the cases

of a large system with K = 100 and a more practical

system with K = 20 are investigated, where the number of

transmit antennas is set as N = γK. We consider three types

of signal constellations: QPSK, 8-PSK, and 16-QAM, and

two types of quantization: CE quantization and independent

quantization. The channel noise is set as σ = 0. As shown

in the figure, there is a slight mismatch between simulations

and asymptotic predictions when K = 20, and the differences

become indistinguishable when K = 100.
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Fig. 3. SER performance versus γ for quantized MF and ZF precoding
with σ = 0, where PSK and QAM represent the type of constellation and
“independent” and “CE” represent the type of quantization. The quantization
interval for the independent quantizer in (3) is Δ = 2.

TABLE I

φ∗ IN (30A) FOR SCALAR AND CE QUANTIZERS WITH σ = 0

We can also draw some interesting observations from Fig. 3.

First, the logarithm of SEP/SER decreases linearly with γ, i.e.,

the antenna-user ratio, which reveals the gain of increasing

the number of transmit antennas at the BS, and the slope

of the decrease is determined by the precoder, the quan-

tizer, and the constellation that are employed. Second, the

independent quantizer and the CE quantizer have different

behaviors under different precoding schemes. For example,

the superiority (in terms of SEP/SER) of the 2-bit independent

quantizer over the 2-bit CE quantizer under ZF precoding is

much more prominent than that under MF precoding.

In fact, the above observations are clear from our asymptotic

analysis. To be specific, applying the approximation Q(x) ≈
1
2e−

1
2 x2

[52] to the SEP predictions for M -PSK and M -QAM

constellations in (24) and (25), we get

ln SEP ≈
{
−2 sin2 π

M SINR, for PSK;

− 3
2(M−1)SINR + log(2 − 2√

M
), for QAM,

(37)

i.e., the logarithm of SEP decreases linearly with SINR.

According to (21), SINR for MF and ZF precoding can be

expressed as

SINR =

⎧⎪⎨⎪⎩
γ

φ∗ + 1
, for MF;

γ − 1
φ∗ , for ZF,

(38)

where φ∗ is given in (30a) and is determined by the quantiza-

tion type. The values of φ∗ for scalar and CE quantizers with

σ = 0 are given in Table I. Eqs (37) and (38) demonstrate the

linear decrease in the logarithm of the SEP with γ, and quan-

titatively characterize the effects of precoding, quantization,

and constellation on the slope of the decrease. In particular,

we can see that φ∗ has a stronger impact on ZF than on

MF, since the slope of decrease is proportional to 1
φ∗ and

1
φ∗+1 for ZF and MF, respectively, and φ∗ is on the order

of 10−2 − 10−1 as shown in Table I. This explains why the

2-bit independent quantizer has a greater performance gain

Fig. 4. SER performance versus DAC resolution for quantized MF with
γ = 6 and QPSK modulation and quantized ZF with γ = 3 and 8-PSK
modulation; σ = 0.

Fig. 5. SER performance versus SNR for one-bit quantized MF and ZF
precoding with γ = 6 and QPSK modulation.

compared with the 2-bit CE quantizer under ZF precoding

than under MF precoding.

In Fig. 4, we plot the SER performance of quantized MF

and ZF for both traditional quantized precoding and QCE

precoding as a function of the DAC resolution. For MF, the

performance gain of both quantizers is small as the DAC

resolution increases, especially when the resolution is larger

than 2 bits. The same happens for ZF precoding with CE

quantization. However, there is a remarkable gain for ZF pre-

coding with independent quantization as the DAC resolution

increases. These observations can also be interpreted by our

previous discussions.

Finally, Fig. 5 shows the SER of quantized MF and ZF as a

function of the channel SNR (i.e., 1/σ2) for a one-bit system

with γ = 6 and QPSK modulation. We see that ZF has a

noticeable performance gain compared with MF in the high

SNR region.

B. Optimality of Quantized RZF Precoding

In this subsection, we present some simulation results to

demonstrate the optimality of the quantized RZF precoding

matrix given in (31).

In Fig. 6, we consider quantized RZF precoding and depict

the SER as a function of the regularization parameter for a

one-bit system with γ = 3, σ = 0, and QPSK modulation.

As shown in the figure, the errors between the asymptotic

SER and the actual SER are within 0.002 and 0.005 for

K = 100 and K = 20, respectively, which again validates

the accuracy of our analytical results. In addition, it can
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Fig. 6. SER performance versus regularization parameter for a one-bit system
with γ = 3 and QPSK modulation.

Fig. 7. Comparison of the SER performance between different
linear-quantized precoders with K = 20, for 2-bit independent quantization
with QPSK.

Fig. 8. Comparison of the SER performance between different
linear-quantized precoders with K = 20, for 2-bit CE quantization with
QPSK.

be observed that the simulation curves and the (asymptotic)

analysis curve show almost the same trends and all attain their

minimum at approximately 0.2, which agrees well with the

predicted value of 0.19 for the optimal regularization param-

eter. This demonstrates the optimality of the RZF precoding

matrix P∗ in (31).

In Figs. 7 and 8, we further consider realistic systems with

K = 20. We plot the SER performance of quantized MF,

ZF, and the proposed RZF precoding as a function of the

SNR for both independent quantization and CE quantization.

We investigate two different cases: γ = 1.5 and γ = 4, which

corresponds to small and large antenna-user ratio, respec-

tively. Compared with the quantized MF and ZF precoder,

the proposed quantized RZF precoder enjoys a substantial

performance gain for small γ. When γ is large, the proposed

quantized RZF precoder performs similarly to the quantized

ZF precoder (which is consistent with our discussion in (36)),

and they both yield a much lower SER than the quantized MF

precoder.

VII. CONCLUSION

In this paper, we studied the performance of linear-quantized

precoding in massive MIMO downlink systems. Assum-

ing an i.i.d. Gaussian channel matrix, we showed that the

linear-quantized precoding scheme is statistically equivalent

to a simple scalar model in the asymptotic sense when the

number of antennas N and the number of users K tend to

infinity with a fixed ratio. We further derived the optimal

precoding strategy within a class of linear-quantized precoders,

and found that it is precisely the RZF precoder where the

optimal regularization parameter depends on the type and

level of quantization and various system parameters. For

future work, it would be interesting to extend the current

analysis to encompass more general scenarios, such as general

correlated channels and imperfect CSI. It is also interesting to

give performance analysis of the more challenging nonlinear

precoding schemes.

APPENDIX A

PRELIMINARIES OF THE HOUSEHOLDER

DICE TECHNIQUE [39]

In this appendix, we collect some useful results about the

HD technique. We begin with the definition of the Householder

transform.

Definition 2 (Householder Transform): For a given vector

v = (v1, v2, . . . , vN )T ∈ CN\{0}, denote

pv = −ej arg(vs), where s = min
i

{i | vi �= 0} .

Let H(v) be the Householder transform of v, i.e.,

H(v) = I − 2
uuH

‖u‖2

with u = v − pv‖v‖e1, e1 = (1, 0, . . . , 0)T. Further, define

R(v) = pv H(v). (39)

With a slight abuse of notation, R(v) will also be called the

Householder transform matrix associated with v. We further

define a generalized Householder transform as [39]

Rk(v) =
(
Ik−1 0
0 R(v[k : N ])

)
.

The following lemma collects some useful properties of

R(v) that will be used in the subsequent analysis. The proofs

are straightforward and thus omitted.

Lemma 3 (Facts and Properties of R(v)): For a given

vector v ∈ CN\{0}, the Householder transform R(v) defined

in (39) satisfies:
(i) R(v) ∈ U(N);

(ii) R(v)Hv = ‖v‖e1;

(iii) R(v)e1 = v
‖v‖ , i.e., R(v) can be expressed as

R(v) =
(

v
‖v‖ B(v)

)
, (40)

where B(v) ∈ CN×(N−1) is a basis matrix for {v}⊥.
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The generalized Householder transform Rk(v) has similar

properties as R(v), except that it leaves the first k− 1 entries

of v unchanged and applies a Householder transform on

v[k : N ].
The following lemma is a recursive characterization of the

Haar random matrix introduced in [39, Lemma 1], which

serves as the theoretical basis of the HD technique. The only

difference is that we consider complex unitary matrices instead

of real orthogonal matrices.

Lemma 4: Let g ∼ CN (0, IN ), QN−1 ∼ Haar(N−1), and

v ∈ CN\{0}, all of which are independent, where N ≥ 2.

Then

QN := R1(g)
(

1 0
0 QN−1

)
R1(v)H ∼ Haar(N) (41)

and

Q̃N := R1(v)
(

1 0
0 QN−1

)
R1(g)H ∼ Haar(N). (42)

Moreover, QN and Q̃N are independent of v.

Proof: We first note that the first column of R1(g) is g
‖g‖ ,

which is uniformly distributed on the unit sphere SN−1 ⊆ CN .

Then according to [47, page 21], we have

R1(g)
(

1 0
0 QN−1

)
∼ Haar(N).

Moreover, since a Haar matrix is both left and right translation

invariant, we are free to multiply unitary matrices (either

deterministic or independent of the Haar matrix) from left or

right, hence (41) is correct. The above discussions imply that

the conditional distribution of QN given v is the same as the

distribution of QN (both are Haar distributed), i.e.,

μQN |v = μQN
= μ, ∀v ∈ CN\{0}, (43)

where μ denotes the Haar measure on U(N). Therefore,

QN and v are independent. Finally, (42) is also true since

Q ∼ Haar(N) implies QH ∼ Haar(N), and the independence

between Q̃N and v can be justified in a similar way as (43).

�

APPENDIX B

PROOF OF THEOREM 1

In this section, we provide the detailed proof of Theorem 1.

This section is long and is organized as follows:
• Section B-A contains the main proof of Theorem 1,

relying on two auxiliary results: Lemma 5 and Lemma 6;

• Lemma 5 is critical to the proof of Theorem 1. For better

understanding, we present some high-level ideas about

the proof of Lemma 5 in Section B-B;

• Section B-C contains the complete proof of Lemma 5;

• Section B-D contains the proof of Lemma 6.

A. Proof of Theorem 1

The proof of Theorem 1 contains two major steps. The first

step is to apply the HD technique [39] to our model in (11) to

obtain a statistically equivalent model that is more amenable to

analysis. The result of this step is summarized in the following

lemma and the proof is given in Appendix B-C.

Lemma 5: The distribution of (s,y) given in (11) is the

same as that of (s, ỹ) specified by the following model:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s̃1 = f(D)TR1(g1)R1(s)Hs,

s̃2 = q(R1(z1)R1(s̃1)Hs̃1),

s̃3 = DR1(s̃1)R2(z2)R1(v1)Hv1,

ỹ = ηR1(s)R2(g2)R2(v2)Hv2 + n,

(44)

where v1 = R1(z1)Hs̃2 and v2 = R1(g1)Hs̃3; g1 ∼
CN (0, IK), g2 ∼ CN (0, IK), z1 ∼ CN (0, IN ), z2 ∼
CN (0, IN ); {g1, g2, z1, z2, s,n,D} are mutually independent.

The second step is to simplify the above statistically equiv-

alent model (s, ỹ) using basic properties of the Householder

transform in Lemma 3 to obtain the explicit model (12) in

Theorem 1. This step requires careful calculation and we leave

the details to Appendix B-D.

Lemma 6: The distribution of (s, ỹ) given in (44) is the

same as that of (s, ȳ) given in (12) in Theorem 1.

Combining Lemmas 5 and 6, we get the desired result in

Theorem 1.

B. Discussions on Lemma 5

Since Lemma 5 is critical to the proof of Theorem 1,

we would like to provide some high-level ideas and informal

discussions before we present its full proof in Appendix B-C.

Recall that our original model in (11) reads⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1 = f(D)TUHs;
s2 = q(Vs1);

s3 = DVHs2;
y = Us3 + n.

Our goal is to characterize the joint distribution of

(s, s1, s2, s3,y). Roughly speaking, for N, K ≥ 3, fixing

the distribution of (s, s1, s2, s3,y) does not fully fix the

randomness of the Haar matrices U and V, and we still have

freedom to generate the remaining randomness in a convenient

way. A systematic way of carrying out this process is via the

HD technique in [39]. To be clear, we use (s, s1, s2, s3,y) to
denote the random vectors from the original model, and use
(s, s̃1, s̃2, s̃3, ỹ) to denote the corresponding vectors generated
via the HD method in the following discussion.

The main idea of HD is to generate the Haar random matri-

ces U and V involved in the above iterations in a recursive

way by repeatedly applying Lemma 4. More specifically, the

HD technique tells that at each iteration we only need to

generate a single Gaussian vector to unfold the randomness

of U (or V) in one dimension, and the resulting sequence

will only depend on the initial condition {s,D,n} and the

exposed Gaussian vectors.

Here we take the first iteration of (11) as an example to

shed some light on this. To compute UHs, we can construct

a Haar random matrix UH according to Lemma 4 as

ŨH = R1(g1)
(

1 0
0 QK−1

)
R1(s)H, (45)
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where g1 ∼ CN (0, IK) and QK−1 ∼ Haar(K − 1) are

independent of each other and of s, D, and n. Then we have

s̃1 := f(D)TŨHs

= f(D)TR1(g1)
(

1 0
0 QK−1

)
R1(s)Hs

= f(D)TR1(g1)R1(s)Hs,

where the last equality holds since R1(s)Hs is only nonzero

in its first element due to Lemma 3. An important observation
is that s̃1 depends on the Haar matrix Ũ only through
a Gaussian vector g1, and is invariant to the remaining
Haar matrix QK−1. Since QK−1 involved in (45) is Haar

distributed and independent of all the other random variables

generated up to this point, we can apply the same technique to

QK−1 when another multiplication involving U is required,

and a new Gaussian vector g2 ∼ CN (0, IK) will be exposed

(see the expression of ỹ in (44)). The Haar matrix V can be

constructed similarly when we deal with the second and third

iterations, and two Gaussian vectors z1 ∼ CN (0, IN ) and

z2 ∼ CN (0, IN ) will be exposed in these two iterations after

applying the HD technique (see the expression of s̃2 and s̃3 in

(44)). A detailed derivation of (11) using the HD technique is

provided in Appendix B-C.1.

To gain some further insight, we directly give the form of

the two Haar matrices constructed using the HD technique

without proof (see Appendix B-C.1 for a detailed proof):

Ũ = R1(s)R2(g2)
(
I2 0
0 QK−2

)
R2(v2)HR1(g1)H (46)

and

Ṽ = R1(z1)R2(v1)
(
I2 0
0 PN−2

)
R2(z2)HR1(s̃1)H. (47)

In the above expressions, QK−2 and PN−2 are Haar matrices

independent of all the other random variables, which are the

unexposed random matrices that are absent in the final result;

g1, g2, z1, z2 are the exposed Gaussian vectors; s̃1,v1, and

v2 are some intermediate random vectors generated due to

the recursive nature of the HD technique. Equation (44) can

be interpreted as replacing the Haar random matrices U and

V in the original model (11) by the two unitary matrices

Ũ and Ṽ given above. Here, we use the notation Ũ and

Ṽ to emphasize the fact that their distributional properties

are yet to be proved. To show (s,y) d= (s, ỹ), it remains

to check that Ũ and Ṽ have the desired properties, i.e.,

Ũ ∼ Haar(K), Ṽ ∼ Haar(N), and Ũ, Ṽ,D, s,n are mutually

independent. We relegate the details to Appendix B-C.2.

C. Proof of Lemma 5

In this subsection, we give the complete proof of Lemma

5, which consists of the following two steps:
• We first show that (44) is the sequence generated by

applying the HD technique to (11);

• We then prove that (44) is statistically equivalent to (11).

1) Derivation of (44): We first give a detailed derivation of

how (44) is obtained via the HD technique. Recall that our

original model (6) can be written as the following iterative

process (see (11)):⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1 = f(D)TUHs;
s2 = q(Vs1);

s3 = DVHs2;
y = Us3 + n.

Next, we apply the HD technique to deal with the above

model.

For the first iteration, we construct UH according to Lemma

4 as (
U(1)

)H

= R1(g1)
(

1 0
0 QK−1

)
R1(s)H, (48)

where g1 ∼ CN (0, IK) and QK−1 ∼ Haar(K − 1) are

independent of each other and of s, D, and n. Then we have

s̃1 = f(D)T
(
U(1)

)H

s

= f(D)TR1(g1)
(

1 0
0 QK−1

)
R1(s)Hs

= f(D)TR1(g1)R1(s)Hs,

where the last equality holds since R1(s)Hs is only nonzero

in its first element.

For the second iteration, we use a similar technique to

construct the Haar matrix V according to Lemma 4 as

V(1) = R1(z1)
(

1 0
0 PN−1

)
R1(s̃1)H, (49)

where z1 ∼ CN (0, IN ) and PN−1 ∼ Haar(N − 1) are

independent of each other and of all the existing random

variables. It follows immediately that

V(1)s̃1 = R1(z1)
(

1 0
0 PN−1

)
R1(s̃1)Hs̃1

= R1(z1)R1(s̃1)Hs̃1,

and thus

s̃2 = q(V(1)s̃1)=q(R1(z1)R1(s̃1)Hs̃1).

For the third iteration, we need to calculate DVHs̃2. From

(49), we get(
V(1)

)H

= R1(s̃1)
(

1 0
0 PH

N−1

)
R1(z1)H.

Let v1 = R1(z1)Hs̃2. Since PH
N−1 is Haar distributed and

independent of v1, we can still apply the above technique to

construct PH
N−1 as

PH
N−1 = R1(z2[2 : N ])

(
1 0
0 PH

N−2

)
R1(v1[2 : N ])H,

where z2 ∼ CN (0, IN ) and PN−2 ∼ Haar(N − 2) are

independent of each other and of all the existing random

variables. Then we have(
V(2)

)H

= R1(s̃1)R2(z2)
(
I2 0
0 PH

N−2

)
R2(v1)HR1(z1)H
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and

s̃3 = D
(
V(2)

)H

s̃2

= DR1(s̃1)R2(z2)
(
I2 0
0 PH

N−2

)
R2(v1)Hv1

= DR1(s̃1)R2(z2)R2(v1)Hv1,

where PH
N−2 disappears in the second equality since

R2(v1)Hv1 is only nonzero in its first two elements.

Finally, we calculate ỹ = Us̃3 + n. According to (48),

U(1) = R1(s)
(

1 0
0 QH

K−1

)
R1(g1)H.

Similarly, let v2 = R1(g1)Hs̃3 and construct QH
K−1 as

QH
K−1 = R1(g2[2 : K])

(
1 0
0 QK−2

)
R1(v2[2 : K])H,

where g2 ∼ CN (0, IK) and QK−2 ∼ Haar(K − 2) are

independent of each other and of all the existing random

variables. Then we have

U(2) = R1(s)R2(g2)
(
I2 0
0 QK−2

)
R2(v2)HR1(g1)H

and

ỹ = U(2)s̃3 + n

= R1(s)R2(g2)
(
I2 0
0 QK−2

)
R2(v2)HR1(g1)Hs̃3 + n

= R1(s)R2(g2)R2(v2)Hv2 + n.

This gives the sequence (s̃1, s̃2, s̃3, ỹ) in (44), and the two

constructed Haar matrices are Ũ = U(2) and Ṽ = V(2),

which are exactly those given in (46) and (47).

2) Statistical Equivalence of (44) and (11): The proof

follows the general principle proposed in [39, Theorem 2].

Here we provide a complete proof to make the paper self-

contained.

First, it is easy to check that (s, ỹ) given in (44) can be

obtained by substituting Ũ in (46) and Ṽ in (47) into (11).

To show the statistical equivalence, we still need to prove

that Ũ and Ṽ in (46) and (47) have the following desired

properties:

• Ũ ∼ Haar(K), Ṽ ∼ Haar(N); (50a)

• Ũ, Ṽ, s,D,n are mutually independent. (50b)

Next, we prove the above properties for Ũ, and those for Ṽ
can be proved by similar arguments. We first analyze the inner

term R2(g2)
(

I2 0
0 QK−2

)
R2(v2)H in Ũ:

R2(g2)
(
I2 0
0 QK−2

)
R2(v2)H

=
(

1 0
0 R1(g2[2 : K])

(
1 0
0 QK−2

)
R1(v2[2 : K])H

)
:=

(
1 0
0 QK−1

)
.

By the definition of v2 and from the method of generating

QK−2 and g2, it is clear that g2,QK−2, and v2 are mutually

independent. It follows immediately from Lemma 4 that

QK−1 ∼ Haar(K − 1) and is independent of v2, and hence

independent of all other random variables except QK−2 and

g2 that construct QK−1. We then investigate

Ũ = R1(s)
(

1 0
0 QK−1

)
R1(g1)H.

Again from Lemma 4, we know that Ũ ∼ Haar(K) and

is independent of all other random variables (except QK−2,

g2, and g1), i.e., Ũ has the desired properties in (50). This

completes our proof of the statistical equivalence between

(s,y) in (11) and (s, ỹ) in (44).

D. Proof of Lemma 6

In this subsection, we give the proof of Lemma 6, i.e.,

we derive (12) from (44). For clarity, we copy the expressions

of s̃1, s̃2, s̃3, ỹ in (44) here.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s̃1 = f(D)TR1(g1)R1(s)Hs;

s̃2 = q(R1(z1)R1(s̃1)Hs̃1);

s̃3 = DR1(s̃1)R2(z2)R1(v1)Hv1;

ỹ = ηR1(s)R2(g2)R2(v2)Hv2 + n,

where v1 = R1(z1)Hs̃2 and v2 = R1(g1)Hs̃3. In the

subsequent analysis, we will frequently encounter Householder

transform-vector multiplications of the following form:

R1(g)R1(v)Hv,

where g ∼ CN (0, I) and v is a random vector independent of

g. According to the properties of the Householder transform,

i.e., (ii) and (iii) of Lemma 3, we have

R1(g)R1(v)Hv = ‖v‖R1(g)e1 =
‖v‖
‖g‖ g. (51)

It follows immediately that

s̃1 = f(D)TR1(g1)R1(s)Hs =
‖s‖
‖g1‖ f(D)Tg1 = ŝ1, (52)

where the last equality is due to the definition of ŝ1 in (13).

Next we begin our derivation of (12). First, we compute

R2(g2)R2(v2)Hv2 in ỹ using (51):

R2(g2)R2(v2)Hv2

=
(

1 0
0 R1(g2[2 : K])R1(v2[2 : K])H

)(
v2[1]

v2[2 : K]

)
=
(

v2[1]
R1(g2[2 : K])R1(v2[2 : K])Hv2[2 : K]

)
=

(
v2[1]

‖v2[2:K]‖
‖g2[2:K]‖ g2[2 : K]

)
.

Combining the above equation with the definition R1(s) =(
s

‖s‖ B(s)
)

, we can express ỹ as

ỹ = ηR1(s)R2(g2)R2(v2)Hv2 + n

= η
(

s
‖s‖ B(s)

)( v2[1]
‖v2[2:K]‖
‖g2[2:K]‖ g2[2 : K]

)
+ n

= η
v2[1]
‖s‖ s + η

‖v2[2 : K]‖
‖g2[2 : K]‖B(s)g2[2 : K] + n. (53)
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By further noting that

B(s)g2[2 : K] = R(s)g2 − g2[1]
‖s‖ s

and substituting it into (53), we get

ỹ = η

(
v2[1]
‖s‖ − g2[1]

‖s‖
‖v2[2 : K]‖
‖g2[2 : K]‖

)
s

+ η
‖v2[2 : K]‖
‖g2[2 : K]‖R(s)g2 + n. (54)

Note that if g ∼ CN (0, I), then for any unitary matrix U
independent of g, Ug ∼ CN (0, I), i.e., Ug

d= g, and Ug is

independent of U. Therefore, since g2 is independent of all

other random variables in (54), i.e., s,v2, and n, R(s)−1g2
d=

g2 and R(s)−1g2 is also independent of s, v2 and n, and hence

we can replace g2 with R(s)−1g2 in (54), which yields

ỹ d= η

(
v2[1]
‖s‖ − (R(s)−1g2)[1]

‖s‖
‖v2[2 : K]‖

‖(R(s)−1g2)[2 : K]‖
)

s

+ η
‖v2[2 : K]‖

‖(R(s)−1g2)[2 : K]‖g2 + n. (55)

We next analyze

v2 = R1(g1)Hs̃3 = R1(g1)HDR1(s̃1)R2(z2)R2(v1)Hv1 (56)

step by step. First, from the definitions of v1 and s̃2, we have

v1 = R1(z1)Hq(R1(z1)R1(s̃1)Hs̃1)

= R1(z1)Hq

(‖s̃1‖
‖z1‖ z1

)
(from (51))

= R1(z1)Hq

(‖ŝ1‖
‖z1‖ z1

)
(from (52))

=

(
zH
1

‖z1‖
B(z1)H

)
q

(‖ŝ1‖
‖z1‖ z1

)
(from (40))

=

⎛⎝ zH
1q

( ‖ŝ1‖
‖z1‖ z1

)

‖z1‖
B(z1)Hq

(
‖ŝ1‖
‖z1‖ z1

)
⎞⎠ . (57)

Then we have

R2(z2)R2(v1)Hv1

=
(

1 0
0 R1(z2[2 : N ])R1(v1[2 : N ])H

)(
v1[1]

v1[2 : N ]

)
=
(

v1[1]
R1(z2[2 : N ])R1(v1[2 : N ])Hv1[2 : N ]

)

=

⎛⎜⎝ zH
1q

( ‖ŝ1‖
‖z1‖ z1

)

‖z1‖∥∥∥B(z1)
Hq

( ‖ŝ1‖
‖z1‖ z1

)∥∥∥
‖z2[2:N ]‖ z2[2 : N ]

⎞⎟⎠ ,

where the last equality comes from (51) and (57). It follows

from the above equality, (40), and (52) that

R1(s̃1)R2(z2)R2(v1)Hv1

=R1(ŝ1)R2(z2)R2(v1)Hv1

=
(

ŝ1
‖ŝ1‖ B(ŝ1)

)⎛⎜⎝ zH
1q

( ‖ŝ1‖
‖z1‖ z1

)

‖z1‖∥∥∥B(z1)
Hq

( ‖ŝ1‖
‖z1‖ z1

)∥∥∥
‖z2[2:N ]‖ z2[2 : N ]

⎞⎟⎠
=

zH
1 q
(

‖ŝ1‖
‖z1‖ z1

)
‖z1‖‖ŝ1‖ ŝ1 +

∥∥∥B(z1)Hq
(

‖ŝ1‖
‖z1‖ z1

)∥∥∥
‖z2[2 : N ]‖ B(ŝ1)z2[2 : N ]

:=C1ŝ1 + C2B(ŝ1)z2[2 : N ].

Finally, from the above equality, (40), and (56), we have

v2 =

(
gH
1

‖g1‖
B(g1)H

)
(C1Dŝ1 + C2DB(ŝ1)z2[2 : N ])

=

(
gH
1{C1Dŝ1+C2DB(ŝ1)z2[2:N ])}

‖g1‖
B(g1)H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

)
. (58)

Plugging (58) into (55), we can get the desired model (12).

APPENDIX C

PROOF OF THEOREM 2

In this section, we provide a detailed proof of Theorem 2.

In Section C-A, we first give some definitions and preliminary

results of the asymptotic analysis. Section C-B gives two

useful auxiliary results that are important for the proof, and

Section C-C contains the main proof of Theorem 2.

A. Preliminaries

Lemma 7: Let {XN} and {YN} be sequences of random

variables. If

XN
a.s.−−→ X, YN

a.s.−−→ Y,

then

XN + YN
a.s.−−→ X + Y, XNYN

a.s.−−→ XY,

and

XN

YN

a.s.−−→ X

Y
(if YN , Y �= 0).

Lemma 8 (Kolmogorov’s Strong Law of Large Numbers
[55]): Assume that X1, X2, . . . are independent with means

μ1, μ2, . . . and variances σ2
1 , σ2

2 , . . . such that
∑

N
σ2

N

N2 < ∞.
Then

X1 + X2 + · · · + XN − (μ1 + μ2 + · · · + μN )
N

a.s.−−→ 0.

As a corollary, if X1, X2, . . . are i.i.d. with mean μ, then

X1 + X2 + · · · + XN

N
− μ

a.s.−−→ 0.

Lemma 9 [56, Theorem 3]: Let {XN} be a sequence of

random variables. If {XN} converges in distribution to X ,

then

E[g(XN )] → E[g(X)]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 31,2024 at 21:41:10 UTC from IEEE Xplore.  Restrictions apply. 



2582 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

for all bounded measurable functions g such that P{X ∈
C(g)} = 1, where C(g) = {x | g is continuous at x} denotes

the continuity set of g.

Definition 3 (Empirical Spectral Distribution [57]):
Consider an N×N Hermitian matrix TN . Define its empirical

spectral distribution (e.s.d.) FTN to be the distribution

function of the eigenvalues of TN , i.e., for x ∈ R,

FTN (x) =
1
N

N∑
j=1

1{λj≤x}(x),

where λ1, . . . , λN are the eigenvalues of TN .

Lemma 10 [57, Section 3.2 and Section 7.1]: Consider a

matrix X ∈ CK×N with i.i.d. entries following CN (
0, 1

N

)
.

As K, N → ∞ with K
N → c ∈ (0, 1), the following results

hold:
(i) the e.s.d. of XXH converges weakly and almost surely

to a distribution function F with density given by:

p(x) =
1

2πcx

√
(x − a)+(b − x)+,

where a = (1 − √
c)2, b = (1 +

√
c)2, and (x)+ =

max{x, 0};

(ii) the largest eigenvalue of XXH, denoted by λmax, satisfies

λmax
a.s.−−→ (1 +

√
c)2.

B. Auxiliary Lemmas

This subsection introduces two auxiliary lemmas used in

the main proof in Section C-C.

Lemma 11: Define D̃ = diag(d1, d2, . . . , dK), where

d1, d2, . . . , dK are the nonzero singular values of H (satis-

fying Assumption 1). Assume that σ(·) is a function that is

continuous a.e. and bounded on any compact set of (0,∞);
g1 ∼ CN (0, IK), g2 ∼ CN (0, IK), and D̃ are mutually

independent. Then as N, K → ∞ and N
K → γ > 1, it holds

that

(i)
gH
1 σ(D̃)g1

K

a.s.−−→ E[σ(d)];

(ii)
gH
1 σ(D̃)g2

K

a.s.−−→ 0,

where d =
√

λ and λ follows the Marchenko-Pastur distribu-

tion, whose density is given in (16).

Proof: First, from the definition of σ(·) and (ii) of

Lemma 10, we know that for sufficiently large N and K,

there exists a constant M > 0 such that

sup
1≤i≤K

|σ(di)| ≤ M

with probability one. Then according to the strong law of large

numbers in Lemma 8, we have

gH
1 σ(D̃)g1

K
− 1

K

K∑
i=1

σ(di)

=
1
K

K∑
i=1

σ(di)|g1[i]|2 − 1
K

K∑
i=1

σ(di)
a.s.−−→ 0,

and

gH
1 σ(D̃)g2

K
=

1
K

K∑
i=1

σ(di)g1[i]†g2[i]
a.s.−−→ 0,

which immediately gives (ii) of Lemma 11. Next we continue

to prove (i) of Lemma 11. Note that

1
K

K∑
i=1

σ(di) =
1
K

K∑
i=1

σ(
√

λi),

where λ1, λ2, . . . , λK are the eigenvalues of HHH. Let XK

be a random variable following the e.s.d. of HHH, then

1
K

K∑
i=1

σ(
√

λi) = E

[
σ(
√

XK)
]
.

Define

g(x) =

{
σ(
√

x), if x ∈ [0, (1 +
√

c)2 + 1];
0, otherwise,

where c = 1
γ . Then g(·) is continuous a.e. and bounded.

It follows from (ii) of Lemma 10 that with probability one, the

largest eigenvalue of HHH is bounded by (1 +
√

c)2 + 1 for

sufficiently large K, which implies that

E

[
σ(
√

XK)
]
→ E [g(XK)] .

Let λ be a random variable following the Marchenko-Pastur

distribution. Then we have P{λ ∈ C(g)} = 1 since λ is a

continuous random variable and g is continuous a.e., where the

definition of C(g) is given in Lemma 9. Therefore, according

to (i) of Lemma 10, we can apply Lemma 9 to {XK} and λ
to obtain

E[g(XK)] → E[g(λ)] = E

[
σ(
√

λ)
]
.

Combining the above discussions, we get the desired result

gH
1 σ(D̃)g1

K

a.s.−→E

[
σ(
√

λ)
]

= E [σ(d)] .

The proof is completed. �
Lemma 12: Assume that z ∼ CN (0, IN ), α

a.s.−−→ ᾱ, and

q(·) satisfies Assumption 3. Then,

zHq(αz)
N

a.s.−−→ E
[
Z†q(ᾱZ)

]
, where Z ∼ CN (0, 1) .

Proof: Note that

zHq(αz)
N

=
1
N

N∑
i=1

z†i q(αzi)

=
1
N

N∑
i=1

R(zi)R(q(αzi)) +
1
N

N∑
i=1

I(zi)I(q(αzi))

+ j
1
N

N∑
i=1

R(zi)I(q(αzi)) − j
1
N

N∑
i=1

I(zi)R(q(αzi)).
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To show the almost sure convergence, it suffices to show that

each of the above four terms converges almost surely to a

constant. Next, we will prove that

1
N

N∑
i=1

R(zi)R(q(αzi))
a.s.−−→ E [R(Z)R(q(ᾱZ))] ,

where Z ∼ CN (0, 1), and the convergence of the other three

terms can be proved using similar arguments. Let g(x) =
R(q(x)). For any given ε > 0, we construct the following

lower and upper bounds of g:

lε(x) = inf
y

{
g(y) +

1
ε
|y − x|

}
,

uε(x) = sup
y

{
g(y) − 1

ε
|y − x|

}
.

According to [56, page 15], lε and uε satisfy

(i) lε(x) ≤ g(x) ≤ uε(x),∀x ∈ C.

(ii) lε and uε are Lipschitz continuous with Lipschitz con-

stant 1
ε , i.e., |lε(x1)−lε(x2)| ≤ 1

ε |x1−x2| and |uε(x1)−
uε(x2)| ≤ 1

ε |x1 − x2|.
(iii) lε(x) and uε(x) are bounded, i.e., ∃B > 0 not depend-

ing on ε such that |lε(x)| ≤ B and |uε(x)| ≤ B,

∀x ∈ C.

(iv) If x is a continuous point of g(·), then lim
ε↓0

lε(x) =

g(x) = lim
ε↓0

uε(x).

Denote G(x, α) = R(x)R(q(αx)) = R(x)g(αx). Based on

the above upper and lower bounds of g(x), we can upper and

lower bound G(x, α) as

G(x, α) ≤ R(x)+uε(αx) + R(x)−lε(αx) � Uε(x, α)

and

G(x, α) ≥ R(x)+lε(αx) + R(x)−uε(αx) � Lε(x, α),

where x+ = max{x, 0} and x− = min{x, 0}. It follows that

for any ε > 0,

1
N

N∑
i=1

Lε(zi, α) ≤ 1
N

N∑
i=1

G(zi, α) ≤ 1
N

N∑
i=1

Uε(zi, α). (59)

To show that 1
N

∑N
i=1 G(zi, α) a.s.−−→ E[G(Z, ᾱ)], we will first

prove that for a given ε > 0,

1
N

N∑
i=1

Lε(zi, α) a.s.−−→ E[Lε(Z, ᾱ)], (60a)

1
N

N∑
i=1

Uε(zi, α) a.s.−−→ E[Uε(Z, ᾱ)], (60b)

which, together with (59), implies

lim inf
N→∞

1
N

N∑
i=1

G(zi, α) ≥ E[Lε(Z, ᾱ)] a.s. (61a)

lim sup
N→∞

1
N

N∑
i=1

G(zi, α) ≤ E[Uε(Z, ᾱ)] a.s. (61b)

Then we will show that

lim
ε↓0

E[Lε(Z, ᾱ)] = lim
ε↓0

E[Uε(Z, ᾱ)] = E[G(Z, ᾱ)]. (62)

Letting ε ↓ 0 in (61) and using (62) give the desired result:

1
N

N∑
i=1

G(zi, α) a.s.−−→ E[G(Z, ᾱ)].

It remains to prove (60) and (62). We will only provide the

proof of (60) and (62) for the lower bound Lε since the upper

bound can be proved in exactly the same way. First,∣∣∣∣∣ 1
N

N∑
i=1

Lε(zi, α) − E[Lε(Z, ᾱ)]

∣∣∣∣∣
≤
∣∣∣∣∣ 1
N

N∑
i=1

Lε(zi, α) − 1
N

N∑
i=1

Lε(zi, ᾱ)

∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N∑
i=1

Lε(zi, ᾱ) − E[Lε(Z, ᾱ)]

∣∣∣∣∣ .
It follows immediately from the strong law of large numbers

(i.e., Lemma 8) that the second term tends to zero almost

surely. For the first term, we have∣∣∣∣∣ 1
N

N∑
i=1

Lε(zi, α) − 1
N

N∑
i=1

Lε(zi, ᾱ)

∣∣∣∣∣
≤ 1

N

N∑
i=1

|Lε(zi, α) − Lε(zi, ᾱ)|

≤ 1
N

N∑
i=1

|R(zi)| |zi(α − ᾱ)|
ε

≤ |α − ᾱ|
ε

1
N

N∑
i=1

|zi|2 a.s.−−→ 0,

where the second inequality holds due to Lipschitz continuity

(i.e., property (ii))) of lε(x) and uε(x), and the almost con-

vergence is due to the assumption α
a.s.−−→ ᾱ, Lemma 8, and

Lemma 7. This proves (60). Since lε and uε are bounded (i.e.,

property (iii))), we have

|Lε(x, ᾱ)| ≤ B|R(x)|.
According to the dominated convergence theorem [55],

lim
ε↓0

E[Lε(Z, ᾱ)] = E

[
lim
ε↓0

Lε(Z, ᾱ)
]

.

Property (iv) of lε implies that limε↓0 Lε(x, ᾱ) = G(x, ᾱ), if

ᾱx is a continuous point of g(x), i.e., limε↓0 Lε(x, ᾱ) =
G(x, ᾱ) almost everywhere. Therefore,

lim
ε↓0

E[Lε(Z, ᾱ)] = E

[
lim
ε↓0

Lε(Z, ᾱ)
]

= E[G(Z, ᾱ)],

which completes the proof.

�

C. Main Proof of Theorem 2

To prove Theorem 2, it suffices to prove (see Lemma 7)

Ts
a.s.−−→ T s and Tg

a.s.−−→ T g,
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where

Ts =
gH
1 {C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

‖g1‖‖s‖ −Tg
(R(s)−1g2)[1]

‖s‖ ,

Tg =
‖B(g1)H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}‖

‖(R(s)−1g2)[2 : K]‖ ,

and

T s = C1 E[d f(d)],

T g =
√

σ2
s |C1|2 var[d f(d)] + C

2

2.

In the above equations,

C1 =
zH
1 q
(

‖ŝ1‖
‖z1‖ z1

)
‖ŝ1‖‖z1‖ , C2 =

∥∥∥B(z1)Hq
(

‖ŝ1‖
‖z1‖ z1

)∥∥∥
‖z2[2 : N ]‖ ,

C1 =
E[Z†q(ᾱZ)]

ᾱ
, C2 =

√
E[|q(ᾱZ)|2] − |E[Z†q(ᾱZ)]|2.

Further, ŝ1 = ‖s‖
‖g1‖f(D)Tg1 and ᾱ =

√
σ2

s E[f2(d)]
γ .

We start with analyzing the limiting values of C1 and C2.

From the strong law of large numbers in Lemma 8, we have

‖z1‖2

N

a.s.−−→ 1,
‖g1‖2

K

a.s.−−→ 1,
‖s‖2

K

a.s.−−→ σ2
s . (63)

Furthermore, applying Lemma 11 in Section C-B with σ(x) =
f2(x) yields

‖f(D)Tg1‖2

K
=

gH
1 f(D)f(D)Tg1

K

a.s.−−→ E[f2(d)]. (64)

It follows immediately from (63), (64), and Lemma 7 that

α :=
‖ŝ1‖
‖z1‖ =

‖s‖
‖g1‖

‖f(D)Tg1‖
‖z1‖

a.s.−−→
√

E[f2(d)] σ2
s

γ
= ᾱ. (65)

Note that C1 can be expressed as

C1 =
zH
1 q
(

‖ŝ1‖
‖z1‖ z1

)
‖ŝ1‖‖z1‖ =

zH
1 q(αz1)
α‖z1‖2

.

According to Lemma 12 in Section C-B and noting that α
a.s.−−→

ᾱ, we have

zH
1 q(αz1)

N

a.s.−−→ E[Z†q(ᾱZ)], (66)

where Z ∼ CN (0, 1). This, together with (63), (65), and

Lemma 7, proves the convergence of C1:

C1 =
zH
1 q(αz1)
α‖z1‖2

a.s.−−→ E[Z†q(ᾱZ)]
ᾱ

= C1.

To show the convergence of C2 = ‖B(z1)
Hq(αz1)‖

‖z2[2:N ]‖ , we first note

that ∥∥B(z1)Hq (αz1)
∥∥2

N

=

∥∥∥∥( zH1
‖z1‖

B(z1)
H

)
q (αz1)

∥∥∥∥2

−
∣∣∣ zH

1q(αz1)
‖z1‖

∣∣∣2
N

=
‖q(αz1)‖2

N
−
∣∣∣∣zH

1 q(αz1)
N

∣∣∣∣2 N

‖z1‖2
, (67)

where the second equality holds because R(z1)H =
(

zH1
‖z1‖

B(z1)
H

)
and ‖·‖ is rotationally invariant. Similar to Lemma 12, we can

show that

‖q(αz1)‖2

N

a.s.−−→ E[|q(ᾱZ)|2].
Combining this with (63), (66), and (67), and noticing that
‖z2[2:N ]‖2

N

a.s.−−→ 1, we have

C2
a.s.−−→

√
E[|q(ᾱZ)|2] − |E[Z†q(ᾱZ)]|2 = C2.

Next, we analyze the convergence of Ts and Tg. We begin

with Ts:

Ts =
gH
1 {C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}

‖g1‖‖s‖ − Tg
(R(s)−1g2)[1]

‖s‖
=C1

gH
1 Df(D)Tg1

‖g1‖2
+ C2

gH
1 DB(ŝ1)z2[2 : N ]

‖g1‖‖s‖
− Tg

(R(s)−1g2)[1]
‖s‖

:=T11 + T12 + T13,

where the second equality uses the definition of ŝ1 in (13).

In what follows, we will show

T11
a.s.−−→ C1 E [d f(d)] , (68a)

T12
a.s.−−→ 0, (68b)

T13
a.s.−−→ 0. (68c)

Substituting σ(x) = xf(x) into Lemma 11, we have

gH
1 Df(D)Tg1

K

a.s.−−→ E [d f(d)] ,

which, together with
‖g1‖2

K

a.s.−−→ 1 and C1
a.s.−−→ C1, implies

(68a). We next show that T12 vanishes asymptotically. Recall-

ing the definition R(ŝ1) =
(

ŝ1
‖ŝ1‖ B(ŝ1)

)
, we then have

B(ŝ1)z2[2 : N ] = R(ŝ1)z2 − z2[1]
ŝ1

‖ŝ1‖ . (69)

Using (69) and the definition of ŝ1 in (13), we can upper bound

T12 by

|T12| = C2

∣∣∣∣gH
1 DB(ŝ1)z2[2 : N ]

‖g1‖‖s‖
∣∣∣∣

≤ C2

∣∣∣∣gH
1 DR(ŝ1)z2

‖g1‖‖s‖
∣∣∣∣+ C2

∣∣∣∣∣z2[1] gH
1 D ŝ1

‖ŝ1‖
‖g1‖‖s‖

∣∣∣∣∣
= C2

∣∣∣∣gH
1 DR(ŝ1)z2

‖g1‖‖s‖
∣∣∣∣+ C2

∣∣∣∣z2[1]
gH
1 Df(D)Tg1

‖f(D)Tg1‖‖g1‖‖s‖
∣∣∣∣

≤ C2

∣∣∣∣gH
1 DR(ŝ1)z2

‖g1‖‖s‖
∣∣∣∣+ C2

∣∣∣∣z2[1]
‖s‖ ‖D‖

∣∣∣∣ .
Since both ŝ1 and g1 are independent of z2, R(ŝ1)z2

d= z2 and

R(ŝ1)z2 is independent of g1. It follows immediately from

(63) and Lemmas 7 and 11 that

gH
1 DR(ŝ1)z2

‖g1‖‖s‖
a.s.−−→ 0.
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In addition, since
z2[1]
‖s‖

a.s.−−→ 0 and ‖D‖ a.s.−−→ 1 +
√

1/γ

(see (ii) of Lemma 10), we have
∣∣∣ z2[1]‖s‖ ‖D‖

∣∣∣ a.s.−−→ 0. Noting

that C2
a.s.−−→ C2, we further have (68b). Finally, since

R(s)−1g2[1]
‖s‖

a.s.−−→ 0 and Tg converges almost surely to a

constant (which will be shown in the sequel), we have (68c).

Combining the above discussions, we get

Ts = T11 + T12 + T13
a.s.−−→ C1 E [d f(d)] .

We next show the almost sure convergence of Tg to a

constant. Note that R(s)−1g2
d= g2 due to the independence

between s and g2. Hence the following holds for the denom-

inator of Tg:

‖ (R(s)−1g2

)
[2 : K]‖√

K

a.s.−−→ 1.

For the numerator, using (69) and the definition of ŝ1 in (13),

we have ∣∣∣∣‖B(g1)H{C1Dŝ1 + C2DB(ŝ1)z2[2 : N ]}‖√
K

− ‖B(g1)H{C1Dŝ1 + C2DR(ŝ1)z2}‖√
K

∣∣∣∣
≤C2

‖z2[1]B(g1)HD ŝ1
‖ŝ1‖‖√

K

=C2
|z2[1]| ‖B(g1)HDf(D)Tg1‖√

K ‖f(D)Tg1‖
≤C2

|z2[1]|‖B(g1)‖‖D‖√
K

a.s.−−→ 0,

where the almost sure convergence uses the facts that

‖D‖ a.s.−−→ 1 +
√

1/γ, ‖B(g1)‖ ≤ 1, and C2
a.s.−−→ C2.

Furthermore,

‖B(g1)H{C1Dŝ1 + C2DR(ŝ1)z2}‖2

K

d=
‖B(g1)H{C1Dŝ1 + C2Dz2}‖2

K

=

∥∥R(g1)H{C1Dŝ1 + C2Dz2}
∥∥2

K

−

∥∥∥ gH
1

‖g1‖{C1Dŝ1 + C2Dz2}
∥∥∥2

K

=
‖C1

‖s‖
‖g1‖Df(D)Tg1 + C2Dz2‖2

K

− 1
K

∣∣∣∣∣∣g
H
1 {C1

‖s‖
‖g1‖Df(D)Tg1 + C2Dz2}

‖g1‖

∣∣∣∣∣∣
2

:=T21 − T22, (70)

where the first equality holds since z2 is independent of g1,D,
and ŝ1; the second equality is due to the definition of B(·) in

(40); the third equality uses the definition of ŝ1 in (13) and

the rotational invariance of ‖ ·‖. The first term T21 in (70) can

be expressed as

T21 =|C1|2 ‖s‖2

‖g1‖2

gH
1 f(D)DTDf(D)Tg1

K

+ C2
2

zH
2 DTDz2

K
+2

‖s‖
‖g1‖

R (
C1C2z

H
2 DTDf(D)Tg1

)
K

.

Applying Lemma 11 with σ(x) = x2f2(x), σ(x) = x2, and

σ(x) = x2f(x), and using the almost sure convergence of

C1 and C2, we have

T21
a.s.−−→ σ2

s |C1|2 E[d2f2(d)] + C
2

2 E[d2].

Similarly, for the second term T22 in (70), we have

T22 =

∣∣∣∣∣C1

√
K‖s‖
‖g1‖2

gH
1 Df(D)Tg1

K
+ C2

√
K

‖g1‖
gH
1 Dz2

K

∣∣∣∣∣
2

a.s.−−→ σ2
s |C1|2 E2[d f(d)].

Combining the above discussions and noting that E[d2] = 1
[48], we can conclude that

Tg
a.s.−−→

√
σ2

s |C1|2 var[d f(d)] + C
2

2,

which completes our proof.

APPENDIX D

PROOF OF THEOREM 3

In this section, we give the proof of Theorem 3. We first

prove the convergence of ŜINRk and then show the conver-

gence of ŜEPk(β).

A. Proof of Convergence of ŜINRk

Note that E[|sk|2] = σ2
s is a constant (see Assumption 1).

If we can show that E[|ŷk|2] → E[|ȳk|2] and E[s†kŷk] →
E[s†kȳk], then according to the definition of the SINR in (18),

we have

ŜINRk → SINR.

In the following, we will only prove the convergence of

E[|ŷk|2], and the convergence of E[s†kŷk] can be shown

similarly.

Firstly, it follows from Theorem 2 that ŷk
a.s.−−→ ȳk, and thus

|ŷk|2 a.s.−−→ |ȳk|2.
To show the convergence of expectation, we only need to

prove that {|ŷk|2} is uniformly integrable [55]. Note that for a

sequence of random variables {XN , N ≥ 1}, the boundedness

of E[|XN |2] can imply uniform integrability of {XN} (see [55,

Section 9.5] for details about uniform integrability of random

variables). Therefore, it suffices to prove that the sequence

{E[|yk|4} is bounded. According to (12), we have

|ŷk|4 = |ηTssk + ηTgg2[k] + nk|4
≤ 27|ηTssk|4 + 27|ηTgg2[k]|4 + 27|nk|4

≤ 27
2

(η8|Ts|8 + |sk|8 + η8|Tg|8 + |g2[k]|8 + 2|nk|4),
(71)
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where the first inequality holds since |a + b + c|2 ≤ 3|a|2 +
3|b|2 + 3|c|2. From Theorem 2 and Lemma 7, we have

|Ts|8 a.s.−−→ |T s|8 and |Tg|8 a.s.−−→ |T g|8,
where T s and T g are both constants, and thus

E[|Ts|8] → |T s|8 and E[|Tg|8] → |T g|8. (72)

Taking expectations over both the left-hand and the right-hand

sides of (71) and using (72), we can conclude that

sup
k

E[|ŷk|4] < +∞,

which completes the proof.

B. Proof of Convergence of ŜEPk(β)

Given a constellation symbol s, we use Ds to denote

its decision region, i.e., the region within which s will be

recovered. With this notation, ŜEPk(β) can be expressed as

ŜEPk(β) = 1 − P (βŷk ∈ Dsk
)

= 1−
M∑

m=1

P

(
sk = s(m)

)
P

(
βŷk ∈ Dsk

| sk = s(m)
)

= 1 − 1
M

M∑
m=1

P

(
βŷk ∈ Dsk

| sk = s(m)
)

, (73)

where the third equality holds since sk is uniformly drawn

from SM . Similarly,

SEPk(β) = 1 − 1
M

M∑
m=1

P

(
βȳk ∈ Dsk

| sk = s(m)
)

.

From Theorem 2, we have (sk, ŷk) a.s.−−→ (sk, ȳk). Hence,

the joint distribution of (sk, ŷk) converges weakly to that of

(sk, ȳk). If we can further show

P

(
βȳk ∈ δDsk

| sk = s(m)
)

= 0, (74)

where δDsk
denotes the boundary of Dsk

, then according to

[58, Lemma 2.2],

P

(
βŷk ∈ Dsk

| sk = s(m)
)
→ P

(
βȳk ∈ Dsk

| sk = s(m)
)

,

and hence ŜEPk(β) → SEPk(β) = SEP(β).
We next show (74). When nearest-neighbor decoding is

employed as assumed in this paper, the decision region of

s can be expressed as3

Ds =
{

r | |r − s|2 <
∣∣∣r − s(i)

∣∣∣2 , ∀ s(i) ∈ SM , s(i) �= s

}
,

or equivalently,

Ds =
{

r | 2R((s(i) − s)†r) + |s|2 − |s(i)|2 < 0,

∀ s(i) ∈ SM , s(i) �= s
}

. (75)

3A minor problem is that the decision regions given here are all open sets
and cannot cover the whole complex space. This is not an essential problem:
if r lies on the boundary of two decision regions, we can just randomly choose
one of the corresponding constellation point as the recovered symbol.

It follows that the boundary of Ds can be expressed as

δDs =
{

r | max
i,s(i) 
=s

{
2R((s(i) − s)†r) + |s|2 − |s(i)|2

}
= 0

}
.

Recall that βȳk = β(ηT s s + ηT g g2[k] + nk). Then

P

(
βȳk ∈ δDsk

| sk = s(m)
)

= P

(
β
(
ηT s s(m) + ηT g g2[k] + nk

)
∈ δDs(m)

)
= P

(
max
i
=m

{
R
(
a†

m,i(ηT g g2[k] + nk)
)

+ Cm,i

}
= 0

)
,

where am,i = 2β(s(i) − s(m)) and Cm,i =
2R(ηT sa

†
m,is

(m)) + |s(m)|2 − |s(i)|2 are both constants.

The last probability can further be upper bounded as

P

(
max
i
=m

{
R
(
a†

m,i(ηT g g2[k] + nk)
)

+ Cm,i

}
= 0

)
≤
∑
i
=m

P

(
R
(
a†

m,i(ηT g g2[k] + nk)
)

+ Cm,i = 0
)

.

Since ηT g g2[k]+nk is Gaussian, each term of the right-hand

side of the above inequality is 0, which further implies that

P
(
βȳk ∈ δDsk

| sk = s(m)
)

= 0. This completes our proof.

APPENDIX E

EQUIVALENCE OF MAXIMIZING THE ASYMPTOTIC SINR

AND MINIMIZING THE ASYMPTOTIC SEP

For the scalar asymptotic model (20) with precoding factor

β in (23), the received signal is

βȳ = s +
T

†
s

η|T s|2
(ηT g g + n) � s + n̄, (76)

where n̄ ∼ CN
(

0,
η2T

2
g +σ2

η2|T s|2

)
since g ∼ CN (0, 1) and n ∼

CN (0, σ2) are independent. Following (73) in Appendix D,

we can express the asymptotic SEP as

SEP = 1 − 1
M

M∑
m=1

P

(
βȳ ∈ Ds | s = s(m)

)
.

Each probability in the above summation can further be

expressed as

P

(
βȳ ∈ Ds | s = s(m)

)
= P

(
n̄ ∈ Ds(m) − s(m)

)
= P

(
Z ∈ SINR

σ2
s

(
Ds(m) − s(m)

))
,

where we have rewritten n̄ as n̄ = σ2
s

SINR
Z with Z ∼ CN (0, 1).

From (75), it is easy to check that Ds(m)−s(m) is a polyhedron

containing 0, and thus the above probability is increasing in

SINR, i.e., SEP is a decreasing function of SINR.
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APPENDIX F

PROOF OF THEOREM 4

In this section, we give the proof of Theorem 4, i.e.,

we prove that (ᾱ∗, η∗, f∗) given in (30) is the optimal solution

to the following problem:

ζ∗ := sup
f,η>0,ᾱ>0

E2[d f(d)]

var[d f(d)] + φ(ᾱ, η) E[f2(d)]
γ

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f2(d)] =
γ

σ2
s

ᾱ2. (77)

We first note that φ∗ = ∞ (see the definition in (30a)) is a

pathological case where the SINR in (77) is identically zero4

and any (ᾱ, η, f) is optimal. This happens, e.g., when q(·) is a

constant function. In the rest of the proof, we assume φ∗ < ∞.

It is convenient to work with the inverse of the objec-

tive function in (77) and consider the following equivalent

problem:

Φ∗ := inf
η>0,ᾱ>0,f

E[d2f2(d)] + φ(ᾱ,η)
γ E[f2(d)]

E2[d f(d)]
− 1

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f2(d)] =
γ

σ2
s

ᾱ2. (78)

We first ignore the constraints. By the Cauchy-Swarchz

inequality, we can upper bound the denominator of the objec-

tive function of (78) by

E2[d f(d)] ≤ E

[(
d2 +

φ(ᾱ, η)
γ

)
f2(d)

]
E

[
d2

d2 + φ(ᾱ,η)
γ

]
,

and thus

E[d2f2(d)] + φ(ᾱ,η)
γ E[f2(d)]

E2[d f(d)]
=

E

[(
d2 + φ(ᾱ,η)

γ

)
f2(d)

]
E2[d f(d)]

≥ 1

E

[
d2

d2+φ(ᾱ,η)/γ

] ,

where the inequality holds with equality when

f(x) :=
x

τ
(
x2 + φ(ᾱ,η)

γ

) , ∀ τ �= 0.

By the above inequality, the constrained infimum in (78) is

further lower bounded by

Φ∗ ≥ inf
η>0,ᾱ>0

1

E

[
d2

d2+φ(ᾱ,η)/γ

] − 1

s.t. η2 E[|q(ᾱZ)|2] ≤ PT ,

E[f2(d)] =
γ

σ2
s

ᾱ2. (79)

Note that the objective function of (79) is independent of

f(·), and thus the second constraint can be removed. In addi-

tion, E[d2/(d2 + x)] is decreasing in x ∈ [0,∞) and it is

straightforward to check that φ(ᾱ, η) ≥ 0 (see (22)). Hence,

4This is not the case for quantization functions used in practice.

the optimization problem in the right-hand side of (79) is

equivalent to

inf
η>0,ᾱ>0

φ(ᾱ, η)

s.t. η2 E[|q(ᾱZ)|2] ≤ PT . (80)

Since φ(ᾱ, η) is decreasing in η (see (22)), the power con-

straint in (80) must be satisfied with equality at the infimum,

namely,

η =

√
PT

E[|q(ᾱZ)|2] . (81)

Substituting (81) into (80) yields the optimization problem in

(30a), whose optimal value is given by φ∗. Hence,

ζ∗ =
1

Φ∗ ≤ 1

1 − E

[
d2

d2+ φ∗
γ

] − 1.

The proof is complete by further verifying that (ᾱ∗, η∗, f∗) is

feasible for (78) and Φ∗ is attained at (ᾱ∗, η∗, f∗).
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